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Avariation of the Affleck-Dine mechanism was proposed to generate the observed baryon asymmetry by
Hertzberg and Karouby [Phys. Rev. D 89, 006523 (2014); Phys. Lett. B 737, 34 (2014)], in which the
inflaton was assumed to be a complex scalar field with a weakly broken Uð1Þ symmetry, and the baryon
asymmetry generation was easily unified with the stage of inflation and reheating. We adapt this
mechanism to a general natural inflation scenario and compare the results with those in chaotic inflation
models. We compute the net particle number obtained at the end of inflation and transform it into
a net baryon number after reheatings. We observed that in our natural inflation model, the desired
baryon-to-photon ratio can be achieved equally well as in chaotic models.
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I. INTRODUCTION

The past 35 years may be the most rapidly developing
35 years for cosmologists. With the help of quickly
increasing data from observations, people now have estab-
lished the so-called standard model of the Universe.
According to this model, the early universe experiences
a very short time of inflation [1,2], after which matter and
antimatter begin to form simultaneously through reheat-
ings. If nothing special happens, the amount of matter and
antimatter should be equal. But observations indicate that
there is more matter than antimatter in the Universe, the so-
called baryon asymmetry. Quantitatively, this is parame-
trized by the baryon-to-photon ratio η, whose observation
value reads

ηobs ≈ 6 × 10−10: ð1Þ

It is unreasonable to explain this asymmetry as the initial
condition of universe evolution because after inflations any
preinflation particle’s number density would be diluted to
zero so any asymmetries between matter and antimatter
would be wiped out totally. So, to implement the observed
the baryon asymmetry, one must invoke some mechanism
to generate a net baryon number after the inflation.
In 1967, Sakharov [3] came up with three conditions that

processes which can produce the baryon asymmetry should
satisfy:

(i) The process violates baryon charge conservation.
(ii) The process violates C and CP invariance.
(iii) The process should take place in a nonequilibrium

thermodynamic state.
The first condition comes directly, and the second is for the
decay of the particles and antiparticles to produce different

numbers of baryons and antibaryons. The third is mainly to
prevent the inverse process from annihilating the baryon
asymmetry.
Among the large number of theories trying to describe

the baryon asymmetry, the most interesting one may be the
Affleck-Dine mechanism [4], which uses scalar field
dynamics to get a net baryon number. Their basic idea
is, in a matter or a radiation dominated universe, intro-
ducing a complex scalar field with Uð1Þ-symmetry broken
self-interaction and letting the evolution of the scalar
field produce the desired baryon asymmetry. In Ref. [5],
by associating with the inflation scenario, Linde give a
more physical realization for this mechanism. For more
interesting and important discussions about the Affleck-
Dine mechanism and baryogenesis, see Refs. [6–18].
In both Affleck-Dine’s original work and Linde’s

improvements, the complex scalar field is identified with
the classical squark-slepton scalar field or their avatar,
neither of which has direct relevance with inflatons. But in
recent works [19,20], Hertzberg and Karouby proposed
the idea that the complex scalar field should just be the
inflaton field ϕ. So the nonzero net ϕ-particle number is
generated just during the latter stage of inflation. While at
the end of inflation, by reheating process, the net ϕ particles
decay into baryons, thus achieving the desired baryon
asymmetry.
Hertzberg and Karouby illustrated their idea with the

chaotic inflation scenario [21]. However, ignited by the
recent BICEP2 observation [22], more focus of the com-
munity is attracted to the “natural inflation” [23] scenario.
The natural inflation model is favored by its “naturalness”
in physical realizations. As is well known [24], to solve the
horizon-, flatness-, and other related questions, any suc-
cessful slow-roll single-field inflation model must satisfy

χ ≡ ΔV=ðΔϕÞ4 ≤ Oð10−6 ∼ 10−8Þ; ð2Þ
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where ΔV and Δϕ are the changes of potential and field,
respectively, during the inflation era. This small ratio of
mass scales required is known as the fine-tuning problem in
inflation. It quantifies how flat the inflaton potential should
be. In the natural inflation, the flatness of the potential is
easily achieved by a shift symmetry under which
ϕ → ϕþ const. Our purpose in this paper is just to adapt
Hertzberg and Karouby’s idea to the natural infla-
tion model.
This paper is organized as follows: In Sec. II we

introduce the natural inflation model with complex scalar
fields and illustrate the process of inflaton asymmetries
generation. In Sec. III we let the inflaton decay into baryons
and give our final results on baryon asymmetries.
Section IV is a summary of our work and some discussions.

II. NET ϕ-PARTICLE GENERATIONS
IN NATURAL INFLATION MODELS

Let us begin our investigation from the simplest complex
scalar field inflaton models, whose action has the form

S ¼
Z

d4x
ffiffiffiffiffiffi
−g

p �
1

16πG
Rþ 1

2
j∂ϕj2 − Vðϕ;ϕ�Þ

�
; ð3Þ

where g is the determinant of the metric, R is the Ricci
scalar, and Vðϕ;ϕ�Þ is the effective potential of inflaton
field ϕ. In the current paper we will use the normal flat
Friedmann-Robertson-Walker (FRW) metric with signa-
tures (þ − −−) and natural units ℏ ¼ c ¼ 1. Differences
among various inflation models root in their potential
function V. In the usual natural inflation model, the
potential or the lowest order approximation of the potential
is generally of the form

VðϕÞ ¼ Λ4ð1� cosðNϕ=fÞÞ; ð4Þ
where ϕ is the real scalar field; f is the characteristic
scale of global symmetry spontaneously breaking; Λ is a
lower scale associating with some explicit soft symmetry
breaking; the choice of the sign does not affect the
physical results, and we will choose the negative sign in
this paper; and the coefficient N is always assumed to be
equal to 1.
For our purpose in this paper, we will take ϕ as a

complex scalar field whose self-interaction potential has the
form

Vðϕ;ϕ�Þ ¼ VsðϕÞ þ Vbðϕ;ϕ�Þ ð5Þ
with

VsðϕÞ ¼ Λ4

�
1 − cos

�jϕj
f

��
: ð6Þ

Vbðϕ;ϕ�Þ ¼ λðϕn þ ϕ�nÞ; ð7Þ

where the integer n ≥ 3 and λ is a symmetry breaking
parameter. Obviously, Vs preserves the global Uð1Þ sym-
metry and Vb breaks it down. Although the cross terms like
ϕn−mϕ�m þ ϕ�n−mϕm also break the Uð1Þ symmetry, we
will not consider them for simplicity.
Similar to the usual model (4) where ϕ is just a real

field, our potential model (6) with ϕ being a complex field
can also be implemented through the global symmetry
breaking and some nonperturbative effects [25]. For
example, consider the following global symmetry breaking
model:

L ¼ K½ϕ;ψ � −
�
ðϕaϕaÞ2 − f2

2

�
2

þ ψ̄l
i t

a
ijψ

r
jϕ

a; ð8Þ

where ϕ, ψ , K½ϕ;ψ �, and taijs denote the adjoint boson,
fundamental fermion, the corresponding kinetic energy,
and fundamental generators of the group, respectively.
Physically, this symmetry could be the SU(2) symmetry
of 2-flavor QCD or the SU(N) symmetry of some grand
unification theory. Taking SU(2) as examples, for arbitrary
real function Θðϕx;ϕyÞ, as hϕatai ¼ ϕz

0t
zeiΘðϕx;ϕyÞ, the

symmetry of the system will be broken to Uð1Þ. If further
nonperturbative effects lead that hψ̄l

i t
a
ijψ

r
ji ¼ κ3, we will

get the goldstone boson interacting potential V½ϕx;ϕy� ¼
κ3ϕz

0e
iΘðϕx;ϕyÞ. When Θ ¼ jϕj, we implement the potential

(6). Obviously, the usual natural model (4) is covered by (6)
as a special example. However, only in a complex field
model do we have global Uð1Þ symmetry and the relevant
conserving current whose zero component corresponds to
the net ϕ-particle number Nϕ − Nϕ̄.
Returning to the discussion of our model (5), the

smallness of λ is natural in physics by ’t Hooft’s criteria
[26]: a small parameter in a theory is natural if, when the
limit is set to zero, the symmetry of the system increases.
Obviously, when λ ¼ 0, the Uð1Þ symmetry is recovered,
and the symmetry of the system increases. We also need the
smallness of λ to preserve the shape of the potential for
inflaton; otherwise, the character of the natural inflation
would be destructed. From the observation aspect, a small
value of λ is also favored by small baryon-to-photon ratios,
because λ is just the measure of the Uð1Þ-symmetry
breaking degree that is responsible for the net particle
number’s generation.
It is worth mentioning that despite the Uð1Þ symmetry

being broken by Vb, the charge conjugation symmetry
ϕ ↔ ϕ� is still respected. We assume that this symmetry is
broken in the following process, or the Sakharov’s con-
ditions would be violated. In the original Affleck-Dine
mechanism, it is spontaneously broken by the interaction
with some other light fields. However, the detailed mecha-
nism is not important to us, and since it does not affect our
results, we will not discuss it in this paper.
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A. Net ϕ particles from ϕ and ϕ̄

First, noting that the function Vs is a periodic function of
period 2πf, we restrict the value of jϕj ∈ ½0; πf�. Second,
using the fact that Vs takes the minimum at jϕj ¼ 0, we

make the Taylor expansion of it at this point as Vs ≈
1
2
Λ4

�
jϕj
f

�
2
when jϕj is small. Third, since n ≥ 3 in Vb, at the

late time of inflation during which jϕj is small, Vb
decreases faster than Vs so it soon becomes negligible.
As a result, the effective potential of the inflaton at later
times conserves the global Uð1Þ symmetry. According to
Noether’s theorem, we can derive the conserving charge as
the net particle number,

ΔNϕ ¼ Nϕ − Nϕ̄ ¼ i
Z

d3x
ffiffiffiffi
gs

p ðϕ� _ϕ − _ϕ�ϕÞ; ð9Þ

where d3x
ffiffiffiffi
gs

p
is the spatial volume measure, and Nϕ and

Nϕ̄ are the number of ϕ and ϕ̄ particles. As the roughest
approximation, we take ϕ as spatial homogeneous.
Substituting the FRW metric into this definition, we can
work out the integral and get

ΔNϕ ¼ Nϕ − Nϕ̄ ¼ iVcomaðtÞ3ðϕ� _ϕ − _ϕ�ϕÞ; ð10Þ

where Vcom is the comoving volume and aðtÞ is the scale
factor.
To get the equation of motion for ϕ, we vary the total

action of the system with respect to ϕ� and get

ϕ̈þ 3H _ϕþ Λ4

f

ffiffiffiffiffi
ϕ

ϕ�

s
sin

�jϕj
f

�
þ 2λnϕ�n−1 ¼ 0; ð11Þ

where H ¼ _a=a is the Hubble parameter. Taking the time
derivative of ΔNϕ,

∂
∂tΔNϕ¼ iVcoma3ð3Hðϕ� _ϕ− _ϕ�ϕÞþϕ�ϕ̈− ϕ̈�ϕÞ; ð12Þ

and substituting the results into an appropriate combination
of (11) with its complex conjugate, we will get

ΔNϕðtfÞ¼ΔNϕðtiÞþ2iλVcomn
Z

tf

ti

dtaðtÞ3ðϕðtÞn−ϕ�ðtÞnÞ;

ð13Þ

where ΔNϕðtiÞ is the initial net particle number at time ti,
while tf denotes the final time. From this equation, we
easily see that when the Uð1Þ symmetry is unbroken, i.e.,
λ → 0, the net particle number will indeed be conserved.
Since any initial particle number would be diluted by
inflation, and the process we are interested in happens at the
late time of inflation, wewill setΔNϕðtiÞ ¼ 0 from now on.

For convenience in the latter derivations, we express the
scalar field ϕ in the polar coordinate as

ϕðtÞ ¼ ΦðtÞeiθðtÞ ð14Þ

and rewrite the net particle number ΔNϕ in the form

ΔNϕðtfÞ ¼ −4λVcomn
Z

tf

ti

dtaðtÞ3ΦðtÞn sinðnθðtÞÞ: ð15Þ

Like the fields ϕ and ϕ�, the polar field Φ and angular field
θ also satisfy differential equations similar to (11), which
can be solved order by order in λ. By Eq. (15), ΔNϕ is
proportional to λ. So if we need to calculate ΔNϕ only to
first order approximation, which is reasonable when λ is
small, then we need to calculate the integral only to the
zeroth order in λ. It can be proved that the evolution of θ is
determined by the symmetry breaking term. So when we
neglect the effect of λ, θ does not evolve at all, i.e., _θ ¼ 0.
For this reason, the factor sinðnθðtÞÞ in (14) can be
extracted out of the integrations. Using Φ0ðtÞ and a0ðtÞ
to denote ΦðtÞ and aðtÞ when we neglect the effect of λ in
the equations of motion, we can write ΔNϕ as the form

ΔNϕðtfÞ¼−4λVcomnsinðnθiÞ
Z

tf

ti

dta0ðtÞ3Φ0ðtÞn; ð16Þ

where θi is the initial value of θ.
The equation of motion for Φ0 is easy to derive,

Φ̈0 þ 3H0
_Φ0 þ

Λ4

f
sin

�
Φ0

f

�
¼ 0; ð17Þ

while the corresponding Friedmann equation for H0 reads

H2
0 ¼

8π

3m2
Pl

�
1

2
_Φ2
0 þ Λ4

�
1 − cos

�
Φ0

f

���
; ð18Þ

wheremPl ≡ 1=
ffiffiffiffi
G

p ¼ 1.22 × 1019 GeV is the Plank mass.
By these two equations of motion, supplemented with
appropriate initial conditions, we will be able to calculate
the integral in Eq. (15) very fluently.

B. The value of Λ and f from observations

According to Ref. [27], to be consistent with known
cosmic-microwave background observations such as
WMAP [28], Planck [29,30], and BICEP2 [22], the Λ
and f parameters in the natural inflation should satisfy that
f ≳mPl and Λ ∼mGUT ∼ 1016 GeV. Although the natural
inflation in this paper is implemented with complex scalar
fields, the parameter determination logic could be adapted
from [27] routinely.

(i) Constraints from the density perturbation spectrum
index ns. In both real and complex scalar fields, we
can derive that
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ns ¼ 1 −
m2

Pl

8πf2
: ð19Þ

According to Ref. [30], the observation value of
ns ≈ 0.96. This means that in the complex scalar
field natural inflation model, f ≈mPl.

(ii) Constraints from the tensor-to-scalar (perturbation
amplitudes) ratio. Theoretical considerations [27]
require

VH ¼ ð2.2 × 1016 GeVÞ4 r
0.2

; ð20Þ

for natural inflation models VH ¼ 2Λ4. According
to the observation of BICEP2, r ¼ 0.20þ0.07

−0.05 . So
Λ ≈ 1016 GeV are very normal choices.

According to Ref. [25], the number of inflation
e-foldings to solve the flatness and horizon problem of
noninflation cosmologies also implies constraints on the
choice of model parameters Λ and f. Its basic logic is as
follows.
First, according to the slow-roll scenario, the number of

inflation e-foldings reads

Ne ¼ ln

�
a2
a1

�
¼

Z
t2

t1

Hdt ¼ 8π

m2
Pl

Z
ϕ1

ϕ2

VðϕÞ
V 0ðϕÞ dϕ

¼ 8πf2

m2
Pl

ln

�
1þ cosðjϕ2j=fÞ
1þ cosðjϕ1j=fÞ

�
; ð21Þ

where a1 and ϕ1 are initial values when the inflation begins,
a2 and ϕ2 are the values at the end of inflation, and V 0
denotes dV=dϕ.
Second, to associate Ne with f, define a “possibility”

PðfÞ to quantify whether a given f value is likely to
generate sufficient inflation that Ne ≈ 60,

PðfÞ ¼ πf − ϕminðfÞ
πf

; ð22Þ

where ϕminðfÞ is the minimal value of jϕ1j that gets
Ne ≥ 60 for a given f. Obviously, as long as ϕmin can
drive sufficient inflation, all values of jϕ1j ∈ ðϕmin; πfÞwill
yield Ne > 60, as shown in Fig 1.
Third, using the slow-roll parameter definition

ϵ ¼ m2
PlV

0ðϕÞ2
16πVðϕÞ2 ¼ m2

Pl

16πf2

�
sinðϕ=fÞ

1 − cosðϕ=fÞ
�
2

; ð23Þ

and the inflation ending condition ϵ ≈ 1, we can get the ϕ
field value at the inflation ending,

ϕ2ðfÞ ¼ f arccos

�
16πf2 −m2

Pl

16πf2 þm2
Pl

�
: ð24Þ

Finally, combining Eqs. (20), (21), and (23) we can
exactly work out PðfÞ, and the result is shown in Fig. 1.
While from the definition of PðfÞ, we know that to get
enough inflation e-foldings, PðfÞ should be as close as
possible to 1. For f ¼ mPl, we get PðfÞ ¼ 0.194, which is
grudgingly in the desired range. More large values of f will
generate sufficient inflation.
In the following calculations, we will set f ¼ mPl and

Λ ¼ 1016 GeV when necessary.

C. Dimensionless representation

Since ΔNϕ is proportional to the size of the expanding
universe, it is not a good quantity for numerics, even
though it is dimensionless. The more appropriate quantity
measuring the baryon asymmetry is

α≡ ΔNϕ

Ntot
¼ Δnϕ

nϕ þ nϕ̄
; ð25Þ

where Ntot is the total number of ϕ and ϕ̄ particles and
n ¼ N=Vcoma3 stands for particle number densities. After
the inflation finishes, but before the decay of ϕ particles
into baryons, all energies that fill the Universe are stored in
the nonrelativistic ϕ particles. So we have

2 4 6 8 10

f

mPl

0.2

0.4

0.6

0.8

P f

FIG. 1 (color online). The upper figure illuminates the shape of
VðϕÞ. It is clear that a higher potential generates a larger e-folding
number, so jϕ1j ∈ ðϕmin; πfÞ would get Ne > 60. The lower
figure shows the numeric feature of PðfÞ, from which we easily
see that the larger f is, the closer PðfÞ → 1.
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mϕðnϕþnϕ̄Þ¼ ε0 ¼
1

2
_Φ2
0þΛ4

�
1− cos

�
Φ0

f

��
; ð26Þ

where mϕ ¼ Λ2

f is the mass of the ϕ particle and ε0 is the
energy density of the Universe. From the above two
equations, we can derive

α ¼ mϕΔnϕ
ε0

: ð27Þ

To get further dimensionless representation for α, we
introduce the following dimensionless quantities:

τ≡mϕt¼
Λ2t
f

; ~Φ≡Φ0

f
; ~H≡H0

mϕ
¼ fH0

Λ2
; ð28Þ

and write

α ¼ −
λfn

Λ4
sinðnθiÞAnðτi; τfÞ; ð29Þ

where τ and ~Φ are dimensionless time and field variables,
respectively, while

Anðτi;τfÞ¼
4n

R τf
τi dτa0ðτÞ3 ~ΦðτÞn

a0ðτfÞ3
�
1
2

_~ΦðτfÞ2þ1− cos
�
~ΦðτfÞ

�� : ð30Þ

By numerically solving the dimensionless version of
Eqs. (16) and (17), we will obtain the time dependence
of ~Φ0ðτÞ, a0ðτÞ very easily; see Fig. 2 for references.
From Fig. 2, we can easily see that at the beginning of

inflation, a0ðτiÞ is very small [relative to a0ðtfÞ]. As a
result, in the integration (29) contributions from the early
time are negligible. While at the matter dominating era
marked by τf, ~Φ is evolving to almost zero. So integrations
from that period also contribute little to An; see Fig. 3 for
quantitative references. From the figure, it is easy to see that
An is totally determined by the “middle” area of the
integrand. Under the limit that τi → 0 and τf → ∞, An

can be looked at as a constant that depends only on the
lower index n;

Anðτi → 0; τf → ∞Þ≡ cn: ð31Þ

As an example, we numerically compute this parameter
when n ¼ 3; 4;…; 10, and the result is as follows:

c3 ≈ 8.0; c4≈ 3.7; c5≈ 1.3; c6≈ 0.56

c7 ≈ 0.25; c8 ≈ 0.12; c9≈ 0.060; c10≈0.031: ð32Þ

Substituting this results into Eqs. (29) and (30), we will
get the final expression for the dimensionless baryon
asymmetry parameter as follows:

10 20 30 40 50 60 i

0.1

0.1

0.2

0.3

0.4

0.5

10 20 30 40 50 60 i

105

1010

1015

1020

1025

a0

FIG. 2 (color online). The evolution of the dimensionless field
variable ~Φ and scale factor a0. In this plot, the initial conditions
were set to ~Φ ¼ 2.5, f ¼ mPl, and Λ ¼ 1016 GeV to implement
the e-folding number ∼60. Without loss of generality, we set
_~Φ ¼ 0 and ai ¼ 1. The lower figure shows that indeed about 60
e-folding numbers are generated.

10 20 30 40 50 60
i

4 1074

2 1074

2 1074

4 1074

6 1074

8 1074

1 1075

a0
3 3

10 20 30 40 50 60
f i

5.0 1074

1.0 1075

1.5 1075

a0
3 3 3

FIG. 3 (color online). The upper graph plots the integrand in
Eq. (29), which is proportional to the production rate of the net
particle number. The lower graph plots the integrated value and
expresses the whole net particle number produced till τf. We can
easily see that the early and late time contributions do not
significantly affect the final net particle number. Almost all of the
net particles are produced during a very short time around τ ¼ 20.
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α ¼ −cn
λfn

Λ4
sinðnθiÞ: ð33Þ

Obviously, for some special values of the initial angle θi,
for instance θi ¼ π, the factor sinðnθiÞ vanishes. In such
cases, no baryon asymmetry is generated. Such special
values can generate large isocurvature fluctuations [19], but
that is not our main goal. We will set θi to be general values
so that j sinðnθiÞj ≈ 1.
Now we have implemented the goal of generating net

inflaton ϕ particles from symmetric initial conditions in
natural inflations. Our next goal is transferring the ϕ
particles into baryons and associating α with the observable
baryon-to-photon ratio η in the next section.

III. ϕ PARTICLES DECAY INTO BARYONS

According to inflationary theory, at the late time of
inflation, the inflaton field oscillates near the minimum of
its effective potential and gradually decays into standard
model particles [31]. This stage of the early universe is
called “reheating.” Almost all elementary particles popu-
lating the Universe are created during reheating, and these
particles interact with each other and finally come to a state
of thermal equilibrium at a temperature Tr, which is called
the reheating temperature.
Now we assume that each ϕ particle carries a baryon

number B, and it will decay into baryons through a process
that conserves the baryon number during the stage of
reheating. We assume that all the subsequent interactions
also conserve the baryon number, so we have

ðNb − Nb̄Þf ¼ BðNϕ − Nϕ̄Þi; ð34Þ

where the lower index f means a final time on which
reheating finishes, and i stands for an initial time in which
all the energy stored in the inflaton field is translated into ϕ
particles, but ϕ’s decay does not begin. By these symbols,
we can write down η in the following form:

η ¼ ðNb − Nb̄Þf
ðNγÞf

¼ B
ðNϕ − Nϕ̄Þi

ðNγÞf
¼ αB

ðNϕ þ Nϕ̄Þi
ðNγÞf

:

ð35Þ

Obviously, to calculate η, we need to work out the initial
total number of ϕ particles and the photon number at
late times.
At initial times, all the energy congesting the Universe is

provided by ϕ particles, so

mϕðNϕ þ Nϕ̄Þi ¼
Λ2

f
ðNϕ þ Nϕ̄Þi ¼ Vcomða3εÞi: ð36Þ

Using the Friedmann equation, we can relate the energy
density to the Hubble parameter as

ðεÞi ¼
3m2

Pl

8π
ðH2Þi: ð37Þ

While on the number of photons at late times, we can relate
it with the temperature,

ðNγÞf ¼ Vcomða3nγÞf ¼ Vcom
2ζð3Þ
π2

ða3T3Þf; ð38Þ

where ζð3Þ ≈ 1.202 is the so-called Apéry’s constant.
Using these two results, we can rewrite the ratio η in
Eq. (35) as follows:

η ¼ 3πBα
16ζð3Þ

m2
Plf
Λ2

ða3H2Þi
ða3T3Þf

: ð39Þ

Since we are not going to compute the result by using
detailed decaying processes, we need to assume the decay
of ϕ particles and the subsequent process of thermalization
occur very fast. So we can set both ða3H2Þi and ða3T3Þf to
be values around the end of reheating and get an approxi-
mation for the final result. We insert an Oð1Þ factor β to
account for the deviation caused by this assumption,

η ¼ 3βπBα
16ζð3Þ

m2
Plf
Λ2

H2
r

T3
r
: ð40Þ

The stage of reheating ends when the Hubble parameter
becomes smaller than the decay rate of ϕ, H ≲ Γϕ [31].
And the reheating temperature can be estimated by [32]:
Tr ≈ 0.2

ffiffiffiffiffiffiffiffiffiffiffiffiffi
ΓϕmPl

p
. Substituting these two relations into the

approximate expression of η, we obtain

η ¼ 3πβBα
0.23 × 16ζð3Þ

m1=2
Pl Γ

1=2
ϕ f

Λ2
: ð41Þ

Inserting the α expression (33) obtained in the previous
section into this equation, we will get our result for η,

η ¼ −cn
3πβBλ

0.23 × 16ζð3Þ
m1=2

Pl Γ
1=2
ϕ fnþ1

Λ6
sinðnθiÞ: ð42Þ

Before further discussion of physical features of this
expression for η, we should first determine the range of the
symmetry breaking parameter λ. Since we assumed that the
symmetry breaking term in the potential of ϕ is subdomi-
nant during the inflation to ensure the feature of the natural
inflation, we have to impose constraint

λðϕn
i þϕ�n

i Þ¼ λΦn
i cosðnθiÞ≪Λ4

�
1− cos

�
Φi

f

��
: ð43Þ

While to assure this constraint holds for all the possible
values of θi, the value of λ has to be limited from the upper
bound,
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λ ≪ λmax ¼
Λ4ð1 − cosðΦi=fÞÞ

Φn
i

: ð44Þ

With this constraint, we can test whether our result is
physically acceptable.
Now we use the boundary value of λ to work out the

required Γϕ for generating the observed η ≈ 6 × 10−10. The
expression of Γϕ;req can be derived from Eq. (41),

Γϕ;req ≈ c−2n

�
λmax

λ

�
2 η2ð0.23 × 16ζð3Þ2Þ

ð3πÞ2

×
Λ4f−2n−2Φ2n

i

mPlð1 − cosðΦi
f ÞÞ2

ðβBj sinðnθiÞjÞ−2: ð45Þ

In the previous sections, we have set f¼mPl,
Λ¼1016GeV, and Φi ¼ 2.5f, so the expression can be
simplified to

Γϕ;req ≈ 1.6 × 10−7 eV

× 2.52nc−2n

�
λmax

λ

�
2

ðβBj sinðnθiÞjÞ−2: ð46Þ

If we set an appropriate value for λ, for example,
λ ¼ 1

10
λmax, and assume that βBj sinðnθiÞj ≈ 1, we will

get the required decay rate for different ns. Our results, and
those from [19] with a magnitude correction for compar-
isons, are shown as follows:

n natural inflation
Γϕ;reqin

chaotic inflation
Γϕ;reqin

n ¼ 3 6.1 × 10−5 eV 4 × 10−3 eV

n ¼ 4 1.8 × 10−3 eV 2 × 10−1 eV

n ¼ 5 9.0 × 10−2 eV 101 eV

n ¼ 6 3.0 eV 6 × 102 eV

n ¼ 7 9.5 × 10 eV 2 × 104 eV

n ¼ 8 2.6 × 103 eV 9 × 105 eV

n ¼ 9 6.5 × 104 eV 3 × 107 eV

n ¼ 10 1.5 × 106 eV 109 eV

Obviously, a larger power n of symmetry breaking inter-
action requires a larger decay width to give the desired
photon-to-baryon ratio, while from derivations (42)–(46),
we know that Γϕ ∝ Λ4; that is, the higher energy scale of
inflation requires a larger width of inflaton decays, or
otherwise, the theoretical photon-to-baryon ratio will devi-
ate remarkably from expectations.
With these results of Γϕ;req, we can work out the

corresponding reheating temperature using the relation
Tr ≈ 0.2

ffiffiffiffiffiffiffiffiffiffiffiffiffi
ΓϕmPl

p
. An important condition is that the

reheating temperature must be higher than the typical

temperature of big bang nucleosynthesis ∼MeV. For
the lowest value of Γϕ;req in natural inflation, when
n ¼ 3, the reheating temperature Tr ≈ 173 GeV, and for
n ¼ 10, the corresponding Tr ≈ 2.7 × 107 GeV. All the
Tr’s in our model are much higher than MeV, this is
obviously consistent with the big bang nucleosynthesis,
and thus is physically acceptable.
For all values of n listed above, Γϕ;req in natural inflations

is smaller than that in chaotic inflations, and the growth of
Γϕ;req with the increasing of n is slower than in chaotic
inflation. These differences may be used to distinguish
these two models in the future.

IV. SUMMARY AND DISCUSSION

In this paper, we apply a variation of the Affleck-Dine
mechanism to a general natural inflation scenario and
generate the observed baryon-to-photon ratio. In that mecha-
nism, the process of baryon asymmetry generation is unified
with the stage of inflation and reheating. The mechanism
is originally set up in chaotic inflation scenarios, andwe apply
it to a generalized natural inflation. In our natural model, we
use a global SU(N) symmetry breaking to implement a
complex goldstone field whose self-interaction has the form
Λ4ð1 − cos jϕj=fÞ. This symmetry breaking pattern may
occur in QCD or some grand unification theories, while
the usual Uð1Þ-symmetry breaking and real-scalar model
could be looked at as a special form of our model.
The baryon asymmetry is first implemented using the

inflaton field with aweakly broken globalUð1Þ symmetry. It
is in the second stage that the net inflaton ϕ particles decay
into standard model particles. By numerical calculations, we
work out parameter α describing the asymmetric evolution
of ϕ − ϕ̄ particles during the natural inflation era and derive
out formulas relating it with the baryon-to-photon ratio η.
We calculate the decaying rate of ϕ particles required to
generate the observed η ≈ 6 × 1010. It is observed that the
reheating temperatures in this inflationmodel is much higher
than the desired temperature of big bang nucleosynthesis.
From this aspect, thismodel is physically acceptable.We also
compare our results with those in chaotic inflation models.
The differences between the twomay be useful for the future
distinguishing of them through observations.
As discussions, we note that parameter resonance phe-

nomena [32], superheavy fermions production [33],
detailed particle physics model implementation, dark mat-
ter particles formation and properties etc. in this natural
inflation plus reheating mechanism are all interesting future
directions.

ACKNOWLEDGMENTS

We thankverymuchQian-junWang,MengSun, Jian-feng
Wu, and Professor Yong-chang Huang for meaningful
discussions. This work is supported by Beijing Municipal
Natural Science Foundation, Grant No. Z2006015201001.

BARYON ASYMMETRIES IN A NATURAL INFLATION MODEL PHYSICAL REVIEW D 90, 123542 (2014)

123542-7



[1] A. H. Guth, Phys. Rev. D 23, 347 (1981).
[2] A. D. Linde, Phys. Lett. 108B, 389 (1982).
[3] A. D. Sakharov, JETP Lett. 5, 24 (1967).
[4] I. Affleck and M. Dine, Nucl. Phys. B249, 361 (1985).
[5] A. D. Linde, Phys. Lett. 160B, 243 (1985).
[6] M. Yu. Khlopov, S. G. Rubin, and A. S. Sakharov, Phys.

Rev. D 62, 083505 (2000).
[7] M. Bastero-Gil, A. Berera, R. O. Ramos, and J. G. Rosa,

Phys. Lett. B 712, 425 (2012).
[8] M. Bastero-Gil, A. Berera, R. O. Ramos, and J. G. Rosa,

J. Cosmol. Astropart. Phys. 10 (2014) 053.
[9] M. Dine, L. Randall, and S. D. Thomas, Nucl. Phys. B458,

291 (1996).
[10] M. Dine, L. Randall, and S. D. Thomas, Phys. Rev. Lett. 75,

398 (1995).
[11] K. Enqvist and J. McDonald, Phys. Rev. Lett. 83, 2510

(1999).
[12] K. Koyama and J. Soda, Phys. Rev. Lett. 82, 2632 (1999).
[13] A. Mazumdar and A. Perez-Lorenzana, Phys. Rev. D 65,

107301 (2002).
[14] R. Allahverdi, M. Drees, and A. Mazumdar, Phys. Rev. D

65, 065010 (2002).
[15] O. Seto, Phys. Rev. D 73, 043509 (2006).
[16] S. Kasuya and M. Kawasaki, Phys. Rev. D 74, 063507

(2006).
[17] B. Dutta and K. Sinha, Phys. Rev. D 82, 095003 (2010).
[18] D. Marsh, J. High Energy Phys. 05 (2012) 041.

[19] M. P. Hertzberg and J. Karouby, Phys. Rev. D 89, 063523
(2014).

[20] M. P. Hertzberg and J. Karouby, Phys. Lett. B 737, 34 (2014).
[21] A. D. Linde, Phys. Lett. 129B, 177 (1983).
[22] P. Ade et al. (BICEP2 Collaboration), Phys. Rev. Lett. 112,

241101 (2014).
[23] K. Freese, J. A. Frieman, and A. V. Olinto, Phys. Rev. Lett.

65, 3233 (1990).
[24] F. C. Adams, K. Freese, and A. H. Guth, Phys. Rev. D 43,

965 (1991).
[25] F. C. Adams, J. R. Bond, K. Freese, J. A. Frieman, and

A. V. Olinto, Phys. Rev. D 47, 426 (1993).
[26] G. ’t Hooft, in Recent Developments in Gauge Theories,

edited by G. ’t Hooft et al. (Plenum Press, New York and
London, 1979), p. 135.

[27] K. Freese and W. H. Kinney, arXiv:1403.5277.
[28] G. Hinshaw et al. (WMAP Collaboration), Astrophys. J.

Suppl. Ser. 208, 19 (2013).
[29] P. A. R. Ade et al. (Planck Collaboration), Astron.

Astrophys. 571, A16 (2014).
[30] P. A. R. Ade et al. (Planck Collaboration), Astron.

Astrophys. 571, A22 (2014).
[31] L. Kofman, A. D. Linde, and A. A. Starobinsky, Phys. Rev.

Lett. 73, 3195 (1994).
[32] L. Kofman, A. D. Linde, and A. A. Starobinsky, Phys. Rev.

D 56, 3258 (1997).
[33] P. B.Greene andL.Kofman, Phys. Rev.D 62, 123516 (2000).

NAN LI AND DING-FANG ZENG PHYSICAL REVIEW D 90, 123542 (2014)

123542-8

http://dx.doi.org/10.1103/PhysRevD.23.347
http://dx.doi.org/10.1016/0370-2693(82)91219-9
http://dx.doi.org/10.1016/0550-3213(85)90021-5
http://dx.doi.org/10.1016/0370-2693(85)91319-X
http://dx.doi.org/10.1103/PhysRevD.62.083505
http://dx.doi.org/10.1103/PhysRevD.62.083505
http://dx.doi.org/10.1016/j.physletb.2012.05.032
http://dx.doi.org/10.1088/1475-7516/2014/10/053
http://dx.doi.org/10.1016/0550-3213(95)00538-2
http://dx.doi.org/10.1016/0550-3213(95)00538-2
http://dx.doi.org/10.1103/PhysRevLett.75.398
http://dx.doi.org/10.1103/PhysRevLett.75.398
http://dx.doi.org/10.1103/PhysRevLett.83.2510
http://dx.doi.org/10.1103/PhysRevLett.83.2510
http://dx.doi.org/10.1103/PhysRevLett.82.2632
http://dx.doi.org/10.1103/PhysRevD.65.107301
http://dx.doi.org/10.1103/PhysRevD.65.107301
http://dx.doi.org/10.1103/PhysRevD.65.065010
http://dx.doi.org/10.1103/PhysRevD.65.065010
http://dx.doi.org/10.1103/PhysRevD.73.043509
http://dx.doi.org/10.1103/PhysRevD.74.063507
http://dx.doi.org/10.1103/PhysRevD.74.063507
http://dx.doi.org/10.1103/PhysRevD.82.095003
http://dx.doi.org/10.1007/JHEP05(2012)041
http://dx.doi.org/10.1103/PhysRevD.89.063523
http://dx.doi.org/10.1103/PhysRevD.89.063523
http://dx.doi.org/10.1016/j.physletb.2014.08.021
http://dx.doi.org/10.1016/0370-2693(83)90837-7
http://dx.doi.org/10.1103/PhysRevLett.112.241101
http://dx.doi.org/10.1103/PhysRevLett.112.241101
http://dx.doi.org/10.1103/PhysRevLett.65.3233
http://dx.doi.org/10.1103/PhysRevLett.65.3233
http://dx.doi.org/10.1103/PhysRevD.43.965
http://dx.doi.org/10.1103/PhysRevD.43.965
http://dx.doi.org/10.1103/PhysRevD.47.426
http://arXiv.org/abs/1403.5277
http://dx.doi.org/10.1088/0067-0049/208/2/19
http://dx.doi.org/10.1088/0067-0049/208/2/19
http://dx.doi.org/10.1051/0004-6361/201321591
http://dx.doi.org/10.1051/0004-6361/201321591
http://dx.doi.org/10.1051/0004-6361/201321569
http://dx.doi.org/10.1051/0004-6361/201321569
http://dx.doi.org/10.1103/PhysRevLett.73.3195
http://dx.doi.org/10.1103/PhysRevLett.73.3195
http://dx.doi.org/10.1103/PhysRevD.56.3258
http://dx.doi.org/10.1103/PhysRevD.56.3258
http://dx.doi.org/10.1103/PhysRevD.62.123516

