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We provide strong evidence for universality of the inflationary field range: given an accurate
measurement of ðns; rÞ, one can infer Δϕ in a model-independent way in the sub-Planckian regime
for a range of universality classes of inflationary models. Both the tensor-to-scalar ratio as well as the
spectral tilt are essential for the field range. Given the Planck constraints on ns, the Lyth bound is
strengthened by two orders of magnitude: whereas the original bound gives a sub-Planckian field range for
r ≲ 2 × 10−3, we find that ns ¼ 0.96 brings this down to r≲ 2 × 10−5.
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I. INTRODUCTION

Two of the most robust predictions of inflation are a
nearly scale invariant spectrum of density perturbations,
encoded in the spectral index or tilt ns, and a stochastic
background of gravitational waves, encoded in the tensor-
to-scalar ratio r. The spectral index has been measured by
the Planck satellite [1]:

ns ¼ 0.9603� 0.0073; ð1Þ
while exact scale invariance corresponds to ns ¼ 1.
Moreover, Planck has placed an upper limit on r of around
10 percent. In contrast, the recent BICEP2 claim [2] of a
detection around 20 percent awaits further clarification and
hence will not be considered in this article.
A crucial distinction in inflationary models is between

small- and large-field models, defined by sub- and super-
Planckian field ranges Δϕ. Generic quantum corrections
to a tree-level scalar potential come in higher powers of ϕ,
and hence large-field models are particularly sensitive to
these. This puts the consistency of an effective field theory
description of such models into doubt. A key question in
theoretical cosmology is therefore whether the inflationary
field range exceeds the Planck length or not.
Knowledge of the evolution of rðNÞ during all e-foldings

N of the inflationary period would determine the field range
by means of ðMP ¼ 1Þ,

dϕ
dN

¼
ffiffiffiffiffiffiffiffiffiffi
rðNÞ
8

r
: ð2Þ

Moreover, a first estimate of Δϕ can be obtained by the
assumption that rðNÞ is constant throughout inflation. This
is referred to as the Lyth bound [3] and leads to [4,5]

Δϕ ∼
�

r
0.002

�
1=2

�
N�
60

�
; ð3Þ

whereN� is the number of e-folds at horizon exit, which we
set equal to 60 (other values allow for a similar analysis).
Therefore, a sub-Planckian excursion for the inflaton field
requires a very small value of r≲ 2 × 10−3.
The Lyth bound provides an optimal estimate of the field

range, given a measurement of r, which corresponds to the
rectangular area in Fig. 1. However, starting from the same
value of r at horizon crossing, one can imagine different
behaviors rðNÞ that give rise to either smaller1 [9–11] or
larger areas [12].
We would like to show that this estimate becomes

stronger when one takes the additional information of
the spectral index into account. In particular, given the
redshifted value (1) and assuming r to be small, the
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FIG. 1 (color online). Two curves indicating
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
rðNÞ=8p

with
identical areas Δϕ ¼ 1. The flat curve depicts the Lyth bound,
while the tilted curve indicates the improvement when taking the
spectral index into account.
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1The Lyth bound can also be evaded using multiple scalar [6]
or vector fields [7]. An extension to fast roll can be found in [8].
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dependence rðNÞ is tilted upwards at horizon crossing.2

The natural history therefore leads to a larger area than
that of the corresponding rectangle. As a consequence,
the requirement Δϕ ¼ 1 implies a lower value of r, as
illustrated by the blue line in Fig. 1. This is our main
message: by including constraints on ns one can strengthen
considerably the Lyth bound. Subject to a number of
natural assumptions, after proving universality of Δϕ in
the sub-Planckian regime, we will show that the reported
value (1) leads to r≲ 2 × 10−5 for sub-Planckian field
ranges. This constitutes a bound which is two orders of
magnitude stronger than the usual estimate as given
by Eq. (3).

II. UNIVERSALITY AT LARGE N

The Planck reported value (1) is consistent with the
simple ansatz of a tilt ns whose deviation from unity scales
with 1=N. In fact, for around 60 e-folds, this gives a
percent-level deviation from scale invariance. This
assumption leads naturally to a first slow-roll parameter
ϵðNÞ ¼ rðNÞ=16 that scales as a power of 1=N [15–17]
(see also [18]):

ϵ ¼ β

Np ; ð4Þ

with β and p being constant. This simple ansatz leads to

r ¼ 16β

Np ; ns ¼
�
1 − 2βþ1

N ; p ¼ 1;

1 − p
N ; p > 1;

ð5Þ

where the case p < 1 has been discarded as it generically
leads to values of the cosmological observables not
compatible with the current data. Equation (5) identifies
the families of universality classes which any specific
scenario belongs to, for fixed values of β and p.
Subleading corrections have higher powers in 1=N and
are irrelevant from the observational viewpoint. Several
examples are listed in [16,17].
In a pure large-N description, one can identify the

benchmark potentials for this ansatz. Let us recall that ϵ
is related to the Hubble parameter H through

ϵ ¼ d lnH
dN

: ð6Þ

Within the slow-roll approximation, employing H2 ¼ V,
one can integrate Eq. (6) and obtain an expression for the
potential in terms of N which reads

VðNÞ ¼

8>><
>>:

V0N2β; p ¼ 1;

V0

h
1 − 2β

ðp−1ÞNp−1

i
; p > 1;

ð7Þ

where V0 is an integration constant related to the energy
scale of inflation. By means of Eqs. (2) and (4), one gets the
asymptotic form of V in terms of the canonical scalar field
ϕ, that is

VðϕÞ ¼

8>><
>>:

V0ϕ
n; p ¼ 1;

V0½1 − exp ð−ϕ=μÞ�; p ¼ 2;

V0½1 − ðϕ=μÞn�; p > 1; p ≠ 2;

ð8Þ

where μ and n are related to β and p as dictated by (2). In
particular, for p > 1 and p ≠ 2, the power n is related to p
through the following equation:

n ¼ 2ð1 − pÞ
2 − p

; ð9Þ

where p < 2 or p > 2 determine respectively the negative
or positive sign of n. The inverse relation p ¼ pðnÞ turns
out to be of the same form.
In the large-N limit, any model belonging to these

universality classes will have a potential asymptotically
approaching well-known scenarios such as chaotic mono-
mial inflation (p ¼ 1), inverse-hilltop models (1 < p < 2),
Starobinsky-like inflation (p ¼ 2) and hilltop potentials
(p > 2). The reason for such simplicity is that, in this limit,
we are probing just a limited part of the inflationary
trajectory, close to horizon crossing. Peculiarities among
different models appear when we go away from this region.
In general, the situation near the end point of inflation will
be very different from one model to another, even though
they belong to the same universality class.
Following the above reasoning, one would expect that a

variable such as the inflaton excursionΔϕ, which evidently
depends on the entire inflationary trajectory, does not
manifest any universality feature. Nevertheless, it is pos-
sible to identify different regions where the field range does
exhibit a universal behavior.
In order to get the expression for Δϕ, one must integrate

Eq. (2) along the entire inflationary trajectory. By consid-
ering a large-N behavior such as that in Eq. (4), for p ≠ 2,
we obtain

Δϕ ¼ 2
ffiffiffiffiffi
2β

p
2 − p

N1−p
2 − ϕe; ð10Þ

where ϕe is a constant piece related to the value of the
inflaton when inflation ends. Then we run into two possible
situations, depending on whether p is smaller or larger
than 2.
In the first case, for p < 2, the inflaton range Δϕ is

proportional to a positive power of N. In the large-N limit,

2Note that our approach differs from [13,14], which also
include the spectral tilt in their expressions: while these refer-
ences derive a minimal value for Δϕ, we aim to provide a generic
estimate by making use of its universal properties.
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the constant part ϕe is subleading and one can argue that,
within any universality class, the magnitude of field
excursion will be model independent and therefore uni-
versal. Furthermore, given that Δϕ keeps increasing
together with N, one can correctly refer to such scenarios
as genuine large field models.
In the second case, for p > 2, the N-dependent term of

(10) is subleading with respect to the constant term ϕe, in
the large-N limit. The value of Δϕ is therefore determined
by the point where inflation stops and is generically not
universal: for instance, Δϕ can already obtain a super-
Planckian contribution during the last e-fold [19]. This
model-dependent piece is generically subdominant for
models with p < 2 while it represents the main contribu-
tion when p > 2.
Finally, the remaining possibility is p ¼ 2 where the

functional form of the field range reads

Δϕ ¼
ffiffiffiffiffi
2β

p
lnN − ϕe: ð11Þ

The log dependence leads to a situation whereΔϕmildly
increases together with N. The special role of this point,
corresponding to Starobinky-like scenarios, has been
recently highlighted in the context of the inflationary
attractors [20,21] as well as noncompact symmetry break-
ing [22]. Moreover, a change of behavior around the point
p ¼ 2 was noticed also in the analysis on the degeneracy
of the inflaton range done in [12]. Here we stress its
peculiarity also as marking the separation between a region
of authentic large field models (p < 2), whose Δϕ exhibits
universality features, and a region (p > 2) where models
can have the same r and ns at leading order (and, thus,
belonging to the same universality class) but still very
different field ranges.

III. UNIVERSALITY AT SMALL μ

The results presented above are obtained in a pure large-N
expansion, that is, in the limit N → ∞. However, physical
values usually amount to an exponential expansion of around
50 to 60 e-foldings preceding the end of inflation. Although
the latter is a big number, the universal regime can be easily
affected by tuning specific parameters of the models.
For large enough values of N, any model, characterized

by an equation of state parameter such as Eq. (4), will be
represented by a potential parametrized as a small deviation
from the benchmarks (8). Specifically, for p > 1 and
p ≠ 2, the generic form of V will include higher order
corrections and read

VðϕÞ ¼ V0

�
1 −

�
ϕ

μ

�
n
þ

X�∞

q¼n�1

cq

�
ϕ

μ

�
q
�
; ð12Þ

where n is related to p through Eq. (9) and the plus or
minus sign depends respectively on p > 2 or p < 2. Then

the coefficients cq parametrize the deviation from hilltop or
inverse-hilltop models respectively.
We now show that, at small μ and for finite values of N,

we recover universality: in addition to the cosmological
observables ns and r, the inflaton excursion will be model
independent. Interestingly, this is exactly the regime we
will consider to derive the field range bound.
The spectral index ns and tensor-to-scalar ratio r will be

generically insensitive to higher order terms in the expan-
sion (12) as they are calculated at horizon exit. In fact,
the inflationary regime is restricted to the region ϕ < μ,
for hilltop models (p > 2), and ϕ > μ, for inverse-hilltop
potentials (1 < p < 2); therefore, the farther one is located
from the end point of inflation the more one can ignore
higher order corrections in the scalar potential. Then the
large-N regime provides an accurate estimate of such
observables which, at small μ, read

ns ¼ 1 −
p
N
; r ¼ 25−2p

ðp − 2Þ2p−2
ðp − 1Þp−2

μ2p−2

Np : ð13Þ

The coefficients cq will appear only in subleading terms in
N. The family of models represented by Eq. (12) will have
identical behavior in the small-μ limit and for large enough
values of N. Conversely, this is generically not the case for
large values of μ; in such a limit, the end point of inflation is
pushed towards the region where the coefficients cq play an
important role and dissimilarities become important; con-
sequently, going 50–60 e-foldings back, even the point at
horizon crossing will start to be sensitive to cq corrections.
For large values of μ, the large-N expansion is not well
defined and scenarios belonging to the same universality
class at small μmay give quite different predictions in terms
of ns and r.
In the limit of large N and small μ, the field range turns

out to be

Δϕ ¼
�

2 − pffiffiffi
2

p ð1 − pÞ

�
1−2

p

μ2−
2
p −

ðp
2
− 1Þp−2

ðp − 1Þp2−1 μ
p−1N1−p

2; ð14Þ

where the first term is clearly related to the end point of
inflation while the second one is the N-dependent term. For
the reasons given above, cq corrections will not enter the
N-dependent part which gives the main contribution to the
field range for 1 < p < 2 while it is subleading for p > 2.
Things are different when calculating the end point ϕe; this
piece is sensitive to higher order corrections in μ. As soon
as μ increases, this point is pushed away towards a region
where differences among the models begin to appear. If, for
simplicity, we focus on the case n ¼ 3 (examples belonging
to this universality class are hilltop inflation and the models
referred to as RIPI and MSSMI in [23]) and consider terms
up to fifth order in the expansion (12), the end point reads

ϕe ¼
ffiffiffiffiffiffiffiffiffiffi
2

p

3

s
μ3=2 þ 2

ffiffiffi
2

p

9
c4μ2 þ

5ð4c24 þ 3c5Þ
27 × 21=4

ffiffiffi
3

p μ5=2: ð15Þ
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Crucially, the coefficients cq appear just with higher powers
of μ; this holds even for other values of n (both positive and
negative) as well as the special point p ¼ 2. This implies
that one obtains universal predictions in the small-μ limit,
not just in terms of ns and r, but also in terms of Δϕ, whose
form approaches Eq. (14).

IV. STRENGTHENING THE LYTH BOUND

We now use the results derived above in order to revisit
the discussion on small- and large-field excursions and
derive a stronger field range bound than the usual esti-
mate Eq. (3).
The findings on the universality of the field range

translate into the possibility of inferring an accurate
estimate of Δϕ given a point in the ðns; rÞ plane. This is
certainly true in the small-μ limit where Δϕ is given
by Eq. (14). One can properly argue that sub-Planckian
field ranges will be model independent and uniquely
determined by a measurement of cosmological observables.
The situation changes when μ increases; already for
μ≳Oð1Þ, in the region p > 2 (corresponding to ns ≲ 0.96),
universality breaks down [as can be seen from Eq. (15)
where each contribution is order one]; differently, for p< 2,
universality can hold even for some orders of magnitude
larger than the reduced Planck mass MP ¼ 1, thanks to the
dominant N-dependent term as set by Eq. (10).
Then, if we plot lines of constant Δϕ in a ðns; rÞ plane,

the one corresponding to unity Δϕ ¼ 1 will be a good
estimate of the border above which universality breaks
down, regardless of the value of ns. This will be taken as the
new, stronger bound. As can be seen from Fig. 2, the line is

tilted as it is a function also of the spectral index ns.
Interestingly, for ns ¼ 1 it approaches the value of the
original Lyth bound, which is a constant value not depend-
ing on the tilt. On the other hand, in the Planck range, an
excellent fit is provided by the following expressions,
corresponding to the (green) dashed straight lines in Fig. 2,

log10r ¼ −1.0þ 25.5ðns − 1Þ; Δϕ ¼ 10;

log10r ¼ −2.0þ 68.0ðns − 1Þ; Δϕ ¼ 1.0;

log10r ¼ −2.35þ 123ðns − 1Þ; Δϕ ¼ 0.1: ð16Þ

The range of values of (ns; r) consistent within those of
Planck2013 reduces the values of Δϕ during inflation by at
least an order of magnitude. For the central value
ns ≃ 0.96, imposing that Δϕ ≤ 1 leads to the bound
r≲ 2 × 10−5, which is two orders of magnitude below
the usual Lyth bound.
On the other hand, if we impose that the ratio r be bigger

than a certain value, then we find a lower bound on Δϕ.
Figure 3 shows the field range as a function of the scalar
spectral index for different values of the ratio r. Again, in
the range consistent with Planck2013, the field range is
always super-Planckian, for all values of the ratio
r≳ 2 × 10−5. This conclusion can only be avoided by
going to unrealistically large spectral indices ns close to 1.

V. DISCUSSION

The main results of this article are twofold. First of all,
we have provided strong arguments for the universality of
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FIG. 3 (color online). The range of field values corresponding
to r ¼ 0.2, 0.1, 004, 0.01, 0.001, 0.00001 in the plane (ns, Δϕ).
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small field ranges3 Δϕ < 1 as given in (14). Second, we
have pointed out that this results in a significant strength-
ening on the Lyth bound when including both the spectral
index and the tensor-to-scalar ratio; see (16) and Fig. 2.
Similarly to the original Lyth bound, the relations (16)

provide generic estimates of the field range, which could be
avoided only by a very specific (nongeneric) behavior of
ϵðNÞ. However the existence of such counterexamples is of
limited importance: one would like to understand when
large field inflation is expected given a measurement of r
even if there might be fine-tuned models which give smaller
field ranges for this value of r.
Given the central value for ns from Planck, our results

imply that super-Planckian field ranges require a tensor-to-
scalar ratio that exceeds 2 × 10−5. Planned future cosmic

microwave background experiments, such as COrE [24,25]
and PRISM [26–28], might bring the sensitivity down to
10−4. In contrast to what one would conclude from the
original Lyth bound, our results imply that a small
detectable r still corresponds to super-Planckian field
ranges.
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