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We study the loop quantum cosmology of a flat Friedmann-Lemaître-Robertson-Walker space-time with
a Maxwell field. We show that many of the qualitative properties derived for the case of a massless scalar
field also hold for a Maxwell field. In particular, the big-bang singularity is replaced by a quantum bounce,
and the operator corresponding to the matter energy density is bounded above by the same critical energy
density. We also numerically study the evolution of wave functions that are sharply peaked in the low
energy regime, and derive effective equations which very closely approximate the full quantum dynamics
of sharply peaked states at all times, including the near-bounce epoch. In the process, the analytical and
numerical methods originally used to study the dynamics in loop quantum cosmology for the case of a
massless scalar field are substantially improved to handle the difficulties (that generically arise for matter
content other than a massless scalar field) related to the presence of a Maxwell field.
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I. INTRODUCTION

In loop quantum cosmology (LQC) [1], cosmological
models are quantized in a nonperturbative manner using the
basic operators and following the methods of loop quantum
gravity (LQG). The first cosmologies to be studied were the
homogeneous and isotropic Friedmann-Lemaître-Robertson-
Walker (FLRW) space-times with a massless scalar field,
where it was initially shown that the quantum equations of
motion do not break down at the big-bang singularity [2],
and then that the singularity is replaced by a quantum
gravity “bounce” that connects a pre-bounce contracting
FLRW space-time to a post-bounce expanding FLRW
space-time [3,4].
These results have since been generalized to include

FLRW space-times that allow nonzero spatial curvature
[5,6], a nonzero cosmological constant [7] or have pressur-
eless dust as the matter content [8] (the latter as a test for the
full LQG framework proposed in [9] where an irrotational
pressureless dust field acts as a clock1). In all of these cases
the big-bang singularity has also been shown to be replaced

by a bounce. Space-times that allow anisotropies [11–13]
and inhomogeneities (using a hybrid quantization procedure)
[14,15] have also been studied in LQC; in the Bianchi and
Gowdy models, the classical singularity is resolved as the
singular states decouple from the nonsingular states under
the quantum dynamics. It is generally expected that the big-
bang singularity is replaced by a bounce in this setting as
well (see, e.g., studies of the effective equations for the
LQC of the Bianchi I [16] and Gowdy [17] space-times), but
this has not yet been shown as the full quantum dynamics
have not yet been investigated. Indeed, dynamical studies of
inhomogeneous cosmologies in LQC rely strongly on the
extrapolation of the properties of systems studied at a genu-
inely quantum level, in particular the preservation of semi-
classicality and the validity of the semiclassical effective
dynamics as a good approximation to the quantum dynamics.
Most recently cosmological perturbations have also

been studied in LQC, first from an effective theory
standpoint [18] and then in quantum treatments following
various approaches: a “hybrid” quantization (i.e., the LQC
of the homogeneous background and a Fock quantization
of the perturbative degrees of freedom) [19] (see also [20])
and by the LQC treatment of a discretization of the flat
FLRW space-time with scalar perturbations [21]. These
works have allowed the study of the dynamics of cos-
mological perturbations in the Planck regime in some of
the most interesting cosmological scenarios—those that
generate a scale-invariant power spectrum of scalar
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1The deparametrization of general relativity with respect to the

irrotational dust field leads to a formulation of LQG with a true
Hamiltonian for the gravitational and nondust matter degrees of
freedom, and circumvents a series of technical obstacles in
completing the quantization program. See also [10].

PHYSICAL REVIEW D 90, 123538 (2014)

1550-7998=2014=90(12)=123538(23) 123538-1 © 2014 American Physical Society

http://dx.doi.org/10.1103/PhysRevD.90.123538
http://dx.doi.org/10.1103/PhysRevD.90.123538
http://dx.doi.org/10.1103/PhysRevD.90.123538
http://dx.doi.org/10.1103/PhysRevD.90.123538


perturbations—namely inflation [22], the matter bounce
[23] and the ekpyrotic universe [24].
In LQC, the main research effort is focused on inves-

tigating the loop quantum geometry effects, arising from a
quantization which differs from the standard Wheeler-
DeWitt one. The matter sector is usually dealt with in a
perfunctory manner, although there do exist some studies
on the polymeric matter sector in the literature [25,26]
(including attempts to describe the perturbative degrees of
freedom [27]). Most of the space-times studied to date in
LQC are either vacuum space-times [12,14] or with the
particularly simple choice of a massless scalar field
[3,5–7,11,13,15]. While the cases of a massive scalar field
in a flat FLRW space-time [28], and a vector field in the
Bianchi I cosmology [29] have also been studied, a robust
analysis of the dynamical sector of the theories at a
genuinely quantum level has only been performed for
matter choices (namely a massless scalar field or pres-
sure-less dust) which are idealizations of realistic (from the
point of view of particle physics) matter fields. In particu-
lar, the principal components of the standard model have
never been systematically analyzed in this context and the
LQC studies involving them rely on extrapolations from
the above-mentioned idealizations. In the general context of
cosmology, a particularly important case is a perfect fluid
of radiation formed by standard model particles. This
article is dedicated to the study of a radiation-dominated
space-time in LQC in the most simple setting possible: by
emulating a radiation-dominated perfect fluid with as few
as possible homogeneous standard model matter fields.
As the resolution of cosmological singularities in LQC is

due to the loop quantization of the gravitational sector
(rather than any effect due to the matter fields), it seems
reasonable to assume that the specific type of matter field
does not affect the qualitative results of LQC and that the
big-bang singularity is generically replaced by a quantum
gravity bounce, regardless of the matter field. However,
despite this expectation it is important to study a variety of
matter fields in order to show that the results obtained for
massless scalar fields do in fact hold more generally,
especially in the situation when distinct fields are used
as the emergent time (i.e., the fields are used as evolution
parameters labeling the families of partial observables
[30]), since the use of matter clocks has been essential
in studies of the quantum dynamics to date.2

Another reason to study different matter fields is that it is
not immediately obvious how to include some types of
matter fields—e.g., vector fields—in minisuperspace mod-
els that assume homogeneity and isotropy. This is a tricky

problem as a homogeneous vector field necessarily picks
out a preferred direction, which is clearly at odds with
isotropy. We show that a model earlier proposed in classical
cosmology is suitable for the Hamiltonian framework, and
thus for canonical quantum cosmology theories such as
LQC.
Finally, concerning the matter content, the massless

scalar field mostly used so far in the literature possesses
a series of convenient properties that simplify the analysis.
As we will see later in this paper (Secs. III and IV and
Appendices A and B) other (more realistic) matter fields do
not possess many of these properties. This makes the study
of other fields significantly more difficult and in particular
requires substantial revisions and extensions of the ana-
lytical and numerical methods used in previous studies, for
example [3]. The increase in difficulty observed here for
Maxwell fields is expected to be generic for standard model
matter fields. Thus, the improvements to the methodology
presented here may be essential for many further develop-
ments in LQC.
As a first step in addressing these issues, we will study the

loop quantization of a flat FLRW space-timewith a Maxwell
field, the massless vector field that satisfies Maxwell’s
equations. This is a particularly interesting matter field for
two reasons. First, it is a vector field, and therefore it will be
necessary to determine how a vector field can be handled in a
homogeneous and isotropic background. Second, the equa-
tion of state of a Maxwell field is that of radiation, namely
P ¼ ρ=3, where ρ is the energy density andP the pressure of
the Maxwell field.
This second condition is particularly important as all

matter fields with the dispersion relation E ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
p2 þm2

p
that are in either the Bose-Einstein or Fermi-Dirac distri-
bution behave like radiation at sufficiently high temper-
atures, that is they have the same equation of state P ≅ ρ=3.
As the two properties of the matter fields that enter into the
Einstein equations in the homogeneous and isotropic limit
are precisely their energy density and pressure, different
fields that have the same initial ρ and the same equation of
state lead to the same gravitational dynamics of the FLRW
space-time. Therefore, at high temperatures (like the
temperatures reached in the very early universe), all (of
the populations) of the bosonic or fermionic fields that can
be treated in a statistical manner are accurately mimicked
by a population of Maxwell fields. Thus, the study of the
Maxwell field in loop quantum cosmology is of wide
interest, as it can provide a good approximation to many
different types of thermalized matter fields in the Planck
regime.
In this paper, following the improved dynamics loop

quantization prescription [3], we will study in detail the
quantum dynamics of the isotropic universe with a suitable
population of Maxwell fields as matter content and in
particular show that the big-bang singularity is replaced by
a quantum bounce in LQC. This strongly suggests that the

2Once a particular matter field has been chosen as the internal
clock, it is easy to generalize the presence of the bounce and the
energy density boundedness results to the case of generic matter
fields added on top of the clock fields. This is a direct
consequence of the boundedness of the gravitational energy
density operator (see for example the discussion in [8]).
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initial cosmological singularity is resolved by quantum
gravity effects in all flat FLRW space-times where the
matter field at high temperatures is well approximated by
radiation.
The outline of the paper is as follows. In Sec. II, the

classical theory will be reviewed and in particular it will
be shown how, following [31], a matter sector constituted
of Maxwell fields can be made to be homogeneous and
isotropic. Then in Sec. III the quantum theory will be
defined and numerically solved for semiclassical states;
some results concerning the asymptotic dynamics are
presented in Sec. IV. The effective equations are presented
in Sec. V, and we close with a discussion in Sec. VI.
The technical derivations leading to the results presented in
Sec. IV are contained in Appendices A and B.
The units we use in this paper are such that c ¼ 1, but G

and ℏ will remain explicit; we define the Planck length as
lPl ¼

ffiffiffiffiffiffiffi
Gℏ

p
. Greek letters μ; ν; ρ; σ represent space-time

indices, while the roman letters at the beginning of the
alphabet a; b; c represent spatial indices and i; j; k; l
represent internal spatial indices.

II. VECTOR FIELDS IN ISOTROPIC COSMOLOGY

In this section, we shall review a simple model that
allows vector fields to be included in homogeneous and
isotropic minisuperspace models. The key point is that in a
gas of photons, there are many individual photons evenly
spread out over space (ensuring approximate homogeneity)
which are traveling in all directions (ensuring approximate
isotropy). In the statistical limit of a large number density of
photons, the photon gas is homogeneous and isotropic.
One way to model the stress-energy tensor for a photon

gas is by working with a linear combination of plane waves.
In order to see this, recall that the stress-energy tensor for a
single plane wave of radiation with amplitude A and (null)
tangent 4-vector kμ is

Tμν ¼
A2

8πG
kμkν; ð2:1Þ

where we assume that we are interested in Tμν only at scales
larger than the wavelength of the plane wave [32].
In order to satisfy the isotropy requirement, it is

necessary to have plane waves (with the same amplitude)
traveling in all directions, and then

Tμν ¼
A2

8πG

Z
dθdϕ sin θkμðθ;ϕÞkνðθ;ϕÞ; ð2:2Þ

where kμðθ;ϕÞ is the tangent 4-vector of the plane wave
traveling in the ðθ;ϕÞ direction on the FLRW space-time
with the metric

ds2 ¼ −N2dt2 þ aðtÞ2d~x2: ð2:3Þ

From this, it is easy to check that

Tμν ¼ ρuμuν þ Pðgμν þ uμuνÞ; ð2:4Þ

with

ρ ¼ A2

2G
; P ¼ ρ

3
; ð2:5Þ

and uμ is the usual comoving 4-vector of the perfect fluid.
This shows how it is possible to model a perfect fluid of

radiation as a linear combination of plane waves traveling
in all directions. However, this setup is unwieldy in the
Hamiltonian framework, so we will now introduce a toy
model that gives the stress-energy tensor (2.4). In this toy
model, there are three “species” or “flavors” of a Maxwell
field [31] in a flat FLRW universe. This simpler setting is
relatively easy to handle in a Hamiltonian setting, and so is
more convenient for the quantum theory. In the following
part, we describe this toy model, define the Hamiltonian for
the matter and gravitational sectors, and conclude the
section by briefly discussing the classical dynamics.

A. The three Uð1Þ vector fields

Motivated by the fact that a linear superposition of plane
waves can yield a homogeneous and isotropic matter field,
in this paper we will consider a particularly simple linear
superposition of this type. To be specific, we take a linear
superposition of three plane waves that are orthogonal and
of equal amplitude. Furthermore, for simplicity we assume
the wave number of these plane waves to be zero, which
then each correspond to homogeneous field configurations.
This particularly simple linear superposition of plane waves
is a toy model of (2.2) which will make calculations in a
canonical quantum framework tractable and allow us to
define the loop quantum cosmology of a radiation-dominated
space-time. While a more realistic model of a radiation-
dominated space-time would be to consider a more general
linear superposition of plane waves, this is very difficult to
handle in a minisuperspace model of quantum cosmology
and we leave this possibility for future work. Nonetheless,
(2.2) does suggest using a simpler model—namely, the linear
superposition of the three homogeneous (i.e., plane waves
with zero momentum) and orthogonal vector fields—in order
to study a radiation-dominated space-time.3 This is what we

3Note that this simpler model remains very interesting as it
does in fact capture the salient details of (2.2). This is because the
wave number does not affect the gravitational dynamics since the
energy density (as well as the pressure) contribution due to a
plane wave is homogeneous and only depends on the amplitude
of the plane wave as can be seen explicitly in (2.5). Thus, the
restriction to one wave number will not affect the resulting
physics insofar as the dynamics of the space-time are concerned
(where only energy density and pressure enter into the Friedmann
equations), and neither will the specific choice of setting the wave
number to zero in order to obtain homogeneous solutions.
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shall do in this paper, and in the remainder of this section we
shall precisely define the model.
Denoting the vector potential of each field by ðαAÞμ,

where the index α ¼ 1, 2, 3 labels the three different Uð1Þ
fields, the Lagrangian density for each of the three fields is
given by

αL ¼ −
1

4

ffiffiffiffiffiffi
−g

p ðαFÞμνðαFÞμν; ð2:6Þ

where ðαFÞμν is the field strength of the vector field,
ðαFÞμν ¼ 2∂ ½μðαAÞν�.
Now, in order to ensure the homogeneity and isotropy of

the matter field, it is necessary to carefully choose the form
of the ðαAÞμ for each α. To obtain a homogeneous and
isotropic stress-energy tensor, following [31] we choose

ðαAÞa ¼ AγðtÞδαa; ðαAÞt ¼ 0; ð2:7Þ

i.e., we take the three vector potentials to be mutually
orthogonal, and impose that they share the same time
dependent length. This choice gives a field strength where
the only nonzero components are

ðαFÞta ¼ −ðαFÞat ¼ ∂tAγδ
α
a: ð2:8Þ

Given the metric (2.3), the Lagrangian density of the
fields is

αL ¼ a
2N

ð∂tAγÞ2; ð2:9Þ

and then the canonical momentum of the vector field is
given by

αP ¼ δðαLÞ
δð∂t

αAÞ ¼
a
N
ðαΠÞμ; ð2:10Þ

where we have introduced

ðαΠÞμ ¼ ð∂tAγÞδαμ ≡ Πγδ
αμ: ð2:11Þ

A subsequent Legendre transform gives the Hamiltonian
density for one of the Uð1Þ species,

αH ¼ 1

2a
Π2

γ ; ð2:12Þ

and the Poisson bracket between Aγ and Πγ is determined
by the induced symplectic structure

Ωðδ1; δ2Þ ¼
X3
α¼1

Z
Σ
ðδ1ðαAÞμδ2ðαΠÞμ − δ2ðαAÞμδ1ðαΠÞμÞ

¼ 3ðδ1Aγδ2Πγ − δ2Aγδ1ΠγÞ: ð2:13Þ

The (appropriately regularized) integral over the spatial
Cauchy slice Σ can be performed trivially due to
homogeneity, and the overall factor of the volume of the
space can be absorbed into the definition of the fields.4

The Poisson bracket following from the induced symplectic
structure is

fAγ;Πγg ¼ 1

3
: ð2:14Þ

Finally, the total Hamiltonian density matter term is simply
given by the sum of the three individual Hamiltonian
densities,

Hm ¼
X3
α¼1

αH ¼ 3

2a
Π2

γ ; ð2:15Þ

from which it is possible to calculate the energy density ρ
and the pressure P of the universe matter content:

ρ ¼ Hmffiffiffi
q

p ¼ 3Π2
γ

2a4
; ð2:16Þ

P ¼ −
∂Hm

∂Vol ¼ −
∂Hm

∂a3 ¼ Π2
γ

2a4
: ð2:17Þ

This implies in particular the relation P ¼ ρ=3, just as one
would expect for a radiation-dominated universe.
Alternatively, one can determine P and ρ by evaluating

the stress energy tensor [31]. That method also has the
advantage of explicitly showing that the stress energy
tensor is that of a homogeneous and isotropic perfect fluid.

B. The gravitational sector

Since we embed the matter fields discussed above in the
isotropic flat spacetime, the geometrical degrees of freedom
are the scale factor a and its canonical momentum ΠðaÞ with
the Poisson bracket fa;ΠðaÞg ¼ 1. These variables (together
with the matter degrees of freedom) suffice for describing
this symmetry-reduced system (for details, see for example
[36]). However, there is another pair of conjugate variables
that is more convenient for LQC (see Sec. III and [3,4]) and
which provide an equivalent description at the classical level,
these variables are (proportional to) the oriented volume ν
and its momentum b,

ν ¼ a3

α
; α ¼ 2πγl2

Pl

ffiffiffiffi
Δ

p
; ð2:18aÞ

4The integral has to be regularized as the space is noncompact.
This is done by introducing an infrared regulator, a compact
comoving spatial region [33] (here a cubic cell V known as
the fiducial cell) and subsequently ensuring that the resulting
description admits a consistent regulator removal limit [3,11,34].
See also the discussion in [35].
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b ¼ −
2α

1
3

3ℏ
·
ΠðaÞ
jνj2=3 ¼

α

2πl2
Pl

H;

fν; bg ¼ −
2

ℏ
; ð2:18bÞ

where the proportionality factor α contains the Barbero-
Immirzi parameter γ [37] and the smallest nonzero eigen-
value of the LQG area operator Δ. Δ is often called the
area gap and is of the order Δ ∼ l2

Pl [38] (note that it has
dimensions of area). The momentum b is proportional to the
Hubble parameter H in the classical theory.
In the variables ðv; bÞ the gravitational term of the

Hamiltonian constraint density takes the form

Hg ¼ −
πG
3

Π2
ðaÞ
a

¼ −
3πGℏ2

2α
jνjb2: ð2:19Þ

Together with the matter Hamiltonian density (2.15), Hg
defines the classical dynamics of the system.

C. Classical dynamics

The classical dynamics of this model is generated by the
Hamiltonian constraint term in the canonical action

NCH ¼
Z
V
N½Hg þHm�; ð2:20Þ

where the gravitational and matter terms are given by (2.19)
and (2.15), respectively. The physical trajectories lie on the
surface

NCH ¼ 0: ð2:21Þ

Note that the integration in (2.20) should in principle be
performed over the entire constant time slice Σ, however
such an integral would diverge due to homogeneity and
noncompactness of the slice. A standard way of removing
this divergence is the introduction of an infrared regulator: a
compact region V of constant volume in comoving coor-
dinates. Here for the sake of simplicity we choose V to be
the cubical cell of edges generated by the vectors ∂x; ∂y; ∂z
and of unit volume with respect to the line element dx2þ
dy2 þ dz2. The equations of motion (presented below) do
not depend on the choice of the fiducial cell, and so it
follows that the physical results do not depend on the size
of the cell and the limit of removing the regulator is trivial
in the classical theory. Note however that this is not the case
in the quantum theory where taking the limit of V → R3 is
not trivial, see [35,39] for more detailed discussions on this
point. Nonetheless, this limit exists and the resulting
quantum theory is independent of the initial choice of
the fiducial cell.

Performing the (regulated) integral in (2.20) we arrive at
the following form of the constraint,

CH ¼ −
3πGℏ2

2α
jνjb2 þ 3

2jανj1=3Π
2
γ : ð2:22Þ

So far the choice of the lapseN remains open, however in the
quantum theory we will want to deparametrize the system
with respect to the matter field in order to use Aγ as a clock.
To synchronize the classical time with that clock, we choose
N ¼ aðtÞ ¼ αjνj1=3 and denote the resulting time variable η.
This choice corresponds to working in conformal time, and
the resulting constraint reads

NCH ¼ −
3πGℏ2

2α2=3
jνj4=3b2 þ 3

2
Π2

γ : ð2:23Þ

The equations of motion are the Hamilton-Jacobi equations
which in this case consist of the following set of four coupled
ordinary differential equations,

dv
dη

¼ 6πGℏ

α2=3
jνj4=3b;

db
dη

¼ −
4πGℏ

α2=3
sgnðνÞjνj1=3b2; ð2:24aÞ

dAγ

dη
¼ Πγ;

dΠγ

dη
¼ 0: ð2:24bÞ

These equations are equivalent to the usual Friedmann
equations and are easily solved.
The matter degrees of freedom are determined by

(2.24b): the momentum of the electromagnetic field is a
constant of the motion and Aγ grows linearly in conformal
time

Πγ ¼ const;

AγðηÞ ¼ Πγηþ Πo; ð2:25Þ

where Πo is a free constant of integration.
The dynamics of ðv; bÞ are determined by (2.24a) and

can be found in two steps: first we note that the equation
for an auxiliary variable f ≔ bjvj1=3 decouples from the
system and so can easily be solved. Then, the ðv; bÞ
variables can be found once the solution f is plugged
back into (2.24a) with the result

νðηÞ ¼ ð4πGÞ3=2
α

Π3
γðη − ηoÞ3; ð2:26aÞ

bðηÞ ¼ α

2πGℏ
ffiffiffiffiffiffiffiffiffi
4πG

p ·
1

Πγðη − ηoÞ2
; ð2:26bÞ
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where ηo is a constant of integration corresponding to the
moment of initial/final singularity.5 Note that there is
another constant of integration that is fixed by enforcing
the constraint NCH ¼ 0.
The monotonicity of AγðηÞ allows us to eliminate the

time dependence from the equations of motion by repar-
ametrizing the evolution in terms of Aγ and thus use the
vector potential as an internal clock,

νðAγÞ ¼
ð4πGÞ3=2

α
ðAγ − AoÞ3; ð2:27aÞ

bðAγÞ ¼
α

2πGℏ
ffiffiffiffiffiffiffiffiffi
4πG

p ·
Πγ

ðAγ − AoÞ2
; ð2:27bÞ

where Ao ¼ Πo þ Πγηo. Ao then represents the “initial
time” where the big-bang or big-crunch singularity occurs,
according to the Aγ clock.
Finally, the energy density and pressure can be deter-

mined from Eqs. (2.16) and (2.17):

ρ ¼ 3

32π2G2Π2
γðη − ηoÞ4

¼ 3Π2
γ

32π2G2ðAγ − AoÞ4
; ð2:28Þ

P ¼ 1

32π2G2Π2
γðη − ηoÞ4

¼ Π2
γ

32π2G2ðAγ − AoÞ4
¼ ρ

3
:

ð2:29Þ

III. THE QUANTUM THEORY

The procedure of quantizing (within the LQC frame-
work) the classical system specified in the previous section
is a direct analog of the procedure used for isotropic
systems with a scalar field [3,11]. Therefore we recall it
here only briefly, focusing mainly on the differences with
respect to previous treatments and on the specific steps
where quantization ambiguities force us to make particular
choices.

A. The Dirac program

In general the process is an application of the Dirac
program: first the constrained system is quantized while
ignoring the constraints (the so-called kinematical quanti-
zation), then the constraints are defined as quantum
operators, and finally the space of physical states is
constructed out of the kernel of the quantum constraint
operators. In this setting, meaningful physical quantities are

represented by partial observables [30]. Let us start by
recalling the kinematical quantization.

1. The kinematical Hilbert space

In this step, following the majority of works in LQC, we
implement a hybrid approach, quantizing the geometry
degrees of freedom via a polymeric quantization while
using the standard quantum mechanical tools for the matter
sector [40]. Thus, the kinematical Hilbert space is a product
Hkin ¼ Hgr ⊗ HA of the gravitational and matter Hilbert
spaces.
The gravitational Hilbert space is the space of square-

summable functions on the Bohr compactification of the
real line (the space of almost periodic functions) Hgr ¼
L2ðR̄; dμBohrÞ. A convenient basis for this Hilbert space is
formed by the eigenfunctions of the v̂ operator,6 the
quantum counterpart of the variable v introduced in
(2.18). The inner product on Hgr is discrete,

hvjv0i ¼ δv;v0 ; ð3:1Þ

where however v runs through the whole real line. As a
consequence, Hgr is nonseparable.
Normalizable states on Hgr are represented by the wave

function ψðvÞ,

jψi ¼
X
v∈R

ψðvÞjvi;
X
v∈R

jψðvÞj < ∞: ð3:2Þ

We will require that operators acting within this space be
well defined on the domain Dgr of finite linear combina-
tions of jvi.
As the basic operators defined on a dense domain inHgr

we choose the operator v̂ (proportional to the volume of the
chosen comoving region of space) and the Uð1Þ unit shift
operator N̂ such that

v̂jvi ¼ vjvi; N̂jvi ¼ jvþ 1i: ð3:3Þ
The standard elementary operators of isotropic LQC—
namely, the triad flux p̂ across a face of the fiducial cell and
the SUð2Þ holonomy hλ along a straight line of fiducial
length λ—can be expressed in terms of v̂; N̂ [3,4].
The matter Hilbert space is the standard Lebesgue space

HA ¼ L2ðR; dAγÞ. As a basis we choose the generalized
eigenstates ðAγj of the field operator Âγ. States are
represented by square-integrable wave functions ψðAγÞ ≔
ðAγjψi and the basic operators are

ÂγψðAγÞ ¼ AγψðAγÞ; ð3:4aÞ5The solutions ((2.25), (2.26)) contain two branches: ðη > ηoÞ
representing the expanding universe starting at the initial singu-
larity η ¼ ηo and ðη < ηoÞ representing the universe contracting
to the final singularity at η ¼ ηo. Due to the irregularity of the
equations of motion at η ¼ ηo there is no unique extension of the
solution across the point η ¼ ηo, although there is a unique
analytic extension through that point.

6Note that from the v̂ operator, it is possible to construct the
operator p̂ ¼ sgnðvÞjαv̂j2=3, which corresponds to the flux of the
densitized triad across one of the faces of the fiducial cell.
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Π̂γψðAγÞ ¼ −
iℏ
3

d
dAγ

ψðAγÞ; ð3:4bÞ

the domain on which we require the operators to be well
defined is the Schwartz space SðRÞ.

2. The Hamiltonian constraint operator

The next step in the Dirac program is the construction of
the quantum operator representing the Hamiltonian con-
straint (2.23) and composed of the basic kinematical
operators defined in (3.3) and (3.4). The procedure, while
a bit complicated, is well described in the literature, see for
example [3,11]. To capture the properties of full LQG we
start by expressing the constraint (2.23) in terms of the
SUð2Þ holonomies Ai

a and densitized triads Ea
i directly.

Next the constraint is regularized following the prescription
given by Thiemann [41]. In particular, the field strength
(i.e., the curvature of the connection) is expressed in terms
of a holonomy along a closed square loop of physical area
equal to the lowest nonzero eigenvalue of the area operator

in LQG (relevant for LQC) Δ ¼ 4
ffiffiffi
3

p
πγl2

Pl. As a result the
gravitational part of the constraint is expressed in terms of
the holonomy functions and the volume, which next are
promoted to composite operators expressed in terms of the
operators (3.3). The matter part of the constraint does not
need any special treatment and can be immediately
expressed in terms of the operators (3.4).
The last step listed here involves some ambiguity due to

different factor-ordering choices that are possible. Here we
choose a particularly convenient factor-ordering motivated
by studies of the anisotropic Bianchi I cosmology [11]
which involves a specific treatment of the sign function and
simplifies the resulting physical Hilbert space structure
[42]. The final form of the operator is7

dNCH ¼ Θ ⊗ 1þ 1 ⊗
∂2

∂A2
γ
; ð3:5Þ

where the operator Θ (also called the evolution operator)
takes the form

ΘΨðν;AγÞ ¼ −
9ð2πγ ffiffiffiffi

Δ
p Þ1=3

32γ
ffiffiffiffi
Δ

p
ℏ

jνj1=3½s−ðν − 2Þs−ðνÞjν − 4j1=3jν − 2j2=3Ψðν − 4;AγÞ

− ðs2−ðνÞjν − 2j2=3 þ s2þðνÞjνþ 2j2=3Þjνj1=3Ψðν;AγÞ
þ sþðνþ 2ÞsþðνÞjνþ 4j1=3jνþ 2j2=3Ψðνþ 4;AγÞ�; ð3:6Þ

where s�ðνÞ ¼ sgnðν� 2Þ þ sgnðνÞ. This particular form
of Θ has several convenient properties:
(1) The zero volume state jν ¼ 0i decouples under the

action of ĈH.
(2) Due to presence of the s�ðνÞ terms the sectors ν > 0

and ν < 0 decouple.
(3) Since Θ is a difference operator coupling only points

in ν separated by 4, one can split the support of
Hgr elements onto independent sets ν ¼ ϵþ 4n
(preserved under the action of ĈH), where n ∈ Z
and ϵ ∈ ð0; 4�.

The first property implies that we can exclude the singular
jv ¼ 0i states from the support of the wave function,
showing that the singularity is resolved at the quasi-
kinematical level.
At this point it is useful to note one more important

property of the model, namely that it does not feature parity
violating interactions. In consequence the triad reflection
(here represented by ν ↦ −ν) is a large symmetry and the
subspaces of symmetric and antisymmetric (with respect
to that reflection) states are superselection sectors. As a

consequence one can choose just one of them and then,
due to properties 1 and 2 above, restrict the support of
the wave function to ν > 0.
That restriction, together with property 3, allows us to

divide Hgr into superselection sectors consisting of the
projections of ψ ∈ Hgr onto the positive semilattices

Lϵ ¼ fv ∈ R∶ v ¼ ϵþ 4n; n ∈ Ng; ð3:7Þ
and work with just a single superselection sector, provided
that these sectors are also preserved by the chosen set of
observables (which as we shall see below is the case).
Of course, it is important to verify that the physics does not
depend on the choice of the superselection sector, as there
does not exist any principle that could justify one choice
over another.
One justification for working with a single sector is that

while the entire Hilbert space Hgr is not separable, each
superselection sector Hgr;ϵ ≔ fψ jLϵ

;ψ ∈ Hgrg is. An alter-
native possibility to construct a separable Hilbert space is to
use the construction given in Appendix C of [44] or to
exploit the natural fibration of Hgr and the Lebesgue
measure on the fiber space inherited from superselection
labels. The latter method leads to the fiber-integral Hilbert
space which is again separable [26,45]. For the remaining
part of this paper we choose the first approach and work
with one superselection sector.

7It is defined analogously to the prescription provided for the
system with a massless scalar field in [43] and denoted there as
sMMO. See [43] for its description and a comparison with other
factor-ordering choices.
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Upon restriction to a positive semilattice Lϵ, the evolution operatorΘ [whose action is given in (3.6)] can be simplified to

ΘΨðν;AγÞ ¼ fþðνÞΨðνþ 4;AγÞ þ foðνÞΨðν;AγÞf−ðνÞΨðν − 4;AγÞ

¼ −
9ð2πγ ffiffiffiffi

Δ
p Þ1=3

8γ
ffiffiffiffi
Δ

p
ℏ

ν1=3 × ½θðν − 4Þðν − 4Þ1=3ðν − 2Þ2=3Ψðν − 4;AγÞ

− ðθðν − 2Þðν − 2Þ2=3 þ ðνþ 2Þ2=3Þν1=3Ψðν;AγÞ
þ ðνþ 4Þ1=3ðνþ 2Þ2=3Ψðνþ 4;AγÞ�; ð3:8Þ

where θðνÞ is the Heaviside step function.
From this one can infer several important properties:

(a) Since f�; fo are real functions, the operator is real.
(b) All (generalized) eigenfunctions are solutions to the

second order difference equation

ΘψλðνÞ ¼ λψλðνÞ: ð3:9Þ

(c) Due to the presence of θ functions in (3.8), ψλðϵþ 4Þ
is uniquely determined by ψλðϵÞ, therefore all the
eigenspaces are 1-dimensional and the spectrum
SpðΘÞ is nondegenerate.

(d) Due to the reality of the operator, all of its eigenfunc-
tions are real up to a global phase.

(e) By construction, the operator is symmetric and pos-
itive definite on its domain D.

(f) By direct inspection of its deficiency functions (using
numerical methods described in [3,43] and the asymp-
totic analysis of [46], further applied in Sec. B 2), one
can show that Θ is essentially self-adjoint.

(g) By exploring the asymptotic properties of the gener-
alized eigenfunctions corresponding to the positive
eigenvalues λ ¼ ω2 and the spectral properties of
the WDW analog of Θ, one can show that8 the
spectrum of Θ is purely continuous and SpðΘÞ ¼ Rþ.

These properties will be essential in constructing the
physical Hilbert space and probing the dynamics of the
system.

3. The physical Hilbert space

In the Dirac program, the space of physical states is
defined as the set of states annihilated by the quantum

constraint operator, that is dNCHΨ ¼ 0. Thus, these states
must satisfy the equation

−
∂2

∂A2
γ
Ψðν;AγÞ ¼ ΘΨðν;AγÞ; ð3:10Þ

where the action of Θ is given in (3.8).

A systematic way to find this space is the so-called group
averaging method [48], where one builds an antilinear
rigging map that provides an “extractor operator” P which
projects the kinematical state Φ onto the physical wave
function Ψ:

Ψðν; AγÞ ¼ ½PΦ�ðν; AγÞ ¼
Z

dteitcNCHΦðν; AγÞ: ð3:11Þ

Using the spectral properties of Θ and ∂2
Aγ

and following

the algorithm specified in [44], one can easily determine the
form of the physical states,

Ψðν; AγÞ ¼
Z
Rþ

dk ~ΨþðkÞekðνÞeiωðkÞAγ

þ
Z
Rþ

dk ~Ψ−ðkÞēkðνÞe−iωðkÞAγ ; ð3:12Þ

where ~Ψ�ðkÞ ∈ L2ðRþ; dkÞ are the spectral profiles of
what we shall call the positive and negative “frequency”
components,9 the norm is ∥Ψ∥2 ¼ ∥ ~Ψþ∥2L2 þ ∥ ~Ψ−∥2L2 and
ek are the Dirac delta normalized (generalized) eigenfunc-
tions of Θ that can be chosen to be real and with ekðϵÞ > 0,

Θek ¼ ω2ðkÞek; ð3:13Þ

with the relation between the “wave” label k and the
“frequency” ω being given by10

ω2
k ¼ 2

ð2πγ ffiffiffiffi
Δ

p Þ1=3
γ

ffiffiffiffi
Δ

p
ℏ

k2: ð3:14Þ

Using the similarity of (3.10) to the Klein-Gordon equation
(with Aγ being the analog of time) one can conclude that the
first and second components of (3.12) are the “frequency”
superselection sectors, of which we select the first one.
In this case Eq. (3.10) can be rewritten in the form

8Unfortunately, as the leading power of v in f for large ν is not
an integer, the mathematically precise proof of this property
presented in [47] for a massless scalar field cannot be adapted to
the case of a Maxwell field that is considered here.

9The reason for choosing this nomenclature will become clear
in the next section.

10At the moment this relation is arbitrary as we can relabel k,
although this particular choice is justified by the asymptotic
properties of ek analyzed in Appendix B 2.
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−i
∂
∂Aγ

Ψðν;AγÞ ¼
ffiffiffiffi
Θ

p
Ψðν;AγÞ: ð3:15Þ

Finally, the physical states are

Ψðν; AγÞ ¼
Z
Rþ

dkΨðkÞekðνÞeiωðkÞAγ ; ð3:16Þ

and the physical inner product is

hΨjΨ0i ¼
Z
Rþ

dkΨðkÞΨ0ðkÞ: ð3:17Þ

The problem with this construction is the standard one
that arises in constrained systems: this gives a frozen time
evolution where physical states represent entire “histories”
of the universe. Providing a physically meaningful and
nontrivial notion of evolution is not straightforward.

B. Physical evolution

There are two well-developed methods that can be used
in order to define meaningful dynamics in a constrained
system, namely deparametrization and the partial observ-
able formalism. For the system considered here these
two methods are equivalent, although this equivalence
does not hold in general. In fact, even in isotropic LQC
there exist systems where these two approaches give
distinct results [49].

1. Deparametrization

The principal idea behind deparametrization is the obser-
vation that all the information about the physical state jΨi is
contained within a single constant Aγ slice of the wave
function. Indeed, the Schrödinger-like equation (3.15)
implies that given an initial slice Ψð·; AγÞ ∈ Hgr, we can
reproduce the entire physical state via the unitary trans-
formations

Ψðν; AγÞ ¼ UAγo;Aγ
Ψðν; AγoÞ

¼ ei
ffiffiffi
Θ

p ðAγ−AγoÞΨðν; AγoÞ: ð3:18Þ

The structure of the physical states (3.16) and the properties
of Θ (namely its self-adjointness and positive definiteness)
also imply the equivalence between the physical inner
product and the gravitational kinematical inner product on
constant Aγ slices

∀ Aγ ∈ R∶ hΨjΨ0iphy ¼ hΨð·; AγÞjΨ0ð·; AγÞigr; ð3:19Þ

which allows us to interpret Aγ as an emergent time and use
it as an evolution parameter. We can thus define the
dynamics as the unitary mapping

R∋Aγ ↦ Ψð·; AγÞ ∈ Hgr: ð3:20Þ

A convenient consequence of this approach is the fact that
any self-adjoint operator on Hgr evaluated at a particular
“time” Aγ automatically becomes a physical observable.
This property allows us to easily show that there exists

an upper bound on the physical matter energy density.
To show this, we start by defining in the kinematical Hilbert
space the operator corresponding to the matter energy
density defined in (2.16),

ρ̂ ¼ 3

2
½ðdjανjÞ−1=3Π̂γðdjανjÞ−1=3�2: ð3:21Þ

As the zero-volume states have decoupled, the inverse jανj
operator is well defined. This form of the ρ̂ operator clearly
shows that it is a positive-definite operator as it is the square
of a self-adjoint operator. Therefore, all of its eigenvalues
will be real and greater than or equal to zero.
In addition, for states annihilated by the constraint

(3.10), the action of this operator is exactly balanced via
(3.15) by the gravitational energy operator which (after
selecting a convenient factor ordering) can be written as
[4,8,50]

ρG ¼ −~ρ ⊗ 1; ~ρ ¼ ρcsin2ðbÞ; ð3:22Þ

where the critical energy density equals

ρc ¼
3

8πγ2ΔG
; ð3:23Þ

and is of the order of the Planck energy density.11

Since the operator ~ρ is self-adjoint on Hgr, in the
deparametrization picture it becomes a physical observable.
On the other hand, its form implies immediately that

Spð~ρÞ ¼ ½0; ρc�: ð3:24Þ

Therefore, the physical matter energy density is bounded
from above by ρc.
Note that in order to determine whether this upper bound

is saturated one needs to study in detail the dynamical
evolution of the state in the sense of (3.20).

2. The partial observable formalism

An alternative way to define the dynamics is provided by
the formalism of partial observables originally introduced
in [30] (see also [52] for a critical analysis of the
formalism). The goal is to construct Dirac observables
acting within the physical Hilbert space, where these
observables correspond to measuring one property of the
state with respect to another. Here the natural choice is to

11In the numerical studies we took the value determined via
(3.23) for the value γ ¼ 0.2375… determined in [51], which
gives ρc ≈ 0.41ρPl.
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measure quantities with respect to the vector potential Aγ ,
which will act as a relational clock.
These observables can be constructed systematically

out of observables in the kinematical Hilbert space via
group averaging [49]. In particular, in our case, given a
self-adjoint operator Ô on Hgr, the group averaging
of the “seed” operator Ô ⊗ δðAγ − TÞ gives the Dirac
observable ÔT

ÔTΨðν; AγÞ ¼ ei
ffiffiffi
Θ

p ðAγ−TÞÔΨðν; TÞ; ð3:25Þ

which is just a completion of the (result of the) action of the
gravitational kinematical observable Ô to the physical state
(3.16) via the unitary transformation (3.18). In conse-
quence, in this setting the formalism is equivalent to the
deparametrization picture.
Using this procedure we construct the following set

of observables: the volume V̂ at the “time” Aγj0 and the
momentum Π̂γ (which is a constant of the motion), given by

dVðAγj0ÞΨðν;AγÞ ¼ ei
ffiffiffiffiffi
jΘj

p
ðAγ−Aγ joÞð2πγ

ffiffiffiffi
Δ

p
l3
PlÞ

× νΨðν;Aγj0Þ; ð3:26aÞ

Π̂γΨðν;AγÞ ¼ −iℏ
∂
∂Aγ

Ψðν;AγÞ: ð3:26bÞ

3. Dynamics

Either one of the two formalisms discussed in the
previous sub-subsections can be used to determine the
dynamics of this system. To achieve this goal we need to
perform two tasks: the evaluation of the wave functions
and the computation of the expectation values and the
dispersions of the relevant observables.
To determine the wave function Ψðν; AγÞ as given in

(3.16) one needs to know the explicit form of ek.
Unfortunately the form of Θ is not simple enough to easily
determine its analytic form. We therefore resort to numeri-
cal methods, applying directly the techniques specified in
[43,44]: solving directly (3.13), which after substituting the
form (3.8) of Θ becomes a second12 order difference
equation, and normalizing the solution via its WDW limit
analysis (see the discussion in Appendix B). The normali-
zation procedure features the only difference with respect to
the treatment of [43,44]. Namely, due to slightly more
complicated structure of the WDWanalog of our model and
a lower order of convergence of ek to its WDW component
limit, we used the modified auxiliary basis functions (B20)
instead.
The wave function itself is then determined via a direct

numerical integration (using the Romberg method) of

(3.16) (see again [43,44] for a detailed description of the
method).
In the actual computations we used the Gaussian spectral

profiles

~ΨðkÞ ¼ Ne−ðk−koÞ2=2σ2eikA⋆
γ ð3:27Þ

peaked about ko and with A⋆
γ selected to reproduce the value

of expectation value of observable dVðAγÞ ¼ V⋆ for the
chosen V⋆ at the chosen “initial time” Aγ ¼ Ao

γ . In practice
we use the formula following from the classical trajectory
(2.27) which reproduces the desired result sufficiently well
so long as the parameters satisfy V⋆ ≫ jk⋆jl3

Pl.
For the chosen profile (3.27) the expectation values and

dispersion of Π̂γ can be determined analytically,

hΠ̂γi ¼ jkoj; hΔΠ̂γi ¼ σ: ð3:28Þ

To evaluate the analogous quantities for the observablesdVðAγÞ we use the deparametrization picture, evaluating
hΨð·; AγÞjV̂jΨð·; AγÞigr and hΨð·; AγÞjΔV̂jΨð·; AγÞigr by
direct numerical summation (see again [43,44]).
In the studies performed the parameters were chosen

from within the ranges Πγ ∈ ½30; 1700�ðG ffiffiffi
ℏ

p Þ−1, ΔΠγ=
Πγ ∈ ½0.02; 0.1�, VðAo

γ Þ ∈ ½3.1 × 103; 2.5 × 104�l3
Pl.

The results of the analysis (see Figs. 1 and 2) are fully
analogous to the results of studies of the systems with a
massless scalar field [3] and pressureless dust [8]:
(1) For as long as the energy density [evaluated as the

expectation value of ~ρ in (3.22)] is small in com-
parison to ρPl, the quantum trajectory follows the
classical one.

(2) When the energy density reaches Planck scales the
quantum gravity effects modify the trajectory and
lead to a bounce at the critical density ρ ¼ ρc.
The modification can be heuristically understood
as the result of a repulsive gravitational force
originating from the underlying fundamental dis-
creteness of space-time.

FIG. 1 (color online). An example of a physical state: forward
evolution of the Gaussian (3.27) packet peaked about Πγ ≈
83.3ðG ffiffiffi

ℏ
p Þ−1 and (at initial time Aγ ¼ 0) about ν ≈ 1.8 × 104.

12Its space of solutions is nonetheless 1-dimensional due to the
orientation decoupling (see the discussion in Sec. III A 2).
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(3) The bounce is a transition epoch deterministically
connecting two classical epochs of the universe’s
evolution, when the universe is contracting and
expanding respectively.

In the case where the massless scalar field was the matter
field, one of the nice features of the system was an
asymptotic preservation of the semiclassicality. There, the
spread of the state in the distant future is strongly bounded
by its spread in the distant past (and vice versa) through
precise triangle inequalities. It is therefore natural to test
whether an analogous result can also be obtained in the
model studied here. We address this issue in the next section.

IV. ASYMPTOTICS OF THE DYNAMICS

In studies of isotropic FLRW cosmologies with a
massless scalar field (which can be used as a clock, just
as Aγ) it has been shown that in the large ν limit all of the
eigenfunctions of the LQC evolution operator—an analog
of Θ (3.6)—converge to specific linear combinations of
the eigenfunctions of the evolution operator arising in the
Wheeler-DeWitt (WDW) quantization of the same system
[3]. This property of the above-mentioned operator permits
the modeling of the global LQC evolution as a certain form
of “scattering” of WDW universes (wave packets) by
polymeric quantum geometry effects [46]. In a very precise
sense, the wave packets representing the LQC universe
converged in the distant past and future to “incoming”
(contracting) and “outgoing” (expanding) WDW wave
packets respectively. A detailed study of this picture shows
that there exist rigid relations (in the form of triangle
inequalities) between the spreads of the LQC wave packet
in its distant past and future [46].
This section is dedicated to developing and exploring

this same scattering picture, but in the setting studied in this
paper, namely a radiation-dominated universe. To achieve

this, we first construct and study the WDW quantization of
the radiation-dominated FRLW universe in Sec. IVA and
its dynamics, focusing in particular on the issue of the
uniqueness of the evolution and its relation with singularity
resolution. Next, in Sec. IV B we employ the existence of
a WDW limit of the LQC evolution operator to construct a
scattering picture and then derive triangle inequalities
relevant to the question of cosmic recall, analogous to
those found in [46]. In order to provide a stream-lined
presentation of this analysis—including the improvements
necessary to handle Maxwell fields—Secs. IVA and IV B
contain only a brief description of the calculation and
results, while the details of the analysis can be found in
Appendices A and B.
The triangle inequalities will allow us to provide a rigid

bound on how much the spread of a wave function can
grow from one side of the bounce to the other. Thus, this
gives an answer to the question of cosmic recall in the
following context: if the state is semiclassical on one side of
the bounce, will it remain so on the other side? In the
previous section, numerical studies showed that Gaussian
states that are initially semiclassical remain sharply peaked
throughout their entire evolution. However, determining
how the spread of a generic state evolves requires stronger
and more general methods, of which the scattering picture
is a good example.

A. The Wheeler-DeWitt analog

The classical cosmological model given in Sec. II can be
also quite easily quantized following the geometrodynam-
ical methods of WDW quantum cosmology, by using the
standard Schrödinger representation rather than the poly-
mer one. The details of the WDW quantization procedure
are presented in Appendix A. Here we briefly summarize
the initial assumptions of the procedure and present the
final result.
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FIG. 2 (color online). The expectation values of the observables x̂jAγ
¼ djνj1=3Aγ

and ρ̂jAγ
evaluated for the wave packet presented in Fig. 1

are compared with the classical trajectories and the evolution predicted by the effective dynamics discussed in Sec. V.
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Since the WDW analog is to be ultimately used as an
approximation to the asymptotics of LQC through a scatter-
ing picture, it is necessary to ensure that it is as close of an
analog to our LQC model as is possible. Therefore, we
directly repeat the procedure used in Sec. III, in particular by
following the Dirac program. We further extend the con-
figuration space to negative ν to ensure compatibility with
LQC, and also choose same factor-ordering and symmetric
superselection sector.
The first step of the Dirac program leads to the

kinematical Hilbert space

Hkin ¼ Hgr ⊗ HA ¼ L2ðRþ; dνÞ ⊗ L2ðR; dAγÞ: ð4:1Þ

The basic operators—quantum counterparts of variables
ν; b—are now multiplication and differential operators
respectively, and the quantum Hamiltonian constraint takes
the form

Θ ⊗ 1þ 1 ⊗
∂2

∂A2
γ
; ð4:2Þ

where the evolution operator Θ is a second-order differ-
ential operator defined on the Schwartz space. The notation
is chosen so that all objects in WDW theory are represented
by same symbols as in LQC, although to differentiate them
the WDW symbols are underlined.
Unfortunately, Θ is not essentially self-adjoint. Rather, it

admits a Uð1Þ family of self-adjoint extensions labeled by
the parameter β ∈ ½0; πÞ. The essential part of the spectrum
of each extended operator Θβ is Rþ∪f0g and is absolutely
continuous. The physical sector of the theory (identified by
group averaging) consists of states described by the wave
functions

Ψðν; AγÞ ¼
Z
Rþ

dk ~ΨðkÞeβ;kðνÞeiωðkÞAγ ; ð4:3Þ

where the spectral profiles ~Ψ ∈ L2ðRþ; dkÞ, the frequency
ωðkÞ ∝ k is defined in (A10) and the normalized general-
ized basis functions eβ;k have the form of the standing
waves

eβ;kðνÞ ¼
jνj−1=3ffiffiffiffiffiffi

6π
p cos½kjνj1=3 þ φðβ; kÞ� ð4:4Þ

and the extension-dependent phase shift is [see (A16)]

φðβ; kÞ ≔ arctan½tanðβÞ=k�: ð4:5Þ

To study the dynamics of this WDW quantum theory, we
can use either (i) the deparametrization procedure where the
evolution is provided by the map R∋Aγ ↦ Ψð·; AγÞ ∈ Hgr
[where the basis for each self-adjoint extension is given in
(4.4) for Aγ ¼ 0] and the self-adjoint operators Ô on Hgr

are the physical observables, or (ii) the relational observ-
ables picture, where the Dirac observables (parametrized by
T) are the families of operators acting on Hβ—where β ∈
½0; πÞ denotes the one-parameter family of self-adjoint
extensions—as

ÔT∶ Ψðν; AγÞ ↦ ei
ffiffiffi
Θ

p
β
ðAγ−TÞÔψðν; Aγ ¼ TÞ: ð4:6Þ

In this case, for Θβ, the two approaches are equivalent.
Here, for concreteness, we shall use the deparametriza-

tion procedure. As a convenient set of observables Ô we
choose

Π̂γ ¼ ð−iℏ=3Þ∂Aγ
; x̂ ¼ djνj1=3: ð4:7Þ

Note here that x is positive-definite. While Π̂γ is a constant
of motion, the evolution of x̂ is nontrivial. It is easy to see
that the evolution of the quantum universe is given by an
incoming Klein-Gordon wave packet corresponding to
the “pre-singularity” contracting universe, which upon
approaching x ¼ 0 is reflected (with a phase shift that
depends on the self-adjoint extension and also k) back into
an outgoing wave packet corresponding to the “post-
singularity” expanding universe. Up to the dispersion of
the wave packet, the quantum evolution follows the
(extended) classical trajectory (2.26).
The exact form of the reflected wave packet depends on

the chosen self-adjoint extension, and therefore knowledge
of the extension label β (which is equivalent to specifying
boundary conditions at x ¼ 0) is necessary—in addition to
knowing the initial state—to uniquely determine the
evolution. In particular, β ¼ 0 corresponds to a simple
reflection (as would occur off an infinite potential barrier)
and β ¼ π=2 corresponds to a reflection with phase rotation
π (i.e., sign change). However, all the values β ∈ ½0; πÞ are
allowed and they correspond to the reflective conditions
with a particular phase shift.13

The fact that the choice of the self-adjoint extension β
affects the quantum dynamics shows that the singularity is
not resolved in the WDW theory. This is because the choice
of β is equivalent to setting boundary conditions at the
singularity in order to evolve through the singularity “by
hand”; for further discussion on this point, see [8].

B. Cosmic recall

The dynamics of this WDW model can be used to
accurately describe the asymptotic dynamics in the distant
future and past of the LQC model studied here, as well as
provide the relation between these epochs via the application

13Note that the choice of β, which determines the reflection
conditions of the eigenstates from the incoming to the outgoing
mode, is completely unrelated to the choice of the symmetric
superselection sector ψðνÞ ¼ ψð−νÞ.
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of the scattering picture originally introduced in [46]. The
construction of the scattering picture for the model consid-
ered here, including the necessary extensions in order to
handle aMaxwell field, is given in detail in Appendix B. The
key points are the following:
(1) For any localized14 LQC physical state jΨi there exist

two unique WDW physical states jΨini and jΨouti
such that their dynamics in the distant past and future
respectively converge (in the sense of expectation
values and dispersions of x̂Aγ

) with that of jΨi, that is

lim
Aγ→�∞

½hΨjx̂Aγ
jΨi−hΨin=outjx̂Aγ

jΨin=outiWDW� ¼ 0;

ð4:8aÞ

lim
Aγ→�∞

½hΨjΔx̂Aγ
jΨi−hΨin=outjΔx̂Aγ

jΨin=outiWDW� ¼ 0;

ð4:8bÞ

and the expectation values and dispersions of Π̂γ of all
three states agree.

(2) The distant past and distant future dispersions of the
WDW states are related via the triangle inequality

lim
Aγ→∞

hΨjΔx̂Aγ
jΨi ≤ lim

Aγ→−∞
hΨjΔx̂Aγ

jΨi

þ 2hΨjΔð∂kφðkÞÞjΨi; ð4:9Þ

where the function φðkÞ is the phase shift of the
leading-order large ν limit of the basis functions eβ;k

eβ;kðνÞ ¼
ffiffiffi
2

pffiffiffiffiffiffi
3π

p jνj1=3 cos½kjνj
1=3 þ φðkÞ� þOðν−4=3Þ:

ð4:10Þ

In order to turn (4.9) into a useful relation (analogous to
the one found in [46]) we must express ∂kφðkÞ in terms of
physically meaningful observables, or at least derive an
upper bound. In order to derive an upper bound, it is
necessary to resort to numerical analysis, as detailed in
Appendix B 4.
The resulting bound—valid for all superselection sector

labels ϵ and for states supported outside of the interval
½0; k⋆� with k⋆ ≈ 0.15—is

j
ffiffiffi
k

p ∂2
kφðkÞj ≤ A=2; ð4:11Þ

where A ¼ −0.789� 0.005. Note that the domain in k
where the bound holds is stronger for certain values of ϵ

(see again Appendix B 4 for details), and in particular for
ϵ ¼ 0 the bound is valid for states supported on k ∈ Rþ.
As a direct consequence, within the domain of validity

given above, it is possible to rewrite (4.9) as

lim
Aγ→∞

hΨjΔx̂Aγ
jΨi ≤ lim

Aγ→−∞
hΨjΔx̂Aγ

jΨi þ AhΨjΔ
ffiffiffi
k

p
jΨi;

ð4:12Þ

where the only observable besides x̂Aγ
is

ffiffiffi
k

p
, which is

proportional to Π̂γ
1=2.

This triangle inequality gives a bound on how much the
spread in x̂Aγ

can grow from the pre-bounce branch to the
post-bounce branch. This shows the presence of cosmic
recall: a moderately sharply-peaked state in the contracting
branch cannot become wildly quantum in the expanding
branch, and vice versa.

V. EFFECTIVE THEORY

An interesting and very useful result of LQC is that a
classical theory, obtained by implementing the regulariza-
tion of the Hamiltonian constraint but without quantizing it,
describes the quantum dynamics of semiclassical states to a
very good degree of precision (with an error well below the
dispersion of the state) in many scenarios [3,5,7,39,53].15

A systematic way to obtain this classical Hamiltonian
constraint—called the effective Hamiltonian constraint—
is by replacing the shift operators and powers of volume
by their respective expectation values. The dynamics the
effective Hamiltonian constraint generates are known as the
effective dynamics of LQC and have been used extensively.
The effective equations are expected to provide an

excellent approximation to the full quantum dynamics
for those states that are sharply peaked. It has been shown
that, for noncompact space-times (and also compact space-
times whose spatial volume remains much larger than l3

Pl at
all times), a state which is initially sufficiently sharply
peaked in the semiclassical limit will remain sharply
peaked throughout its entire evolution, including at and
around the bounce point where quantum gravity effects are
strongest [39]. As the space-time of interest in this case is
noncompact, the effective equations will indeed provide an

14Here by localized we mean a state for which the uncertainties
of both the observables Π̂γ and x̂Aγ

are finite in either the distant
past or future.

15Although it is easy to construct the effective dynamics
heuristically in many contexts of LQC—including the LQC of
isotropic space-times with a Schrödinger quantization of the
matter sector, as is being studied here—one cannot take this
heuristic construction for granted in more complicated cosmol-
ogies. The details of the formulation of the quantum theory,
neglected at the effective level, do significantly affect the genuine
quantum dynamics and the existence of semiclassical sectors of
the theory. For more details, see for example the discussion in
[26]. Whether the domain of applicability of the effective
dynamics in LQC includes more generic cosmologies than
isotropic space-times with a Schrödinger quantization of the
matter sector has not yet been determined.
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excellent approximation to the full LQC dynamics of
sharply peaked states throughout their entire evolution.
This has been verified numerically for the radiation-
dominated cosmology studied here, and the strong agree-
ment between the effective equations and the full LQC
dynamics can be seen in Fig. 2.
Following the procedure described above, the effective

Hamiltonian constraint (in conformal time η) takes the form

CeffH ðηÞ ¼ −
3πGℏ2

2α2=3
jνj4=3sin2bþ 3

2
Π2

γ ¼ 0; ð5:1Þ

where it is possible to restrict our attention to the sector
ν > 0 without any loss of generality. One of the immediate
consequences following from this equation is that the
(classical) matter energy density, originally given by
Eq. (2.16) takes the form

ρ ¼ 3

8πGγ2Δ
sin2b ≤

3

8πGγ2Δ
¼ ρc; ð5:2Þ

and thus ρ is bounded above by the critical energy density,
just as in the quantum theory.
The equations of motion generated by CeffH are (in the

sector ν > 0)

dν
dη

¼ 6πGℏ

α2=3
ν4=3 sin b cos b; ð5:3Þ

db
dη

¼ −
4πGℏ

α2=3
ν1=3sin2b; ð5:4Þ

dAγ

dη
¼ Πγ;

dΠγ

dη
¼ 0: ð5:5Þ

These equations are clearly equivalent to the classical ones in
Eq. (2.24) in the classical limit of b being small.
As in the classical theory, Πγ is a constant of the motion

and Aγ increases linearly with respect to the conformal time
η. However, the solution for νðηÞ is now a hypergeometric
function and therefore it is a little harder to see how the
quantum corrections modify the classical dynamics.
In order to clarify this point, it is possible to work in

proper time tðN ¼ 1Þ—rather than the conformal time used
above—as in this case the solution for νðtÞ is much simpler.
For N ¼ 1, the effective Hamiltonian constraint (already
studied in [54]) becomes

CeffH ðtÞ ¼ −
3πGℏ2

2α
νsin2bþ 3Π2

γ

2ðανÞ1=3 ≈ 0; ð5:6Þ

and the equations of motion in proper time are

dν
dt

¼ 6πGℏ
α

ν sin b cosb; ð5:7Þ

db
dt

¼ −
3πGℏ
α

sin2b −
Π2

γ

ℏα1=3ν4=3
; ð5:8Þ

dAγ

dt
¼ Πγ

ðανÞ1=3 ;
dΠγ

dt
¼ 0: ð5:9Þ

Once again, Πγ is a constant of the motion, but now Aγ is
more difficult to solve for. However, this choice makes
it much easier to solve for ν. By solving for sin2 b via
the Hamiltonian constraint, the sinb cos b term can be
replaced by a function of ν andΠγ which is easy to integrate
as Πγ is constant. The result is

νðtÞ ¼ 1

α

�
16πGΠ2

γðt − toÞ2 þ
3Π2

γ

2ρc

�
3=4

; ð5:10Þ

where to is a constant of integration. Recalling that the scale
factor is given by a ¼ ðανÞ1=3, this solution shows that for t
far away from to, the solution approaches the classical
trajectory aðtÞ ∼ ffiffiffiffiffiffiffiffiffiffiffiffiffiffijt − toj

p
, either for a contracting universe

(t < to) or an expanding universe (t > to). However, there is
a major deviation from the classical solution near t ¼ to
where there is a bounce in the effective solution, providing a
bridge between the contracting and expanding classical
solutions. This bounce is what allows the effective solution
to avoid the classical singularity.
As mentioned above, when using proper time t, it is

much harder to solve for AγðtÞ (which is a hypergeometric
function now), but nonetheless it is possible examine the
dynamics of the matter field by looking at the dynamics of
the energy density and the pressure, which are still
determined by the relations Eqs. (2.16) and (2.17), where
νðtÞ is now given by Eq. (5.10).
Note that the bound on the energy density obtained in

Eq. (5.2) holds no matter the choice of the time variable.
In the case of proper time, it is easy to check that this bound
is saturated at t ¼ to and that at times far away from
to, ρ ≪ ρc.

VI. DISCUSSION

In this paper, we tackled the problem of providing a
consistent quantization in the LQC framework of a flat
FLRW universe filled with radiation. This was achieved by
choosing the matter content to be three copies of Maxwell
fields as a toy model for a photon gas. For the sake of
simplicity, we took the three vector potentials to be homo-
geneous, orthogonal and to have equal amplitudes—the
most straightforward such system that can be coupled to an
isotropic geometry.
This particular choice of matter is especially interesting

for quantum cosmology as high temperatures are expected
in the very early universe, and the basic thermodynamic
properties at high temperatures relevant for the cosmology
of thermalized matter fields can be modeled by a radiation
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gas such as the one studied in this paper. Thus, a radiation-
dominated FLRW loop quantum cosmology is of great
relevance for the study of the very early universe.
An important difference of these studies with respect to

previous works in LQC is that so far the matter content
considered in LQC in a genuinely quantum treatment has
never actually been a microscopic field observed in nature:
the massless scalar field studied in [3] is neither predicted
by particle theories nor observed whereas the pressureless
dust of [8] is observed only as a large-scale phenomenon,
due to the averaged behavior of matter fields over super-
galactic scales in cosmology and at micrometer scales in
astrophysics. Here by composing the matter content out of
Maxwell fields, we have incorporated for the first time in
LQC a fundamental matter field that is known to exist.
That being said, it is important to keep in mind that the

matter field considered here is not a rigorous simulation of
thermal radiation with a large population of fields whose
energies follow the Bose-Einstein distribution. Instead, it is
a toy model consisting of three orthogonal homogeneous
Maxwell vector potentials with equal amplitudes. While
this is a particularly nice model due to its simplicity, it is
essential to keep in mind the limitations of such a naïve
framework.
This system was quantized within the LQC framework

following the standard hybrid approach, namely a polymer
quantization for geometrical degrees of freedom and the
standard Schrödinger quantization for the matter sector. The
physical evolution of the quantum system is defined through
the set of partial observables parametrized by the amplitude of
the vector potential, which plays the role of an internal clock.
The resulting dynamics were studied numerically, showing
that the quantum dynamics are qualitatively similar to the
dynamics for amatter content given by amassless scalar [3] or
a pressureless dust field [8]. In addition, sharply peaked
semiclassical states remain sharply peaked throughout their
evolution, and the global evolution picture features two
classical epochs, one each of contraction and expansion—
where the dynamics follow to great precision the predictions
of general relativity—connected deterministically by the
quantumbounce. Thematter energy density remainsbounded
above with the same upper bound found in other contexts,
ρc ¼ 3=ð8πγ2ΔGÞ. Furthermore, again as has been done for
other matter fields in LQC, it was possible to define an
effective classical description of the system, which accurately
mimics the genuine quantum evolution for sharply peaked
states. Finally, the scattering picture of the global evolution
can be used in order to derive strong triangle inequalities
between the dispersions of the wave packet in the distant
past and future, which demonstrates the preservation of the
semiclassicality of the state across the bounce.
The analytical and numerical findings presented here,

together with those of previous works on isotropic LQC,
provide a strong indication that the global evolution picture
and the preservation of semiclassicality across the bounce

are generic features of FLRW universe in LQC: they are
independent of the matter content. Thus, the current results
are an additional confirmation of the robustness of the main
results of LQC reported in the literature.
The model studied here also has a particularly interesting

property: the big-bang (or big-crunch) singularity is
reached within finite emergent time (this is also the case
for a dust-dominated Friedmann cosmology, but not for a
massless scalar field). This fact makes it possible to directly
address and compare the issue of singularity resolution in
LQC and in geometrodynamics for this cosmology. Indeed,
for the Wheeler-DeWitt quantization of this system: (i) the
singularity is reached within the precision set by the wave
packet dispersion, and (ii) the multitude of self-adjoint
extensions implies that additional boundary data is needed
at the singularity in order to deterministically evolve the
wave packet past the point where zero-volume states are
reached. These properties amount to the conclusion that in
the WDW quantization the singularity is not resolved. This
is in stark contrast to the results of the loop quantization,
where the unitary evolution is unique and there exists a
dynamical minimal volume (proportional to hΠγi3=2G3ℏ9=4,
which for semi-classical states is much greater than the
dispersion of the wave packet). These two results show that
the classical singularity is dynamically resolved in LQC.
On the other hand, note that if a positive cosmological

constant is added, the low curvature dynamics of the
cosmology will be similar to that of the FLRW space-time
with a massless scalar field [7]: the vector potential used
here as a relational clock will become frozen when the
cosmological constant dominates the dynamics, and the
infinite volume of the universe will be reached within a
finite time. At the quantum level this implies the non-
uniqueness of the unitary evolution (i.e., there exist many
self-adjoint extensions of the evolution generator), and
therefore it is necessary to provide additional data at the
boundary ν ¼ ∞ to evolve the wave function beyond
this point.
A last important point is that the LQC FLRW cosmology

with Maxwell fields is significantly more difficult from a
technical standpoint than the case of a massless scalar field.
Most notably, the slower rate of convergence of the LQC
evolution operator basis elements to their WDW analogs
requires an improvement in the numerical techniques
involved in the analysis, in particular incorporating higher
order LQC corrections to the WDW basis elements. Since
this slower convergence is expected to be a feature of
generic matter content, the improvement of the numerical
treatment that has been presented here is an important
further development of LQC.
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APPENDIX A: THE WHEELER-DEWITT
ANALOG

In this Appendix we discuss in detail the construction
and properties of the WDW quantization of the radiation-
dominated FRLW universe—the geometrodynamical ana-
log of the model studied in the main body of the paper.
The procedure is as follows: First, in Appendix A 1 we
repeat the first two steps of the Dirac program in the context
of the WDW quantization, arriving to the dynamics picture,
where the evolution is generated by an evolution operator
analogous to (3.6). The properties of this operator are next
analyzed in Appendix A 2, where all of its self-adjoint
extensions are identified. This material provides tools for
the analysis of the dynamics of this WDWmodel presented
in Sec. IVA.

1. The Wheeler-DeWitt equation

In a Wheeler-DeWitt quantization, following from geo-
metrodynamics, one quantizes the geometry phase varia-
bles using the standard Schrödinger representation rather
than the polymer one used in LQC and LQG. The treatment
is thus very similar to the standard textbook procedure,
although there are some differences due to the cosmologi-
cal nature of the considered system.
In order to be able to compare the results of this

quantization with LQC one should proceed in a way as
similar as possible to the latter, in particular by choosing the

same variables. However, in order to demonstrate the
qualitative properties of the quantum system it is better
to start with the original variables ða; πðaÞÞ used in (2.19).
Before proceeding, we have to note that in standard

cosmology a being a scale factor is positive definite. Since
geometrodynamics does not involve triads there is no
natural reason for equipping it with an orientation. As a
consequence the gravitational part of the classical phase
space is Rþ ×R.
This fact has a critical consequence for the quantization.

By choosing the lapse N ¼ a (as in LQC) we arrive to the
constraint

NCH ¼ −
πG
3

π2ðaÞ þ
3

2
Π2

γ ; ðA1Þ

which upon a Schrödigner quantization is equivalent to a
Klein-Gordon equation on a half-line,16 with a as the
dynamical variable and Aγ time. This system can be
described analogously to the Example 2 in Section X.1 of
[55]. In this case, the analog of the evolution operator Θ in
(3.5) (playing the role of the Hamiltonian) admits a
1-parameter family of self-adjoint extensions, each extension
corresponding to different reflective boundary conditions at
a ¼ 0. We expect similar results when using the variables
distinguished by LQC.
Let us now perform the quantization in detail using the

same variables and operator ordering choices as in the LQC
quantization. We start with the classical phase space now
coordinatized by the variables ðν; b; Aγ;ΠγÞ specified in
(2.14) and (2.18). The main difference with respect to the
treatment above is the fact that now (following LQC where
triads play a crucial role) we equip the variable ν with
orientation, thus arriving to the classical phase space
consisting of two copies of the “purely geometrodynam-
ical” phase space connected at the ν ¼ 0 surface.
By implementing the Schrodinger quantization we arrive

to the kinematical Hilbert space of the gravitational sector
which is the space of square-integrable functions (the
Lebesgue space) with respect to the measure dν. As in
the case of LQC the parity invariance of the theory allows
us to choose the superselection sector of symmetric states
ΨðνÞ ¼ Ψð−νÞ and work within this sector only. The
variables ν and b are promoted to operators with the action

ν̂ΨðνÞ ¼ vΨðνÞ; ðA2aÞ

b̂ΨðνÞ ¼ 2i
∂
∂νΨðνÞ: ðA2bÞ

We recall that the notation is chosen so that all objects in
WDW theory are represented by same symbols as in LQC,

16Since the system is a simplification of general relativity that
is not well-defined on a ¼ 0, one cannot implement any potential
barrier there.
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although to differentiate them the WDW symbols are
underlined.
Replacing the basic variables in the classical

Hamiltonian constraint (2.23) by the operators (3.4) and
(A2), and choosing a factor-ordering equivalent to the
one used in (3.6), gives the Wheeler-DeWitt quantum
Hamiltonian constraint,

−
∂2

∂A2
γ
Ψðν; AγÞ ¼ ΘΨðν; AγÞ; ðA3Þ

where the WDW evolution operator is

Θ ¼ 18
ð2πγ ffiffiffiffi

Δ
p

l3
PlÞ1=3

γlPl

ffiffiffiffi
Δ

p
ℏ

jνj1=3D̂jνj2=3D̂jνj1=3; ðA4Þ

with the operator D̂ defined as

D̂ ¼ i
2

�
sgnðνÞ ∂

∂νþ
∂
∂ν sgnðνÞ

�
: ðA5Þ

This particular form of D̂ is a consequence of implementing
the factor-ordering choices made for the LQC Hamiltonian
constraint in this paper (called the sMMO factor-ordering
in [43]). On the open domain disjoint from ν ¼ 0, Θ is
equivalent to an operator (A4) with D̂ replaced with i∂ν,
however due to presence of sgnðνÞ special care is required
at ν ¼ 0. In particular one has to restrict the domain of Θ
[for which one would usually choose the Schwartz space
SðRÞ] setting

DðΘÞ ¼ fψ ∈ SðRÞ∶ ψðνÞ ¼ ψð−νÞ∧ψðν ¼ 0Þ ¼ 0g:
ðA6Þ

From the symmetry and differentiability of ψ , it follows
that

∂νjνj1=3ψðνÞjν¼0 ¼ 0: ðA7Þ
The Θ operator is symmetric and non-negative definite on
this domain.
Its symmetric eigenfunctions

ΘekðνÞ ¼ ω2
kekðνÞ ðA8Þ

correspond to positive real eigenvalues, and are Dirac delta
normalizable; imposing the normalization to be hekjek0 i ¼
δðk − k0Þ, the eigenfunctions are

ekðνÞ ¼
jνj−1=3ffiffiffiffiffiffi

6π
p eikjνj1=3 ; ðA9Þ

where the label k (an analog of the wave number) spans
the entire real line. The relation between the eigenvalues

of Θ and the k labels (the analog of the dispersion
relation) is17

ω2
k ¼ 2

ð2πγ ffiffiffiffi
Δ

p Þ1=3
γ

ffiffiffiffi
Δ

p
ℏ

k2: ðA10Þ

2. Self-adjoint extensions

It is easy to see by inspection that the Wheeler-DeWitt
evolution operator (A4) is symmetric in its domainDðΘÞ≡
SðRÞ and that its spectrum is real and non-negative.
However in order to generate unique unitary evolution,
the operator has to satisfy the stronger requirement of being
essentially self-adjoint. Here we verify this property by
studying its deficiency spaces.
The existence and uniqueness of self-adjoint extensions

to Θ is particularly important in the context of singularity
resolution, as it answers the question whether unitary
evolution of the state is possible and whether any additional
data is needed at the former classical singularity to
determine the evolution uniquely. Once the self-adjoint
extensions are known, it is possible to study the dynamics
and determine whether the singularity is in fact resolved or
not. This is done in Sec. IVA.
Our first step in determining the self-adjoint extension to

Θ is the identification of the deficiency subspaces denoted
by K� that are the spaces of normalizable solutions to the
equation

Θe�i ¼ �ie�i; ðA11Þ

i.e., normalizable eigenfunctions with eigenvalues �i. The
above equation is easy to solve analytically. Its normal-
izable solutions are all proportional to the two following
normalized functions

e�iðνÞ ¼
1

ð18ω2
oÞ1=4

1

jνj1=3 e
−ð1∓iÞjνj1=3= ffiffi

2
p

ωo ; ðA12Þ

where

ω2
o ¼ 2

ð2πγ ffiffiffiffi
Δ

p Þ1=3
γ

ffiffiffiffi
Δ

p
ℏ

: ðA13Þ

There also exists a second family of formal solutions to
(A11) with a growing exponential, but it is not normal-
izable in the kinematical Hilbert space and therefore it does
not contribute to the deficiency space.
As a consequence, each of the deficiency spaces K� is

one-dimensional: K� ¼ spanfe�iðνÞg. Thus, according to

17There is a freedom in the definition of k: we could instead
choose e0kðνÞ ¼ ν−1=3

ffiffiffiffiffiffiffiffiffiffiffi
l=6π

p
exp½ilkν1=3�, in which case ðω0Þ2k ¼

l2ω2
k. The (arbitrary) length scale l can clearly be absorbed into

the definition of k and this is what is done here.
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Theorem X.2 in [55], Θ admits many self-adjoint exten-
sions, each corresponding to a unitary mapUα∶ Kþ → K−.
Since dimðKþÞ ¼ dimðK−Þ ¼ 1 such maps form a 1-
dimensional family parametrized by α ∈ ½0; πÞ, each
element being UαeþðνÞ ¼ eiαe−ðνÞ, exactly as expected
from the preliminary considerations given in Sec. IVA.
Each extended domain DαðΘÞ then takes the form

DαðΘÞ ¼ fψ
ext
∶ ψ

ext
ðνÞ ¼ ψðνÞ þ λeαðνÞ;

ψ ∈ DðΘÞ; λ ∈ Cg; ðA14Þ

where

eαðνÞ ≔ eþiðνÞ þ eiαe−iðνÞ

¼ 2

ð18ω2
oÞ1=4

1

jνj1=3 e
−jνj1=3= ffiffi

2
p

ωo

× cos

�
1ffiffiffi
2

p
ωo

jνj1=3 − α

2

�
ei

α
2: ðA15Þ

Instead of identifying explicit boundary conditions at ν ¼ 0
associated with each extension, in this case it is easier to
find the extended bases through the orthogonality require-
ment. First we note that (A14) and (A15) imply that the
basis elements of any self-adjoint extension have to contain
balanced “incoming” and “outgoing” components, that is

eα;k ¼
1ffiffiffi

3
p

πjνj1=3 cos½kjνj
1=3 þ φðα; kÞ�: ðA16Þ

The requirement of orthogonality within each extension
basis (labeled by α) implies the selection condition

tan½φðα; kÞ� ¼ tan½βðαÞ�
k

; ðA17Þ

where β∶ ½0; πÞ → ½0; πÞ is a bijective function of the
extension label α. From now on we will use β as the
extension label for technical convenience.
Each self-adjoint extension Θβ of Θ has a nondegenerate

spectrum of which the non-negative part (being the only
one contributing to the physical sector)18 is absolutely
continuous SpðΘβÞ ¼ Rþ∪f0g. The spaces of physical
states (the positive frequency sector) for each extension are

Hβ∋Ψðν; AγÞ ¼
Z
Rþ

dk ~ΨðkÞeβ;kðνÞeiωðkÞAγ ; ðA18Þ

where ωðkÞ is given by (A13) and the spectral profile ~Ψ is
normalizable in L2ðRþ; dkÞ.

APPENDIX B: THE SCATTERING PICTURE

Having at our disposal the well-defined WDW theory of
Appendix A, we can relate the asymptotics of the LQC
dynamics to the WDW dynamics using the scattering
picture introduced in [46]. However, due to the more
complicated (as compared to the case of a space-time with
a massless scalar field) structure of the WDW theory itself,
some improvements have to be made to the method used.
In particular, it is necessary to introduce the scattering
picture already at the level of the WDW theory itself, using
in the process certain auxiliary structures. This is done in
Appendix B 1. These structures will be used in Appendix B
2 to build in turn the scattering picture in LQC. Finally,
the proper WDW limit of the LQC dynamics is presented
in Appendix B 3 and from this it is possible to derive
useful triangle inequalities between the dispersions of
certain physically interesting observables, as shown in
Appendix B 4.

1. Wheeler-DeWitt scattering

As each basis element of a physical Hilbert space has the
form of a reflected plane wave, it is natural to split it into the
incoming and outgoing components,

eα;kðνÞ ¼
1ffiffiffi
2

p ðeiφðα;kÞeþk þ e−iφðα;kÞe−k Þ; ðB1Þ

where

e�k ¼ 1ffiffiffiffiffiffi
6π

p jνj1=3 e
�ikjνj1=3 : ðB2Þ

The terms e�k can be thought of as the incoming and
outgoing plane waves in the auxiliary Hilbert space Haux
constructed by (i) restricting the support of the symmetric
wave functions on Hphy and (ii) extending it to the (now
unphysical) domain ν < 0 by taking the following exten-
sion of e�k :

~e�k ¼ 1ffiffiffiffiffiffi
6π

p jνj1=3 e
�iksgnðνÞjνj1=3 : ðB3Þ

Given that, one can treat the reflection of the WDW wave
packet at the singularity as a specific example of a
scattering, that is the transitionZ

Rþ
dk ~Ψin ~e

þ
k ðνÞeiωAγ ≕Ψinðν; AγÞ

↦ Ψoutðν; AγÞ ≔
Z
Rþ

dk ~Ψout ~e
−
k ðνÞeiωAγ : ðB4Þ

The decomposition (B1) implies that

e−iφðα;kÞ ~ΨinðkÞ ¼ eiφðα;kÞ ~ΨoutðkÞ ¼ ~ΨðkÞ; ðB5Þ

18Note that due to the non-negativity of −∂2=∂A2
γ on HA any

a priori contribution from the negative part of the spectrum of Θβ
would be removed from the physical sector in the process of
solving (A3) (equivalently NCH ¼ 0) through group averaging.
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thus the scattering process is described by the density
matrix ρ̂, where

ρðk; k0Þ ¼ e−2iφðα;kÞδðk − k0Þ: ðB6Þ

The observables Π̂γ and x̂Aγ
defined on Hphy can be

transferred in a straightforward way to the observables Π̂γ

and x̂Aγ
defined on the auxiliary space Haux, such that

Π̂γ ¼ −
iℏ
3
∂Aγ

; x̂Aγ
¼ d

ν1=3Aγ
: ðB7Þ

Then, for sufficiently localized WDW states, that is states
that satisfy hΔΠ̂γi < ∞, hΔx̂Aγ

i < ∞ (see for example [46]
for a discussion), we have

lim
Aγ→�∞

½hΨjx̂Aγ
jΨiWDW − hΨin=outjx̂Aγ

jΨin=outiaux� ¼ 0;

ðB8aÞ

lim
Aγ→�∞

½hΨjΔx̂Aγ
jΨiWDW − hΨin=outjΔx̂Aγ

jΨin=outiaux� ¼ 0;

ðB8bÞ

which allow us to find explicit relations between the
dispersions of x̂Aγ

in the distant future and past. In
particular, as the operator x̂Aγ

on Haux has the form x̂Aγ
¼

−i∂k þ iAγ½∂kω�1 and the expectation values and disper-
sions of the operator −i∂k on Ψin=out are related via

hΨoutj − i∂kjΨouti ¼ hΨinj − i∂k − 2½∂kφ�1jΨini; ðB9aÞ

hΨoutjΔð−i∂kÞjΨouti ¼ hΨinjΔð−i∂k − 2½∂kφ�1ÞjΨini;
ðB9bÞ

we can easily construct (following the derivation in [46]) a
“triangle inequality” involving the dispersions

lim
Aγ→∞

hΨjΔx̂Aγ
jΨiWDW ≤ lim

Aγ→−∞
hΨjΔx̂Aγ

jΨiWDW

þ 2hΨjΔð∂kφÞjΨiWDW ðB10Þ

where from (A17) it follows that for the self-adjoint
extension labeled by β

∂kφ ¼ tanðβÞ
k2 þ tan2ðβÞ 1: ðB11Þ

For states sharply peaked in Πγ the dispersion of the
operator ∂kφ behaves approximately like hΔ∂kφi∼
hΠγi−3hΔΠγi, thus this inequality shows that there is a
strong preservation of semiclassicality in the process of the
transition between the “incoming” and “outgoing” modes.

2. LQC scattering

In the case of flat FRLW cosmologies with a massless
scalar field, in the large ν limit the eigenfunctions of the
LQC evolution operator approach a particular combination
of the eigenfunctions of the WDWevolution operator. This
permits a description of the global LQC dynamics as the
process of a scattering of WDW wave packets in a way
similar to the example described in Sec. B 1.
For a radiation-dominated FLRW space-time, a precise

analog of this result may not be possible, as each WDW
physical Hilbert space element is already a combination of
two plane waves. However, the procedure can be gener-
alized so that, instead of using the WDW basis directly, one
uses the incoming and outgoing components that form a
basis on the auxiliary space defined in (B2).
Therefore, it is necessary to verify the convergence19 of

the basis elements ek

ekðνÞ ¼ fðkÞeþk ðνÞ þ fð−kÞe−k ðνÞ þ jeþk ðνÞjoðjνj0Þ;
ðB12Þ

where jfðkÞj ¼ jfð−kÞj due to the reality of ek as solutions
to (3.13).
The expectation that (B12) holds comes from studying

the numerical evaluation of ek. The convergence to the
incoming/outgoing components of the WDWwave packets
in the distant past/future has also been observed directly at
the level of states. To confirm the validity of (B12), we use
the analytic method specified in [56]. Its core elements are:
(1) Rewriting the second order iterative relation between

consecutive points of the support of ek in the first
order form

~ekðνþ 4Þ ¼ AkðνÞ~ekðνÞ; ðB13Þ
where

~ekðνÞ ¼
�

ekðνÞ
ekðν − 4Þ

�
; ðB14aÞ

AkðνÞ ¼
� foðνÞ−ω2ðkÞ

fþðνÞ − f−ðνÞ
fþðνÞ

1 0

�
; ðB14bÞ

with fo; f� specified via (3.8).
(2) Expressing the values of ek on each pair of the

consecutive points of its support as a linear combi-
nation of the WDW components [corresponding to
the same ωðkÞ], which in the notation above can be
written as

e!kðνÞ ¼ BkðνÞ~χkðνÞ; ðB15aÞ

19Here we use the textbook nomenclature where limOðfðxÞÞ=
fðxÞ < ∞ and lim oðfðxÞÞ=fðxÞ ¼ 0.

LOOP QUANTUM COSMOLOGY OF A RADIATION- … PHYSICAL REVIEW D 90, 123538 (2014)

123538-19



BkðνÞ ¼
�

eþk ðνÞ e−k ðνÞ
eþk ðν − 4Þ e−k ðν − 4Þ

�
; ðB15bÞ

where the matrix BkðνÞ is invertible for sufficiently
large jνj. If the expected convergence (B12) holds,
then the coefficient vector χk has a well-defined
large jνj limit.

(3) Rewriting the eigenvalue problem as a first order
iterative equation for the coefficient vectors

~χk ¼ MkðνÞ~χk; ðB16aÞ

MkðνÞ ≔ B−1
k ðνþ 4ÞAðνÞBkðνÞ: ðB16bÞ

Then the condition sufficient for the convergence
(B12) is

MkðνÞ ¼ 1þ oðν−1Þ; ðB17Þ

and the problem is reduced to probing the asymp-
totics of MkðνÞ.

Direct inspection shows that

MkðνÞ ¼ 1þOðν−2Þ; ðB18Þ

which shows that the relation (B12) indeed holds. Then, the
reality of ek and the comparison of the normalizations in
Hphy and Haux (see [43,44,46] for details in an analogous
setting) indicate that (B12) can be written as20

ekðνÞ ¼ eiφðkÞeþk ðνÞ þ e−iφðkÞe−k ðνÞ
þ jeþk ðνÞjOðν−1Þ: ðB19Þ

Note that the convergence is one order weaker than for the
case of a massless scalar field.
While this result is sufficient to construct the scattering

picture, for practical numerical applications (like evaluating
limν→∞~χkðνÞ, which is needed for normalization of ek), the
convergence is too slow. The rate of convergence can be
improved by replacing the components e�k in (B15) with
the functions21

e0kðνÞ ¼
jνj−1=3ffiffiffiffiffiffi

6π
p

�
1þ k2

9jνj4=3 þ
5k4

162jνj8=3
�

× e
ikðjνj1=3− 2k2

81jνjþ 4

27jνj5=3−
2k4

945jνj7=3Þ; ðB20Þ

thus constructing the analog Mð4Þ
k of matrix Mk defined in

(B16). Direct inspection of the asymptotics of Mð4Þ
k shows

that

Mð4Þ
k ðνÞ ¼ 1þOðν−4Þ; ðB21Þ

which implies that

ekðνÞ ¼ eiφðkÞe0kðνÞ þ e−iφðkÞe0−kðνÞ
þ je0kðνÞjOðν−3Þ: ðB22Þ

The relation (B19) allows us to again introduce the
scattering picture as a mapping of the type (B4) between the
auxiliary states, where the spectral profiles of Ψin=out are

related with the LQC spectral profile ~Ψ (3.16) via

e−iφðkÞ ~ΨinðkÞ ¼ eiφðkÞ ~ΨoutðkÞ ¼ ~ΨðkÞ; ðB23Þ

which gives a scattering matrix of the form

ρðk; k0Þ ¼ e−2iφðkÞδðk − k0Þ: ðB24Þ
Due to the oscillatory nature of the first subleading

correction in (B19), it is possible to relate the distant past/
future expectation values and observables for localized
LQC states (defined by the conditions hΔΠ̂γi < ∞ and
hΔx̂Aγ

i < ∞) with those of the incoming/outgoing aux-
iliary states

lim
Aγ→�∞

½hΨjx̂Aγ
jΨi−hΨin=outjx̂Aγ

jΨin=outiaux� ¼ 0; ðB25aÞ

lim
Aγ→�∞

½hΨjΔx̂Aγ
jΨi−hΨin=outjΔx̂Aγ

jΨin=outiaux� ¼ 0;

ðB25bÞ

by adapting the construction given in Appendix A2 of [46]
to this setting.

3. The WDW limit of LQC dynamics

Because the basis ek of the WDW quantum cosmology is
slightly more complicated than in the case of the massless
scalar field, it was necessary to define the scattering of the
LQC states by using the auxiliary space and its basis
functions. In consequence, the results given in Sec. B 2 do
not provide a direct relation between the LQC and WDW
states.
Fortunately, it is possible (and easy) to describe the

evolution of the WDW state itself as the scattering of the

20At this point it is not yet obvious if we can relate the
normalization of ek on Hphy with the normalization of
eiφðkÞeþk ðνÞ þ e−iφðkÞe−k ðνÞ on Haux that was derived in [46] for
second order convergence. However, we see from (B20) that the
first subleading term is oscillatory, so the decay rate of ν−1 is
indeed sufficient for it to not contribute to the normalization.

21A systematic procedure to determine this function is to
calculate the subleading terms order by order by using the
constraints that arise from imposing the appropriate level of
convergence on the analog MðlÞ

k of Mk corresponding to given
order l.

PAWŁOWSKI, PIERINI, AND WILSON-EWING PHYSICAL REVIEW D 90, 123538 (2014)

123538-20



auxiliary state. Furthermore, the auxiliary space emerging
in the scattering picture of LQC state is the same as for
WDW. This allows us to employ the auxiliary in/out
states as an intermediate providing the relation between
the LQC and WDW states. Indeed, given an LQC state,
the WDW in (out) state is defined by the requirement
that the auxiliary in (out) component in the scattering
description of that state agrees with the auxiliary in (out)
component in the scattering description of the LQC state
itself.
In other words, the relation between the spectral profiles

of these states—given by (B5) and (B23)—takes the form

ei½φðα;kÞ−φðkÞ� ~Ψin ¼ e−i½φðα;kÞ−φðkÞ� ~Ψout ¼ ~ΨðkÞ; ðB26Þ

where α0ðα; kÞ is given by (A17) and ~Ψin and ~Ψout are the
spectral profiles of the WDW in and out states respectively.
As a consequence, we can describe the global LQC
evolution as the scattering of WDW states. The scattering
matrix of this process is given by

ρðk; k0Þ ¼ e−2i½φðkÞ−φðα;kÞ�δðk − k0Þ: ðB27Þ

It is important to remember that defining this picture
requires us to choose one particular (labeled by α) self-
adjoint extension of Θ. The scattering matrix (B27)
depends on this choice.
The relations (B8) and (B25) allow us to provide a

relation between the expectation values and dispersions of
the x̂Aγ

operator in the distant future and past,

lim
Aγ→�∞

½hΨjx̂Aγ
jΨi−hΨin=outjx̂Aγ

jΨin=outiWDW� ¼ 0;

ðB28aÞ

lim
Aγ→�∞

½hΨjΔx̂Aγ
jΨi−hΨin=outjΔx̂Aγ

jΨin=outiWDW� ¼ 0:

ðB28bÞ
The expectation values and dispersion of the operator Π̂γ of
the in/out WDW states are exactly that of the LQC state,
since the relations (B5) and (B23) are only phase rotations.

4. The triangle inequality

While in Sec. B 3 we defined a precise description of the
global evolution of the LQC state as the scattering of certain
WDW states, to relate the spreads of the LQC state in the
distant future and past we will employ the scattering picture
defined in Sec. B 2 which uses the auxiliary states. This
choice is motivated by the fact that in the auxiliary space the
operator x̂Aγ

has a simple analytical form in the k-repre-
sentation. Indeed, the kinematical operator (or the physical
observable in the deparametrization picture) is

x̂ ¼ −i∂k þ ½∂kω�Aγ1: ðB29Þ
That, together with (B25), allows us to immediately write
down the triangle inequality analogous to (B10),

lim
Aγ→∞

hΨjΔx̂Aγ
jΨi ≤ lim

Aγ→−∞
hΨjΔx̂Aγ

jΨi

þ 2hΨjΔ½∂kφðkÞ�jΨi: ðB30Þ
Unlike in the WDW case however, now we cannot

determine ∂kφðkÞ analytically. In order to obtain a useful
inequality we need to analyze the bounds on ∂kφðkÞ
numerically. For that we implement the exact method used
originally in [46] based on numerically probing the
asymptotics of the function ∂kekðνÞ. The only difference
is that here, instead of using the original auxiliary basis
elements (B2), we use the corrected ones (B20), which
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FIG. 3 (color online). The behavior of φ0ðkÞ ¼ ∂kφðkÞ as a function of k is presented for generic superselection sectors (without
differentiating between branches corresponding to different values of ϵ). (a) presents its behavior in linear scale, whereas (b) shows its
absolute value in logarithmic scale.
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provide faster convergence and higher precision. The
results are presented on Fig. 3. We see an explicit con-
vergence (at large k) to the function

∂kφðkÞ ¼ A
ffiffiffi
k

p
þ oð1Þ; ðB31Þ

where the constant A has been determined numerically to
equal A ¼ −0.789� 0.005.
The exact behavior of ∂kφðkÞ depends on the super-

selection sector labeled by ϵ. Let us start with the sector
ϵ ¼ 0. In that case, one of important observations following
from numerical studies is the property that

j
ffiffiffi
k

p ∂2
kφðkÞj ≤ A=2; ðB32Þ

which allows us to conclude (via a derivation analogous to
that of Sec. 5A in [46])

hΨjΔ∂kφjΨi ≤ A
2
hΨjΔ

ffiffiffi
k

p
jΨi: ðB33Þ

As a consequence the triangle inequality (B30) implies the
following one,

lim
Aγ→∞

hΨjΔx̂Aγ
jΨi ≤ lim

Aγ→−∞
hΨjΔx̂Aγ

jΨi

þ AhΨjΔ
ffiffiffi
k

p
jΨi; ðB34Þ

which only involves observables with a clear physical
interpretation as the observable

ffiffiffi
k

p
can be easily replaced

by the Dirac observable
ffiffiffiffiffiffi
Πγ

p
.

In the case of generic ϵ the situation is slightly more
involved, as the numerical studies show significant
differences in the behavior of ∂kφðkÞ for small values
of k. We observe the right-hand discontinuity at ϵ ¼ 0
and ϵ ¼ 2. The bound (B32), while preserved for k >
k⋆ ≈ 0.15 may be violated for k < k⋆. The exact behavior
of ∂kφ as the function of both ϵ and k is presented on
Fig. 4. As a consequence, for generic ϵ the triangle
inequality (B34) is ensured to hold strictly only for the
states whose support does not overlap with the set
k ∈ ½0; k⋆�.
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