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A scalar-tensor theory of gravity, containing an arbitrary coupling function FðϕÞ and a general
potential VðϕÞ, is considered in the context of a spatially flat Friedmann-Lemaître-Robertson-Walker
model. The use of reparametrization invariance enables a particular lapse parametrization in which the
minisuperspace metric completely specifies the dynamics of the system. A requirement of the existence
of the maximal possible number of autonomous integrals of motion is imposed. This leads to a flat
minisuperspace metric realized by a particular relation between the coupling function and the potential.
The space of solutions is completely described in terms of the three autonomous integrals of motion
constructed by the Killing fields of the minisupermetric and an additional rheonomous emanating from
the homothetic field. The solutions contain the arbitrary function which remains after the imposition of
the relation between FðϕÞ and VðϕÞ. To exemplify the use of the general results, we select some
particular cases and study their physical implications through an effective energy-momentum tensor,
which turns out to be that of a perfect fluid.
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I. INTRODUCTION

In the last fifteen years a groundbreaking discovery has
altered the way we view our Universe; namely observations
show that the Universe is not only expanding but it is also
accelerating [1–3]. This fact gave birth to a plethora of
propositions for explaining it, including, to list only a few:
quintessence models [4,5], which invoke an evolving
canonical scalar field with a potential; chameleon fields
in which the scalar field couples to the baryon energy
density and is homogeneous [6,7]; a scalar field with a
noncanonical kinetic term, known as K-essence [8,9] based
on earlier work of K-inflation [10]; Chaplygin gases, which
attempt to unify dark energy and dark matter under one roof
by allowing for a fluid with an equation of state which
evolves between the two [11–13]; phantom dark energy
[14] or even direct anthropic arguments [15–17]; for a
comprehensive review see [18,19].
Another large field of research is devoted to modified

theories of gravity and specifically to the scalar-tensor case,
which is the subject of the current work. Scalar-tensor
theories, with a nonminimal coupling, are considered as the
most general, since they incorporate a significant amount of
other theories. It is well known that fðRÞ gravity theories
are equivalent to many scalar-tensor cases, with the
derivative of the function fðRÞ playing the role of the
Brans-Dicke scalar [20–23]. Fourth-order gravity theories
[20,24] are also equivalent to a scalar-tensor theory, and

there is even a significant analogy between the fðRÞ gravity
theories with torsion and the scalar-tensor theories with
torsion, as discussed, for example, in [25,26] (for a review
of all of them see [27]).
The use of Noether symmetries in minisuperspace, either

in the classical or the quantum level, is not new. This
approach for classical Bianchi cosmologies was, to the best
of our knowledge, initiated in [28] and then used in [29,30],
and work on the subject has been revived by numerous
authors [31–38].
The common feature of all the above works is that

they were dealing with systems described by singular
Lagrangians, since all of them admit a time-reparametrization
invariance. In [39] the symmetry treatment of such
Lagrangians was addressed and it was shown how one
can find all the Noether symmetries possessed by these
systems. The result is that we have to extend the infini-
tesimal criterion of symmetry in such a way that it includes
the constraint that arises from the reparametrization invari-
ance. This method was used in [40–43] for the quantization
of various minisuperspace models and in [44] where
a Noether analysis of Friedmann-Lemaître-Robertson-
Walker (FRLW) cosmology in the context of fðRÞ gravity
was performed, resulting in the discovery of several exact
new solutions.
In the present work we use the method developed in [39]

to investigate a general nonminimal coupling for a scalar
field ϕ with gravity, which is proportional to the Ricci
scalar R, see (2.2) below, embedded in a Friedmann-
Lemaître-Robertson-Walker spacetime. The strategy we
follow is to demand a maximal number of Noether
symmetries of the action (2.2) in order to find the general
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solution for the scale factor aðtÞ, the coupling function
FðϕÞ, the potential VðϕÞ and the scalar field ϕðtÞ.
In order to infer the physical properties of the solutions

we obtain, we start from the known duality between scalar
fields and perfect fluids [45–47]. The usual line of thought
is to try to interpret the energy-momentum tensor of the
scalar field as an energy-momentum tensor of a perfect
fluid [48–51]; of course this duality must be taken with
caution because, e.g., at the level of the Lagrangian
formulation problems may arise, as recently noted [52].
We, on the other hand, choose to make a slightly

different identification; we rewrite the field equations of
the scalar-tensor theory, as in General Relativity, i.e.
Gij ¼ Tij and interpret the right-hand side as the energy-
momentum tensor of an imperfect fluid. The nice outcome
is that in the general case the imperfect fluid is actually a
perfect one. In order to obtain physically acceptable perfect
fluid solutions, one must demand a specific type of energy
conditions.
The structure of the paper is the following. In Sec. II, we

set up the field equations, perform the Noether analysis and
calculate the general solutions. In Sec. III, we calculate the
parameters that characterize the Universe expansion
(Hubble, deceleration and jerk) and establish the corre-
spondence between a scalar field and a perfect fluid. In
Sec. IV, we present a number of special solutions, among
them one that obeys the major energy conditions and
describes an expanding Universe suffering from a cosmic
jerk (a deceleration epoch followed by an accelerating one).
Finally, Sec. V is devoted to discussion.

II. NOETHER ANALYSIS AND GENERAL
SOLUTIONS

A. Background geometry and minisuperspace

Let us consider a FLRW spacetime that describes a
homogeneous and spatially flat universe, i.e.

ds2 ¼ −NðuÞ2du2 þ aðuÞ2ðdr2 þ r2dΩ2Þ; ð2:1Þ

where dΩ2 ¼ dθ2 þ sin2 θdφ2 and NðuÞ is the lapse
function which will play an essential role in the develop-
ment of our treatment of the problem.
The action that describes the nonminimal coupling

between gravity and the scalar field ϕ is taken as

S ¼
Z ffiffiffiffiffiffi

−g
p �

FðϕÞRþ ϵ

2
gmnϕ

;mϕ;n − VðϕÞ
�
d4x; ð2:2Þ

where FðϕÞ a function that represents the coupling, the
constant ϵ equals ϵ ¼ �1 allowing ghost fields (ϵ ¼ þ1),
VðϕÞ is a self-interaction potential and R is the Ricci scalar.
In order to find the field equations along with the equation

that the scalar field ϕ obeys, we must vary the action (2.2)
with respect to gij and ϕ respectively. The result is

FðϕÞ
�
Rij −

1

2
Rgij

�
−∇i∇jFðϕÞ þ gij□FðϕÞ ¼ Tij;

ð2:3aÞ

□ϕþ ϵV0ðϕÞ ¼ ϵF0ðϕÞR; ð2:3bÞ

where

Tij ¼ −
ϵ

2
∇iϕ∇jϕþ 1

4
gijðϵ∇kϕ∇kϕ − 2VðϕÞÞ ð2:4Þ

is the energy-momentum tensor, □ ¼ ∇k∇k is the Laplace-
Beltrami operator, ∇k is the covariant derivative and the
prime 0 on a function denotes the derivative with respect to
its argument.
The Lagrangian treatment of the problem begins by

inserting the values of gij from (2.1) in (2.2). The resulting
Lagrangian is given by

L ¼ 1

2N
GαβðxαÞx0αx0β − NUðxαÞ;

Gαβ ¼
� −12aF −6a2Fϕ

−6a2Fϕ −ϵa3

�
; U ¼ a3V; ð2:5Þ

where xα ¼ ða;ϕÞ [53], the subscript ϕ indicates the
derivative with respect to ϕ and Gαβ is the minisupermetric
of our problem. It is an essential requirement in differential
geometry to check that the field equations (2.3) and the
Euler-Lagrange equations yielding from the reduced
Lagrangian (2.5) are equivalent; this is true in our case.

B. Noether symmetries

One way to solve the equations of motion (2.3) resulting
from (2.5) is to search for the Noether symmetries that the
system possesses. The significant feature of this
Lagrangian is that it is singular, since there is no N0 term;
thus, in order to find its Noether symmetries we must take
this fact into consideration.
The correct way of treating this sort of Lagrangian, in

order to acquire all their Noether symmetries, was exhibited
in [39]; the result is that the Noether symmetries correspond
to the conformal Killing fields of both Gαβ and UðxαÞ with
opposite conformal factors, i.e.

£ξGαβ ¼ ωðxαÞGαβ; £ξU ¼ −ωðxαÞUðxαÞ: ð2:6Þ

The freedom of time reparametrization allows us to
redefine the lapse function NðtÞ in such a way that the
potential UðxαÞ becomes constant; the recipe is to define a
new lapse N̄ ¼ N=UðxαÞ, which in turn scales the minis-
upermetric to Ḡαβ ¼ UðxαÞGαβ. In this parametrization the
symmetries of (2.5) corresponding to integrals of motion
are constructed by all the Killing fields of the scaled
supermetric Ḡαβ ¼ UðxαÞGαβ. Additionally, its homothetic
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field (which is a Lie-point symmetry of the equations of
motion) can be used to define a rheonomous integral of
motion; the details of this are explained in [39].
The scaled minisupermetric Gαβ reads (we drop the bars

hereafter)

Gαβ ¼ a3V

� −12aF −6a2Fϕ

−6a2Fϕ −ϵa3

�
; ð2:7Þ

while the corresponding Ricci scalar is proportional to

− 2FV2
ϕðϵF − 3F2

ϕÞ þ Vð−6F3
ϕVϕ

þ FFϕðVϕð6Fϕϕ þ ϵÞ − 6FϕVϕϕÞ þ 2ϵF2VϕϕÞ
þ 2ϵV2ðF2

ϕ − 2FFϕϕÞ: ð2:8Þ

1. Flat minisuperspace

The proportionality factor of (2.8) is a particular function
of a. Thus, if one wants to have the maximum number of
Noether symmetries, the only viable case is for the Ricci
scalar to be zero, since it cannot be a nonzero constant.
Therefore, one is led to the nihilism of the above expression,
which can be achieved if FðϕÞ; VðϕÞ are assumed to satisfy

FðϕÞ ¼ 1

4
h2ðϕÞ; VðϕÞ ¼ efðϕÞh4ðϕÞ;

where 3h02 − λ2h2f02 ¼ ϵ: ð2:9Þ

The functions fðϕÞ; hðϕÞ are arbitrary and λ is a
constant.
In order to calculate the form of the Killing fields ξα and

the homothetic field ηα of the scaled minisupermetric we
bring it to a diagonal form

Gαβ ¼ 64 exp ð2
ffiffiffi
3

p
wþ fðϕÞÞ

�−1 0

0 λf02ðϕÞ

�
ð2:10Þ

with the aid of the transformation

a ¼ 1ffiffiffiffiffiffiffiffiffiffi
FðϕÞp ew=

ffiffi
3

p
: ð2:11Þ

The resulting fields are

ξð1Þ ¼ −
1

2
exp

ð2 ffiffiffiffiffi
3λ

p
− 1Þð−wþ ffiffiffi

λ
p

fðϕÞÞ
2

ffiffiffi
λ

p

×

�
∂w −

1ffiffiffi
λ

p
f0ðϕÞ ∂ϕ

�
ð2:12aÞ

ξð2Þ ¼
1

2
exp

−ð2 ffiffiffiffiffi
3λ

p þ 1Þðwþ ffiffiffi
λ

p
fðϕÞÞ

2
ffiffiffi
λ

p

×

�
∂w þ 1ffiffiffi

λ
p

f0ðϕÞ ∂ϕ

�
ð2:12bÞ

ξð3Þ ¼ −
1

2
∂w þ

ffiffiffi
3

p

f0ðϕÞ ∂ϕ ð2:12cÞ

η ¼ 1

2
ffiffiffi
3

p ∂w: ð2:12dÞ

From the above fields we can form the constants of motion
QI ¼ ξαðIÞπα, where πα ¼ ∂x0αL are the momenta, along
with the constant Qη ¼ ηαπα þ

R
Ndu, and calculate the

functions wðuÞ; fðuÞ. In order to simplify the results we can
switch to the time variable τ with dτ ¼ NðuÞdu. Denoting
with κI the three constants of motion which correspond to
the Killing fields and with kh the constant arising from the
homothetic field, we have

32exp
ð1þ 2

ffiffiffiffiffi
3λ

p Þð ffiffiffi
λ

p
fðτÞþwðτÞÞ

2
ffiffiffi
λ

p ð
ffiffiffi
λ

p
f0ðτÞþw0ðτÞÞ ¼ κ1

ð2:13aÞ

32exp
ð1− 2

ffiffiffiffiffi
3λ

p Þð ffiffiffi
λ

p
fðτÞ−wðτÞÞ

2
ffiffiffi
λ

p ð
ffiffiffi
λ

p
f0ðτÞ−w0ðτÞÞ ¼ κ2

ð2:13bÞ

32 exp ðfðτÞ þ 2
ffiffiffi
3

p
wðτÞÞð2

ffiffiffi
3

p
λf0ðτÞ þ w0ðτÞÞ ¼ κ3

ð2:13cÞ

32ffiffiffi
3

p exp ðfðτÞ þ 2
ffiffiffi
3

p
wðτÞÞw0ðτÞ ¼ τ − kh: ð2:13dÞ

The above four equations can be solved algebraically for
the functions fðτÞ; wðτÞ and their derivatives f0ðτÞ; w0ðτÞ;
but after that, we must demand validity of the consistency
equations f0ðτÞ ¼ dfðτÞ=dτ; w0ðτÞ ¼ dwðτÞ=dτ.
From the form of the equations (2.13), it is obvious that

we have to consider two cases, specifically, in which the
constant λ either does or does not equal 1

12
.

(i) Case I: λ ¼ 1
12
.

The consistency equations imply the following
relations between the constants κi:

κ3 ¼ κ1; κ2 ¼ −
32

κ1
; ð2:14Þ

so the functions fðτÞ; wðτÞ are given by

fðτÞ ¼ c1 −
ffiffiffi
3

p

κ1
τ þ 1

2
ln ð2

ffiffiffi
3

p
τ − kÞ ð2:15aÞ

wðτÞ ¼ −
ffiffiffi
3

p

6

�
c1 þ ln

32

κ1

�
þ 1

2κ1
τ þ

ffiffiffi
3

p

12
ln ð2

ffiffiffi
3

p
τ − kÞ;

ð2:15bÞ
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where k ¼ 2
ffiffiffi
3

p
ch þ κ1. The values of the original func-

tions aðτÞ; VðτÞ; FðτÞ and ϕðτÞ can be deduced from the
parametrization (2.9) and (2.11), i.e.

aðτÞ ¼ ð2κ1Þ1=6
hðτÞ ð2

ffiffiffi
3

p
τ − kÞ1=12 exp

� ffiffiffi
3

p

6κ1
τ −

c1
6

�
ð2:16aÞ

VðτÞ ¼ ð2
ffiffiffi
3

p
τ − kÞ1=2h4ðτÞ exp

�
c1 −

ffiffiffi
3

p

κ1
τ

�
ð2:16bÞ

FðτÞ ¼ 1

4
h2ðτÞ ð2:16cÞ

ϕ0ðτÞ2 ¼ 3

ϵ
h02ðτÞ − 1

ϵ

�
2

ffiffiffi
3

p
τ − k − κ1

2κ1ð2
ffiffiffi
3

p
τ − kÞ

�2

h2ðτÞ: ð2:16dÞ

Thus we have an infinite number of coupling functions
FðϕÞ and interacting potentials VðϕÞ resulting from the
infinite choices of the arbitrary function hðτÞ.
If the actual form FðϕÞ is needed, it can be derived as

follows: Choose a function hðτÞ, calculate the functional
form of ϕðτÞ from (2.16d), take the inverse of that function
in order to get τ ¼ rðϕÞ and then substitute the result in
(2.16d).
As an example let ϵ ¼ 1; k ¼ 0; κ1 ¼ 2

ffiffiffi
3

p
; hðτÞ ¼ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

48=143
p

eτ=τ, then ϕðτÞ ¼ c� eτ=τ (where the plus sign
emerges when τ > 1 while the minus sign does when
τ < 1), then h ¼ � ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

48=143
p ðϕ − cÞ and finally FðϕÞ ¼

12=143ðϕ − cÞ2 along with VðϕÞ ¼ c2ðϕ − cÞ7=2.
As it is common in General Relativity, the constants that

are appearing in the solution set are not all essential, i.e. they
can be eliminated by a proper redefinition of them, along
with a coordinate transformation. In our case the redefini-

tions k ¼ 2
ffiffiffi
3

p
γ; k1 ¼ 1=ð ffiffiffi

3
p

αÞ; exp c1 ¼ α=ð4
ffiffiffiffiffiffiffiffiffi
2

ffiffiffi
3

pp
βÞ

and the transformation r ↦ e−c1=3α2=3=ð2 ffiffiffi
2

p
31=12Þr bring

the solution space into the form

aðτÞ ¼ β

hðτÞ e
ατ=2ðτ − γÞ1=12 ð2:17aÞ

VðτÞ ¼ αh4ðτÞ
4β2

e−3ατ
ffiffiffiffiffiffiffiffiffiffi
τ − γ

p ð2:17bÞ

FðτÞ ¼ 1

4
h2ðτÞ ð2:17cÞ

ϕ0ðτÞ2 ¼ 3

ϵ
h02ðτÞ − 1

48ϵ

�
6ατ − 6αγ − 1

τ − γ

�
2

h2ðτÞ; ð2:17dÞ

yielding the line element

ds2 ¼ β2e3ατ

h2ðτÞ ffiffiffiffiffiffiffiffiffiffi
τ − γ

p ð−dτ2 þ e−2ατðτ − γÞ5=3

× ðdr2 þ r2dθ2 þ r2sin2θdφ2ÞÞ; ð2:18Þ

with τ > γ.
(ii) Case II: λ ≠ 1

12
.

In this case the consistency equations imply only
one relation for the constants κi,

κ2 ¼ −
32

κ1
; ð2:19Þ

yielding the functions fðτÞ; wðτÞ

fðτÞ ¼ 1

sþ 1
ln
3k1ðsþ 1Þðτ − βÞ

32s

−
1

s − 1
ln
ðs − 1Þðτ þ αÞ

k1s
ð2:20aÞ

wðτÞ ¼ s

2
ffiffiffi
3

p
�

1

sþ 1
ln
3k1ðsþ 1Þðτ − βÞ

32s

þ 1

s − 1
ln
ðs − 1Þðτ þ αÞ

k1s

�
; ð2:20bÞ

where the redefinitions of the various constants are λ ¼
s2=12; κ1 ¼

ffiffiffi
3

p
k1 and ch ¼ ðαð1 − sÞ þ βð1þ sÞÞ=ð2sÞ,

κ3 ¼
ffiffiffi
3

p ðs2 − 1Þðαþ βÞ=ð2sÞ. Once more the values of
the original functions aðτÞ; VðτÞ; FðτÞ and ϕðτÞ can be
deduced from the parametrization (2.9), i.e.

aðτÞ ¼ 2

hðτÞ
�
3k1ðsþ 1Þðτ − βÞ

32s

�
s=6ð1þsÞ

×

�ðs − 1Þðτ þ αÞ
k1s

�
s=6ð1−sÞ

ð2:21aÞ

VðτÞ ¼
�
3k1ðsþ 1Þðτ − βÞ

32s

�
1þs

×

�ðs − 1Þðτ þ αÞ
k1s

�
1−s

h4ðτÞ ð2:21bÞ

FðτÞ ¼ 1

4
h2ðτÞ ð2:21cÞ

ϕ0ðτÞ2 ¼ 3

ϵ
h02ðτÞ − s2ð2τ − ðs − 1Þα − ðsþ 1ÞβÞ2

12ϵðs2 − 1Þ2ðτ − βÞ2ðτ þ αÞ2 h2ðτÞ:

ð2:21dÞ

Exactly as in case I, we have an infinite number of
coupling functions FðϕÞ and interacting potentials VðϕÞ
arising from the appearance of the arbitrary function hðτÞ.
The following redefinition and the transformation of

r-coordinate
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k1 ¼ 2−ðs−1Þðs−4Þ=ð2sÞ3−ðsþ2Þðs−1Þ=ð2sÞ

× ðs − 1Þ−ðsþ1Þðs−2Þ=ð2sÞðsþ 1Þ−ðs−1Þðsþ2Þ=ð2sÞγ−ðs2−1Þ=s

r ↦ 2ð3−2sÞ=ð3þ3sÞ3−ð3þ2sÞ=ð3þ3sÞkð2sÞ=ð3−3s
2Þ

1

× ðs − 1Þð3−2sÞ=ð−3þ3sÞðsþ 1Þ−ð3þ2sÞ=ð3þ3sÞsð6−4s2Þ=ð3−3s2Þr

considerably simplifies the form of the solution space

aðτÞ ¼ γ

hðτÞ ðτ þ αÞs=6ðs−1Þðτ − βÞs=6ðsþ1Þ ð2:22aÞ

VðτÞ ¼ s2h4ðτÞ
6γ2ðs2 − 1Þ ðτ þ αÞ1=ð1−sÞðτ − βÞ1=ðsþ1Þ ð2:22bÞ

FðτÞ ¼ 1

4
h2ðτÞ ð2:22cÞ

ϕ0ðτÞ2 ¼ 3

ϵ
h02ðτÞ − s2ð2τ − ðs − 1Þα − ðsþ 1ÞβÞ2

12ϵðs2 − 1Þ2ðτ − βÞ2ðτ þ αÞ2 h2ðτÞ; ð2:22dÞ

yielding the line element

ds2 ¼ γ2ðτ þ αÞð2−sÞ=ðs−1Þ
h2ðτÞðτ − βÞðsþ2Þ=ðsþ1Þ

�
−dτ2 þ ðτ þ αÞn

ðτ − βÞm ðdr2 þ r2dθ2 þ r2sin2θdφ2Þ
�
; ð2:23Þ

where n ¼ 4s−6
3s−3 ; m ¼ − 4sþ6

3sþ3
.

2. Minisuperspace with lesser autonomous
integrals of motion

In this subsection we investigate what the result of the
previous investigation would be if the assumption of
maximal symmetry for Gαβ was relaxed, i.e. if we
demanded less than three autonomous integrals of motion.
As it is well known, in two dimensions the general metric
can be brought in a conformally flat form. We thus need to
investigate the case where the conformal factor is such that
the minisupermetric (2.7) is not flat. In order to find its
Killing/homothetic fields we first begin by enumerating all
the possibilities. The maximum number of Killing fields for
an n-dimensional metric is nðnþ 1Þ=2 thus in our case this
number equals three.

(i) If the metric admits three Killing fields, then its
either flat or maximally symmetric; the first pos-
sibility is already checked, while the second (as we
have already proved) is not admissible.

(ii) If the metric admits two Killing fields ξð1Þ; ξð2Þ,
then the possible Lie algebras these fields can span
are either the Abelians 2A1 ¼ h∂x; ∂yi and 2A1 ¼
h∂x; y∂xi, or the non-Abelians A2 ¼ h∂x; ex∂yi and
A2 ¼ h∂x; x∂xi; see e.g. [54,55]. In the Abelian case
the second algebra yields a degenerate metric, while

the first algebra reproduces a flat metric, since
Gαβ ¼ const. (and of course admits a third Killing
field). In the non-Abelian case the second algebra
yields a degenerate metric, while the first algebra
reproduces a metric with a constant Ricci scalar, i.e.
a maximally symmetric metric.

Finally the only case which is left to discuss is when the
scaled supermetric (2.7) admits only one Killing field. First
of all, let us state some general facts. Let hαβ ¼ hαβðx; yÞ be
a two-dimensional metric which admits a Killing field ξα,
then, it is always possible to bring it into its normal form,
i.e. ξ ¼ ∂y. As a result the metric can be put in the special
conformal form

hαβ ¼ ΩðxÞ
�
1 0

0 ϵ

�
; ð2:24Þ

see Appendix A. Obviously with the help of the trans-
formation x → y; y → x we can make the conformal factor
Ω a function of x.
Let us now return to the supermetric (2.7) and apply once

more the transformation a ¼ expðw= ffiffiffi
3

p Þ= ffiffiffiffiffiffiffiffiffiffi
FðϕÞp

, which
turns the line element into the form
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ds2 ¼ −
4e2

ffiffi
3

p
wVðϕÞ

F2ðϕÞ
�
dw2 þ ϵFðϕÞ − 3F02ðϕÞ

4F2ðϕÞ dϕ2

�
:

ð2:25Þ

Employing the transformation ϕ ¼ rðyÞ such that

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi���� ϵFðϕÞ − 3F02ðϕÞ
4F2ðϕÞ

����
s

dϕ ¼ dy; ð2:26Þ

we bring the metric (2.25) into the desired form

ds2 ¼ −
4e2

ffiffi
3

p
wVðrðyÞÞ

F2ðrðyÞÞ ðdw2 þ ϵdy2Þ: ð2:27Þ

In order for this line element to admit one Killing field,
there must exist a transformation that brings (2.27) into the
form (2.24). When V

F2 ¼ ceμy the space is flat and thus
admits three Killing fields; this case has the space of
solutions described by the sets (2.17) and (2.22). For all
other functional forms of V

F2, the space is not flat and cannot
be transformed into a form analogous to (2.24).

III. PHYSICAL INTERPRETATION
AND PHYSICAL PARAMETERS

In a FLRW universe some of the physical observation
parameters are the Hubble parameter H and the dimension-
less parameters deceleration q and jerk j, see for example
[56,57]. The Hubble parameter quantifies the expansion of
the Universe, the deceleration parameter nowadays mea-
sures the acceleration of the Universe, and the jerk

parameter is needed since the Universe was once deceler-
ating and is now accelerating.
Their definitions in comoving coordinates (ds2 ¼

−dt2 þ a2ðtÞdr2 þ a2ðtÞr2dΩ2) are given by

H ¼ a0ðtÞ
aðtÞ ; q ¼ −

aðtÞa00ðtÞ
a02ðtÞ ; j ¼ a2ðtÞa000ðtÞ

a03ðtÞ :

ð3:1Þ

The solution sets (2.17) and (2.22) are not referring to
comoving coordinates, but it is an easy task to make the
transition from the time coordinate τ to the desired one t. If
we follow the redefinition of the lapse function NðuÞ and
the time reparameterization dτ ¼ NðuÞdu, we then see that
these solutions are expressed as the line element

ds2 ¼ −uðτÞ2dτ2 þ a2ðτÞðdr2 þ r2dΩ2Þ; ð3:2Þ

thus the two coordinates are connected by

uðτÞdτ ¼ dt; ð3:3Þ

and the time derivatives of the scale factor aðtÞ are

a0ðtÞ ¼ daðτÞ
uðτÞdτ ; a00ðtÞ ¼ d

uðτÞdτ
�
daðτÞ
uðτÞdτ

�
… ð3:4Þ

For each one of the two solutions the aforementioned
parameters are quite cumbersome, due to the existence of
the arbitrary function hðτÞ, but are quite straightforward to
be calculated. We only present the form of the Hubble
parameter for each case,

HI ¼
1

12βðτ − γÞ1=4 e
−3ατ=2ð−12ðτ − γÞh0ðτÞ þ ð6ατ − 6αγ þ 1ÞhðτÞÞ ð3:5aÞ

HII ¼
ðτ þ αÞs=ð2−2sÞðτ − βÞ−s=ð2þ2sÞ

6γðs2 − 1Þ ð−6ðs2 − 1Þðτ − βÞðτ þ αÞh0ðτÞ þ sððs − 1Þα − ðsþ 1Þβ þ 2sτÞhðτÞÞ: ð3:5bÞ

As we have mentioned in the introduction, the duality of

scalar field/fluid is widely used in cosmology, thus we are

going to apply this procedure in our case; for details see

[45–47].
The equations of motion (2.3a) can be rewritten as

Rij −
1

2
Rgij ¼

1

FðϕÞ ðTij þ∇i∇jFðϕÞ þ gij□FðϕÞÞ

⇒ Eij ¼ TðϕÞ
ij ; ð3:6Þ

where Eij is the Einstein tensor and TðϕÞ
ij is the effective

energy-momentum associated with the scalar field. With
this energy-momentum tensor we want to associate an
energy-momentum tensor of an imperfect fluid

TðimfÞ
ij ¼ ðρþ pÞuiuj þ pgij þ 2qðiujÞ þ πij; ð3:7Þ

where ρ is the energy density of the fluid, ui the 4-velocity,
qi the heat flux vector, p the pressure and πij the
anisotropic stress tensor. The relations that make the
identification possible are
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Πmn ¼ TðϕÞ
ij himhjn ¼ phmn þ πmn

πmn ¼ Πmn −
1

3
Πk

khmn ¼ Πmn − phmn ð3:8aÞ

ρ ¼ TðϕÞ
ij uiuj p ¼ 1

3
Πi

i ð3:8bÞ

qk ¼ −TðϕÞ
ij uihjk; ð3:8cÞ

where hij is the projection tensor orthogonal to velocity ui
defined by

hij ¼ gij þ uiuj with uiui ¼ −1: ð3:9Þ

The natural choice of the 4-velocity ui is the one which is
associated with the normalized derivative of the scalar field
ϕ, i.e.

ui ¼
∇iϕffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

−∇jϕ∇jϕ
q ; ð3:10Þ

where we have assumed that ∇iϕ is timelike in order to
describe a physical fluid. Furthermore the kinematical
quantities of the fluid that are of interest, and appear in
the decomposition of the covariant derivative of the
velocity [58]

∇iuj ¼ − _uiuj þ ωij þ σij þ
1

3
θhij; ð3:11Þ

are

_ui ¼ uj∇jui; θ ¼ ∇iui;

σij ¼ ∇ðiujÞ þ _uðiujÞ −
1

3
θhij; ωij ¼ ∇½iuj� þ _u½iuj�;

ð3:12Þ

i.e. the acceleration, the expansion, the shear and the
rotation of the fluid respectively.
It is quite remarkable that in our case, irrespective of the

solution space, the heat flow qi along with the anisotropic
stress tensor πij are zero, thus the stress tensor T

ðϕÞ
ij mimics

a perfect fluid. Moreover the fluid has zero acceleration, is
shear free, exhibits no rotation and the expansion is three
times the Hubble parameter with an opposite sign. The
forms of the pressure p and the energy density ρ for case I
are

p ¼ e−3ατ

48β2
ffiffiffiffiffiffiffiffiffiffi
τ − γ

p ð96ðτ − γÞ2hðτÞh00ðτÞ − 144ðτ − γÞ2h02ðτÞ

− 8ðτ − γÞð6ðτ − γÞα − 11ÞhðτÞh0ðτÞ
þ ð36α2ðτ − γÞ2 − 36αðτ − γÞ þ 1Þh2ðτÞÞ ð3:13aÞ

ρ ¼ e−3ατ

48β2
ffiffiffiffiffiffiffiffiffiffi
τ − γ

p ð12ðτ − γÞh0ðτÞ − ð6ατ − 6αγ þ 1ÞhðτÞÞ2;

ð3:13bÞ

while for case II are given by

p ¼ dðτÞ
�
6ðs2 − 1Þðτ þ αÞðτ − βÞhðτÞh00ðτÞ − 9ðs2 − 1Þðτ þ αÞðτ − βÞh02ðτÞ

þ ðð5sþ 6Þðs − 1Þα − ð5s − 6Þðsþ 1Þβ þ 2ð5s2 − 6ÞτÞhðτÞh0ðτÞ

−
s2

4

�
4 −

ð2τ − ðsþ 1Þβ − ðs − 1ÞαÞ2
ðs2 − 1Þðτ þ αÞðτ − βÞ

�
h2ðτÞ

�
ð3:14aÞ

ρ ¼ dðτÞ
�
9ðs2 − 1Þðτ þ αÞðτ − βÞh02ðτÞ − 3sð2sτ þ ðs − 1Þα − ðsþ 1ÞβÞhðτÞh0ðτÞ

þ s2ð2sτ þ ðs − 1Þα − ðsþ 1ÞβÞ2
4ðs2 − 1Þðτ þ αÞðτ − βÞ h2ðτÞ

�
; ð3:14bÞ

where

dðτÞ ¼ ðτ þ αÞ1=ð1−sÞðτ − βÞ1=ðsþ1Þ

3γ2ðs2 − 1Þ :

The above procedure of evaluating the pressure p and the
energy density ρ has already been criticized as being
nonphysical in the case of vacuum scalar-tensor theory.

In [59] the authors started from the solutions of the vacuum
field equations of Brans-Dicke scalar-tensor theory of
gravity and calculated the corresponding energy-momentum
tensor for the perfect fluid. Their conclusion was that
“the examples presented in this paper seems to suggest that
this sort of equivalence is sometimes purely formal and
rather artificial.” Thus in order for one to be on the safe side
he must demand a physical character of the presented
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values of the pressure p and the energy density ρ. The
minimum assertions that can guarantee that kind of
physical acceptance are the various energy conditions,
which for the perfect fluid can then be formulated in terms
of the eigenvalues of this energy-momentum tensor:

(i) The weak energy condition stipulates that
ρ ≥ 0; ρþ p ≥ 0.

(ii) The null energy condition stipulates that ρþ p ≥ 0.
(iii) The strong energy condition stipulates that

ρþ p ≥ 0; ρþ 3p ≥ 0.
(iv) The dominant energy condition stipulates that

ρ ≥ jpj.
Below we present a solution that satisfies the above

energy conditions, except the strong energy one. The
validation of the strong energy condition is being criticized
nowadays; one of its violations can be seen from the recent
observational data regarding the acceleration of our
Universe, for more details see [60].

IV. SPECIAL SOLUTIONS

In this section we intend to explore some physical
consequences of the solution space found. To this end,
we select some particular forms for the free function hðτÞ
parameterizing the different solutions. We thus arrive at the
three cases given below.

A. Energy complete solution

As we have already mentioned each solution space
(2.17), (2.22) is modeled by the existence of the arbitrary
function hðτÞ. A natural choice would be to make the 00
component of the line element (3.2) equal to minus one,
thus transforming it to comoving coordinates; it is to be
noticed that with this procedure we do not apply any
coordinate transformation but we only make a specific
choice of hðτÞ. For case I the function hðτÞ which
accomplishes this is

hðtÞ ¼ βe3αt=2ðt − γÞ−3=4 ð4:1Þ

(for simplicity we write t instead of τ), and the line element
(3.2) reads

ds2 ¼ −dt2 þ e−2αtt5=3ðdr2 þ r2dθ2 þ r2sin2θdϕ2Þ: ð4:2Þ

For the above line element the Hubble parameter H, the
deceleration parameter q and the jerk parameter j are

H ¼ 5

6t
− α;

q ¼ −1þ 30

ð6αt − 5Þ2 j ¼ 1þ 90
6αt − 1

ð6αt − 5Þ3 : ð4:3Þ

Furthermore the pressure and the energy density of the
perfect fluid are

p ¼ 20 − ð6αt − 5Þ2
12t2

; ρ ¼ ð6αt − 5Þ2
12t2

; ð4:4Þ

which yield an equation of state p ¼ wρ, with variable
equation of state parameter w,

w ¼ 20 − ð6αt − 5Þ2
ð6αt − 5Þ2 ⇒ w ¼ −1þ 20

ð6αt − 5Þ2 : ð4:5Þ

From the above we conclude the following facts:
(1) It is easy to see that the energy conditions (except the

strong energy one) are satisfied for any value of the
parameter α and for t ≠ 0. Thus the induced perfect
fluid is a physical one, although the parameter w is t
dependent.

(2) For t ¼ 0 the parameter w equals −1=5 for every
value of the constant α, while for t → ∞; w → −1,
i.e. the fluid behaves like a cosmological constant
see Fig. 1.

(3) In order to have a universe that is expanding we must
require that the constant α in line element (4.2) to be
negative, α < 0.

(4) The deceleration parameter q equals q ¼ 1=5 at

t ¼ 0 and changes its sign at t− ¼ n−
ffiffi
n

p
α ; n ¼ 5=6;

thus we are describing a universe that initially is
expanding though decelerating, and after t− the
expansion is accelerating, a fact that is supported
by recent observations, see [61]. This behavior is
shown in Fig. 2.

(5) The jerk parameter is always positive for t > 0 and
for all α, thus the acceleration is always increasing.

FIG. 1. The zeros of the state parameter w occur at
t� ¼ ð5� 2

ffiffiffi
5

p Þ=ð6αÞ.
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(6) Since both the pressure p and the energy density ρ
are functions of t we can find a relation between the
two of them; the result is p ¼ 12

5
ðα� ffiffiρ

3

p Þ2 − ρ.
We can use the above results to estimate the age of the

Universe t0. From the observations of the Hubble Space
Telescope Key Project [62], the present Hubble parameter
is constrained to be

H−1
0 ¼ 9.776h−1 Gyr; 0.64 < h < 0.80; ð4:6Þ

where the subscript 0 indicates present time. We could
insert this value into (4.3) to estimate t0, but we must know
the value of the constant α. In order to calculate α we will
make use of the knowledge of the redshift zcr where the
cosmic jerk happened (at t−), i.e. the redshift where
the deceleration parameter changed sign, indicating that
the current epoch of cosmic acceleration was preceded by a
cosmic deceleration one. The Supernova Search Team
constrained this value to zcr ¼ 0.46� 0.13 [61]. From
the relation of the scale factor aðtÞ and the redshift a0=a ¼
1þ z we have

t ¼ t0∶ a0 ¼ e−αt0t5=60

t ¼ t−∶ a0 ¼ e−αt−t5=6− ð1þ zcrÞ;

and using (4.3) α ¼ 5=ð6t0Þ −H0 we end up with

e−
ffiffi
n

p þx ¼
� ffiffiffi

n
p

− n
x − n

�
n

ð1þ zcrÞ;

n ¼ 5

6
; x ¼ H0t0: ð4:7Þ

Using zcr ¼ 0.46; h ¼ 0.72 we have x ¼ 0.952737 thus
t0 ¼ 12.9361 Gyr, a very fine result for this model, since

the most recent WMAP3 data produces a value of t0 ¼
13.73þ0.13

−0.17 Gyrs (assuming an ΛCDM model) [63].

B. Singular supermetric: A dust solution

The previous analysis of the solution space is valid in the
case where the minisupermetric Gαβ is not singular, i.e.
detGαβ ≠ 0. Thus we have to consider separately the case
where detGαβ ¼ 0.
The determinant of the scaled supermetric (2.7) is

G ¼ 12a10V2ðϕÞðϵFðϕÞ − 3F02ðϕÞÞ

which is zero when

FðϕÞ ¼ ϵ

12
ðϕ − cÞ2: ð4:8Þ

Taking for simplicity ϵ ¼ 1 and N ¼ 1, we can calculate
VðϕÞ from the 00 component of the field equations (2.3a),

VðϕÞ ¼ 2

a4ððϕ − cÞa0 þ aϕ0Þ2 :

Substituting the above VðϕÞ in the field equation (2.3b), we
can solve for ϕ00, with the help of which all the components
of (2.3a) are made proportional to

4αϕ0 þ 6ðϕ − cÞa0 ¼ 0;

which can be integrated to

ϕ ¼ cþ c1a−3=2; ð4:9Þ

where c1 is a constant of integration. With the above
information at hand, Eq. (2.3b) reads

2aa00 − 5a02 ¼ 0 ⇒ a ¼ c2
ð3tþ 2c3Þ2=3

; ð4:10Þ

where c2; c3 are constants of integration. The coordinate
transformation t → −2c3=3þ c61=ð648c32tÞ, along with the

redefinition c2 → ðc4=31 6−2=3Þκ1=3, makes κ a multiplicative
constant, and simultaneously brings the line element to the
form

ds2 ¼ −dt2 þ t4=3ðdr2 þ r2dθ2 þ r2sin2θdϕ2Þ: ð4:11Þ

The overall constant κ does not appear in the line
element, since it admits the homothetic vector field h ¼
3t∂t þ r∂r which can absorb it. The final form of the scalar
field ϕðtÞ, the potential VðtÞ, and the function FðtÞ are

FIG. 2. The deceleration epoch q > 0 is followed by an
acceleration one q < 0.
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ϕðtÞ ¼ cþ c1
κ3=2t

; VðtÞ ¼ c21
18κ5t4

; FðtÞ ¼ c21
12κ3t2

:

ð4:12Þ

We can calculate the values of the Hubble, the decel-
eration and the jerk parameters for line element (4.11),

H ¼ 2

3t
; q ¼ 1

2
; j ¼ 1; ð4:13Þ

thus we are describing a universe that expands while
decelerating. Furthermore if we apply the identification
of the scalar field to the perfect fluid we find that p ¼ 0
and ρ ¼ 4=ð3κ2t2Þ; thus we have the dust solution of
Friedmann [64,65].
It is quite interesting that this General Relativity solution

is found from the perspective of scalar-tensor gravity, as an
exceptional case.

C. A cosmological solution with a constant
parameter of state w

Solution sets (2.17) and (2.22) can be reduced into
General Relativity’s theme by demanding the constancy of
the function FðϕÞ. A wide class of cosmologies can be
inferred from these solutions; we are going to present one
with constant parameter of state w, i.e. p ¼ const ρ.
For the set (2.22), in order to have FðϕÞ ¼ 1 we must

take hðτÞ ¼ 2. If we choose β ¼ −α it is easy to see that the
parameter of state reads

w ¼ −1þ 2

s2
: ð4:14Þ

Performing the coordinate transformation τ ¼
zz=ðz−2Þtz−α; z ¼ s2 − 1 and making the redefinition
γ ¼ 2zs

2=ðs2−3Þκ, in order to make κ an overall constant,
we end up with the line element

ds2 ¼ −dt2 þ t2s
2=3ðdr2 þ r2dθ2 þ r2sin2θdϕ2Þ; ð4:15Þ

where t > 0. This line element admits the homothetic
vector field h ¼ 3t∂t þ ð3 − s2Þr∂r which justifies the
omission of κ in front of it. The pressure p and the energy
density ρ of the perfect fluid are

p ¼ s2ð−s2 þ 2Þ
3t2

; ρ ¼ s4

3t2
⇒ w ¼ −1þ 2

s2
: ð4:16Þ

This solution can be found in [66], p. 212 Eq. (14.8b), and
it describes a decelerating expanding Universe with con-
stant deceleration parameter, since

H ¼ 2s2

3t
; q ¼ −1þ 3

2s2
; j ¼ 1þ 9

2s4
ð1 − s2Þ:

ð4:17Þ

V. DISCUSSION

The use of symmetries in the process of acquiring new
solutions is widespread in mathematical cosmology. In our
case this approach was applied, in the context of a spatially
flat FLRW spacetime, to the minisuperspace Lagrangian of
the scalar-tensor theory of gravity. In order to acquire all the
existing integrals of motion that are autonomous and linear
in the momenta for a given cosmological system, its
singular nature must necessarily be taken into account
[39,41]. One of the main aims of the present work is to
highlight exactly this, the immense possibilities that can be
explored by taking into account the reparametrization
invariance of constrained systems.
Unfortunately, a common practice in the literature is to

gauge fix the lapse function (usually to 1), so that the theory
of Noether symmetries for regular systems can be applied.
However, this process is misleading regarding the proper-
ties of the system under consideration. As it is known, the
minisuperspace Lagrangians ensuing from cosmological
systems are singular and belong to the general form (2.5).
By gauge fixing the lapse, for example N ¼ 1, the new
fixed Lagrangian reads

Lfixed ¼
1

2
Gαβx0αx0β − UðxÞ ð5:1Þ

and describes a system different from (2.5). Of course the
former can admit the same solution if one uses the
constraint equation ∂L

∂N ¼ 0 of the initial system, as an
ad hoc condition. Nevertheless, as far as the search of
symmetries is concerned, this procedure becomes too
restrictive. The fixing of the lapse annihilates the freedom
of the reparametrization invariance that in itself, as shown
in [39] and [41], is a source for the emergence of linear in
the momenta integrals of motion which are not obtained in
the theory of regular systems.
All the previous arguments can be made clearer in the

context of scalar-tensor gravity that we have treated in this
paper. By comparing results with [67], where the authors
start from the same action (2.2), but in the process follow
the gauge-fixing approach, one can see that under the same
condition that we used here, i.e. the minisuperspace being
maximally symmetric, they are led to a specific functional
form for FðϕÞ, say FfixedðϕÞ, for which Gαβ is flat.
Subsequently, they apply each of the three Killing fields
to the potential UðxÞ, acquiring three different scalar field
potentials. Each of them is used to describe a regular
system that admits one autonomous integral of motion
generated by the corresponding Killing field of Gαβ [68].
However, one can notice that all three scalar field potentials
belong to the same functional form, namely the form that
makes the scaled minisupermetric Ḡαβ ¼ UGαβ flat for the
specific value FfixedðϕÞ of the coupling function.
In this work, we use the reparametrization invariance

which leads to the consideration of the scaled
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minisupermetric Ḡαβ as the crucial element describing the
geometry of the configuration space and the dynamics of
the system. Consequently, the demand for maximal sym-
metry does not fix the coupling function, but yields a
relation between FðϕÞ and the scalar potential VðϕÞ (2.9).
For the specific value FfixedðϕÞ, treated in [67], the potential
VðϕÞ assumes the general functional form in which the
three potentials given in that paper belong. Thus, what is
considered as three different cases admitting one autono-
mous integral of motion in the study of the regular
Lagrangian, is really one case admitting three autonomous
integrals of motion in the actual (singular) cosmological
system. Moreover, this is just a single case in the study of
the singular Lagrangian (2.5), since FðϕÞ is not fixed to an
explicit functional form. Thus, the particular function
FfixedðϕÞ is a choice, not a necessity, for satisfying the
demand of a flat minisuperspace. The result is an infinite set
of scalar-tensor theories admitting the maximal number of
integrals of motion that are autonomous and linear in the
momenta. As we proved, even if one requires fewer
symmetries, i.e. one or two autonomous charges, one is
led to the case here examined: Each choice of FðϕÞ, yields
through (2.9) the appropriate potential for a maximally
symmetric (eventually flat) minisuperspace.
For all infinite cases that arise from the condition of

maximal symmetry, we were able to acquire the general
solution space for an arbitrary coupling function FðϕÞ. This
is not to be taken lightly; it means that the obtained sets
(2.17) and (2.22) represent the general analytic solutions of
every scalar-tensor, spatially flat FLRW cosmological
theory that admits a symmetry that is autonomous and
linear in the momenta. We also calculated all the physically
relevant parameters and the effective energy-momentum
tensor associated with the scalar field, which is seen to be
mimicking a perfect fluid behavior from the perspective of
Einstein’s gravity.
We would like to emphasize that the correspondence

between the scalar field and the perfect fluid we use is not
the usual: The common practice is to identify the energy-
momentum tensor of the scalar field (2.4) (VðϕÞ ¼ 0) with
the energy-momentum tensor of a perfect fluid. Our line of
thinking is to rewrite the field equations in the form Eij ¼
Tϕ
ij and treat the r.h.s. as an energy-momentum tensor. This

different approach is responsible for enabling us to arrive to
physically meaningful results.
In order to exhibit the way the general relations can be

used and to complete our analysis, we have given some
specific examples: a) A solution for a particular choice of
the coupling function, that satisfies all the energy con-
ditions (apart from the strong energy condition) and whose
behavior considerably matches many observational facts.
b) For the sake of completeness, we investigated the case
when the minisupermetric is degenerate, the only instance
that is not covered by the general theory. This led to a
solution that is seen to be equivalent to the dust solution of

Friedmann in the context of General Relativity. c) We also
obtained the known solution of General Relativity for a
perfect fluid with a constant equation of state parameter w.
This was accomplished by considering the case FðϕÞ ¼ 1
(minimally coupled scalar field) and by a suitable choice of
the parameters entering the effective energy-momentum
tensor. Of course this is not a new solution, but it serves to
exhibit that the general solution for an arbitrary FðϕÞ
correctly correlates to Einstein’s theory when one sets FðϕÞ
to a constant.
Since the presented method is quite a general one, it

would be interesting to apply it to a broader setting; i.e., one
could add an actual perfect fluid along with the scalar field,
or explore the possibility of the existence of two scalar
fields, or even a more general theory like Horndeski’s [69].

Part of this research was supported by FONDECYT
postdoctoral Grant No. 3150016 for N.D.

APPENDIX: CONFORMAL 2D METRIC
WITH ONE KILLING FIELD

Let us assume that the 2D metric hαβ admits the Killing
field ξ ¼ ∂x; then hαβ ¼ hαβðyÞ and the line element
assumes the form

ds2 ¼ F1ðyÞdx2 þ 2F2ðyÞdxdyþ F3ðyÞdy2: ðA1Þ

If F1ðyÞ ¼ 0, then the metric (A1) has Lorentzian
signature detðhαβÞ ¼ −F2

2ðyÞ and is flat, since it can be
transformed as follows:

ds2 ¼ 2F2ðyÞdy
�
dxþ F3ðyÞ

2F2ðyÞ
dy

�
;

¼ 4F2
2ðyÞ

F3ðyÞ
dzðdxþ dzÞ; F3ðyÞ

2F2ðyÞ
dy ¼ dz; y ¼ rðzÞ

¼ RðzÞdzðdxþ dzÞ; 4F2
2ðrðzÞÞ

F3ðrðzÞÞ
¼ RðzÞ

¼ RðzÞdzdw; w ¼ xþ z

¼ dudw; RðzÞdz ¼ du: ðA2Þ

If F1ðyÞ ≠ 0 and F2ðyÞ ¼ 0, then the metric (A1)
transforms [assuming F1ðyÞ > 0]

ds2 ¼F1ðyÞdx2þ ϵð
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
jF3ðyÞj

p
dyÞ2;

¼F1ðyÞdx2þ ϵF1ðyÞdz2;
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi����F3ðyÞ
F1ðyÞ

����
s

dy¼ dz;y¼ rðzÞ

¼ΩðzÞðdx2þ ϵdz2Þ ΩðzÞ ¼F1ðrðzÞÞ: ðA3Þ

Finally, if F1ðyÞ ≠ 0 and F2ðyÞ ≠ 0, then the metric (A1)
transforms [assuming F1ðyÞ > 0]
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ds2 ¼ F1ðyÞ
�
dx2 þ 2F2ðyÞ

F1ðyÞ
dxdy

�
þ F3ðyÞdy2;

¼ F1ðyÞ
��

dxþ F2ðyÞ
F1ðyÞ

dy

�
2

−
F2
2ðyÞ

F2
1ðyÞ

dy2
�
þ F3ðyÞdy2;

¼ F1ðyÞ½ðdxþ dzÞ2 − dz2� þ F3ðyÞF2
1ðyÞ

F2
2ðyÞ

dz2;
F2ðyÞ
F1ðyÞ

dy ¼ dz; y ¼ rðzÞ

¼ F1ðyÞdw2 þ
�
F3ðyÞF2

1ðyÞ
F2
2ðyÞ

− F1ðyÞ
�
dz2; w ¼ xþ z

¼ SðzÞdw2 þ
�
F3ðyÞF2

1ðyÞ
F2
2ðyÞ

− F1ðyÞ
�

|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}
F4ðyÞ

dz2; SðzÞ ¼ F1ðrðzÞÞ

¼ SðzÞdw2 þ RðzÞdz2; RðzÞ ¼ F4ðrðzÞÞ
¼ SðzÞdw2 þ ϵð

ffiffiffiffiffiffiffiffiffiffiffiffi
jRðzÞj

p
dzÞ2;

¼ SðzÞdw2 þ ϵSðzÞdu2;
ffiffiffiffiffiffiffiffiffiffiffiffiffi����RðzÞSðzÞ

����
s

dz ¼ du; z ¼ tðuÞ

¼ ΩðuÞðdw2 þ ϵdu2Þ; ΩðuÞ ¼ SðtðuÞÞ: ðA4Þ
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