
Bounds on QCD axion mass and primordial magnetic field
from cosmic microwave background μ distortion

Damian Ejlli*

Theory group, INFN Laboratori Nazionali del Gran Sasso, 67100 Assergi, Italy
and Department of Physics, Novosibirsk State University, Novosibirsk 630090 Russia

(Received 22 July 2014; revised manuscript received 17 November 2014; published 22 December 2014)

The oscillation of the cosmic microwave background (CMB) photons into axions can cause CMB
spectral distortion in the presence of a large-scale magnetic field. With the COBE collaboration limit on the
μ parameter and a homogeneous magnetic field with strength B≲ 3.2 nG at the horizon scale, a stronger
lower limit on the axion mass in comparison with the limit of the ADMX experiment is found to be
4.8 × 10−5 eV≲ma for the Kim-Shifman-Vainshtein-Zakharov (KSVZ) axion model. On the other hand,
using the experimental limit on the axion mass 3.5 × 10−6 eV≲ma from the ADMX experiment together
with the COBE bound on μ, B ≲ 53 nG is found for the KSVZ axion model and B ≲ 141 nG for the Dine-
Fischler-Sdrenicki-Zhitnitsky (DFSZ) axion model, for a homogeneous magnetic field with coherence
length at the present epoch λB ∼ 1.3 Mpc. Limits on B and ma for PIXIE/PRISM expected sensitivity on μ
are derived. If CMB μ distortion would be detected by the future space missions PIXIE/PRISM and
assuming that the strength of the large-scale magnetic field is close to its canonical value, B ∼ 1–3 nG,
axions in the mass range 2–3 μeV would be potential candidates of CMB μ distortion.
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The cosmic microwave background (CMB) presents
small temperature anisotropy of the order of δT=T∼10−5

on a small angular scale, and its spectrum is supposed to be
slightly distorted [1] due to various mechanisms that might
have operated in the early Universe. In general, these
distortions are described in the terms of the so-called μ; i,
and y parameters of which their values quantify the type of
each distortion [2]. The COBE [3] space mission obtained
stringent limits on jμj < 9 × 10−5 and jyj < 1.5 × 10−5

parameters, thus implying that there might be a very
narrow window in which to look for the process leading
to spectral distortion. Other planned space missions include
PIXIE [4] and PRISM [5], which expect to reach better
sensitivity on μ and y with respect to COBE of the order of
μ≃ 5 × 10−8 and y≃ 10−8.
Generally speaking, the most popular proposed mech-

anisms that can create spectral distortion can be classified
as “secondary” mechanisms in the sense that the original
CMB spectrum is affected indirectly. Indeed, in these
models, the energy and photon number are injected into
the medium from external sources such as decaying dark
matter particles [6], sound waves [7], etc. On the other
hand, CMB can also have “primary” spectral distortions
that can be disentangled from the secondary ones. An
interesting mechanism that can be classified as primary is
oscillation of the CMB photons into light bosons such as
axions, axionlike particles (ALPs), and gravitons. These
processes, in the cosmological context, are possible in the
presence of an external magnetic field in which the photon

has a vertex coupling with them. In the case of axions, the
relevant term that describes the coupling of photons with
axions is given by the interaction Lagrangian density

Laγ ¼ − gaγ
4

aFμν
~Fμν; ð1Þ

where Fμν is the electromagnetic field tensor, ~Fμν is its
dual, and a is the axion field. In general, the coupling
constant of axions can be written as

gaγ ¼
αs

2πfa

�
E
N
−
2

3

4þ w
1þ w

�
; ð2Þ

where αs is the fine structure constant, fa is the axion decay
constant, E is the electromagnetic anomaly associated with
the axial current, and N is the color anomaly. Among all of
the axion models, two of them, namely, the KSVZ [8] and
DFSZ [9] axion models, have been extensively studied in
the literature. For the KSVZ model, we have E=N ¼ 8=3
and E=N ¼ 0 for the DFSZ model. In both models, the
coupling constant of axions to photons gaγ is proportionally
related to axion mass ma. The latter is related with quark
masses up (u) and down (d), and the relation between axion
mass ma and axion decay constant fa is given by

ma ¼
mπfπ
fa

w1=2

1þ w
; ð3Þ

where mπ ¼ 135 MeV is the pion mass, fπ ≃ 92 MeV is
the pion decay constant, and w ¼ mu=md with mu;md
being respectively the up- and down-quark masses. The*damian.ejlli@lngs.infn.it
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range of the parameter w is between 0.35 ≤ w ≤ 0.6 [10],
where in general its standard value is taken as w ¼ 0.56.
For recent reviews on axions and ALPs, see Ref. [11], and
for earlier works on axions in cosmology, see Ref. [12].
The origin of the large-scale magnetic field (which

makes possible the transition of photons into axions) is
interesting by itself since its presence would have an
enormous impact in several situations in cosmology
(such as bing bang nucleosynthesis, CMB temperature
anisotropy, etc.) and in astrophysics (such as cosmic rays
deflection, etc). Thus, its strength Be and its direction are of
fundamental importance. The most common ways to
constrain large-scale magnetic field strength have been
essentially from CMB temperature anisotropy and Faraday
rotation of the CMB [13]. In the former case, it is supposed
that the external magnetic field would contribute to the total
energy density of the Universe, and therefore it would be
possible that this additional energy density could cause
CMB temperature anisotropy [14]. In the latter case, the
presence of the magnetic field would cause polarization of
the CMB, through the so-called Faraday effect, namely, the
rotation of the polarization plane of the CMB. It has also
been shown that the Faraday effect can be induced by a
coupling of a quintessential background field with pseu-
doscalar coupling to the CMB; see Ref. [15] (for a link
between the Faraday effect and CMB B-mode polarization,
see Ref. [16]). For a review on large-scale magnetic fields,
see Ref. [17].
In a previous work [18], we obtained tight limits on the

ALP parameter space by using coupling of CMB photons
with ALPs in a primordial magnetic field. In this work, we
study the oscillation of CMB photons into axions in the
presence of a large magnetic field and derive new limits
on axion mass and magnetic field strength. Photon-axion
mixing is phenomenologically different from oscillation
into ALPs, since in the axion case the two quantities that
characterize axions, its mass ma and coupling constant to
photons gaγ, are directly proportional with each other.
Consequently, in the case of photon-axion mixing, the
number of independent parameters is reduced to only Be
and ma or gaγ with respect to the photon-ALP mixing.
Therefore, based on phenomenological or experimental
results, it would be possible that, knowing one of the
parameters Be or ma, we can constrain the remaining one.
First, knowing the upper bounds on the magnetic field

strength at the present time, we can find limits for the axion
mass. In this case, the field strength and coherence length
are fixed a priori. Second, if we know the experimental
limits on the axion mass, we can bound the magnetic field
strength and discuss its coherence length a posteriori.
In this work, we consider only a uniform (homogeneous)
magnetic field. The effect on the CMB oscillation due to a
nonhomogeneous (stochastic) magnetic field will not be
considered. In connection with the first case, we use
limits on the magnetic field from the CMB temperature

anisotropy and Faraday rotation, where the field coherence
length is greater than or comparable to the horizon scale.
For a magnetic field with coherence length comparable
to the horizon scale, CMB temperature anisotropy gives
B≲ 4 nG [19], and Faraday rotation of the Lyman-α forest
gives [20] B≲ 1 nG. As far as the second case, we consider
existing limits on the axion mass to constrain the strength
of the homogeneous magnetic field with coherence length
at least comparable to the horizon scale during the μ epoch.
In the formalism of the density matrix that we use below,
the magnetic field is assumed to be homogeneous at
given coherence length λB, where the field strength changes
only due to the expansion of the Universe. Here, we
adopt the rationalized Lorentz–Heaviside natural units,
c ¼ ℏ ¼ kB ¼ ϵ0 ¼ μ0 ¼ 1.
The study of the oscillation of the CMB photons into

axions with an essential loss of coherence is best formu-
lated in terms of the density operator of the system ρ̂ (in our
case, the system is composed of axions and photons). To
the linear order of approximation, it satisfies the quantum
kinetic equation [21]

dρ̂
dt

¼ −i½Ĥ; ρ̂� − fΓ̂; ðρ̂ − ρ̂eqÞg; ð4Þ

where Ĥ is the Hamiltonian of the photon-axion system
including a refraction index (first-order effects), Γ̂ is the
coherence breaking operator of photons and axions with
the background medium, and ρ̂eq is the equilibrium density
operator. Since the magnetic field mixes only the (×)
photon state (see below) with the axion, the matrix
elements of the operators ρ̂, Γ̂, and Ĥ in the basis spanned
by the two component fields ΨT ¼ ðA×; aÞ are, respec-
tively, given by

ρ¼
�
nγ ργa

ρaγ na

�
; Γ¼

�Γγ 0

0 Γa

�
; H¼

�
M× Maγ

Maγ Ma

�
;

ð5Þ
where ργ ¼ nγ and ρa ¼ na are, respectively, the photon
and axion occupation numbers, ργa ¼ ρ�aγ ¼ Rþ iI with R
and I being, respectively, the real and the imaginary parts
of ργa. The matrix elements of the equilibrium density
operator in the flavor space are given by the equilibrium
occupation number neq ¼ 1=ðex − 1Þ times the identity
matrix I, ρeq ¼ neqI, where x ¼ ω=T with T being the
photon temperature. The coherence breaking matrix (Γ) is
diagonal in the flavor space, and its entries are given by the
sum of the scattering and the annihilation/absorption rates
of photons (Γγ) and axions (Γa). Matrix elements that enter
the interaction Hamiltonian are [22], M× ¼ ωðn − 1Þ×,
Maγ ¼ gaγBT=2, and Ma ¼ −m2

a=2ω. Here, BT is the
strength of the external magnetic field Be, which is trans-
verse to the direction x, of the photon/axion propagation.
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Aþ;× are the photon polarization states with þ;× being the
polarization indexes (helicity) of the photon. The helicity
state ðþÞ corresponds to the polarization perpendicular to
the external magnetic field, and ð×Þ describes the polari-
zation parallel to the external field. For the purpose of this
work and the cosmological epoch in which we are
interested, the total refraction index is given by the sum
of two main components: the refraction index due to
electronic plasmanpla and the refraction index due to vacuum
polarization nQED. The refraction index due to electronic
plasma is given by ðnpla − 1Þ×;þ ¼ −ω2

pla=2ω
2, where

ω2
pla ¼ 4πne=me with ne being the number density of free

electrons in the plasma. The refraction index due to QED
effects, for ω ≪ ð2me=3Þ × ðBc=BÞ, is given by Ref. [23]
ðn − 1Þ×;þ ¼ ðα=4πÞðBT=BcÞ2½ð14=45Þ×; ð8=45Þþ�, where
Bc ¼ m2

e=e ¼ 4.41 × 1013 G is the critical magnetic
field.
When the total interaction rate that enters the problem is

much bigger than expansion rate Γ ≫ H and photon-axion
oscillation frequency ωosc ≫ H, the equation of motion for
the density matrix is given by steady-state approximation;
see Ref. [21] for details. In this case, it is possible to express
the imaginary part I and real part R through nγ and na; see
Ref. [18] for more details. Moreover, if the interaction rate
of axions with the medium is small, we can approximate
the interaction rate of axions with the medium in Eq. (4),
as Γa ≃ 0. Indeed, this is a good approximation for the
cosmological epoch in which we are interested and for the
axion mass range we are going to consider (see below).
Also, assuming that the photon-axion transition is domi-
nated by the resonance, one can find an analytic solution for
the production probability of axions at the resonance
temperature T̄,

PaðT̄Þ ¼ −
2πM2

aγ

kHT

����
T¼T̄

; ð6Þ

where MaγðT̄Þ ¼ ðgaγB0=2ÞðT̄=T0Þ2 and kðT̄Þ ¼ dðΔMÞ=
dTjT¼T̄ with ΔMðT̄Þ ¼ M×ðT̄Þ −MaðT̄Þ ¼ MQEDðT̄Þ−
MplaðT̄Þ −MaðT̄Þ. Here, MQED and Mpla are, respectively,
the QED and plasma contributions to the refraction index in
ΔM. The field strength of the transverse part of magnetic
field, BT , scales with temperature as BT ∼ B ¼ B0ðT̄=T0Þ2
(magnetic flux conservation) with B0 being the strength of
the magnetic field at present epoch. The term HðT̄ÞT̄ can
be written as HðT̄ÞT̄ ¼ H0T0

ffiffiffiffiffiffi
ΩR

p ðT̄=T0Þ3, where ΩR ¼
9.21 × 10−5 is the present-day density parameter of rela-
tivistic particles (photons and nearly massless neutrinos).
During the μ epoch, the Universe is radiation dominated
where ionization fraction of free electrons is unity, Xe ¼ 1.
In this case, we can expand kðTÞ up to first order in power
series and write kðT̄Þ ¼ ð3=T̄Þ½MQEDðT̄Þ −MplaðT̄Þ�.
Inserting all necessary terms into Eq. (6), we get the
expression for Pa at the resonance temperature T̄,

PaðT̄Þ ¼ −
2π

3HðT̄Þ
M2

aγðT̄Þ
MQEDðT̄Þ þMaðT̄Þ

; ð7Þ

where in deriving Eq. (7) we have used the fact that for
T ¼ T̄ we have ΔMðT̄Þ ¼ 0. We may note that, in the case
MQEDðT̄Þ ¼ −MaðT̄Þ, the denominator of Eq. (7) is zero,
and the probability goes to infinity. In such a case, one must
consider the expansion of ΔMðTÞ up to the second order in
T around the resonance temperature T̄. However, for our
purpose, we do not need it here.
To confront Eq. (7) with the numerical results and

because it is easier to calculate, let us consider the case
in which MQED ≪ Ma. In the redshift of interest for μ
distortion and the photon energy considered here, the
QED term in M× is small with respect to the plasma
term, and therefore from the resonance condition ΔM ¼
M× −Ma ¼ 0, we get

�
T̄
T0

�
¼ 9 × 106n−1=3e m̄2=3

a cm−1; ð8Þ

where m̄a ¼ ma=eV, ne ≃ 0.88nBðT0Þ is the number
density of the free electrons at the present epoch and
nBðT0Þ ¼ 2.47 × 10−7 cm−3 is the number density of
baryons. Equation (8) is a constraint relation for the axion
mass in the resonant case. Inserting all necessary quantities
into Eq. (7), we get the expression for Pa,

PaðT̄Þ ¼ 5.75 × 10−27xC2
aγB2

nG

�
T̄
T0

�
3

; ð9Þ

where BnG ¼ ðB0=nGÞ and Caγ is defined as

Caγ ≡
�
E
N
−
2

3

4þ w
1þ w

�
1þ w

w1=2 ; ð10Þ

where, for w ¼ 0.56, jCaγj≃ 4 for E=N ¼ 0 (KSVZ
model) and jCaγj≃ 1.49 for E=N ¼ 8=3 (DFSZ model).
It is important to emphasize that Eq. (9) is valid when
MQED ≪ Ma or

B1=3
nG x1=3

�
T
T0

�
≪ 1.23 × 109m̄1=3

a : ð11Þ

On the other hand, we also need to calculate the axion mass
at the resonance temperature T̄, which is given by Eq. (8).
Assuming that the interested temperature interval is coinci-
dent with the μ epoch, 2.88 × 105 ≲ T=T0 ≲ 2 × 106, the
axion mass in this interval is

2.66 × 10−6 eV≲ m̄a ≲ 4.88 × 10−5 eV: ð12Þ

So, as far as we limit our consideration for the magnetic
field strength of the order BnG ≲ 103 and axion mass range
given by Eq. (12), we can safely use Eq. (9).
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In the presence of μ distortion, we can expand the photon
occupation number for μ ≪ 1 in power series, and using the
fact that the leakage of photons is due to oscillations into
axions, we get the following relation between Pa and μ:

Pa ¼ μ
ex

ex − 1
: ð13Þ

Using Eqs. (13), (9), and (8), we get the following relation
between the magnetic field strength and the axion mass:

BnG ¼ 0.22
m̄aCaγ

�
μex

xðex − 1Þ
�

1=2
: ð14Þ

We can see that Eq. (14) depends on the photon energy x,
and tighter bound on BnG or m̄a is obtained for higher
values of x. Indeed, using, for example, the energy range
explored by COBE/FIRAS [3], 1.2 ≤ x ≤ 11.3, we get a
tighter limit on BnG at x ¼ 11.3:

BnG ¼ 6.76 × 10−2
ffiffiffi
μ

p
m̄aCaγ

: ð15Þ

Equation (15) is our main result, which connects
three unknown parameters m̄a, BnG, and Caγ, with the μ
parameter that is determined by experiment. We may notice
that for values of μ given by COBE [3] and PIXIE/PRISM
[4] we have that the bound given by Eq. (11) is indeed well
satisfied. We emphasize that our results in the resonant case
(see Fig. 1), obtained by using Eq. (15), perfectly agree

with the numerical solution of the quantum kinetic
equation, Eq. (4), in the steady-state approximation.
Concluding, our main results are shown in Fig. 1, in

which we present the exclusion and sensitivity limits on the
magnetic field strength vs axion mass in the resonant case.
In Fig. 1(a), the exclusion region in the case of COBE is
shown for the KSVZ and DFSZ axion model. In Fig. 1(b),
the sensitivity region of future space mission PIXIE is
shown. If PIXIE will detect any spectral distortion in the
CMB spectrum, that would be a potential signal of photon
to axion oscillation.
In general, is not possible to give definite limits on B and

ma since none of them is known exactly and moreover only
limits (in the case of COBE, upper limit) on the μ parameter
exist, which relates both. Nevertheless, we can outline
important conclusions considering the upper limits of all of
them. We can base our arguments by simply focusing on
Eq. (15). First, based on the limit on μ from COBE, we can
limit the axion mass, if we know the limit on B. For
instance, in the case of the KSVZ axion model and a
homogeneous magnetic field with strength B≲ 3.2 nG, we
obtain from Eq. (15) that 4.8 × 10−5 eV≲ma. The limit on
magnetic field strength is by a factor 1.2 stronger than that
found for a uniform and anisotropic magnetic field in
Ref. [19] and is by a factor 3.2 weaker than that found in
Ref. [20], from the Faraday rotation of the Layman α forest.
It is interesting to note that the upper limit B≲ 3.2 nG is
very close to the limit found in Ref. [24] (B≲ 3.1–3.2 nG)
from the CMB temperature cross-correlation spectra, TT
and TE of WMAP five-year data for the case of stochastic

(a) (b)

FIG. 1. Exclusion and sensitivity plot for the axion parameter space B − m̄a in the resonant case due to μ distortion for
m̄a ¼ 2.66 × 10−6 − 4.88 × 10−5 eV. In (a), the exclusion plot for the COBE [3] upper limit on μ is shown, and in (b), the sensitivity
region of PIXIE/PRISM [4], based on the expected sensitivity on the μ parameter is shown. In both figures, the region above the solid
line corresponds to the KSVZ axion model (jCaγj≃ 4), and the region the above dotted-dashed line corresponds to the DFSZ axion
model (jCaγj≃ 1.49).

DAMIAN EJLLI PHYSICAL REVIEW D 90, 123527 (2014)

123527-4



magnetic field with comoving coherence length scale
λB ≃ 1 Mpc and field spectral index nB ≃ 1.6 (blue mag-
netic field spectrum).
For the DFSZ axion model, the upper limit for a uniform

magnetic field is B≲ 9 nG, which is by a factor 2.5 weaker
than the KSVZ axion model for the same axion mass; see
Fig. 1(a). This upper limit on the magnetic field strength for
the DFSZ axion model would produce a larger temperature
anisotropy with respect to the observed one and makes the
DFSZ axion model disfavored with respect to the KSVZ
axion model. PIXIE/PRISM are more sensitive than COBE
and in principle can better confine the axion parameter
space with respect to COBE; see the Fig. 1(b) limits with
respect to it. In particular, in the case of the detection of
spectral distortions, and assuming that the strength of the
magnetic field is close to its canonical value, B ∼ 1 nG (for
a uniform magnetic field with coherence length of the
Hubble horizon), it would be an extremely important
signature of axions in the mass range, m̄a ≃ 2–3 μeV.
The ADMX collaboration [25] excluded all axion

models of being dark matter in the mass region
3.3–3.5 μeV. This mass range lies in the axion mass range
considered in this paper; see Eq. (12). Thus, it would be
possible to use the ADMX limits on the axion mass to
constrain the magnetic field strength. For example, con-
sidering the limit 3.5 μeV≲ma, we find the magnetic field
strength to be (in the case of COBE) B≲ 53 nG for the
KSVZ axion model and B≲ 141 nG for the DFSZ axion
model. In the case of PIXIE/PRISM, we would have
B ∼ 1 nG for the KSVZ axion model and B ∼ 2.7 nG
for the DFSZ axion model. However, knowing the upper
and/or the lower limit for the axion mass, it allows us to
constrain only the magnetic field strength. In this case, the
above limits are valid for a uniform magnetic field with a
coherence length of at least comparable to the horizon scale

during the μ epoch, λμB ∼H−1ðzμÞ or λμBðzμÞ ∼ 3.8 pc (or
λμB ∼ 1.3 Mpc at present), where the redshift corresponding
to the resonant axion mass m̄a ≃ 3.5 μeV during the μ
epoch is zμ ≃ 3.44 × 105; see Eq. (8).
The derived limits for a uniform magnetic field with

coherence length comparable with the horizon scale are in
general stronger than those found from the temperature
anisotropy [19] and slightly weaker than those found from
the Faraday rotation [20], at smaller coherence length
scales. Indeed, at the coherence length scale λB ∼ 1 Mpc,
the Faraday rotation of the Lyman α forest gives B≲ 10 nG
[20], which is by a factor 5.3 stronger than the limit found
for the KSVZ axion model and by a factor 14.1 stronger
than the DFSZ axion model (using the ADMX limit on the
axion mass and the COBE limit on the μ parameter).
The limits on the axion mass found here, in general, are of
the same order of magnitude, with the limits found by the
misalignment mechanism; see Refs. [26] and [10]. Indeed,
the lower limit 4.8 × 10−5 eV≲ma for B≲ 3.2 nG is very
close to that found in Ref. [27],ma ≲ 76–82 μeV, for CDM
axions. According to Ref. [27], an axion within this mass
range would explain all dark matter contents in the
Universe without requiring other candidates. In our case,
an axion in the mass range ma ≲ 7.6–8.2 μeV would make
nonresonant oscillation into CMB photons during the μ
epoch. If the misalignment mechanism limits are used
instead of the ADMX limit, for the axion mass range
(nonresonant oscillation) coincident with those in Ref. [27],
the strength of the homogeneous magnetic field at λB ∼
1 Mpc would be between 1.4 × 103 and 1.6 × 103 nG,
depending on the nonresonant axion mass. These limits are
weaker than those found from the Faraday rotation of the
Lyman α forest and are comparable with the limits found
from a homogeneous Universe; see Ref. [20].
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