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Models of inflation are tightly constrained by the PLANCK satellite data. Among them, Starobinsky’s
model with an exponential type potential seems to be challenged by the recent BICEP2 results. The model
is based on the existence of R2 terms in the Einstein-Hilbert action, which have their origin in the conformal
anomaly. Conformal (or Weyl) gravitational theories are relevant when matter fields become effectively
massless; i.e. their masses are negligible in comparison with the spacetime curvature. These theories may
include other, additional scalar fields. We show that their presence under general conditions does not
destabilize the inflationary behavior encountered in the Starobinsky model, although the issue of the exact
quantitative agreement with existing data, like the tensor to scalar ratio, rests on the choice of parameters.
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I. INTRODUCTION

The first round of data on CMB from the PLANCK
satellite experiment [1] is in comfortable agreement with
the predictions of the Starobinsky model of inflation.
Nevertheless, very recently, preliminary data from the
BICEP2 experiment [2] challenge this fact showing a
disagreement in the predicted tensor to scalar ratio. As a
result, the model has received a lot of attention [3].
Starobinsky’s model [4] is based on the existence of R2

terms that could arise due to the conformal anomaly of a
classical conformal theory. In the high curvature regime
masses can be neglected and quantum corrections can be
approximated by the quantum fluctuations of massless
conformally invariant fields. Part of these corrections to the
energy-momentum tensor can be summed into a local R2

term in the effective action [5]. The resulting action reads1

S ¼
Z

d4x
ffiffiffiffiffiffi
−g

p �
1

2
Rþ α

2
R2

�
: ð1Þ

Since the quantum corrections that give rise to R2 are
logarithmically divergent and counterterms are needed, the
parameterα is arbitrary.Note that these are theonly acceptable
quartic terms in the action, since terms RμνρσRμνρσ are
expressed in terms of R2 and RμνRμν through the Gauss-
Bonnet identity, and a term βRμνRμν introduces a spin-2
poltergeist (ghost) with mass β−1=2 that decouples only in the
β → 0 limit [6–8]. This issue will be discussed later.

The action (1), besides the standard massless spin-2
graviton, contains an additional scalar degree of freedom
which can become manifest if we introduce an auxiliary
scalar field variable Φ and write the action in the classically
equivalent form [9]

S ¼
Z

d4x
ffiffiffiffiffiffi
−g

p �
1

2
ð1þ 2ΦÞR −

Φ2

2α

�
: ð2Þ

By Weyl-rescaling the metric according to gμν ¼ Λḡμν, we
transform the action into the form

S ¼
Z

d4x
ffiffiffiffiffiffi
−ḡ

p
Λ2

×

�
1

2

ð1þ 2ΦÞ
Λ

R̄ −
3

4
ð1þ 2ΦÞ ð∇̄ΛÞ

2

Λ3
−
Φ2

2α

�

or, taking Λ ¼ ð1þ 2ΦÞ−1, into
Z

d4x
ffiffiffiffiffiffi
−ḡ

p �
1

2
R̄ −

1

2
ð∇̄σÞ2 − 1

8α

�
1 − e−

ffiffi
2
3

p
σ

�
2
�
: ð3Þ

For the last step we introduced the canonically normalized
field σ ≡ ffiffiffiffiffiffiffiffi

3=2
p

lnð1þ 2ΦÞ. The scalar potential of the
Starobinsky model in the form (3) shows clearly an
inflationary behavior.
In the present article we reconsider R2 gravity in the

more general framework of conformally invariant theories
and study its behavior with respect to inflation. We start
with a Weyl invariant action of gravitation and a scalar
field, incorporating the breaking induced by the conformal

*alahanas@phys.uoa.gr
†tamvakis@uoi.gr
1We use a metric with signature ð−1;þ1;þ1;þ1Þ.

PHYSICAL REVIEW D 90, 123530 (2014)

1550-7998=2014=90(12)=123530(12) 123530-1 © 2014 American Physical Society

http://dx.doi.org/10.1103/PhysRevD.90.123530
http://dx.doi.org/10.1103/PhysRevD.90.123530
http://dx.doi.org/10.1103/PhysRevD.90.123530
http://dx.doi.org/10.1103/PhysRevD.90.123530


anomaly in an R2 term with an arbitrary coefficient. First,
we study a version of this theory distinct from the
Starobinsky model, which as it stands does not lead to a
satisfactory slow-roll inflation, although additional scalar
fields, conformally coupled, could modify that. Next, we
consider a version that includes the Starobinsky model and
shares a generic inflationary behavior. We show that, under
general conditions, additional scalar fields, conformally
coupled to this model, sustain this behavior. Nevertheless,

the issue of the exact quantitative agreement with existing
data, like the tensor to scalar ratio, rests on the choice of
parameters.

II. GENERAL CONFORMALLY INVARIANT
FRAMEWORK

Consider the following Weyl invariant action

S ¼
Z

d4x
ffiffiffiffiffiffi
−g

p �
α00ðCμνρσÞ2 −

s
2

�
X2

6
Rþ ð∇XÞ2

�
− λX4 þ ΔL

�
ð4Þ

written in terms of theWeyl tensor2 Cμνρσ and a scalar field
X. The parameter s is restricted by conformal invariance to
the values s ¼ 0, �1. The parameter α00 is dimensionless.
Finally, ΔL stands for conformally invariant interactions of
X with additional fields. For s ¼ 1, X is a canonical field
but the gravitational Einstein term does not have a positive
sign. In contrast, for s ¼ −1 the field X is a ghost and has to
be fixed (conformal gauge fixing) but the Einstein term has
the correct sign. The Lagrangian (4) is invariant under the
following Weyl or conformal transformations�

gμν → ΛðxÞgμν
X → Λ−1=2ðxÞX ð5Þ

for any ΛðxÞ.
Applying the Gauss-Bonnet theorem, the Weyl term

takes the form

α00

Z
d4x

ffiffiffiffiffiffi
−g

p
C2
μνρσ

¼ α00
2

Z ffiffiffiffiffiffi
−g

p �
RμνRμν −

1

3
R2

�
þ � � � ð6Þ

where the ellipsis denotes a topological term (Euler
number) that does not contribute to the equations of
motion. This term is conformally invariant. Nevertheless,
as we mentioned in the Introduction, conformally coupled
matter can generate at the one-loop quantum level a term of
the form

α0
2

Z
d4x

ffiffiffiffiffiffi
−g

p
R2 ð7Þ

which breaks conformal invariance and is induced as a
result of the trace anomaly. The anomaly generated

effective action includes, in addition, nonlocal terms [10]
that can be made local by the introduction of auxiliary
fields [11]. For an extensive discussion on this issue see
[12–14].
The variation of the combined quadratic action terms (6)

and (7) gives

2ffiffiffiffiffiffi−gp δS
δgμν

¼ α00

�
Wð2Þ

μν −
1

3
Wð1Þ

μν

�
þ α0W

ð1Þ
μν ; ð8Þ

where the tensors Wð2Þ
μν and Wð1Þ

μν stem from the variation of
RμνRμν and R2 respectively.3 The first term is identically
traceless thanks to the Bianchi identity, as expected, since
it arises from a conformally invariant C2 term of the action.
In addition, it vanishes for Friedmann-Robertson-Walker
(FRW) geometries, yielding no contribution to the equa-
tions of motion.
From the previous discussion it becomes evident that as

far as the equations of motion are concerned the terms
given by Eq. (6) are Weyl invariant and do not contribute to
the equations of motion when we consider conformally flat
geometries, and in particular FRW cosmologies. Therefore
only the term (7), quadratic in the Ricci scalar R, plays an
essential role in the dynamics and will be kept in the action.
Then, as we shall see, after appropriate Weyl rescalings,
and a suitable gauge-fixing of the Weyl symmetry, the
gravitational part receives the well-known Einstein form.
However the presence of the terms (6) in the action is

2 Cρσμν≡Rρσμν−
2

ðD−2ÞðgρμRνσ þgρνRμσ −gσμRνρ−gσνRμρÞ

þ 2R
ðD−1ÞðD−2Þðgρμgνσ þgρνgμσÞ

3These tensors are [15]

Wð1Þ
μν ≡ 1ffiffiffiffiffiffi−gp δ

δgμν

Z
d4x

ffiffiffiffiffiffi
−g

p
R2

¼ 2∇μ∇νR − 2gμν□R −
1

2
gμνR2 þ 2RRμν

Wð2Þ
μν ≡ 1ffiffiffiffiffiffi−gp δ

δgμν

Z
d4x

ffiffiffiffiffiffi
−g

p
RρσRρσ

¼ 2∇ν∇ρR
ρ
μ −□R −

1

2
gμν□Rþ 2Rρ

μRρν −
1

2
gμνRρσRρσ :
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essential in order to study the quantum behavior of gravity
in the UV regime. Taking these terms into account the
gravitational part of the Lagrangian density in the Einstein
frame, denoted by barred quantities, takes on the form

1

2
R̄þ α00

2

�
R̄2
μν −

1

3
R̄2

�
: ð9Þ

In it the last two terms are Weyl invariant and have no effect
when studying FRW cosmologies, as already discussed.
This Lagrangian was studied by Stelle (see second refer-
ence in [6]) and it is a renormalizable gravity which
however includes ghost states, invalidating therefore the
unitarity of the theory. In general higher derivative gravities
are better behaved in the UV but they suffer, in general, by
the presence of negative norm states (ghosts) [16–18].
This subtle issue has been analyzed in the literature, where
the most general gravity action was considered which
involves terms up to quadratic in the Riemmann tensor
Rμνkλ, in an attempt to find a resolution towards building
theories of gravity that do not pose UV problems and are
ghost free. It has been shown that the completion of the
gravitational action by higher derivative nonlocal operators
may render a ghost free theory [17,18]. Nevertheless, the
study of inflation in such a framework is beyond the scope
of this paper.
Thus, in what follows we shall restrict ourselves to the

action

S ¼
Z

d4x
ffiffiffiffiffiffi
−g

p �
α

2
R2 −

s
2

�
X2

6
Rþ ð∇XÞ2

�
− λX4þ

�
þ ΔS; ð10Þ

where α is the renormalized value of the corresponding
dimensionless parameter. This action, apart from the R2

term which signals the breaking of conformal symmetry at
the quantum level, is invariant under the conformal trans-
formations (5). ΔSðgμν; X; σÞ contains conformally invari-
ant interactions with extra fields denoted collectively with
σ. In what follows we shall consider first the action without
the presence of extra fields. Two distinct cases exist
depending on the sign of s.

III. THE CASE s ¼ þ1

In the case s ¼ þ1 the kinetic term for the X field has the
correct sign and the action is

S0 ¼
Z

d4x
ffiffiffiffiffiffi
−g

p �
α

2
R2 −

1

12
X2R −

1

2
ð∇XÞ2 − λX4

�
ð11Þ

or, introducing the auxiliary field Φ,

S0 ¼
Z

d4x
ffiffiffiffiffiffi
−g

p ��
Φ −

X2

12

�
R −

Φ2

2α
−
1

2
ð∇XÞ2 − λX4

�
:

ð12Þ

Despite the superficial resemblance with the Starobinsky
model (2), the action S0 is clearly different since, for the
chosen sign of s, the term linear in curvature, − 1

12
X2R,

has the opposite sign of the standard Einstein term. Thus,
the inflationary behavior driven by the conformal anomaly
encountered in the Starobinsky model and embodied in the
potential (3) is not necessarily expected.
Next, we perform a Weyl rescaling of the metric

accompanied by a field redefinition

gμν ¼ Λḡμν; X ¼ Λ−1=2X̄: ð13Þ

Taking Λ as4

Λ

�
Φ −

X2

12

�
¼ 1

2
⇒ Λ ¼ 1

2Φ

�
1þ X̄2

6

�
;

we obtain

S0 ¼
Z

dx4
ffiffiffiffiffiffi
−ḡ

p �
1

2
R̄−

3

4

�
1þ X̄2

6

��∇̄Φ
Φ

�
2

−
1

2

ð∇̄ X̄Þ2
ð1þ X̄2

6
Þ

− λX̄4 −
1

8α

�
1þ X̄2

6

�
2
�
: ð14Þ

Introducing the field variables

X̄ ¼
ffiffiffi
6

p
sinhψ ; Φ ¼ e2ϕ; ð15Þ

we can write the action in the form

S0 ¼
Z

dx4
ffiffiffiffiffiffi
−ḡ

p �
1

2
R̄ − 3cosh2ψð∇̄ϕÞ2 − 3ð∇̄ψÞ2

− 36λsinh4ψ −
1

8α
cosh4ψ

�
: ð16Þ

The resulting scalar field equations of motion, dropping the
overline bars for simplicity of notation, are

□ϕþ 2 tanhψð∇μψÞð∇μϕÞ ¼ 0

□ψ ¼ coshψ sinhψðð∇ϕÞ2 þ 24λsinh2ψ þ 1

12α
cosh2ψÞ:

ð17Þ

For a flat FRW metric ds2 ¼ −dt2 þ a2ðtÞd~x2, these
equations take on the form

4X̄2 ¼ X2=ð2Φ − X2

6
Þ
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ϕ̈þ 3H _ϕþ 2 _ψ _ϕ tanhψ

¼ 0ψ̈ þ 3H _ψ

¼ − sinhψ coshψ

�
− _ϕ2 þ 24λsinh2ψ þ 1

12α
cosh2ψ

�
ð18Þ

where H ≡ _a=a. The corresponding Friedmann equation
reads

3H2 ¼ ρ ¼ 3cosh2ψ _ϕ2 þ 3 _ψ2 þ 36λsinh4ψ þ 1

8α
cosh4ψ :

ð19Þ

Although the general solution of the coupled system of
equations (18) is hard to obtain, a partial class of solutions
with _ϕ ¼ 0 reduces the system to just one equation for ψ,
namely

ψ̈ þ 3H _ψ ¼ −V 0ðψÞ=6 ð20Þ

with

VðψÞ ¼ 36λsinh4ψ þ 1

8α
cosh4ψ : ð21Þ

The potential in (21) cannot drive inflation. It is
convenient to introduce the parameter A≡ 1=ð288αλÞ
and write it as VðψÞ ¼ 36λðAcosh4ψ þ sinh4ψÞ. The
minimum of the potential is at ψ0 ¼ 0 and its minimum
value is Vmin ¼ 1=8α. The quantity F≡ −V 0ðψÞ=6 on the
rhs of (20) vanishes at ψ0 ¼ 0. Furthermore, its first
derivative at this point is F0

0 ¼ −24Aλ < 0, i.e. is negative.
Therefore, the point ψ0 ¼ 0 is an attracting fixed point and,
whatever its initial value, ψ will be attracted towards
ψ0 ¼ 0. Nevertheless, the potential has no flat directions
to guarantee that the slow-roll conditions for inflation can
be met. It is flat in the vicinity of the fixed point but the
attraction to it is not slow. Taking care of the noncanonical
normalization of the field ψ , we write down the slow-roll
parameter ϵ

ε≡ −
_H
H2

¼ 1

12

�
V 0

V

�
2

¼ 4

3
t2
�
Aþ t2

Aþ t4

�
2

ð22Þ

with t≡ tanhψ . This vanishes at the fixed point mentioned
above and there is, therefore, a range around ψ0 ¼ 0 for
which ϵ is small as required for inflation. However the
approach to this point is rather fast since the other slow-roll
condition can never be met. In fact the parameter η, with the
aforementioned normalization, is

η ¼ 1

6

�
V 00

V

�
¼ 2

3

Að4s4 þ 5s2 þ 1Þ þ 3s4 þ 4s2

Ac4 þ s4
; ð23Þ

with s≡ sinhψ and c≡ coshψ . At ψ0 ¼ 0 this reaches its
minimum value η ¼ 2=3 which is already large, implying
that the attraction to the fixed point takes place with large
acceleration. Therefore, without going into the details, we
are convinced that the model cannot sustain inflation. Thus,
although the general framework of conformal invariance
seems to be the right framework to investigate inflation
driven by the conformal anomaly, for the choice s ¼ þ1, at
least in the minimal case of one field X, no suitable
inflationary behavior is sustained.
We shall not proceed to analyze the possible inflationary

behavior induced by the presence of the extra fields, since
this will be entirely attributed to the extra fields and it is
bound to depend on details of their action. Instead, we shall
proceed to consider the more interesting s ¼ −1 case
which includes the standard Starobinsky model and starts
up having a generic inflationary behavior in the mini-
mal case.

IV. THE CASE s ¼ −1

Let us go back to the original action and take the
opposite sign of the parameter s ¼ −1. The action
expressed in terms of the auxiliary field Φ is

S0 ¼
Z

d4x
ffiffiffiffiffiffi
−g

p ��
Φþ X2

12

�
R −

Φ2

2α
þ 1

2
ð∇XÞ2 − λX4

�
:

ð24Þ

Now the Einstein-like term linear in the curvature has the
right sign but the field X is a ghost having the wrong sign in
its kinetic term. A common procedure is to fix the field X
by a conformal gauge condition. As such, the condition
X ¼ ffiffiffi

6
p

, reducing the linear coupling to the curvature into
its Einstein value, is often used [19]. In the absence of R2

terms, that break conformal invariance, this gauge choice
can be interpreted as spontaneous breaking of the con-
formal symmetry [19,20]. Performing aWeyl rescaling (13)
accompanied by a field redefinition, we go to the Einstein
frame where the action takes the form

S0 ¼
Z

d4x
ffiffiffiffiffiffi
−ḡ

p �
1

2
R̄ −

3

4

�
1 −

X̄2

6

��∇̄Φ
Φ

�
2

þ 1

2

ð∇̄ X̄Þ2
ð1 − X̄2

6
Þ

− λX̄4 −
1

8α

�
1 −

X̄2

6

�
2
�
: ð25Þ

The gauge condition on the scalar field reads

X ¼
ffiffiffi
6

p
⇒ X̄ ¼

ffiffiffi
6

pffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ 2Φ

p : ð26Þ

Inserting this condition into the action, it takes the
form
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S0 ¼
Z

d4x
ffiffiffiffiffiffi
−ḡ

p �
R̄
2
− 3

ð∇̄ΦÞ2
ð1þ 2ΦÞ2 −

36λ

ð1þ 2ΦÞ2

−
1

8α

�
2Φ

1þ 2Φ

�
2
�

ð27Þ

or, in terms of the field ϕ ¼
ffiffi
3
2

q
lnð1þ 2ΦÞ,

S0 ¼
Z

d4x
ffiffiffiffiffiffi
−ḡ

p �
1

2
R̄ −

1

2
ð∇̄ϕÞ2 − 1

8α

�
1 − e−

ffiffi
2
3

p
ϕ

�
2

− 36λe−2
ffiffi
2
3

p
ϕ

�
: ð28Þ

This is exactly the Starobinsky model in scalar language
with an extra λ self-interaction term which does not have
any drastic effect on its general inflationary behavior. Thus,
for the choice s ¼ −1 inflation is a property of the minimal
conformal theory without the presence of extra fields.
Nevertheless, the question of whether the detailed slow-
roll inflationary behavior is in quantitative agreement with
existing data is open. Moreover, the question whether this
general inflationary behavior persists in the presence of
extra conformally coupled scalar fields is not an empty one.
The role of additional fields that couple in a conformally
invariant manner cannot be excluded in general. For
instance additional fields may exist in effective gravity
theories, having their origin in string or superstring
theories, and at very high energies their couplings are
conformal invariant since their masses can be neglected.
The role of additional scalars coupled in a conformally
invariant manner in the context of cosmological inflation
models, in a different context, has been also considered in
other works; see for instance [19–21]. In the following
section we will take up and investigate the simple case that
an additional scalar field is present. Evidently more
involved scenarios are possible.

A. Extra fields

Let us consider an additional scalar field coupled in the
action through the extra term

ΔS ¼
Z

d4x
ffiffiffiffiffiffi
−ḡ

p
X̄4Pðσ; KÞ ð29Þ

where K stands for

K ≡ ð∇̄σÞ2
2X̄2

: ð30Þ

We assume that the field σ has zero Weyl weight, being
therefore invariant under the conformal transformations (5).
Then, K is Weyl invariant too and so is the full action ΔS
having the same form in both Jordan and Einstein frames that

are connected by these transformations. Such Lagrangians
have been considered in the context of K-inflation [22,23]
and also in higher derivative theories in which the vacuum is
ghost free (ghost-condensate vacua) [24–28].5
Thus, we add (29) to the minimal action S0 (16).

Introducing the field variables

1þ 2Φ ¼ e
ffiffi
2
3

p
ϕ;

X̄ ¼
ffiffiffi
6

p
sinψ ; ð31Þ

the action takes the form

S ¼
Z

d4x
ffiffiffiffiffiffi
−ḡ

p �
1

2
R̄ −

1

2
ð∇̄ϕÞ2

�
cos2ψ

ð1 − e−
ffiffi
2
3

p
ϕÞ2

�

þ 3ð∇̄ψÞ2 − VðψÞ
�
þ ΔS: ð32Þ

On the other hand, the gauge condition (26) becomes X̄ ¼ffiffiffi
6

p
e−

1
2

ffiffi
2
3

p
ϕ and, enforcing it on the action, we obtain

S ¼
Z

d4x
ffiffiffiffiffiffi
−ḡ

p �
1

2
R̄ −

1

2
ð∇̄ϕÞ2 − VðϕÞ þ X̄4PðK; σÞ

�
:

ð33Þ

In the equation above VðϕÞ¼ 1
8αð1−e−

ffiffi
2
3

p
ϕÞ2þ36λe−2

ffiffi
2
3

p
ϕ.

We shall assume that the theory is invariant under
constant translations σ → σ þ const. and, therefore, P is
only a function of K. Such solutions are analogous to the
so-called “ghost condensate” solutions related to the
spontaneous breaking of Lorentz invariance as has been
already discussed [24–28].
The corresponding equations of motion are

1ffiffiffiffiffiffi
−ḡ

p ∂μð
ffiffiffiffiffiffi
−ḡ

p
X̄2PK∂μσÞ ¼ 0

□ϕ ¼ V 0ðϕÞ þ
ffiffiffi
2

3

r
X̄4ð2P − KPKÞ ð34Þ

with PK ≡ ∂P
∂K. In a FRW geometry these equations are

d
dt

ða3X̄2PK _σÞ ¼ 0

ϕ̈þ 3H _ϕ ¼ −V 0ðϕÞ −
ffiffiffi
2

3

r
X̄4ð2P − KPKÞ ð35Þ

The corresponding energy and momentum densities are

5The Lagrangian above for the σ-field is the Weyl-invariant
generalization of a similar action where X̄ ¼ constant, occurring
in ordinary (non-Weyl) gravity models which employ the shift
symmetry σ → σ þ const [24–28].
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ρ ¼ 1

2
_ϕ2 þ VðϕÞ − X̄2PK _σ

2 − PX̄4

p ¼ 1

2
_ϕ2 − VðϕÞ þ PX̄4: ð36Þ

When _ϕ2 ≪ VðϕÞ the null energy condition ρþ p > 0
holds as long as PK < 0 and for PK ¼ 0 we have ρþp¼ 0
or, equivalently, a barotropic index w ¼ −1 analogous to a
cosmological constant.
Note that the set of equations (35) depends on the

variables ϕ and ω≡ _σ and can be cast in the form

d
dt

�
a3

∂Veff

∂ω
�

¼ 0; ϕ̈þ 3H _ϕ ¼ −
∂Veff

∂ϕ ð37Þ

with

Veff ¼ VðϕÞ − X̄4P; ð38Þ
while the energy-density and pressure, given by (36), can
be written as

ρ ¼ 1

2
_ϕ2 þ Veff − ω

∂Veff

∂ω ; p ¼
_ϕ2

2
− Veff : ð39Þ

Considering a velocity expansion and restricting ourselves
up to a quartic velocity term

P ¼ −f0K −
g0
2
K2; ð40Þ

with f0, g0 constants, which is mandatory if the symmetry
σ → σ þ const is imposed,6 we obtain for the Veff given
above

Veff ¼ VðϕÞ − 1

2
μ2ðϕÞω2 þ g0

8
ω4; ð41Þ

with

μ2ðϕÞ≡ f0X̄2 ¼ 6f0e
−

ffiffi
2
3

p
ϕ: ð42Þ

Note that the effective potential is now the sum of the
Starobinsky potential and a Higgs-like potential.

B. A class of solutions

Looking for solutions of the above equations, we first
consider the class of solutions with PK ¼ 0, corresponding
to the minima of Veff with respect to ω

PK ¼ 0 ⇒
∂Veff

∂ω ¼ 0: ð43Þ

For the chosen form (40) of P they imply

ω2 ¼ 2μ2ðϕÞ=g0 ⇒ _σ2 ¼ 12f0
g0

e−
ffiffi
2
3

p
ϕ

ϕ̈þ 3H _ϕ ¼ −18ξ
ffiffiffi
2

3

r
e−2

ffiffi
2
3

p
ϕ −

1

4α

ffiffiffi
2

3

r
e−

ffiffi
2
3

p
ϕ

3H2 ¼ 1

2
_ϕ2 þ VðϕÞ − 18

f20
g0

e−2
ffiffi
2
3

p
ϕ ð44Þ

where we have introduced the parameter ξ as

ξ≡ 4λþ 1

72α
−
2f20
g0

: ð45Þ

It is clear from (44) that we have a solution with constant
ϕ, namely

ϕ0 ¼
ffiffiffi
3

2

r
lnð72αξÞ; _σ20 ¼

f0
6g0αξ

: ð46Þ

The corresponding Hubble parameter is constant and it is
given by the Friedmann equation as

H2
0 ¼

1

24α

�
1 −

1

72αξ

�
: ð47Þ

This “static” solution corresponds to a minimum of Veff ,
satisfying

∂Veff

∂ω ¼ ∂Veff

∂ϕ ¼ 0: ð48Þ

Linear stability of (46) can be readily checked.
Perturbing around this solution as

ϕ ≈
ffiffiffi
3

2

r
lnð72αξÞ þ δϕ; σ ≈ t

ffiffiffiffiffiffiffiffiffiffiffiffi
f0

6g0αξ

s
þ δσ; ð49Þ

we are led to

δϕ̈þ 3H0δ _ϕþ ð432α2ξÞ−1δϕ ¼ 0 ð50Þ

δ _σ � ðf0=36αg0ξÞ1=2δϕ ¼ 0 ð51Þ

with solutions

δϕ ¼ Be−Γt; δ _σ ≈ ∓B
2

ffiffiffi
2

3

r ffiffiffiffiffiffiffiffiffiffiffiffi
f0

6g0αξ

s
e−Γt; ð52Þ

with

6Also, as a result of this symmetry, the scalar potential for the
field σ can be only a constant which however can be incorporated
in the quartic coupling λ. Therefore this symmetry leads to the
minimal scenario, as far as the number of the free parameters
describing the model are concerned. It would be nice to see, in the
more general case, that the shift symmetry solution corresponds
to an attractor but this is beyond the scope of this work.
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Γ ¼ 3H0

2

�
1�

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 −

H2
c

H2
0

s �
;

�
H2

c ≡ 1

972α2ξ

�
: ð53Þ

Note that for H2
0 < H2

c ⇒
ffiffiffiffiffiffiffiffiffiffi
72αξ

p
< 5

3
, the correction δϕ

has an oscillatory factor. As for the corrections to the
Hubble rate, one finds from the Friedmann equation, by a
straightforward computation using the first order result
(47), that

6H0δH ≈ δϕ

�
V 0ðϕ0Þ þ

ffiffiffi
2

3

r
36f20
g0

e−2
ffiffi
2
3

p
ϕ0

�
: ð54Þ

The term within the bracket on the rhs of this equation is
actually, up to a minus sign, the lhs of Eq. (44), i.e.
ϕ̈0 þ 3H _ϕ0, which vanishes since ϕ0 is a constant. As a
result

δH ¼ 0: ð55Þ

The solution (46) belongs to the restricted class satisfy-
ing ∂Veff∂ω ¼ 0. However this condition cannot be met for
arbitrary initial conditions. In fact, the general solution of
the equation of motion for σ, as can be seen from (37), is

∂Veff

∂ω ¼ −
C
a3

ð56Þ

withC a constant. This is equivalent to being at aminimumof

~Veff ¼ Veff þ
C
a3

ω ¼ −
1

2
μ2ðϕÞω2 þ g0

8
ω4 þ C

a3
ω: ð57Þ

Solutions that eventually lead to an expanding scale factor
are bound to reach the minimum of Veff , since, after an
early period, the linear term will become subdominant.
In this case the system will evolve according to (46)
independently of initial conditions.
In order to study the complete solutions of (56) it is

convenient to rescale ω as

ω ¼
�
2f0X̄2

g0

�
1=2

Ω: ð58Þ

Then, Eq. (56) takes on the form

Ω3 −Ω − fðtÞ ¼ 0; ð59Þ

where fðtÞ is given by

fðtÞ ¼ CiðX̄aÞ−3: ð60Þ

In the equation above Ci is a constant, proportional to the
one appearing in (56). Thus the solution for Ω is controlled
only by the function fðtÞ. This equation has only one real

solution if f2ðtÞ > 4
27

and three real solutions when
f2ðtÞ < 4

27
. As can be easily seen from (56), unless the

initial velocity, when inflation starts at time ti, is such that
Ωi lies in the range jΩij < 2=

ffiffiffi
3

p
, only the first case is

applicable. Thus, it seems natural to assume, at least for a
wide range of initial conditions, that f2ðtiÞ > 4

27
initially.

This assumption is also supported by the fact that at ti the
value of f2ðtiÞ is naturally large, given the velocity _σi and
the value of ϕi, for reasonable values of Ci, since the
cosmic scale factor is small and also small is X̄ðtiÞ for
values of ϕi in the (almost) flat region of the potential VðϕÞ
where inflation starts from. Thus, we consider f2ðtiÞ > 4

27

which is a valid assumption. The sign of the constant Ci in
(60), and hence the sign of fðtÞ depends on the sign of the
initial velocity of σ, or the same of the initial value of Ω.
Changing the sign of Ω simply reverts the sign of Ci, and
hence that of fðtÞ as can be seen from (59). Thus, the cases
Ω > 0 and Ω < 0 are mirrors of each other and are treated
in exactly the same manner. Therefore, without loss of
generality we take fðtiÞ > 0 initially, which combined with
f2ðtiÞ > 4

27
yields Ωi > 2=

ffiffiffi
3

p
on account of (59). Then

only one solution exists at ti but this solution evolves, since
as time elapses fðtÞ gets smaller, staying however always
positive. The reason for the decrease of fðtÞ is that the
cosmic scale factor, or more precisely the combination X̄a,
which enters fðtÞ in Eq. (60), gets larger as time increases.
In fact it can be easily seen that the time derivative of
X̄a is always positive, as ϕ approaches the minimum
of the potential VðϕÞ, since the velocity of ϕ is
negative. In particular using Friedmann equation it is easily
found that

dðX̄aÞ
dt

¼ X̄a

� ffiffiffi
ρ

3

r
−

_ϕffiffiffi
2

p
�
:

Thus, eventually the value of fðtÞ becomes equal to
ffiffiffiffi
4
27

q
and when this happens, at a time tc, ΩðtcÞ ¼ 2=

ffiffiffi
3

p
. The

function fðtÞ keeps decreasing, dropping below
ffiffiffiffi
4
27

q
, but it

stays positive, approaching zero. At this point Ω is þ1,
which actually corresponds to the positive sign minimum of
the “Higgs” potential. Note that although there are three

real solutions when fðtÞ drops below
ffiffiffiffi
4
27

q
, only one of them

is continuous as function of the time at the critical point tc.
The situation is depicted in Fig. 1. The analytic form of this
solution for ΩðtÞ is given by

ΩðtÞ ¼

8>><
>>:

1ffiffi
3

p ðAðtÞ þ 1=AðtÞÞ; if f >
ffiffiffiffi
4
27

q
1ffiffi
3

p cosΘðtÞ þ sinΘðtÞ; if
ffiffiffiffi
4
27

q
> f > 0

ð61Þ
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In this the functions AðtÞ and ΘðtÞ are analytically given by

AðtÞ ¼ ffiffiffiffiffiffiffiffiffiffiffi
1þ h

p
−

ffiffiffi
h

p
;

ΘðtÞ ¼ 1

3
ArcCosð− ffiffiffiffiffiffiffiffiffiffiffi

1þ h
p Þ where h≡ 27f2

4
− 1:

ð62Þ

Note that the function h by its definition is larger than −1.

In particular when −1 < h < 0 the range of f is
ffiffiffiffi
4
27

q
>

f > 0 and when h > 0 it lies in the range f >
ffiffiffiffi
4
27

q
.7

Therefore the conclusion of this analysis is that the
solution ΩðtÞ tends to þ1ð−1Þ, provided that the initial
values are such that Ωi > 2=

ffiffiffi
3

p ðΩi < 2=
ffiffiffi
3

p Þ. The values
Ω ¼ �1 are actually the locations of the Higgs minima
∂Veff∂ω ¼ 0, corresponding to PK ¼ 0. Thus, we conclude that
the solution eventually approaches either of the minima
(depending on the sign of the initial σ velocity) of the Higgs
potential and then the model becomes effectively a single
inflaton model governed solely by the field ϕ. All this is
supported by the generic shape of the potential shown in
Fig. 2, which in the ϕ-direction has the form of the
Starobinsky potential and in the ω-direction has the form
of a Higgs-like potential, as we have already discussed,
exhibiting two symmetric minima for small ϕ values.

C. Slow-roll inflation

Substituting the solution of the equation for σ, i.e.
PK ¼ 0, into the other equation, we have a single canoni-
cal field ϕ moving according to

ϕ̈þ 3H _ϕ ¼ −V 0
effðϕÞ ð63Þ

in the effective potential

VeffðϕÞ ¼
1

8α

�
1 − 2e−

ffiffi
2
3

p
ϕ þ Le−2

ffiffi
2
3

p
ϕ

�
ð64Þ

with L≡ 72αξ. The minimum of the potential occurs at

ϕ0 ¼
ffiffi
3
2

q
lnL and its value is V0 ¼ 1

8α ð1 − 1
LÞ. Recall that

the Hubble rate H0 is 3H2
0 ¼ V0 and therefore the mini-

mum of the potential must be positive. Thus, the parameter
L should be larger than unity, L > 1.
The corresponding slow-roll parameters are

ϵðϕÞ ¼ 1

2

�
V 0
effðϕÞ

VeffðϕÞ
�

2

¼ 4

3
e−2

ffiffi
2
3

p
ϕ

�
1 − Le−

ffiffi
2
3

p
ϕ

1þ Le−2
ffiffi
2
3

p
ϕ − 2e−

ffiffi
2
3

p
ϕ

�2

ð65Þ

ηðϕÞ ¼ V 00
effðϕÞ

VeffðϕÞ
¼ 4

3
e−

ffiffi
2
3

p
ϕ

�
2Le−

ffiffi
2
3

p
ϕ − 1

1 − 2e−
ffiffi
2
3

p
ϕ þ Le−2

ffiffi
2
3

p
ϕ

�
:

ð66Þ

The slow-roll parameter ϵ is non-negative and it vanishes
at the minimum of the potential, exhibiting maxima at

e
ffiffi
2
3

p
ϕmax ¼ L�

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
L2 − L

p
. The smaller of these local

maxima lies below the minimum of the potential. At the
other the maximum value of ϵ is ϵðϕmaxÞ ¼ ð3ðL − 1Þ
ð2L − 1þ 2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
L2 − L

p
ÞÞ−1. This is a decreasing function of

f t 4 27

3

f t 4 27

f t 4 27
0.2

0.4

0.6

0.8

1.0

0.2

0.4

1.0 0.5 0.5 1.0

FIG. 1 (color online). The form of the function Ω3 − Ω (blue

line). The function fðtÞ for a value larger than
ffiffiffiffi
4
27

q
(green line),

for values equal to
ffiffiffiffi
4
27

q
(red line), and a value smaller than

ffiffiffiffi
4
27

q
(gray line).

FIG. 2 (color online). General shape of the two-field potential
as function of ϕ, ω (for explanation see main text).

7For the mirror case that corresponds to an opposite initial
velocity −Ωi the function fðtÞ is negative, and exactly opposite to
the one given by (61) and approaches zero from below. Then ω
approaches the value −1 corresponding to the negative sign
minimum of the Higgs potential.
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the parameter L. This can be large when L is close to unity.
However, already for L > 1.2 we have that ϵðϕmaxÞ <
0.700. As indicative, for L ¼ 2 the value of the maximum is
ϵðϕmaxÞ ¼ 057. Therefore, ϵ is in the slow-roll regime most
of the time and only when ϕ approaches the point ϕmax does
it attain its maximum value, which is much less than unity
when L > 2. It is clear then that, for such values of L, it
suffices to consider only the slow-roll parameter η in order
to study whether it might signal the exit from inflation by
moving out of the slow-roll regime. Note that for values of
L ≥ 5, the maximum value of ϵ is ≤ 0.005, which corre-
sponds to a tensor to scalar ratio r≃ 16ϵ < 0.08.
Therefore, already from this simple analysis we see that
values of r in the region r > 0.1 require small values
L < 5.
If ϕ1 is the value for which ηðϕ1Þ ¼ 1 and inflation

stops,8 we obtain e−
ffiffi
2
3

p
ϕ1 ¼ 3=ð1þ ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1þ 15L
p Þ. The loca-

tion of ϕ1 with respect to the minimum ϕ0 of the potential
gives a corresponding range for the parameter L. For
ϕ1 > ϕ0 we obtain L < 7=3 and the inflaton starts accel-
erating before the minimum. The case L > 7=3 corre-
sponds to ϕ1 < ϕ0. If this were the case, the inflaton would
pass beyond the minimum; it would suffer deceleration,
inverting its motion and moving towards the minimum
again, but during all this time it would still be in the slow-
roll regime. Certainly, a solution of ηðϕ1Þ ¼ 1 larger than
the minimum is relevant, since the inflaton will pass this
point as it moves towards the minimum. In contrast, a
solution with ϕ1 smaller than the minimum does not
necessarily imply that the particle reaches that point.
This is supported by analyzing the real motion of ϕ for
selected L > 7=3 values, where η grows as the inflaton
moves towards the minimum and eventually settles there
without ever becoming equal to 1. Thus, the range of values
L > 7=3 corresponds to the inflaton reaching the minimum
of the potential while still being in the slow-roll regime.
The number of e-folds is given by N ¼ lnða1=aÞ ¼R t1

t dtH but from the slow-roll equations H2 ≈ 1
3
V,

3H _ϕ ≈ −V 0, we have H ≈ − V
V 0 _ϕ and

NðϕÞ ≈ −
Z

ϕ1

ϕ
dϕ

V
V 0 :

For our potential, given by Eq. (64), we have

N¼ 3

4

�
1

x
−

1

x1
− ðL−2Þ lnðx=x1Þ− ðL−1Þ ln

�
1−Lx1
1−Lx

��
ð67Þ

with x ¼ e−
ffiffi
2
3

p
ϕ. In (67) with ϕ, corresponding to x,

we denote the field value at which the desired number

of e-foldings is achieved, while ϕ1 signals the end of the
inflation period and it is not necessarily connected with
the departure of η from the slow-roll regime. So ϕ1 > ϕ0 is
assumed, while the full range of values for L is considered
accessible. Note that ϕ > ϕ1 > ϕ0 implies x < x1 <
x0 ¼ 1=L. Thus, we have xL < 1. This does not neces-
sarily imply that L is small.
The number of e-folds (67) can be considered as

dependent on L, z ¼ Lx and z1 ¼ Lx (z < z1 < 1). As
we move z away from z1 towards smaller values, NðzÞ
increases rapidly especially when z1 is very close to unity.
Although the numerical value of N depends also on z1, no
appreciable change seems to occur as we move from the
characteristic value taken at z1 ¼ 0.9 down to z1 ¼ 0.5.
However the exact value of z1 does matter when it is taken
to be very close to unity.
In Fig. 3 we have plotted NðzÞ as function of z for

various values of the parameter L. Solutions corresponding
to a point where NðzÞ crosses a horizontal line, with values
in the range N ≈ 50–60, yield the appropriate field values
to determine the spectral index ns and the tensor to scalar
ratio r. If this point is z ¼ C or x ¼ C=L, the corresponding
slow-roll parameter ϵ, taken from (65), is

ϵ ¼ 4

3

C2ð1 − CÞ2
ðL − 2Cþ C2Þ2 : ð68Þ

This is small if C is close to unity. As a function of L, ϵ
becomes smaller for large values of L being inversely
proportional to L2. It is evident from this that low L values
are preferred in conjunction with values of C that are not
close to unity. In the left panel of this figure three
representative low L cases are shown, L ¼ 3, 5, 8 with
z1 chosen to be 0.9. No crossing is obtained with L ≤ 5 and
therefore in this case, as we have already discussed, the ϵ
turns out to be small entailing small values for the ratio r as
well. In the right panel the value of z1 has been taken very
close to unity, as it should be, since the end of inflation
occurs just before we reach the minimum of the potential
(when L > 7=3) and two cases L ¼ 3 and L ¼ 4 are
displayed. It is clearly seen that for values of L≃ 3
crossing of the N ≃ 60 line occurs for values of z ∼ 0.4,
i.e. for values C ∼ 0.4, yielding a large value for ϵ. Note
also that a deviation from the value L ¼ 3 towards larger
values will move C towards unity yielding small ϵ, while if
L gets smaller (L < 2) no crossing with the desired number
of e-foldings, N ≈ 50–60, is obtained.
Apart from the validity of the slow-roll conditions,

ensured by the smallness of ϵ and η, given by (65) and
(66), the viability of the model and its compatibility with
the data require the consideration of the tensor to scalar
ratio r and the spectral index ns:

r ≈ 16ϵ; ns ≈ 1–6ϵþ 2η: ð69Þ
8Note that the possibility η ¼ −1 leads to L < 25=33, which

lies outside the allowed parameter regime of L > 1.
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In the left panel of Fig. 4, where we have values of L in the
vertical axis versus values of z in the horizontal axis, we
show contour lines of r. Although there are points with
r > 0.1, for values of L smaller than 4, this should be
contrasted with the corresponding values for N and ns. In
the right panel we show the corresponding contours for ns.

The region favoring values r > 0.1 and ns ≃ 0.96 is located
in the patch L < 3.5 and z ¼ 0.55–0.60. The model is in
agreement with both BICEP2 and PLANCK data provided
the number of the e-foldings in this area is in the right
ballpark N ¼ 50–60. Note however that in order to obtain
agreement with all data z1 has to be taken very close to

FIG. 4 (color online). r-contours (left panel) and ns-contours (right panel). The horizontal axes are the values of z in the range
z ¼ 0.0–1.0. The vertical axis are the values of the parameter L in the range L ¼ 2.5–8.
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FIG. 3 (color online). The number of e-foldings, N, as a function of z for values L ¼ 3, 5 and L ¼ 8 (left panel) and z1 ¼ 0.90. On the
right panel N is displayed, when z1 is almost unity, for two representative values L ¼ 3 and L ¼ 4. The lines (dashed) N ¼ 50 and
N ¼ 60 are shown.
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FIG. 5 (color online). r (left panel) and ns (right panel) as functions of z.
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unity. This might seem as a tuning of the model, although
one would expect that the end of inflation should occur
quite close to the minimum of the potential.
Finally, in Fig. 5 we have plotted r and ns as functions of

z for selected values of the parameter L. One observes that
for z ∼ 0.55 large values of r ∼ 0.2 and ns within the
allowed experimental limits can be obtained. For larger
values of L we cannot reconcile values of r in the
aforementioned range with values of ns in the experimen-
tally accepted range. In this range of z and for the selected
value of z1 ¼ 0.9 it is difficult to get acceptable values for
N ≈ 55, as is evident from the left pane of Fig. 3.
Agreement with all data is achieved if we take z1 very
close to unity, as shown for instance in the right panel of
Fig. 3. As a sample value, again taking z1 to be quite close
to unity, we have N ≃ 59 at z� ≃ 0.55, when L ≈ 3.2, and
at this point r≃ 0.24 and ns ≃ 0.97.

V. BRIEF SUMMARY AND CONCLUSIONS

Conformal invariance seems to be an appropriate frame-
work as a starting point in the study of gravitation since
masses of matter fields could be neglected in the regime of
high curvature. Nevertheless, conformal invariance is broken
at the quantum level. This breaking, referred to as the
conformal anomaly, generates a local R2 term in the action.
In Starobinsky’s view it is the quantum corrections, sub-
stantiated through this term, that give rise to inflation. The
description of Starobinsky’s model in terms of a scalar field
gives an exponential potential with generic inflationary
behavior. It is legitimate to ask whether extra matter, coupled
to gravitation in a conformally invariant fashion, will modify
the inflationary behavior of Starobinsky’s model.
In the present article we started with a conformally

invariant action of gravitation and a scalar field incorpo-
rating the breaking of conformal invariance in the R2 term.
Conformal invariance allows for two distinct versions of
the scalar field coupling encoded in the sign of a parameter.
First we analyzed the version of the theory distinct from the

Starobinsky model, which in the Einstein frame is reduced
to a theory of two canonical scalar fields. No inflationary
behavior can be associated with this model. Next, we
turned to the particular version that includes the
Starobinsky model, in which the scalar field enters as a
ghost. After conformal gauge-fixing this model reduces in
the Einstein frame into a theory of one scalar practically
identical to the standard Starobinsky model. Inflation is
generic to this model, although its quantitative signature is
challenged by BICEP2. We next proceeded to introduce an
additional scalar field σ, coupled in a conformally invariant
fashion. Our aim was to investigate whether this infla-
tionary behavior is affected or its quantitative profile
modified. We chose to restrict our investigation by impos-
ing a shift symmetry, i.e. invariance under shifts σ →
σ þ const We found that the resulting two scalar field
model possesses a class of inflationary solutions that is an
attractor in field space. Furthermore, we presented an
analysis of this system in order to argue that the model
is essentially a one-field inflationary model corresponding

to the potential VðϕÞ ¼ 1
8α ð1 − 2e−

ffiffi
2
3

p
ϕ þ Le−2

ffiffi
2
3

p
ϕÞ. We

established that slow-roll inflation of the appropriate
amount occurs in this model. Furthermore, agreement with
existing data, including the desired values of the tensor to
scalar ratio can be achieved for appropriate values of the
relevant parameters.
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