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We report the results of extended high-resolution numerical integrations of the Vlasov-Poisson equation
for the collapse of spherically symmetric warm dark matter (WDM) halos. For thermal relics with mass
m ¼ 1 keV=c2, we find collapsed halos with cores of size 0.1 to 0.6 kpc. The typical core is hollow, with
the mass density decreasing towards the core center by almost three orders of magnitude from its maximum
near the core radius rc. The core is in equilibrium with the diffused part of the halo but far from
virialization. These properties are rooted in the conservation of the squared angular momentum and in the
original excess, proper of WDM initial conditions, of kinetic energy in the core region. In a sample of more
than one hundred simulated collapses, the values of rc and of the core density ρc are in the range typical of
dwarf spheroids, while the maximal circular velocities Vmax are proper of small disk galaxies. The product
μc ¼ ρcrc takes values between 116M⊙=pc2 and 283M⊙=pc2, while the surface density μ0, as determined
from a Burkert fit, is roughly three times larger. From these data and data obtained at smaller values
of m, we extrapolate for one particular halo μc ¼ 263ð308ÞM⊙=pc2 and μ0 ¼ 754ð855ÞM⊙=pc2 at
m ¼ 2ð3.3Þ keV=c2, to be compared with the observed value 140þ83

−52M⊙=pc2. In view of the many
improvements and enhancements available, we conclude that WDM is a viable solution for explaining the
presence and the size of cores in low mass galaxies.
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I. INTRODUCTION, SUMMARY, AND OUTLOOK

The investigation of how purely self-gravitating matter
evolves on long time scales has played and still plays a
central role in cosmology, in astrophysics and in statistical
mechanics. From the statistical point of view, the main
obstacle towards the establishment of a general picture is
the lack of simple additivity due to the long-range inter-
action. This prevents a system, even if composed by a
macroscopic number of “particles,” to reach thermody-
namic equilibrium, so that the usual laws of equilibrium
thermodynamics do not apply [1]. Conversely, it is well
known that there exist infinitely many stable equilibrium
phase-space configurations to choose from as t → ∞ [2].
Still, relaxation of some sort must occur, since self-

gravitating systems of many different kinds and sizes appear
to be in (quasi-) stationary states [2,3]. Likewise, numerical
N-body simulations of such systems show that, from a
coarse-grained point of view, some type of equilibration
does occur [4]. The central issue is then how to properly
identify the quasistationary states (QSS) corresponding to
given initial conditions. As detailed below, such identifica-
tion is the aimof thiswork in the specific case of singlewarm
dark matter (WDM) halos, although the implications of our
findings probably extend to wider domains.
Indeed, in the cosmological context, important questions

concern the properties of dark matter (DM) halos, which
are the cradles of galaxy formation [5]. In turn, the halos are

formed through gravitational collapse triggered by tiny
perturbations over the uniform DM background that
dominates the total matter contribution ΩM ∼ 0.3 to the
energy density of the Universe (baryons contributing
only a smaller fraction Ωb ∼ 0.04). In this scenario, the
counting and the properties of galaxies with any given
mass should be traced back to the primordial power
spectrum of DM perturbations, which statistically deter-
mines the initial conditions, and to the quasistationary state
(or states) to which gravity drives the various local matter
overdensities.
For example, in a Universe dominated by cold dark

matter (CDM) the density perturbations are gravitationally
unstable down to mass scales much smaller than those of
galaxies and extensive numerical simulations (see, e.g., [6]
and references therein) have shown that structure formation
proceeds bottom up with the early collapse of very small
regions, followed by larger and larger ones, with complex
merging histories that produce successively more or less
relaxed objects of increasing mass, like dwarf satellites,
massive galaxies, groups, and clusters. Thus, the properties
of a single DM halo depend on the full history of a much
larger region of comoving space, hindering a clear-cut
analytic modeling of its quasistationary state.
However, this CDM scenario has (at least) two distin-

guishing features contradicted by observations: it exhibits
an overabundance of small mass virialized halos [7–11]
and cuspy density profiles [12,13] where observations point
to cored ones [14–19]. The latter problem, the so-called*claudio.destri@mib.infn.it

PHYSICAL REVIEW D 90, 123531 (2014)

1550-7998=2014=90(12)=123531(26) 123531-1 © 2014 American Physical Society

http://dx.doi.org/10.1103/PhysRevD.90.123531
http://dx.doi.org/10.1103/PhysRevD.90.123531
http://dx.doi.org/10.1103/PhysRevD.90.123531
http://dx.doi.org/10.1103/PhysRevD.90.123531


cusp-core puzzle of CDM, apparently fades away upon
including baryon feedback in certain simulations [20–22],
but not in others [23,24].
Structure formation based on WDM is, in principle,

protected against these CDM difficulties, while reproduc-
ing all the observed large-scale (≳10 Mpc) properties as
CDM does. In fact WDM is characterized by the proper
amount of primordial velocity dispersion, with associated
free streaming, to smooth out initial density fluctuations
over scales below the Mpc [25,26]. This velocity dispersion
should also help to better match the observed density
profile of collapsed halos. In brief, WDM reconciles, or
tends to reconcile with observations, several small to
middle scale astrophysical and cosmological features such
as, for example, the halo concentration and satellite counts
in N-body simulations [26,27], the phase-space density of
dwarf spheroids in a model-independent WDM treatment
[28,29], the mass function in the halo model [30], the
galaxy luminosity functions, and the stellar mass distribu-
tions in semianalytic models [31]. Many other investiga-
tions [32–38] confirm that WDM agrees with observations
better than CDM.
Still, one observational fact that many numerical simu-

lations on WDM fail to correctly reproduce is the size of
the halo cores [39–45]. Indeed, a well-known theoretical
argument, rooted on the Tremaine-Gunn bound [46],
implies that WDM halos are cored [43,47]. It is based
on the so-called (pseudo–) phase-space density [47–51],
Q ¼ ρ=σ3, where ρ is the characteristic mass density and σ
the characteristic one-dimensional velocity dispersion of
the core. One can argue [47] (see [44,52] for more punc-
tual analysis that, however, does not significantly alter
the conclusions) that Q < Qprim, where the space-constant
Qprim is computed at WDM decoupling, in any given
particle model. Then, assuming a halo model (e.g., an
isothermal sphere as in Ref. [47] or a pseudoisothermal one
as in Ref. [43] to relate σ to ρ), one obtains a bound on the
core size. WDM N-body simulations apparently produce
cores that almost saturate this bound [43,44]. The problem
is that these cores are resolved, and found with size
comparable to the observed ones, only for initial velocity
dispersions so large that the corresponding free streaming
would have erased at the linear level the fluctuation seeds
of the halos themselves (the catch 22 of Ref. [43]). Vice
versa, using the theoretical bound to extrapolate the size
of resolved cores to velocity dispersions small enough to
allow the fluctuation seeds yields cores two orders of
magnitude smaller than the observed ones.
If this were indeed the situation, WDM structure for-

mation would need help from baryon feedback (if that really
can help) almost as badly as CDM does. Alternatively, it
could be that current N-body simulations, plus extrapola-
tions based on equilibrium assumptions, do not provide
a quantitatively sound description of WDM gravitational
collapse below the kpc scale. Here, we address the second

possibility only and give an affirmative answer, by showing
thatWDM is an effectiveworking hypothesis for explaining
the size of observed DM cores.
In this work, we report the results of extensive high-

resolution direct numerical integrations of the spherically
symmetric Vlasov-Poisson (VP) equation for a 1 keV
WDM thermal relic. The Vlasov-Poisson equation (2.1),
often called the collisionless Boltzmann-Poisson equation,
describes the nondissipative incompressible six-dimensional
phase-space flow of self-gravitating continuous matter.
It is what N-body simulations attempt to approximately
solve with fictitious particles moving in three-dimensional
configuration space.
Our findings, outlined in the next subsection and

described in more detail in Sec. IV, provide an overall
picture of WDM halo cores quite different from the
commonly expected one, which is based on some a priori
assumptions and the (extrapolation of the) results of
N-body simulations.

A. Nonvirialized hollow cores with nearly
constant surface density

A common expectation about cored DMhalos, as those of
WDM, is that their mass density is a monotonically decreas-
ing function of r that has some core radius rc as unique length
scale in the core region. This is indeed the situation in
collisionless self-gravitating systems at equilibrium, which
are described by stationary and stable ergodic phase-space
distributions [2]. The above expectation is then extended
to quasistationary states, with the understanding that they do
not differ much from truly equilibrium states. The property
that should guarantee this proximity is core virialization,
which can be described as follows.
Let us consider a spherical, purely self-gravitating

system. Thanks to Gauss’ law, one can unambiguously
compute the gravitational potential energy UðrÞ within the
sphere of radius r, regardless of the system configuration
for r0 > r. Hence, one can define the r-dependent virial
ratio WðrÞ ¼ −2KðrÞ=UðrÞ, where KðrÞ is the kinetic
energy within the sphere. Suppose the system has relaxed
to some quasistationary state with a core of size rc. For r
large enough we expect virialization, that is, WðrÞ ≳ 1.
For r ≪ rc instead, we have WðrÞ ∼ r2, since KðrÞ ∼ r−3

while UðrÞ ∼ r−5 as r → 0 in a core that is in hydrostatic
equilibrium. In between WðrÞ will decrease in some
system-specific way. If WðrÞ ≳ 1 for r=rc ≳ 1, we can
say that also the core is virialized. Since rc is the only scale
in the core region, alsoWðrÞ is a function only of x ¼ r=rc,
which behaves as x−2 for x small enough and monoton-
ically decreases in the interval 0 < x≲ 1. This is exactly
what happens for instance in the isothermal sphere and
many other systems with ergodic phase-space distributions.
CDM halos do not have cores but are quite virialized,

so they have only the system-specific decrease. For
example, if we rather crudely assume ρ ∼ r−1 à la
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Navarro-Frenk-White [12] and Q ∼ r−1.9 [53], then
WðrÞ ∼ r−0.4, in any case much slower than within a core.
WDM halos are cored and the r < rc region can be

theoretically and/or numerically investigated, provided the
resolution is high enough. According to the common lore
just described, the inner part of a halo should be in some
quasistationary state not too different from stable equilib-
rium states. The halo core would then be virialized in the
sense defined above.
On the contrary, the main result of our investigation can

be stated as follow: The spherical collapse of WDM yields
cores that are hollow and not virialized.
Details are provided in Sec. IV (see Figs. 1, 2, and 12 in

particular). Here, we just make a few simple observations
to support these numerical findings.
Let us assume for the moment that the inner part of the

halo can indeed bemodeled by some equilibrium-type cored
configuration. Then for r≲ rc we have WðrÞ≲ ðrc=rÞ2,
where rc is in the kpc scale to match, for instance, the DM
halos of dwarf galaxies.
Consider now the uniform isotropic Universe at

some time t ¼ t0 when the energy contribution of matter
inhomogeneities is negligible and choose, in order to
evaluate the initial value W0ðrÞ of the virial ratio, the
center of a future collapse (of what type of DM does not
matter yet) as origin of the comoving coordinates. The
result is (see Sec. IV D for details on the elementary
derivation)

W0ðrÞ ¼ 2þ 10σ20
a4H2r2

;

where a is the scale factor, H ¼ _a=a is the Hubble
parameter, and σ0 is the DM (comoving) velocity
dispersion. In the derivation we assumed that DM is
nonrelativistic at the time t0 considered.
In the case of CDM, we have σ0 ¼ 0 and the gravita-

tional collapse will need to reduce the nearly constant W0

by just a factor 2 to virialize the halo. Instead, in the case of
WDM particles that decouple while ultrarelativistic but are
already nonrelativistic deep in the radiation dominated era,
we obtain

W0ðrÞ≃ 2þ 10

�
lfs
r

�
2

; lfs ¼ ðΩrÞ−1=2
σ0
H0

;

where we used a4H2 ≃ΩRH2
0, with ΩR being the radiation

fraction at time t ¼ t0, to recognize in lfs a (very crude)
estimation of the free-streaming length of the WDM
particles. Therefore,

W0ðrÞ
WðrÞ ≃ 10

�
lfs
rc

�
2

; r≲ rc:

Indeed, by construction rc ≪ lfs. For instance, thermal
relics with a mass of 1 keV=c2 (and two internal degrees of

freedom) have σ0 ¼ 0.025 km=s, so that lfs ≃ 40 kpc since
ΩR ¼ 8.5 × 10−5 by the time only neutrinos and photons
contribute to radiation. Hence, throughout the region of the
future core, kinetic energy initially exceeds by three orders
of magnitudes the typical value it would eventually have in
a few kpc virialized core. And the smaller the core, the
higher the kinetic energy excess, since lfs is fixed way
before the collapse started.
Of course this is an idealized scenario; since the real

collapse will not be spherical, there could be mergers and so
on. But the free streaming of a keV-sizedWDM has also the
merit of smoothing out the matter fluctuations on scales of
several hundreds kpc. Then the possibility of a nearly
spherical and almost undisturbed collapse is certainly not a
far-fetched idealization as it would be for CDM. Hence, the
kinetic energy excess in the initial conditions with respect
to the virialized core after the collapse holds beyond the
approximation of spherical symmetry.
During the collapse, phase mixing and violent relaxation

[54] alone might still bring the system to a quasistationary
state but, lacking more efficient energy transfer mecha-
nisms such as radiation or dissipation, they need not be able
to reduce the virial ratio by the thousands in the finite
amount of time available. This is just what we observe by
numerically integrating the Vlasov-Poisson equation.
A complementary viewpoint is based on the conserva-

tion of angular momentum, which is the same in physical
and comoving coordinates. In a spherically symmetric
system, the one-particle angular momentum is conserved
also if the potential is not constant. Of course, the mean
vector angular momentum vanishes by symmetry, but the
squared angular momentum l2 does not. Matter that is
initially at a distance R ≫ rc but will eventually fall in the
core has a conserved l2 of order ðRσ0Þ2. Like the ice skater
that closes her arms, this matter will spin faster in the core,
sustaining the original excess of core kinetic energy.
The net result we observe and describe in Sec. IV is the

formation of halos with a hollow core, that is, with a
nonmonotonically decreasing mass density that develops
its maximum ρmax at some rmax > 0, which provides a first
natural definition of core radius. Throughout the core and
beyond a large excess of kinetic energy is trapped mostly in
tangential motions. The core is approaching a dynamic
rather than hydrostatic equilibrium and the mass density
ρðrÞ features a roughly parabolic rise till rmax, where ρmax is
almost three orders of magnitude larger than the density
deep into the core. For r > rmax, ρðrÞ quite rapidly settles to
the r−2 decrease that implies a constant circular velocity.
Clearly the crossover at r ¼ rmax provides another length
scale beside rmax.
We find that these properties are common to all the 111

halos of our sample. The halos are obtained starting from
different initial overdensity profiles, which are in turn
constructed, according to the procedure described in
Sec. III D, by angle averaging over the peaks of a random
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realization of the fluctuation field proper of a 1 keV WDM
thermal relic. The overall shape of ρðrÞ is almost inde-
pendent of the initial conditions and of the location or value
of the maximum itself (see Figs. 1, 2, and 3). These latter
quantities instead, which fix the overall scale of ρðrÞ, do
depend on the details of the initial fluctuation profile, such
as height and size.
The hollow core shape allows a natural definition of the

core radius rc and the core density ρc slightly different from
ðrmax; ρmaxÞ: the pair ðrc; ρcÞ defines the point where the
density ρðrÞ should be cut to replace the hollow core with a
constant density core (see Sec. IV B). rc is therefore slightly
larger than rmax.
In our sample we find values of rc ranging from 0.1 to

0.6 kpc and values of ρc ranging from 0.2 to 2.5M⊙=pc3.
Very interestingly, the core radius rc is nearly inversely
proportional to the core density ρc leading to a nearly
constant value of μc ≡ ρcrc around 210M⊙=pc2 (see
Sec. IV B for more details), in remarkable agreement with
the observations reported in Refs. [55–58]. However,
while the near constancy of μc could be rooted in the core
hollowness (a constant surface density means a constant
core mass per unit area, a property certainly more
appropriate to hollow cores than to bulky ones), the
quantitative proximity to the observational value μ0;obs ¼
140þ83

−52M⊙=pc2 is rather puzzling (and quite intriguing),
since the estimation of μ0;obs is based on the hypothesis that
the DM density has a bulky Burkert profile [59], with its
own definition of core radius r0B and core density ρ0B.
When a Burkert fit is performed on the hollow cores for
rc ≲ r≲ 10rc (see Sec. IV B for the details), one obtains
values of μ0 ≡ ρ0Br0B around 600M⊙=pc2, roughly four
times larger than μ0;obs.
The typical rc we find is more than one order of

magnitude larger than what is expected for a WDM particle
of mass m ¼ 1 keV=c2 according to the Q-based theoreti-
cal bound and extrapolations from resolved cores of
N-body simulations [43,44,47]. But this type of argument
relies on the a priori assumption of a thermalized, and a
fortiori virialized, core and therefore is not applicable to the
WDM cores found in our simulations. See Sec. IV B for
the explicit comparison of the hollow core with that of the
isothermal sphere, which shows in detail how the iso-
thermal extrapolation fails; see Sec. IV E for our technical
explanation of why it fails. We are confident that the
hollow cores would be found also in N-body simulations
of isolated halos, provided the velocity dispersion typical
of WDM is properly introduced and a resolution power
in the 100 pc range is reached with good control over the
fragmentation artifacts induced by the nonzero velocity
dispersion.
On the other hand, at odds with N-body simulations, our

halos feature a diffuse part with a r−2 tail that is too long.
The density is still decreasing almost as slowly as r−2

where it tales values from 100 to 200 times larger than the

critical density. One possible cause is a bias in our
construction of spherically symmetric overdensity profiles
for the initial conditions (see Sec. III D), which does not
allow enough matter outflow from the collapsing halo. This
makes it awkward to build a reliable rc vsMhalo relation for
any common definition of halo mass Mhalo.
Hence, as in observations, the best way to quantify the

mass content of a halo is to consider the maximal circular
velocity Vmax. In our sample we find that Vmax takes values
between 50 and 70 km=s, characteristic of small disk
galaxies, whereas rc and ρc are typical of dwarf spheroids.
This concentration excess is properly measured by means
of the Burkert fit for rc ≲ r≲ 10rc. We find that rcB is
roughly twice rc, while VB;max, the maximal circular
velocity of the Burkert fit, is always very close to Vmax.
Hence, apart from the mass deficit of the hollow core with
respect to the Burkert core for r < 0.5rcB, our halos differ
from realistic DM halos only because the surface density μ0
is four times larger than the observed value. In other words,
the region 0.5r0B ≲ r≲ 5r0B of our hollow-core halos is
more concentrated than real DM halos by a factor roughly
equal to 4. In Sec. IV E we estimate that this factor grows
to 5 when the mass of the WDM particle is raised up to
m ¼ 2 keV=c2, the value that now seems most favored
[60,61], and reaches 6 when m ¼ 3.3 keV=c2, the lower
bound from Lyman-α and hydrodynamical simulations
of Ref. [62].
This quantitative analysis is the least restrictive, since the

Burkert fit is performed only for 0.5r0B ≲ r≲ 5r0B, the
only region of the inner halo where the fit can be accurate.
Since the bulky Burkert profile provides a very good fit to
real DM halos down to few percents of r0B, the hollow core
is most likely ruled out of observations. Hence, whatever
improvement, modification, and/or enhancement that might
succeed in reducing μ0 should also eliminate, or strongly
reduce, the hollowness. An obvious addition could be
baryons, completely neglected in the zeroth order approach
of this work and possible hollowness reducer thorough
adiabatic compression. Another could be quantum correc-
tions, to be briefly motivated in the next section.
At any rate, since we find cores with an inner mass deficit

rather than excess, with a surface density nearly constant
and relatively close to the observed value, the starting point
provided by our VP approach appears by far better than in
CDM-only N-body simulations or in the too-small-core
WDM simulations cited above.
In the next section we outline some improvements for

our WDM-only VP simulations and we also question the
soundness of another common a priori assumption on
DM dynamics.

B. Directions for improvement

The first, obvious, and major improvement would be to
go beyond the approximation of spherically symmetric
collapse and tackle the full six-dimensional Vlasov-Poisson
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problem. A promising low-resolution attempt in this
direction is reported in Ref. [63], but the computational
resources required for a high-resolution cosmological
simulation appear at the moment prohibitively large, at
least for the author. Moreover, it is very unlikely that the
problem μ0=μ0;obs ∼ 4 is entirely due to the approximation
of spherical symmetry.
Remaining in the more tractable framework of spherical

symmetry, we can consider a few interesting directions for
future improvement:
(1) A problematic aspect of our halo sample is the small

variation of the basic parameters ρc, rc, and Vmax.
The most likely cause is a bias in our construction of
spherically symmetric overdensity profiles for the
initial conditions (see Sec. III D), which does not
allow enough matter outflow from the collapsing
halo. A more sophisticated selection procedure
could be implemented to better mimic, even within
the approximation of spherical symmetry, the effects
of nearby collapsing halos on the halo of interest.
This could at the same time increase the parameter
variations and reduce the too long r−2 tail of the
halos. It is also conceivable that a shorter r−2 tail
could improve the value of the surface density μ0,
although probably less than necessary.

(2) The large initial virial ratio and the crucial role
played by angular momentum imply that the halo
collapse might be sensitive to details of the freeze-
out velocity distribution, which in our simulation
we fixed to the simplest Fermi-Dirac form proper
for thermal relics (see Sec. II A). Indeed, we find that
the core properties strongly depend on σ0 (see
Sec. IV E). Hence, other WDM models, which are
already known to yield different cutoff effects on
the primordial power spectrum [64–67], might also
lead to noticeable effects on the core properties. In
this respect, accurate analysis at the linear level also
of WDM velocities, as that in Ref. [68], could play
an important quantitative role in the collapse dy-
namics through a better determination of the initial
conditions.

(3) Another common a priori assumption on DM dy-
namics, besides the corevirialization discussed above,
is that quantum effects are fully negligible. The large
density variation in the hollow core, the crucial role
played by angular momentum in our WDM collapse,
and the profound quantum modifications to the
theory of angular momentum suggest instead that
quantum mechanics could have a deep role in the
shaping ofWDMcores, provided its effectswere non-
negligible in the primordial Universe. We elaborate
this point below. The relevance of quantummechanics
for ultracompact dwarf galaxies with WDM halos,
within an equilibrium approach, was discussed
already in Ref. [69].

For a particle of mass m, the quantum unit of phase-
space density is

q ¼ m4

ð2πℏÞ3 ¼ 5.13 × 10−4
�
mc2

keV

�
4M⊙
pc3

ðkm=sÞ−3:

Strictly speaking it should just be ð2πℏÞ−3, the inverse of
the volume of a quantum cell in the phase space with the
conventional dimensions of ðlength × momentumÞ3. The
extra factor of m4 comes from the normalization to a mass
density, rather than a number density, and to the use of
velocity rather than momentum as coordinate in phase
space. If g denotes the number of nontranslation degrees of
freedom of the particle, such as spin and/or internal
symmetry quantum numbers, it follows that [notice the
ð2πÞ3=g difference with respect to Ref. [69]]

Q
gq

¼ð2πℏÞ3ρ
gm4σ3

¼ 1

g

�
λdB
d

�
3

; λdB ¼
2πℏ
mσ

; d¼
�
m
ρ

�
1=3

;

where λdB is the characteristic de Broglie wavelength and d
is the mean interparticle distance. Thus, Q=ðgqÞ provides
a semiclassical measure of how much particles in a
nonrelativistic gas with density ρ and velocity dis-
persion σ are packed with respect to the reference quantum
packing fixed by Heisenberg’s indetermination principle.
Values ≳1 of Q=ðgqÞ then indicate that quantum effects
could be important, as in the standard nonrelativistic free
Fermi gas.
Since Q largely decreases during the classical gravita-

tional collapse (we verified this also in our simulations; see
Sec. IV C), we have to compare it with gq at the beginning,
when WDM is already nonrelativistic but still nearly
homogeneous. For thermal relics the issue is solved in
the simplest possible way, since in that case the primordial
value of Q=ðgqÞ is a pure number that does not depend on
cosmological parameters or on the actual value of the mass:
[28,29,47]:

Qprim

gq
¼ 4π

ffiffiffiffiffi
27

p I5=22

I3=24

¼ 2.52950728…; In≡
Z

∞

0

xndx
1þex

:

Thus, the classical framework might not be fully adequate
for WDM after all. If so, the history before should also be
revisited to determine more appropriate initial conditions
with the necessary quantum corrections, Namely, the
classical framework ignores from the start the fermionic
quantum pressure that, in view of the above value of Qprim,
could significantly contrast the gravitational pull and flatten
the halo cores, as advocated in Refs. [69,70].

II. VLASOV-POISSON EQUATION

In the mean-field approximation, the phase-space one-
particle distribution function fðr; v; tÞ of a purely
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self-gravitating system of N identical particles evolves
according to the VP equation

½∂t þ v ·∇r þ ð∇rΦÞ · ∇v�f ¼ 0;

∇2
rΦ ¼ 4πGρ; ρðr; tÞ ¼

Z
d3vfðr; v; tÞ: ð2:1Þ

Here, ρ represent the mass density of the system, obviously
normalized as

Z
d3rρðr; tÞ ¼ Nm≡M;

where m is the particle mass. Strictly speaking then, it is
f=m that plays the role of one-particle distribution function.
Mean-field approximation means that two-body or higher
correlation functions are considered always negligible.
Then the specific value m of the particle mass drops
completely out of the game if f is normalized as in
Eqs. (2.1), which now describe the evolution of a non-
dissipative incompressible fluid in phase-space subject only
to the self-consistent gravitational force it generates. In fact,
the first equation in (2.1) is nothing but Liouville’s equation
for free streaming in the “external” field Φ.
It is commonly believed (and in a certain special sense

rigorously demonstrated [71,72]) that in the limit N → ∞
the mean-field description becomes exact. But from the
more practical point of view of understanding the dynamics
of the 1070 (or more) particles of a DM halo, for example,
there can be little doubt that the self-gravitating fluid
description implied by the mean-field approximation is
more accurate than any N0-body dynamics with N0 being at
least 1060 times smaller than N and simulation particles as
massive as 104M⊙ ∼ 1050 GeV=c2. Because of the absence
of dissipative phenomena in the collisionless mean-field
dynamics, it is legitimate to have doubts also on the
hydrodynamic approximations to Eqs. (2.1), where the
moment expansion in velocity space is closed at second
order by some heuristic equation of state.
The problem, from a numerical point of view, is that

simulations of the six-dimensional continuous system
Eqs. (2.1), without any symmetry to help, are much more
demanding than N0-body or three-dimensional hydrody-
namical simulations.
Since the Vlasov equation is formally time reversible, the

system retains full memory of its initial conditions, albeit
dispersed on smaller and smaller scales over phase space. It
is commonly believed that any reasonably coarse-grained
version of the exact solution fðr; v; tÞ does relax to some
form of equilibrium, or QSS, a typical feature of systems
with long-range interactions. Lynden-Bell theory of violent
relaxation [54,73,74] provides a rather general framework
for this, although only for very special situations it has been
possible to verify that the QSS to which the system relaxes
does indeed maximize the Lynden-Bell coarse-grained
entropy [75,76].

In other words, little is known about the class of initial
conditions that does lead to QSS, or, if the system does
relax to QSS, about the map from the space of initial
conditions to the space of QSS and on the relative time
scales. However, this fact is not a major issue in the
cosmological applications of the VP equation, since the
initial conditions in the linear regime of the gravitational
clustering are rather well known. Then the real problem is
to solve as accurately as possible the VP equation and see
what really happens in the finite cosmic time available,
regardless of any assumed relaxation to a QSS.

A. VP equation for dark matter

In the cosmological Friedmann-Robertson-Walker
spacetime, well after matter-radiation equilibration, the
nonrelativistic DM fluid evolves according to VP system
(2.1) of Newtonian equations, with t identified with the
cosmic time. But in a cosmological context one cannot
ignore the (accelerated) universe expansion even for a
single DM halo. If the phase-space coordinates ðr; vÞ are
interpreted as physical coordinates for a DM particle, then
no change is needed in Eqs. (2.1) to implement a decel-
erated expansion, since the latter affects only the initial
conditions through the assumption of the proper Hubble
flow. On the other hand, the accelerated expansion caused
by the cosmological constant Λ requires introducing anti-
gravity by appropriately changing the source term in
Poisson’s equation, that is,

∇2
rΦ ¼ 4πGðρ − 2ρΛÞ; ð2:2Þ

where

ρΛ ¼ ΩΛρcrit; ρcrit ¼
3H2

0

8πG

is the energy density due to Λ, written in terms of the
present fraction ΩΛ and of the critical density or, equiv-
alently, of the present Hubble parameter H0. Here, we
neglect the other smaller source of Newtonian potential,
namely, baryons, so that ΩDM ¼ ΩM and ΩΛ ¼ 1 −ΩM ≃
0.7 if ΩM ≃ 0.3 is the total matter fraction.
Actually, a more convenient framework is obtained by

using comoving coordinates and the superconformal time s
in place of the cosmic time t. We first rename ðr; vÞ
ðrphys; vphysÞ and ρ ρphys; then we set

rphys ¼ ar; vphys ¼ Hrphys þ
v
a
; H ≡ _a

a
;

ρphys ¼ a−3ρ; dt ¼ a2ds;

where a is the scale factor, the solution of the acceleration
equation of uniform expansion

ä
a
¼ 4πG

3

�
ρM
a3

− 2ρΛ

�
; ρM ≡ΩMρcrit; ð2:3Þ
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and upper dots denote as usual derivative with respect to t.
In terms of the comoving ðr; vÞ and the superconformal
time s the VP system of equations now reads

½∂s þ v ·∇r þ ð∇rϕÞ · ∇v�f ¼ 0; ð2:4Þ

where ϕ is a2 times the potential due solely to fluctuation
over the uniform background, that is,

Φ¼ΦMþΦΛþa−2ϕ; ΦM¼ 2πG
3a

ρMr2;

ΦΛ¼−
4πG
3

ρΛa2r2 ∇2
rϕ¼4πGa

�Z
d3ufðx;u;sÞ−ρM

�
:

ð2:5Þ

The time dependence of the scale factor is fixed by
Eq. (2.3), or by the equivalent Friedmann equation in
superconformal time

a2H ¼ 1

a
da
ds

¼ H0

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ΩΛa4 þΩMa

q
: ð2:6Þ

We see that, apart from the different symbol interpretation,
the Liouville part of the VP system is the same as before
and the Universe expansion is equivalent to introducing a
negative matter background and time dependency on the
gravitational coupling. The background due to the cosmo-
logical constant drops out of the game and ΩΛ directly
affects only the evolution of the scale factor.
To complete this dynamical setup, we have to provide the

initial conditions for Eqs. (2.4) and (2.6). We assume that at
s ¼ 0 the scale factor is a ¼ ai ¼ ð1þ ziÞ−1, with the
initial redshift zi large enough so that DM is well within the
linear regime and the distribution function has to a very
good approximation the factorized form

fðr; v; s ¼ 0Þ ¼ ρM½1þ δiðrÞ�fiðjvþ∇ψðrÞjÞ: ð2:7Þ

Here, the overdensity fluctuation field δi is a random
realization of the Gaussian process with the matter power
spectrum at redshift zi, while fiðjvjÞ is the freeze-out
distribution, that is, the unit-normalized space-uniform
isotropic velocity distribution at decoupling that would
remain constant in the uniform Universe, that is, if δi ¼ 0.
ψ is the potential for the initial average velocity field
(the Zeldovich velocity) and satisfies

∇2
rψ ¼ a2i _δi ≃ a2iHðaiÞδi

¼ H0δið1þ ziÞ−1=2
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ΩM þ ΩΛðzi þ 1Þ−3

q

in order to fulfil to first order in δi the mass continuity
equation

∂sρþ∇ · ðρhviÞ ¼ 0; hviðr; sÞ≡ 1

ρðr; sÞ
Z

d3vvfðr; v; sÞ

at the initial time.
The specification of the matter power and of the freeze–

out distribution fi characterizes the type of DM. In the case
of CDM the power spectrum has a slow powerlike falloff at
small scales while fiðvÞ is for all practical purposes a delta
function at v ¼ 0. In the case of WDM the power spectrum
is more or less (depending on the specific WDM model)
sharply cut off at scales smaller than the DM free-streaming
length, while fiðvÞ is a (highly model-dependent) isotropic
distribution. Here, we consider only a specific model of
WDM, namely, fermionic thermal relics that decoupled at
thermal equilibrium while ultrarelativistic, so that, if fFD
denotes the dimensionless Fermi-Dirac distribution, we
have [26,47]

ρMfiðvÞ ¼ qfFDðϵÞ ¼ q
g

1þ eϵ=T
; q≡ m4

ð2πℏÞ3 ; ð2:8Þ

where ϵ ¼ mcjvj is the kinetic energy, T is the (comoving)
decoupling temperature, and g is the number of nontransla-
tional degrees of freedom of the DM particle, such as spin
and/or internal symmetry quantum numbers. For example,
g ¼ 2 or g ¼ 4, depending on the specific model, in the
case of a serious spin-1=2 candidate for WDM such as the
sterile neutrino [77–79].
From Eq. (2.8) we can derive the following expression

for the freeze-out velocity distribution [v ¼ jvj and ζðxÞ is
Riemann’s ζ-function]:

fiðvÞ ¼
AðB=σ0Þ3
1þ eBv=σ0

; 3σ20 ¼ 4π

Z
∞

0

dvv4fiðvÞ

A ¼ 1

6πζð3Þ ¼ 0.04413405…;

B ¼
�
5ζð5Þ
ζð3Þ

�
1=2

¼ 2.0768098…; ð2:9Þ

with the identifications

ρMA
�
B
σ0

�
3

¼ gq; T ¼ mcσ0
B

:

Thus, recalling that ρM ¼ ΩMρcrit, we obtain a rewriting
of the relation of Refs. [26,47] between the mass and
the velocity dispersion of the WDM particle (notice that
v0 ¼ σ0=B is most often quoted in the literature),

σ0 ¼ 0.025

�
h
0.7

�
2=3

�
ΩM

0.3

�
1=3

�
2

g

�
1=3

�
keV
mc2

�
4=3

km=s:

ð2:10Þ
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For what concerns the explicit choice of the WDM power
spectrum, details are provided in Sec. III D.

B. VP equation with spherical symmetry

The solution of the full six-dimensional VP equation
presents a major challenge, both from the analytical and
numerical point of view. Analytical results are restricted
to perturbation theory and partial resummation thereof
(see, e.g., Ref. [80] and references therein), while numeri-
cal results are only preliminary [63].
The numerical study of the collapse of a single spherically

symmetric system is much more tractable, while retaining
a great interest both theoretically and from the point of view
of its applications to concrete physical contexts.
If the DM distribution function is rotational invariant,

we can use as independent phase-space variables r ¼ jrj,
u ¼ ðr=rÞ · v, and the conserved squared angular momen-
tum (per unit mass) l2 ¼ jr∧vj2 ¼ r2ðjvj2 − u2Þ. Then

f ¼ fðr; u;l2; sÞ;

ρðr; sÞ ¼ π

r2

Z
∞

−∞
du

Z
∞

0

dl2fðr; u;l2; sÞ ð2:11Þ

and the VP equations read

�
∂s þ u∂r þ

�
l2

r3
− ϕ0

�
∂u

�
f ¼ 0;

ϕ0ðr; sÞ≡ ∂rϕðr; sÞ ¼
Ga
r2

�
Mðr; sÞ − 4π

3
ρMr3

�
; ð2:12Þ

where

Mðr; sÞ ¼ 4π

Z
r

0

dr0r02ρðr0; sÞ

is the total dark mass within a sphere of radius r. No
derivative with respect to l2 may appear in the left hand of
Eq. (2.12) because l2 is a conserved quantity in this
collisionless dynamics.
In this spherically symmetric framework, the moment

expansion of the VP equation is obtained by multiplying it
by integer powers of u and l2 and then integrating over u
and l2. Using the standard notation of expectation values

Mk;nðr; sÞ ¼ hukl2ni≡
R
∞
−∞ du

R
∞
0 dl2ukl2nfðr; u;l2; sÞR∞

−∞ du
R∞
0 dl2fðr; u;l2; sÞ

and after one integration by parts in u, one obtains

∂tðρMk;nÞþ
1

r2
∂rðr2ρMkþ1;nÞ

¼ kρ

�
1

r
Mk−1;nþ1−ϕ0Mk−1;n

�
; k;n¼ 0;1;2…; ð2:13Þ

with the convention that M−1;n ≡ 0. When k ¼ n ¼ 0 one
has the mass continuity equation with spherical symmetry

∂tρþ
1

r2
∂rðr2ūρÞ ¼ 0; ū ¼ M1;0 ¼ hui;

while if k ¼ 1, n ¼ 0, and the continuity equation is used,
one obtains Euler (or momentum) equation

ð∂t þ ū∂rÞūþ 1

ρ
∂rðρσ2rÞ þ

2

r
ðσ2r − σ2θÞ þ ϕ0 ¼ 0; ð2:14Þ

where

σ2r ¼M2;0−M2
1;0¼hu2i− ū2; σ2θ¼

M0;1

2r2
¼hl2i

2r2
ð2:15Þ

are the squared radial and tangential velocity dispersions,
respectively. In the Cartesian frame the pressure tensor
reads

Pjk ¼ ρσ2θδjk þ ρðσ2r − σ2θÞ
rjrk
r2

ð2:16Þ

and the vectorial form of Eq. (2.14) can be recovered by
setting ūj ¼ ūrj=r.
In a quasistationary state with slowly varying hydro-

dynamic variables ρ and ū, Euler equation (2.14) implies
that wherever ū ¼ 0 we must also have

1

ρ
∂rðρσ2rÞ þ

2

r
ðσ2r − σ2θÞ þ ϕ0 ¼ 0; ð2:17Þ

which is known as Jeans equation in the astrophysical
context. From the fluid point of view, the condition ū ¼ 0 is
the marker of hydrostatic equilibrium. On the other hand,
for the gas of individual particles orbiting in the slowly
varying potential ϕ, the definition of dynamic equilibrium
is perhaps more appropriate. Only in the isotropic limit
σ2r ¼ σ2θ ≡ P=ρ, Pjk ¼ Pδjk, Jeans equation reduces to the
equation of simple hydrostatic equilibrium ∂rP ¼ −ρϕ0.
To be useful, the infinite hierarchy in Eq. (2.13) needs to

be approximately closed at some order, but with no obvious
physical basis for collisionless DM. On the other hand, if
effective collisional terms were added on some physical
grounds, the induced dissipation would allow us to write an
effective equation of state to relate the pressure (then
quickly rendered isotropic by dissipation) to the density
and perhaps the local entropy. DM is collisionless and only
more complex mechanisms, such as the effects of localized
DM clumps acting like macroparticles, could allow reliable
closures at higher order such as those in Ref. [81].
Numerous clumps at many small scales are indeed present
in CDM bottom-up clustering, but they most likely do not
play an important role for WDM, due to the much smoother
initial conditions. Tackling the full hierarchy, that is, the
original VP equation, appears then mandatory for WDM.
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The initial conditions in Eq. (2.7) take now the form

fðr;u;l2;s¼0Þ¼ ρM½1þδiðrÞ�fi
� ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

½u−uiðrÞ�2þl2=r2
q �

;

ð2:18Þ

where uiðrÞ is the initial infall velocity

uiðrÞ ¼ −
δMiðrÞ
4πρMr2

ð1þ ziÞ−1=2
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ΩM þΩΛðzi þ 1Þ−3

q

ð2:19Þ
written in terms of the overmass

δMiðrÞ ¼ 4πρM

Z
r

0

dr0r02δiðr0Þ: ð2:20Þ

We see that the spherical symmetry has allowed us to
reduce the problem to three dimensions. Of these, two
dimensions correspond to the radial phase space with
coordinates ðr; uÞ. The third coordinate l2 enters the VP
equation in (2.12) as a constant parameter, but is to be
integrated over to obtain the density as in Eq. (2.11).

III. NUMERICAL SETUP

Let us consider the Vlasov equation (2.4) regarding first
−∇ϕ as an external time-independent acceleration field.
This is just the Liouville equation for the incompressible
streaming of any conserved local quantity in the phase
space of a single particle. The formal solution can be
written

fðsÞ ¼ esLfð0Þ; L ¼ Lr þ Lv;

Lr ¼ −v ·∇r; Lv ¼ ð∇rϕÞ ·∇v;

where L is the so-called Liouvillian operator. Of course, Lr
and Lv do not commute and esL cannot be factorized into
the product of exponentials of Lr and Lv. But we can
certainly write

esL ¼ ½eτL�n; s ¼ nτ; ð3:1Þ

and for τ → 0

eτL ¼ eτ ~LðτÞ þOðτ3Þ; eτ ~LðτÞ ≡ eτLv=2eτLreτLv=2: ð3:2Þ

The cubic order or the approximation can be checked by
brute force power expansion of the exponentials or, more
simply, by noticing that

e−τ ~LðτÞ ¼ ½eτ ~LðτÞ�−1 ¼ e−τLv=2e−τLre−τLv=2 ¼ e−τ ~Lð−τÞ

implies

~LðτÞ ¼ ~Lð−τÞ ¼ LþOðτ2Þ:

Furthermore, it should be noticed that

es ~LðτÞ ¼ e−τLv=2½eτLveτLr �neτLv=2;

and therefore one needs to alternatively apply many times
eτLv and eτLr , while e�τLv=2 is applied only once at the
beginning and the end. Notice also that we may exchange
the role of Lr and Lv in ~LðτÞ without any problem. This
yields a second approximate evolution whose proximity to
the first one can be used to check the accuracy of both
methods.
The promotion of −∇ϕ to a time-dependent acceleration

field that depends on f itself is rather straightforward: we
just need to calculate −∇ϕ from the Poisson equation just
before every time eτLv is applied. In the application to the
cosmological context of Eqs. (2.4)–(2.5) the gravity
strength is also growing in time with the scale factor a.
We found that better stability in the evolution is obtained by
choosing nonuniform s-steps corresponding to uniform
steps in a, as can easily be determined from Eq. (2.6).
The great advantage of the well-known operator splitting

[82] defined in Eq. (3.2) is that the half-step evolution
operators, eτLv or eτLr, are just r-dependent translations in v
or v-dependent translations in r. With the so-called finite-
volume methods [82] these translations (which correspond
to the so-called advection equation) can be implemented
very accurately on uniform as well as nonuniform grids on
phase space, in such a way to ensure machine-precision
local conservation of the f values at each update. That is,
the L1 norm of f in any portion of the grid changes only
because of the flows at its boundaries. On the other hand,
the Ln norms with n > 1, which are all exactly conserved
in the continuum, are only approximately conserved on
any finite grid, unavoidably implying a numerical coarse
graining. In the continuum also the squared modulus of the
f Fourier transforms in r and/or v is conserved. This ceases
to apply after discretization, unless one makes use of the
nonlocal translation algorithm based on the discrete fast
Fourier transform. This algorithm, however, is more
demanding in terms of computer power and is essentially
restricted to uniform grids, a serious limitation, as we shall
see, in the present case of gravitational collapse.
Generally speaking, all Vlasov solvers, that is, numerical

methods that solve directly the Vlasov equation on a
phase-space grid, are free of the noise inherent to N-body
simulations but suffer to one degree or another numerical
artifacts, like diffusion and dissipation. In Ref. [83] a
comparison of different solvers was performed in the case
of a two-dimensional phase space. No method was found
as a clear winner, especially when the dependence of the
acceleration on the density is considered, as necessary in
the VP system (in [83] the context is that of plasma physics,
but there a close similarity to the cosmological setup in
comoving coordinates). In fact, the semi-Lagrangian meth-
ods with large integration time steps, which are certainly
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less diffusive of those based on operator splitting plus finite
volumes, are not allowed when the acceleration field
changes with time in a way that depends on the solution
itself.
Altogether, provided diffusion and dissipation are under

control, the simplicity and stability of operator splitting and
finite-volume methods make them particularly suited for
the purposes of this work; all numerical results reported in
the sequel are based on such a method. In particular, we
have chosen a high-resolution finite-volume advection
solver based on the piecewise linear reconstruction with
total-variation-decreasing slope limiters [82]. A similar
choice was made in Ref. [63], where the first (low-
resolution) simulations in the full six-dimensional phase
space are reported.

A. Spherical symmetry and three-dimensional grids

As already stated above, in this work we restrict our
attention to the spherical symmetric case of Sec. II B. The
phase space is then two dimensional and, together with the
angular momentum l2, we have a three-dimensional setup.
Thus, high resolutions can be achieved. To obtain spheri-
cally symmetric initial conditions, we perform averages
over angles of the initial distribution fðr; v; s ¼ 0Þ of
Eq. (2.7) around suitably chosen points as discussed in
more detail below.
Some caution is necessary in the treatment of the squared

angular momentum l2, which of course needs to be
discretized too. The actual values used, and in particular
their total number, must be chosen wisely depending on the
ðr; uÞ phase-space grid (see Sec. III B). The latter cannot
really be a static uniform grid, since the gravitational
collapse spans too many dynamical scales. In this case,
where the collapse center is fixed beforehand, it is simpler
to opt for a static nonuniform grid that gets finer and finer
near r ¼ 0 and v ¼ 0. Of course, in a higher-dimensional
situation when the collapse centers are not known a priori,
the most sensible choice would be to use some adaptive
mesh refinement scheme.
High resolution requires indeed nonuniform grids. The

radial density grows by several order of magnitudes near
the origin and the detailed evolving structure of this peak
is just the subject of this study. At the same time radial
velocities becomes very large near the collapse center and
the grid must allow for them since the only conceivable
boundary conditions in velocity space are those of free
outflow and no inflow. A grid with a too small velocity
cutoff would lead to unphysical mass loss. A nonuniform
grid may allow for a large velocity cutoff while keeping
within reason the total number of cells in the u direction.
We used nonuniform phase-space grids that have nr × nu

cells, with nr ranging from 400 to 700 and nu from
600 to 1000, to select the best compromise between
resolution and speed. These cells have increasing width
both for increasing r and juj, with the exponential laws

Δxjþ1¼ð1þ ϵxÞΔxj for x ¼ r; u and 0.015 < ϵr < 0.028,
0.02 < ϵu < 0.03, both variable parameters in search of
the best compromise between resolution and speed. The
narrowest cells in r, which are adjacent to r ¼ 0, have
typical widths around 2 pc and the narrowest cells in u,
which are adjacent to u ¼ 0, have typical widths around
2 m=s. The grid setup in the l2-direction is described next.

B. Angular momentum

The conservation of angular momentum plays a crucial
role in the spherically symmetric collapse and must be
handled very carefully. The angular momentum content of
the system is fixed once and for all by the initial distribution
fiðr; u;l2Þ in Eq. (2.18) and we need to numerically
perform the integral over l2 in Eq. (2.12) with a level of
accuracy that is consistent with the chosen ðu; vÞ grid.
Since fiðr; u;l2; sÞ dies exponentially fast for large l2, the
integral can be cut off at some finite value maintaining
the desired accuracy. Much trickier is the discretization
near l2 ¼ 0.
Indeed, from Eqs. (2.11) and (2.8), we see that

Z
∞

−∞
du

Z
∞

0

dl2fiðr; u;l2Þ ¼ r2

π
ð3:3Þ

while fiðr; u;l2; sÞ dies exponentially fast in 1=r2 for any
l2 > 0. Still, the condition (3.3) should be fulfilled as
closely as possible on the cell centers of the r grid when
the integral over u and l2 is replaced by finite sums.
Moreover, one should worry also about the higher
u-moment versions of (3.3). The higher l2-moment ver-
sions are not as worrisome, since the various l2 compo-
nents are coupled only through their sum.
In our mass-conserving finite-volume setup, the integral

over u is naturally replaced by the sum over u cells properly
weighted by the cell widths. For the sum l2 we have
more freedom but, for obvious computational reasons, this
sum should be as small as possible. To reach a convenient
compromise, we adopted a Gaussian quadrature scheme
with few free parameters that were optimized to fulfil
Eq. (3.3) to a given order for all cell centers of the r grid.
For grids with 400 r cells with the first cell, adjacent to
r ¼ 0, of width ∼2 pc, uniform agreement to order 10−3

requires a costly l2 grid with several thousands of points,
where l2 ¼ Oð1Þ pc2 ðm=sÞ2 is the smallest value, that is,
few times smaller than the angular momentum discretiza-
tion scale corresponding to the ðu; vÞ grid.
Fortunately, the l2 grid can be substantially coarsened by

the following simple strategy: as far as the initial conditions
are concerned, we can relax the accurate fulfillment of
Eq. (3.3) and start with a coarser l2 grid by including in
Eq. (2.7) a suitable compensating factor κðrÞ; κðrÞ cannot
anyway be too different from unity, since it allows us to
preserve the initial overmass, but cannot prevent the
inaccuracy in higher u and l2 moments of fi. Of course
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this trick is not possible during the evolution, since we do
not know beforehand the rhs in Eq. (3.3) when fðr; u;l2; sÞ
replaces fiðr; u;l2Þ in the lhs; we just have to run a few
prototype cases with finer and finer l2 grids, with corre-
spondingly κðrÞ closer and closer to unity, until the
evolution stabilizes. Typically, this happens more or less
when the number of l2 values reaches that of r values. The
corresponding κðrÞ exceeds unity by few percents for all
but the first and/or second leftmost r-grid center, where it
can reach values up to 10. In spite of this we could verify
in the prototype cases, by measuring against long runs
with thousands of l2 values, that the numerical evolution
remains quite accurate even on those cells.

C. Boundary conditions

Boundary conditions must be set also at r ¼ 0 and at
some finite value Rmax of r. On the line r ¼ 0 the correct
condition is of reflecting type, with each half r line at a
given u > 0 and the corresponding half r line at u < 0
“glued” together so that r translations act smoothly at
r ¼ 0. Finally, at r ¼ Rmax we assume free outflow, while
the inflow can be null or free. The last two alternatives are
actually quite different, since with no inflow the total mass
can only decrease with time, while with free inflow it might
go both ways depending on the initial conditions. In the
cosmological context free inflow appears more natural,
since the system under study is just a very small portion of
an initially nearly uniform Universe.
On the other hand, owing to the presence of the back-

ground mass in Eq. (2.12), it is possible to essentially
decouple the DM halo from the rest of the Universe, thus
rendering the two alternatives of null or free inflow almost
indistinguishable. To this end, it is sufficient to set up the
initial fluctuation profile δiðrÞ in Eq. (2.18) in such a way
that the overmass δMiðrÞ of Eq. (2.20) vanishes at some
point r ¼ R0 < rmax. Then the initial infall velocity uiðrÞ
also vanishes at r ¼ R0 and in the first stages of evolution
DM flows away from R0 in both directions. For the rest of
the evolution till redshift zero, a small but rather stable
outward flux for R0 < r < Rmax is maintained by the
gravitational push in the underdense region and by the
free outflow conditions at r ¼ Rmax. This prevents in a
physical way any uncontrolled inflow at r ¼ Rmax when
inflow is allowed by the boundary conditions.

D. Initial configurations

As anticipated at the end of Sec. II A, we assume for
the initial velocity distribution fiðvÞ the Fermi-Dirac form
of Eq. (2.9), which is appropriate to for fermions that
decoupled at equilibrium while ultrarelativistic. fiðvÞ para-
metrically depends only on the initial one-dimensional
velocity dispersion σ0 given by Eq. (2.10). Typically, in our
simulations we made the most straightforward reference
choice h ¼ 0.7, ΩM ¼ 0.3, g ¼ 2, and m ¼ 1 keV, so
that σ0 ¼ 25 m=s.

To complete the determination of fðr; u;l2; s ¼ 0Þ in
Eq. (2.18), we need instances of the initial overdensity
profile δiðrÞ, from which also the initial infall velocity uiðrÞ
can be determined according to Eq. (2.19). One possibility
is to make use of the reknown results of Ref. [84] on the
local peak statistics of random Gaussian fields. We prefer
here to proceed in a purely numerical fashion, to avoid
the averaging of local peak profiles over all random field
realizations.
We set the initial redshift as zi ¼ 100 (and verified that

zi ¼ 200 led to almost indistinguishable results) and then
followed the following procedure:
(1) Compute the WDM power spectrum PðkÞ for

fermionic thermal relics of the given mass
(1 keV=c2) at redshift z ¼ zi, using (a slight modi-
fication of) the 2011 CAMB package [85]. Analytic
expressions like those in Refs. [26,86] could be used
with almost unnoticeable effects on the simulations.

(2) Extract a random Gaussian field gðrÞ over a cubic
lattice (we used two lattices, one with 5123 points
and a lattice spacing of 45 kpc, the other with 7683

points and a spacing of 22 kpc), with zero mean and
unit (in the sense of Kronecker’s delta) variance.

(3) Fast-Fourier transform gðrÞ, multiply the result by
PðkÞ, and inversely fast-Fourier transform this prod-
uct to obtain one realization of the fluctuation field
δiðrÞ on the original lattice.

(4) Repeat the previous step, multiplying the Fourier
transform of gðrÞ byWðkRÞ ffiffiffiffiffiffiffiffiffiffi

PðkÞp
, whereWðkRÞ is

the Fourier transform of the sharp window function
½3=ð4πR3Þ�θðR − rÞ, namely,

WðyÞ ¼ 3

y3
ðsin y − y cos yÞ;

and R is chosen with an eye to the characteristic
mass ð4π=3ÞρMR3 of collapsed halos (but see below
for more); then inversely fast-Fourier transform to
obtain a smoothed δi;RðrÞ realization of the fluctuation
field. Obviously δiðrÞ and δi;RðrÞ differ significantly
only if R is significantly larger than the WDM free-
streaming length, which for a 1 keV=c2 thermal relic
can be calculated to be 185 kpc [67].

(5) Select local maxima of δi;RðrÞ that are prominent,
that is, higher than all other peaks within a distance
R0 to be properly selected (see below).

(6) Perform a spherical average of the unsmoothed δiðrÞ
around these prominent maxima and then inter-
polate over the chosen ðr; uÞ grid to obtain the
radially symmetric peaked profiles δiðrÞ to use in
Eqs. (2.18)–(2.19).

Some comments are required on the procedure just
outlined. First of all let us stress that the aim is not really
at an accurate halo statistics, for which more sophisticated
approaches are needed. Rather, we try and produce several
initial spherically symmetric peak profiles that are at least
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compatible with the true initial conditions, which are
certainly not spherically symmetric. In this respect, certain
common interpretations require some adjustment, espe-
cially because of the higher smoothness of the WDM
fluctuation fields δiðrÞ with respect to those of CDM.
For instance, in our approach the relation between the

smoothing scale R and the mass M̄ðRÞ ¼ ð4π=3ÞρMR3 of
collapsed halos is just marginal. Only after the collapse, at
redshift z ¼ 0, we can measure the actual mass of each DM
halo and this typically turns out to be larger than M̄ðRÞ.
In fact, to trust the spherical symmetry approximation, it is
necessary that a collapse center be sufficiently isolated,
bringing in the other distance scale R0 characterizing the
prominence as in point 5 above. By its definition, R0 must
be chosen to be quite larger than R, but not necessarily as
proportional to R. The mass of a collapsed halo is in
between M̄ðRÞ and M̄ðR0Þ and depends on specific features,
as shown in Sec. IVA, of the initial overdensity profile
δiðrÞ. The chosen value of R, which must be in any case
larger than the free-streaming length, sets an approximate
lower bound on the halo mass and allows for collapse
centers that are not maxima of the unsmoothed fluctuation
field δiðrÞ. Notice indeed that the initial profiles δiðrÞ
are often not monotonically decreasing or maximal at
r ¼ 0, although a common feature of all profiles is their
overall decrease toward zero (which is the average of
the fluctuation field) at larger distances, as dictated by the
spherical average and the prominence requirement. The

latter also implies that quite often δiðrÞ becomes negative
sufficiently far away. In turns, this often causes the
corresponding overmass δMiðrÞ to vanish at some slightly
larger distance.
In the upper panels of Fig. 1 we show a small subsample

of initial fluctuation peaks obtained by the procedure
outlined above, together with the corresponding overmass.
In the lower panel we anticipate the form of the collapsed
halos. The distance R0 at which δMiðrÞ vanishes deter-
mines M0 ¼ ð4π=3ÞρMR3

0, the total amount of DM mass
potentially involved in the collapse, which in turns provides
an upper limit to the mass of the collapsed halo for
whatever definition of such a mass one may choose.
Sometimes the overmass does not vanish within the
simulation interval 0 < r < Rmax, in which case we modify
by hand the far end of the δiðrÞ, through the addition of a
negative Gaussian peak centered near Rmax, in order to
determine a value of R0 close to Rmax. As explained in
Sec. III C the vanishing of δMiðR0Þ allows us to decouple
the collapsing halo from the rest of the Universe, preventing
on a physical basis an uncontrolled inflow rather than just
setting the inflow to zero as a sharp (and unphysical)
boundary condition. On the other hand, all initial peak
profiles for which the arrangement by hand is necessary
have essentially the same value of M0. This feature,
together with selection of peaks by prominence (and
probably several other reasons), quite likely makes our
sample of initial conditions statistically biased.

FIG. 1 (color online). Upper panels: initial profiles, at redshift z ¼ 100, for six different realizations of the procedure described in
Sec. III D. Lower panels: density and mass at redshift z ¼ 0, after the collapse.
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E. On the CFL condition

CFL, named after Courant, Friedrichs, and Lewy, is a
necessary condition of stability (and hence convergence)
for any numerical method that aims at solving partial
differential equations (PDE). It can be formulated as “a
numerical method can be convergent only if its numerical
domain of dependence contains the true domain of depend-
ence of the PDE” [82]. In the case of linear as well as
nonlinear transport equations, this requirement is often
translated into a bound of the form

ν≡
				wΔtΔx

				 ≤ 1 ð3:4Þ

on the so-called Courant number ν. Here, Δx represents the
cell width of a one-dimensional grid with a generic x
coordinate, Δt is the integration time step, and w is the
advection, or transport, velocity. To be more precise, there
are in general as many bounds like the one above as there
are cells, and with time dependence, too, since Δx, Δt, and
w might all have a local nature, due to nonuniformity of
the grid, adaptive integration stepping, and most notably
dependence of w on the PDE unknowns when the transport
equation is nonlinear.
In our case x is either r or u, w is one of the

corresponding advection velocities in Eq. (2.12),

wr ¼ u; wu ¼
l2

r3
− ϕ0ðr; sÞ;

while Δt is to be identified with the superconformal time
step τ of Eq. (3.1). Then the bound in Eq. (3.4) becomes
prohibitively stringent at small values of r and/or large
values of u, imposing values too small for τ, with
uncontrollable diffusion and dissipation. This would indeed
constitute a major obstacle to the whole approach if the
bound on the Courant number was regarded as necessary
for the CFL condition to hold.
In reality, however, the bound of Eq. (3.4) applies only to

local updating algorithms, that is, methods in which the
updated value of the variable of interest in a given cell
depends on the old values in the same cell and in a small,
fixed number (which depends on the specific method) of
nearby cells (the so-called algorithm stencil). The bound
does not apply to nonlocal algorithms where the stencil
grows with the advection velocity.
The simplest example is uniform advection in one

dimension. In this case advection reduces to rigid

translation; then, if the lattice is uniform, by splitting the
translation parameter into an integer multiple of the lattice
spacing Δx plus the fractional part, one can advect in a
single step by amounts wΔt much larger than Δx, making
the Courant number ν arbitrarily large. Using piecewise
linear reconstruction, it is not difficult to extend this method
also to nonuniform lattices. Finally, since, as explained
above, the operator-splitting Vlasov solver reduces to
intertwined translations, we can forget about the bound
of Eq. (3.4) on the Courant number and freely choose the
superconformal time steps in order to minimize diffusion
and dissipation while maintaining accuracy.

F. Accuracy and stability tests

To check our algorithms against numerical artifacts we
performed several stability and accuracy tests on the core
advection solver as well as on the full program. For brevity,
we report here only the main results of three full-program
tests. Indeed, the advection solver was adapted from quite
standard, widely tested, and employed algorithms (see, e.g.,
Ref. [82] and reference therein).
As accuracy quantifiers we considered the relative L1

norm, that is,

ΔX ¼
P

kwkjXðmÞ
k − XðeÞ

k jP
kwkjXðeÞ

k j
;

where X is either the distribution f itself or MðrÞ (mass),
KðrÞ (kinetic energy), UðrÞ (potential energy) computed
for the sphere of radius r. XðmÞ stands for the measured
value while XðeÞ stands for the one expected on theoretical
grounds. The sum runs over all indices of the observable,
that is, all grid indices in the case of f or only the r indices
in the case of M, K, and U. The weights wk are the cell
volumes or widths in the r direction, respectively. The
data reported in Table I refer to a nr × nu × nl2 grid with
nr ¼ 400, nu ¼ 600, and nl2 ¼ 432. Similar grids were
used for most collapse simulations.

1. Test 1: free streaming

This first test is just on free streaming, namely, without
expansion or gravity. The trivial analytic solution
fðr; v; tÞ ¼ fðr − vt; v; 0Þ can be turned into a general rule
for the fðr; u;l2; tÞ of the spherical setup, but its imple-
mentation on the ðr; uÞ grid requires rather intricate
interpolations. We therefore consider an initial distribution

TABLE I. Results of the test simulations described in Sec. III F. For each quantifier the two columns report the values at t ¼ T=10 and
t ¼ T, except for test 3, for which they correspond to redshift z ¼ 16 and z ¼ 0.

ΔM ΔK ΔU Δf

Test 1 2.8 × 10−4 8.5 × 10−3 5.2 × 10−3 1.7 × 10−2 − − 2.3 × 10−2 0.1
Test 2 1.8 × 10−2 6.3 × 10−2 0.6 0.25 5.7 × 10−2 0.47 0.9 × 10−2 0.15
Test 3 2.2 × 10−4 3 × 10−3 1.6 × 10−4 1.3 × 10−3 2.8 × 10−4 1.2 × 10−3 7.5 × 10−2 1.58
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of factorized form fðr; u; l2; 0Þ ¼ ρiðrÞfiðvÞ, so that we
immediately have the analytic form of fðeÞ, that is,

fðr; u;l2; tÞ ¼ ρiðr0ÞfiðvÞ;

r02 ¼ r2 þ 2rutþ
�
u2 þ l2

r2

�
t2:

In particular, we take ρiðrÞ and fiðvÞ to be both Gaussians
with zero mean and width w0 and σ0, respectively. As time
span for the evolution we take T ¼ ffiffiffi

3
p

w0=σ0, which is the
time needed for the spatial width to double. From Table I
one can see that the accuracy on M, K, and U profiles is
very good even if numerical diffusion is affecting f quite
substantially.

2. Test 2: King sphere

This test checks the numerical stability of a King sphere,
as in Ref. [63], so that the XðeÞ are just the initial values of
the XðmÞ. In a notation slightly different from that in
Refs. [2,63], we have

fðr; u;l2; 0Þ ¼ CθðψÞðeψ − 1Þ;

ψ ¼ ψ0 −
1

2σ2

�
u2 þ l2

r2
þ 2ΦðrÞ

�
;

where θðxÞ is the step function,C is a constant that fixes the
total finite mass M of the system, σ is the central velocity
dispersion, ψ0 is King’s shape parameter, and ΦðrÞ is
the self-consistent potential. This ergodic phase-space
distribution is stationary and stable, but any numerical
VP integrator inevitably changes it. The smallness of the
change, which necessarily grows in time due to numerical
diffusion and dissipation, is a measure of the accuracy and
stability of the integrator.
To be definite, we set ψ0 ¼ 8 and choose the two

scale parameters C and σ so that, if r0 is the King radius
and ρ0 is the central density, then r0 ¼ 4.77 kpc and
ρ0r0 ¼ 172.5M⊙=pc2. The total mass is M ¼ 1.57 ×
1011M⊙ and the tidal radius is 68.15r0. We take as the
time scale the Jeans free-fall time of the core, that is,
tJ ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiðπ=ðGρ0Þ
p ≃ 0.01H−1

0 , and T ¼ 10tJ as time span
for the simulation.
The results in Table I show that coarse-grained observ-

ables suffer differently from the large change of f due to
numerical diffusion. While the mass changes only by a few
percent, the cumulative local change of the energies is ten
times as much. The behavior of ΔK, larger at t ¼ T=10 than
at¼ T, is due to early fast diffusion in velocity space, which
locally heats the system. These results show that it is not
wise to trust a numerical VP integration for times too large
compared to the natural time scale of the problem at hand.

3. Test 3: uniform expansion

This third test consists in running a full cosmological
simulation, from z ¼ 100 to z ¼ 0, of the uniform expanding

Universe filled with WDM. That is, we set to zero the initial
fluctuations δi ¼ 0 and ui ¼ 0 in Eqs. (2.18)–(2.20). This
is manifestly a stationary solution of the six-dimensional
VP equation in comoving coordinates, Eq. (2.4), since ϕ
vanishes and fðr; v; s ¼ 0Þ in Eq. (2.7) does not depend on r.
Of course, also the spherically symmetricVP equation (2.12)
is satisfied, since the isotropic freeze-out distribution fi
depends only on v2 ¼ u2 þ l2=r2 and�

u∂r þ
l2

r3
∂u

�
v2 ¼ 0:

Hence, the test essentially checks how accurately this
equation numerically holds in our program. Any error will
be converted into small fluctuations, thus generating a fake
gravitational force that will in turn amplify the fluctuations,
that is, the numerical errors. After all, it is at the heart itself
of the theory of structure formation that the uniformly
expanding solution of the VP equation is unstable. Hence,
small perturbations are amplified and at the linear level
their characteristic amplitude grows proportionally to the
scale factor when matter dominates.
For this test, fðeÞ is just the initial f, and MðrÞðeÞ is the

background mass ð4π=3ÞρMr3 of Eq. (2.12), while

UðrÞðeÞ ¼ −
2π

5
ρMa2H2r5;

KðrÞðeÞ ¼ −UðrÞðeÞ þ 2πρM
σ20
a2

r3:

From the numbers in Table I, one sees that the physical
instability of the uniform expanding Universe causes a
large change in f, as expected, but the effects of fluctua-
tions on mass and energy profiles do not grow beyond the
linear level.

IV. MAIN RESULTS

In this section we describe the most important features,
according to our simulations, of the gravitational collapse
of the WDM halos. We selected many initial fluctuation
profiles according to the procedure in Sec. III D and
eventually collected 111 collapsed halos at redshift
z ¼ 0. Our results show that basic quantities such as the
density and velocities or the virial ratio do stabilize to a
large extent as z → 0 and show universal properties. This
quasistationary state is, however, quite different from naive
expectations based on approximate virialization or (local)
thermalization arguments.
For simplicity we show only one-dimensional profiles,

but the reader should keep in mind that we computed
the evolution in superconformal time s of the full three-
dimensional distribution function fðr; u;l2; sÞ. We also
recall that the initial velocity dispersion is σ0¼ 0.025 km=s,
consistent with a thermal relic massm ¼ 1 keV=c2 accord-
ing to Eq. (2.10). Reports on other values for σ0 are
provided only in Sec. IV E.
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A. Density and velocities

An example of the evolution of the mass density profile
ρðrÞ is depicted in Fig. 2. In this particular case the initial
fluctuation profile δiðrÞ was selected by prominence within
R0 ¼ 3 Mpc among the highest ones in the unsmoothed
perturbation field. The peak maximum in the origin is
δið0Þ ¼ 0.26, while M0 ¼ 4.27 × 1012M⊙ and δiðrÞ is
monotonically decreasing throughout the region of
interest. For ease of reference, let us name this example
H1. We could regard H1 as a numerical approximation to
the real, nearly spherical and undisturbed collapse of a
WDM halo.
Comparing the final density curves of H1 with those in

the lower left panel of Fig. 1 one can appreciate the
complete similarity, in spite of the large difference in the
initial peak heights and shapes. Indeed, the cored and
peculiarly hollow shape of these plots is the crucial result of
our simulations. This shape is universal, in the sense that
it is common to all initial overdensity profiles considered.
To highlight this fact, in the left panel of Fig. 3 we plot
the density curve of H1 superimposed to a set, denoted
SH1, of 28 similar curves obtained from different initial
perturbations. Along the density curve the dots indicate the
computation points, that is, the cell midpoints. In the right
panel we plot the profiles, that is, ρ=ρmax vs. r=rmax, that
show a good collapse onto a universal shape.
Indeed, the presence of a maximum value ρmax at a

nonzero distance rmax is the most remarkable universal

property of ρðrÞ. The values of ρmax and rmax vary instead
from halo to halo, depending on the initial overdensity
profile that was used to generate them.
Another universal property is the nearly constant loga-

rithmic slope in an extended region on the right of the
maximum. This slope stays very close to the value 2, that is,
ρðrÞ ∼ r−2, as can be verified by observing the presence of a
clear plateau in the plot of r2ρðrÞ vs r. The height of the
plateau, as well as its extent, are instead halo-dependent
features. It is also quite evident that theplateau extension, that
is, the region where ρðrÞ ∼ r−2, is much wider than in the
halos of N-body simulations, a discrepancy most likely due
to our setup near the boundary of the simulation box.
The r−2 behavior for r > ρmax agrees with the analytic

results of the self-similar spherical CDM collapse [87,88],
except for the absence of any sign of caustic remnants in
our z ¼ 0 density profile. There are several reasons for this
absence. True caustics, as singular points in the density,
are possible only in spherical CDM collapse, that is, when
the initial velocity dispersion vanishes. In such case the
squared angular momentum l2 also vanishes and at
any time the unique phase-space distribution function
fðr; u;l2 ¼ 0Þ is concentrated on a one-dimensional curve
that keeps folding over and over. Singular peaks in the
radial density appear where the curve intersects the r axis
vertically. In the case of WDM the initial velocity
dispersion leads to a smearing of the peaks because
fðr; u;l2Þ is no longer concentrated on a curve. A further

FIG. 2 (color online). Evolution of the density profile in the halo example H1. The arrows emphasize the direction of change. The
vertical dashed line indicates the position of the core radius rc defined in Sec. IV B.
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smearing is due to the many values (actually a whole
continuum from the analytic point of view) of l2 over
which one has to integrate to obtain the radial density as in
Eq. (2.18). Finally, the numerical coarse graining and
the diffusive nature of iterative Vlasov solvers eventually
smooth out also the residual peaks visible at intermediate
value of the redshift in the two upper panels of Fig. 2.
The smearing due to diffusion is absent in any particle-

based approach, like that of Ref. [41], where residual
caustic peaks are indeed found in the spherical WDM
collapse of a single halo.
Clearly rmax already gives a natural definition of core

radius, but we will nevertheless provide a slightly different
definition in the next section.
It must also be stressed that the history of ρðrÞ is very

similar throughout our halo sample, in spite of the
differences in the initial δiðrÞ profiles, with essentially
only two quantitative features that change from one halo to
the other. The first is the redshift of rapid formation of the
maximum at rmax (a natural definition of the moment of
collapse), signaled by the steep rise in Fig. 4; the second is
the value ρmax has at a fixed redshift before (z ¼ 20 in
Fig. 4). These two features are naturally strongly correlated.
The rather complex motion of the DM fluid can be

appreciated in Fig. 5, where the evolution of the average
radial velocity ū in H1 is depicted. Notice that ū vanishes as
z → 0 in a whole region around the core radius rc ≃ rmax,
signaling the separation of the core from the outer more
diffused halo. Namely, Jeans equation (2.17) nearly holds
around the core boundary and the core in its equilibrium
(hydrostatic in fluid viewpoint, dynamic in particle view-
point) with the rest of the halo.
On the other hand, the development, near redshift z ¼ 0,

of a large infall in the outer part of the halo and an outward
flux at even larger distances shows that the halo as a whole

is not in hydrostatic equilibrium. The outward flux leads to
a slight loss of matter.
Also, the radial and tangential velocity dispersions of

Eq. (2.15) feature a quite complex evolution, shown in
Figs. 6–7 again for halo H1. One must notice the r−1

decrease of σθ for r > rmax and its large oscillation at small
redshift in the central part of the halo. We find that the
pressure, Eq. (2.16), is strongly anisotropic, with the radial
component Prr being quite smaller than the tangential
component Pθθ in the region where the density grows, a
property that can be traced back to the conserved angular
momentum. Both components die faster than 1=r2 in the
extended region outside the core where ρðrÞ dies as 1=r2
(and therefore the mass grows like r), since both velocity
dispersions also vanish as r grows. This is not compatible

FIG. 4 (color online). Evolution for 20 > z >¼ 0 of the density
value on the cell where ρ ¼ ρmax at z ¼ 0. The dashed line
corresponds to H1. The lines in full color correspond to the six
examples of Fig. 1. The paler lines correspond to the 28 halos of
SH1; some of them are computed on a coarser grid of redshifts.

FIG. 3 (color online). The z ¼ 0 density of H1 with the explicit indication of the computation points (left panel) and the scaled density
(right panel). Paler lines correspond to the set SH1 with the other 28 halos obtained from different initial conditions.
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FIG. 5 (color online). Evolution of the average radial velocity ū≡ hui in H1. The arrows emphasize the direction of change. Notice the
oscillations within the core and the large outer infall.

 

 

 

  

 

 

 

FIG. 6 (color online). Evolution of the radial velocity dispersion σr in H1. Notice the minimum inside the core and the rise across the
region of maximal density.
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with Jeans equation (2.17) but is just in keeping with Euler
equation (2.14) with ∂tū ≈ 0 and ū∂rū≉0, due to the large
infall in the outer part of the halo.
If gravitational effects remain the only means to observe

DM, then the true DM observable of our numerical halos is
the mass MðrÞ or, even better, the circular velocity vcirc,
related to the MðrÞ by

v2circðrÞ ¼
GMðrÞ

r
¼ 4πG

3
r2ρ̄ðrÞ;

where ρ̄ðrÞ is the mean density. Because of the hollow core,
ρ̄ðrÞ is not everywhere larger than ρðrÞ, as it would be if
ρðrÞ were monotonically decreasing as in simple equilib-
rium systems. In particular, ρ̄ðrÞ is smaller than ρðrÞ where
ρðrÞ grows and larger than ρðrÞ beyond a certain point
rc > rr max, where ρ̄ðrcÞ ¼ ρðrcÞ≡ ρc (see the left panel of
Fig. 8). These are universal properties valid for all halos of
our simulations.
By construction, ρc is the value at which the density

should be cut to replace the hollow core with a constant
density core, that is to say,

Mc ¼ MðrcÞ ¼
4π

3
ρcr3c

is exactly the mass of the core. But since
rρ̄0ðrÞ ¼ 3½ρðrÞ − ρ̄ðrÞ�, we see that rc and ρc are also,
perhaps more simply, the position and the value of the
maximum of ρ̄ðrÞ, respectively.

The circular velocity can now be rewritten as

vcircðrÞ ¼ vc
r
rc

�
ρ̄ðrÞ
ρc

�
1=2

; vc ≡ vcircðrcÞ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
GMc=rc

p
:

ð4:1Þ

In the right panel of Fig. 8 we plot the profile vcircðrÞ=vc vs
r=rc for H1 (blue curve) as well as the same 28 halos of
Fig. 3 (paler curves). The scaling across the core radius is
very good and a large region of nearly constant vcircðrÞ,
a sort of plateau, can be identified, although is not really
flat in the logarithmic scale. The plateau heights and shapes
remain halo dependent also after the scaling by vc, but the
height variation is very limited in a neighborhood of 2.
Most importantly, all plateaus are concave, and particularly
so where all profiles merge in the scaling region across
r=rc ¼ 1 and coalesce in the universal profile. On the other
hand, for r=rc < 1 this profile drops faster than if the core
were bulky rather than hollow, a consequence of the mass
deficit in the hollow core.

B. Core radius, surface density, and other parameters

As anticipated by the adopted notation, we take rc and ρc
as definitions of the core radius and central, or core density,
respectively.
For H1, the halo under closer scrutiny, we find

rc ¼ 0.286 kpc; ρc ¼ 0.686M⊙=pc3; ð4:2Þ

FIG. 7 (color online). Evolution of the tangential velocity dispersion σθ in H1. The arrows emphasize the direction of change. Notice
the correlation with the density evolution in Fig. 2: when matter contracts it spins faster.
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which are values typical for the core of the DM halo in a
dwarf galaxy.
These values should be compared with the results of

N-body simulations of Refs. [43,44], which estimated in
few pc the core radius of collapsed halos produced by
thermal relics withm ¼ 1 keV=c2. Those simulations were
run with softening lengths of a few hundred pc and different
values of initial velocity dispersion σ0, while keeping the
initial conditions typical of m ¼ 2 keV=c2. [To keep
numbers under control, one has to recall that our σ0 is
the one-dimensional velocity dispersion, larger than the
characteristic velocity v0ðz ¼ 0Þ quoted in Ref. [43] by
the factor B ¼ 2.0768098… of Eq. (2.9).] At values of σ0
smaller than 0.025 km=s, the value consistent with
m ¼ 1 keV=c2 and our reference choice, the cores were
not resolved, but the density profile was found very close to
that of CDM for r > 1 kpc, that is, for r > 3rc. The first
resolved core was found for m ¼ 0.13 keV=c2 (simulation
WDM3 in Ref. [43]) with a quoted core radius
rcore ¼ 0.42 kpc. Using the data from simulations at higher
σ0 and their proximity from below to the theoretical
Q-based upper bound [47], rcore was extrapolated to be
≲10 pc for m≳ 1 keV=c2.
The discrepancy with our result for H1, rcore ¼

rc ¼ 356 pc, is due to the extrapolation procedure (mis-)
guided by the Q-based bound. Indeed, the Q-based bound
is itself based on the a priori assumption mentioned in the
introduction, namely, that the isothermal sphere provides a
good description of the halo core.
Suppose we try and fit the circular velocity vcircðrÞ of H1

with that of an isothermal sphere, in the hypothesis of
knowing vcircðrÞ only outside the core, say r > 2rc. The

circular velocity visoðrÞ of the isothermal sphere with
King’s radius r0 and central density ρ0 can be written as

visoðrÞ ¼
ffiffiffi
2

p
σ̄gðr=r0Þ;

where σ̄ is the isothermal one-dimensional velocity
dispersion

σ̄ ¼ 1

3

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
4πGρ0r20

q
;

and gðxÞ is the well-known profile that performs dampened
oscillations around unity as x → ∞. In the right panel of
Fig. 8 we plot with a dashed line the profile 1.3gðx=15Þ
vs x ¼ r=rc.
It is natural to start by matching the H1 plateau value

of vcircðrÞ, which has roughly the value 1.8vc, by settingffiffiffi
2

p
σ̄ ≃ 1.8vc, or

ρ0r20 ≃ 4.86ρcr2c :

It remains to fix the relative distance scale, that is, rc=r0. If
the plateau were really flat, the best fit would require the
limit r0 → 0 yielding the singular isothermal sphere, in
order to flatten out the characteristic oscillations of visoðrÞ
for large but finite r=r0. Since the plateau is not flat, a better
fit could be obtained at some r0 > 0, but certainly r0 must
be small enough so that at least the first large oscillation of
gðr=r0Þ gets out of the way, as in the right panel of Fig. 8.
Since we assumed that r ¼ 2rc is the closest we can get to
the core and x≃ 30 is the location of the first minimum of
gðxÞ on the right of its maximum, we have

r0 ≲ rc=15:

FIG. 8 (color online). Left panel: comparison of the hollow density ρðrÞ of H1 with its mean ρ̄ðrÞ, with the density profile of the
isothermal sphere and with the Burkert profile. Right panel: Circular velocity profiles of H1 (blue curve), of the same 28 halos of SH1
(paler curves), of the isothermal sphere and of the Burkert profile. The isothermal sphere is a good fit for r > 2rc, the region explored by
N-body simulations. The Burkert velocity profile is a good fit for rc < r < 10rc. Notice that the Burkert core radius r0B is almost twice
rc as a direct consequence of the shape of the profiles.
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15r0 is indeed the value at which the density ρisoðrÞ of
the isothermal sphere is declared to enter its mean 1=r2

regime [2]. In the left panel of Fig. 8 we plot ρisoðrÞ with
r0 ¼ rc=15 and ρ0 ¼ 4.86 × 152ρc.
Given reasonable mock data for the specific halo H1, the

fit could probably be improved, but such an exercise is
beyond the scope of this discussion, which is to show that
the dashed black lines in Fig. 8 provide the natural
extrapolations of density and circular velocity profiles
when the core is not resolved and an isothermal sphere
is assumed. Using the values (4.2) of H1 we find

ρ0 ≳ 750M⊙=pc3; r0 ≲ 20 pc;

in keeping with the extrapolated results of N-body simu-
lations in Refs. [43,44], whose quick conclusion was that
keV-ranged WDM does not help in solving the core
problem of DM halos [89].
We rather conclude that, even when N-body simulations

resolve the core by increasing the initial velocity
dispersion, they underestimate the final velocity dispersion
in the core region, since not so many particles with 105M⊙
mass can fit into a 107M⊙ core. This implies an overesti-
mation of the phase-space density Q to values close to the
theoretical bound, with the proximity holding through the
misguided extrapolation. In Sec. IV E we provide data on
the relaxation factor Z of Eq. (4.4) that show that, on the
contrary, also in the core region Q starts dropping very
rapidly as the initial velocity dispersion σ0 is decreased
below 0.40 km=s, that is, when m > 0.125 keV=c2.
With rc and ρc we can compute the so-called central

surface density μc ¼ ρcrc. For the case at hand, example H1
with the values as in Eq. (4.2), we find

μc ¼ 203M⊙=pc2 ð4:3Þ

in remarkable, but rather puzzling, agreement with the
observed value μ0;obs ¼ 140þ83

−52M⊙=pc2 [56,58], puzzling
because the observed value is obtained by fitting the
density of DM halos with the Burkert profile [59]

ρBðrÞ ¼ ρ0BBðr=r0BÞ; BðxÞ ¼ 1

ð1þ xÞð1þ x2Þ ;

which is quite different from the hollow one.
The surface density in Refs. [56,58] is defined as

μ0 ¼ ρ0Br0B. It can be estimated for our hollow cores by
trying to fit the circular velocity Eq. (4.1) with vB;circðrÞ, the
circular velocity obtained from the Burkert density, that is,

v2B;circðrÞ ¼ 2πGμ0r0Bx−1
�
logð1þ xÞ

þ 1

2
logð1þ x2Þ − tan−1ðxÞ

�
; x ¼ r=r0B:

The result is depicted by the magenta green lines in Fig. 8.
Notice that a good fit is possible only in some finite interval
on the right of rc, because of the mass deficit of the hollow
core and the too long r−2 tail of the diffuse part of the halo.
In Fig. 8 the interval, fixed a priori, is rc < r < 10rc.
A closer fit in a narrower interval is possible at the price
of increasing the gap between VB;max, the maximal Burkert
circular velocity, and Vmax, the actual maximum of vcirc.
Our choice is just a reasonable compromise. The best fit
values are

r0B ¼ 1.7rc ¼ 0.504 kpc;

μ0 ¼ 2.97μc ¼ 603M⊙=pc2; VB;max ¼ 58.2 km=s;

to be compared with Eqs. (4.2)–(4.3) and Vmax ¼ 63 km=s.
The concave shape and good scaling properties of v2circðrÞ,
quite evident from the right panel of Fig. 8, imply that
μ0=μc have similar values in all other halos of our sample
for any other reasonable choice of fit interval. It is
important to notice that r0B is almost twice rc, that is,
the fit is good also inside the Burkert core, down to almost
r0B=2. This internal fitting further improves as the initial
velocity dispersion σ0 increases (see Sec. IV E).
VB;max can be used to quantify the mass content of our

halos, without any reference to the excessively long r−2 tail
of the diffuse part. Thus, the deviation of μ0 from the
observed value is a direct measure of their core concen-
tration with respect to real DM halos. In the core region, H1
is roughly four times more concentrated than observed
DM halos because it has μ0=μ0;obs ≃ 4, that is, a maximal
circular velocity four times larger than the typical real
DM halo with the same core size. Moreover, since μc
happens to be very close to μ0;obs (for no obvious reasons, at
the moment), we see that also the ratio μ0=μc provides a
simple quantitative measure of the basic difference between
the hollow-core H1 and real DM halos.
This analysis is the least restrictive, of course, since we

are fitting H1 with a Burkert profile only where the fit can
be good, namely, for 0.5r0B ≲ r≲ 5r0B. Since the Burkert
profile allows very good fits to the circular velocities of real
DM halos down to few percents of r0B, one could say that
the hollow-core halos of 1 keV WDM, at least as obtained
in our simulations, are ruled out by observations. Still, the
closeness of μc with μ0;obs and the relative smallness of
μ0=μc provide a very interesting starting point for further
improvements and enhancements.
To characterize also the diffuse part of our hales, we

consider the pair r100 and Mhalo ¼ M100. These are the
radius at which the density drops to the value 100ρcrit and
the mass of the halo contained within the corresponding
sphere. Since r100 falls always within the region where
ρðrÞ ∼ r−2 and MðrÞ ∼ r, we expect r100 and M100 to be
roughly proportional. We include r100 and M100 for better
completeness only, because we have reasons to believe that
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the excessive length of the r−2 tail is a spurious effect of our
initial and boundary conditions.
In Fig. 9 we show some scatter plots of the above

parameters over the 111 halos of our sample. In particular,
from the scatter plot of rc vs ρc in the upper left panel,
one can appreciate more clearly the property already quite
evident from the lower left panel of Fig. 1, namely, that
profiles with a smaller ρc have a larger rc.
The lower panels of Fig. 9 exhibit the scatter plot of μc

vs ρc and vs M100. We see that μc grows quite slowly, by a
factor 2, as the central density grows by more than a
decade, while it decreases as M100 varies over a decade.
The mean, median, minimal, and maximal values of the

surface density are, respectively,

μc
pc2

M⊙
∶ 213;216;116;283; μ0

pc2

M⊙
∶ 650;650;377;901;

to be compared with the observed value μ0;obs ¼
140þ83

−52M⊙=pc2 [56,58]. The ratio μ0=μc oscillates between
2.89 and 3.36. The slow decrease of μ0 with the halo mass
M100 disagrees with the slow increase observed in recent
data [90], but our determination ofM100 most likely suffers
from the biased selection procedure of initial profiles.

C. Potential and phase-space density

Figure 10 shows the evolution of the “reduced” gravi-
tational potential ϕ of Eq. (2.5). At redshift z ¼ 0, wherever

the complete background density ρM − 2ρΛ can be
neglected with respect to actual DM density, this potential
coincides with the full gravitational potential Φ. From
Fig. 10 one can see that, in keeping with its coarser-grained
nature and unlike the density and especially the velocity
profiles, the ϕ profile varies monotonically, smoothly
developing a well with a nearly flat bottom in log r.
This is another clear manifestation of the hollow nature
of the core.

FIG. 9 (color online). Scatter plot of the core parameters defined in Sec. IV B as computed in 111 collapse simulations starting from
different initial overdensity profiles obtained as in Sec. III D. The red marks correspond to halo H1.

 

 

FIG. 10 (color online). Evolution of the reduced gravitational
potential ϕ in the case δið0Þ ¼ 0.26. Gray lines correspond to
intermediate redshifts.
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The (pseudo) phase-space density is given by Q ¼ ρ=σ3,
where 3σ2 ¼ σ2r þ 2σ2θ is the total velocity dispersion.
It provides an estimate of the full distribution function
for small velocities. In the purely classical context of this
work, where values of the distribution function f are just
transported through phase space by the VP equation, any
coarse-grained approximation of f cannot increase during
the collapse. Rather, the larger its decrease, the stronger
the violent relaxation associated with the collapse (see
Sec. IV E). Even if Q is not exactly a coarse graining of f,
but a ratio of coarse-grained quantities that scales like f, it
is expected to behave similarly.
In Fig. 11 we plot an example of the evolution of

(the local version of) the relaxation factor [29]

Zðr; zÞ ¼ Qðr; ziÞ
Qðr; zÞ : ð4:4Þ

We see that Zðr; 0Þ ranges from values of 103 to 107 within
the halo, with the smallest value Zmin attained near the core
radius rc. Notice also that ZðrÞ reaches even larger values
near the origin during the second inner infall exhibited in
the lower left panel of Figs. 2 and 5.

D. Nonvirialized cores

An observer at rest with the collapse center assigns to the
DM fluid the kinetic energy density (recall that ρ is the
comoving mass density and that 3σ2 ¼ σ2r þ 2σ2θ is the total
comoving velocity dispersion)

K ¼ 1

2
a−3ρhjvphysj2i ¼

1

2
a−3

Z
d3vjaHrþ v=aj2fðr; v; sÞ

¼ 1

2
a−5ρða4H2r2 þ a2Hrhui þ hui2 þ 3σ2Þ:

Recalling the definitions of ΦM and ΦΛ, the gravitational
potentials generated by the matter background and the
cosmological constant, respectively [see Eq. (2.5)], the
same observer assigns to the fluid the potential energy
density

U ¼ −a−5ρr∂rða2ΦM þ ϕÞ þ a−3ρΦΛ

¼ −
1

2
a−5ρða4H2r2 þ rϕ0Þ;

where in the last step we used Friedmann equation (2.6). To
be precise, UðrÞ is not a real density, since, through the
gravitational potential ΦM, it depends on all values ρðr0Þ
for r0 ≤ r. But for our purposes, the important property of
UðrÞ is that it does not depend on ρðr0Þ for r0 > r, thanks to
Gauss’ law.
In the uniform Universe, at redshifts large enough that

matter fluctuations can be neglected but WDM is already
nonrelativistic, the two energy densities reduce to

U ¼ −
ρM
2a

H2r2; K ¼ −U þ 3ρM
2a5

σ20;

and Kþ U ¼ 0 if σ0 ¼ 0, as in CDM, consistently with
the assumed open and flat Universe. Anyway, a nonzero σ0
does not spoil flatness, since it contributes a negligible
fraction of the total kinetic energy at large distances.
However, the kinetic energy density due to the velocity
dispersion dominates at short distances, since the Hubble
flow and the gravitational self-interaction become negli-
gible as r → 0. In other words, in the central region of the
future collapse the kinetic energy initially overwhelms the
potential energy as the r-dependent initial virial ratio

WðrÞ ¼ 2KðrÞ
−UðrÞ ¼

2
R
r
0 dr

0r02Kðr0Þ
−
R
r
0 dr

0r02Uðr0Þ ¼ 2þ 10σ20
a4H2r2

diverges as r → 0. This fact is only slightly perturbed
by the initial matter fluctuations, such as those at z ¼
zi ¼ 100, the initial redshift of our setup. In the subsequent
gravitational collapse triggered by those fluctuations,WðrÞ
changes instead dramatically.
The common lore on the evolution of WðrÞ, mostly

based on the radial collapse model of CDM, envisages a
violent relaxation by which the halo is formed as a
gravitationally bound system, while most matter that is
too energetic is lost. The halo is thus left in a quasista-
tionary state that is to a large degree virialized, in the sense
that WðrÞ ∼ 1 for rc < r < rvir, where rc is the core radius
and rvir is the virial radius, beyond which matter is
typically not in a quasistationary state and which could
be used to define the halo border. Thus, the system should
be more equilibrated if not even thermalized, the closer
to the origin one gets. At small distances, the phase-
space distribution function should then tend to an ergodic
form that depends only on the one-particle energy

FIG. 11 (color online). Evolution of the local relaxation factor
ZðrÞ, the ratio of the initial value of the (pseudo) phase-space
density to its value at redshift z. Gray lines correspond to
intermediate redshifts.
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corresponding to the quasistationary self-consistent
potential. The halo density ρðrÞ is then expected to
monotonically decrease away from the origin. In this
respect, angular momentum has received attention mostly
as a source of corrections to the radial infall model (see,
e.g., [91] and references therein).
Our numerical results clearly put forward quite a differ-

ent scenario for spherically symmetric WDM collapses.
The collisionless, nondissipative VP dynamics, the con-
servation of angular momentum, and the large values of the
initial WðrÞ (see discussion in Sec. I A) are in our opinion
the theoretical basis of our findings, although we do not
attempt here any quantitative theoretical analysis. The
evolution of the virial ratioWðrÞ, shown in Fig. 12, features
an excess of kinetic energy at small distances that gets
somehow trapped well inside the halo as the density peak
rises at r ¼ rc. WðrÞ is stabilizing, as expected in a
quasistationary state, although with more fluctuations than
density or potential. Yet a full plateau of very high WðrÞ
values remains at z ¼ 0 inside the core, clearly exceeding
the power law ðr=rcÞ2 proper of equilibrium systems.
To remark on this fact, we have plotted also the virial
ratio of an isothermal sphere with the same core size of H1.
Outside the core WðrÞ quite slowly decreases, reaching
values of order one far away from the core. Thus, the halo
core is hollow and really not virialized.
It is conceivable that this quasistationary state is only

metastable and that the excess kinetic energy might

eventually escape, together with a certain amount of matter
and angular momentum. This certainly does not happen
within the finite amount of time available from the initial
redshift z ¼ 100 to z ¼ 0. It would be interesting to find the
time scale of the above energy loss, but this is beyond the
scope of this work and perhaps beyond our numerical
possibilities, because of the unavoidable diffusion and
dissipation of VP solvers. Moreover, the large tangential
motions inside the core of the collapsing halo and the
relatively large value of Qprim, as discussed in the intro-
duction, suggest that a proper quantum treatment of angular
momentum could be necessary to achieve better quantita-
tive agreement with observations.
As mentioned above, the virial ratio WðrÞ decreases

quite slowly as r grows. If we define the virial ratio rvir
as the distance at which WðrÞ crosses unity, we find on
average values forty times larger than r100. This rather
unphysical situation is due to the excessive extension
to large distances of the 1=r2 decrease of the density.
The latter is probably due to a bias in our method of
selecting the initial overdensity profiles, leading to an
insufficient matter outflow. Improvements in this respect
are certainly necessary, but the hollow-core structure
can hardly depend on the lack of a significantly faster
density decrease in the halo outskirts. Most likely, a
faster decrease might enhance the core size, rather than
reduce it.

FIG. 12 (color online). Evolution of local virial ratio WðrÞ in H1, the same halo of Fig. 2 and Figs. 5–7. The bright green line
represents the virial ratio of an isothermal sphere with the same core size.

HOLLOW CORES IN WARM DARK MATTER HALOS FROM … PHYSICAL REVIEW D 90, 123531 (2014)

123531-23



E. Hollow cores and initial velocity dispersion

It is very interesting to investigate what happens when σ0
is varied. In Fig. 13 we plot the z ¼ 0 densities for five
increasing values of σ0, from σ0 ¼ 0.025 km=s to
σ0 ¼ 0.4 km=s, obtained always from the same initial
fluctuation δiðrÞ of halo H1. To decrease σ0 in our
numerical treatment of the VP equation is definitely more
difficult, since smaller σ0 implies larger, and very fast
increasing, dynamical range in the collapse. In other words,
more violent relaxation. This can be appreciated from the
second column of Table II, which reports the minimal value
Zmin of the local relaxation factor Zðr; 0Þ of Eq. (4.4).
Let us first notice that using the m − σ0 relation,

Eq. (2.10), the value σ0 ¼ 0.4 km=s corresponds to
m ¼ 0.125 keV=c2. In turns, this mass corresponds to
the N-body simulation WDM3 of Ref. [43]. One can check
that their WDM3 density profile agrees quite well with our
hollow ρðrÞ for r≳ 1 pc, on the right of the maximum. This
shows that, on the common domain of validity, N-body
simulations and direct VP integration agree, as far as the
mass density is concerned.
Figure 13 and Table II show that the overall size of the

core increases with σ0, as is natural to expect. Maybe less
obvious is the peak broadening, which progressively makes
the notion of hollowness less appropriate and harder to

detect with low-resolution means. In other words, the
second length scale of the hollow core, the hollowness
scale, grows to values comparable to the first scale rc.
Notice that rc, as defined in Sec IV B, does not grow very
much, while r0B, the core radius of the Burkert fit, grows
almost linearly with m. Moreover, both μc ¼ ρcrc and
μc ¼ ρ0Br0B considerably decrease, roughly maintaining
their ratio constant.
From the data in Table II we can write to a good

approximation,

μc
pc2

M⊙
≃ 205 − 43.6y; μ0

pc2

M⊙
≃ 614 − 105y;

y ¼ log2

�
40σ0
km=s

�
¼ −

4

3
log2

�
mc2

keV

�
;

and

r0B
pc

¼ 134þ 348
keV
mc2

: ð4:5Þ

Thus, baldly extrapolating to larger values of the WDM
mass, we obtain

μc ¼ 263M⊙=pc2; μ0 ¼ 754M⊙=pc2;
r0B ¼ 355 pc when m ¼ 2 keV=c2:

μc ¼ 308M⊙=pc2; μ0 ¼ 855M⊙=pc2;
r0B ¼ 239 pc when m ¼ 3.3 keV=c2:

Since μ0;obs ¼ 140þ83
−52M⊙=pc2, we see that the core of H1

would have a surface density (or surface gravity acceler-
ation, since the two are proportional) roughly six times
larger than real DM halos when m ¼ 3.3 keV=c2. Taking
into account that this applies to pureWDM collapse (that is,
with no baryon feedback of any type) and within a purely
classical approach (probably a more relevant limitation),
we consider this a very good starting point for the improve-
ments outlined in the introduction.
The last row in Table II shows values of r0B, μ0, and

VB;max in very good agreement with observations. The
corresponding mass, m ¼ 0.125 keV=c2, is, however, too
small with respect to the constraints from large-scale
structure.

 

 

FIG. 13 (color online). Density curves at redshift z ¼ 0 for
different values of the initial velocity dispersion σ0, in km=s, but
for the same fluctuation profile δiðrÞ of halo H1.

TABLE II. Parameter values for halo H1 at different values of the initial velocity dispersion σ0. In the last column is the equivalent
WDM mass according to Eq. (2.10).

σ0 s=km Zmin rc=pc μcpc2=M⊙ Vmax s=km r0B=pc μ0pc2=M⊙ VB;max s=km mc2=keV

0.025 2813 296 203 63 504 603 58.2 1
0.05 533 413 166 67.9 725 517 65.9 0.594
0.1 96.8 502 117 73.3 1100 415 72.4 0.353
0.2 17.9 566 68.5 78.7 1768 294 77.5 0.210
0.4 4.37 598 33.6 83.6 2939 188 79.8 0.125
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As a matter of fact, it is also too small with respect to the
value m ¼ 1 keV=c2 used in the matter power spectrum
to generate the fluctuation field from which the initial
profile was drawn. We cannot pretend to realistically lower
the surface density of one given halo by just raising σ0,
while keeping fixed the initial overdensity profile. Larger
σ0 implies more free streaming in the linear regime of
gravitational clustering, with the associated small-scale
depression of the matter power spectrum. Thus, a fluc-
tuation profile that was generic at σ0 ¼ 0.025 km=s could
be practically impossible at σ0 ¼ 0.4 km=s. This so-called
catch 22 of WDM, already mentioned in the introduction,
was pointed out already in Ref. [43], on the basis of the
results of N-body simulations. However, in Ref. [43], the
scaling of the core size with the mass was determined to be
rcore ∼m−2, while we find the relation (4.5) for the Burkert
core radius and an even slower decrease for rc. Once
extrapolated to m ¼ 1 keV=c2, the scaling rcore ∼m−2

leads to core sizes around 10 pc instead of several
hundreds, as we find.
The incorrect scaling rcore ∼m−2 can be traced to the

underestimation of the relaxation factor Zðr; 0Þ, that is, the
overestimation of the pseudo—phase-space density QðrÞ.

The smallest value Zmin ¼ 4.37 in the second column of
Table II, which corresponds to a value of the mass quite
close to simulation WDM3 of Ref. [43], implies that Zmin
will be even closer to unity, its theoretical minimum, for
smaller masses. Indeed, the WDM N-body simulations of
Ref. [43,44] could resolve the core only for such masses
and found Q in the core very close to its theoretical
maximum. But the explosive growth of Zmin in the second
column of Table II shows that their extrapolation of Q to
larger masses was ill founded.
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