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Understanding the relation between underlying matter distribution and biased tracers such as galaxies or
dark matter halos is essential to extract cosmological information from ongoing or future galaxy redshift
surveys. At sufficiently large scales such as the baryon acoustic oscillation (BAO) scale, a standard
approach for the bias problem on the basis of the perturbation theory (PT) is to assume the “local bias”
model in which the density field of biased tracers is deterministically expanded in terms of matter density
field at the same position. The higher-order bias parameters are then determined by combining the power
spectrum with higher-order statistics such as the bispectrum. As is pointed out by recent studies, however,
nonlinear gravitational evolution naturally induces nonlocal bias terms even if initially starting only with
purely local bias. As a matter of fact, previous works showed that the second-order nonlocal bias term,
which corresponds to the gravitational tidal field, is important to explain the characteristic scale-
dependence of the bispectrum. In this paper we extend the nonlocal bias term up to third order, and
investigate whether the PT-based model including nonlocal bias terms can simultaneously explain the
power spectrum and the bispectrum of simulated halos in N-body simulations. The bias renormalization
procedure ensures that only one additional term is necessary to be introduced to the power spectrum as a
next-to-leading order correction, even if third-order nonlocal bias terms are taken into account. We show
that the power spectrum, including density and momentum, and the bispectrum between halo and matter in
N-body simulations can be simultaneously well explained by the model including up to third-order
nonlocal bias terms at k≲ 0.1h=Mpc. Also, the results are in a good agreement with theoretical predictions
of a simple coevolution picture, although the agreement is not perfect. These trend can be found for a wide
range of halo mass, 0.7 ≲Mhalo½1013M⊙=h� ≲ 20 at various redshifts, 0 ≤ z ≤ 1. These demonstrations
clearly show a failure of the local bias model even at such large scales, and we conclude that nonlocal bias
terms should be consistently included in order to accurately model statistics of halos.
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I. INTRODUCTION

Precise observation of the early universe has been well
established by measurements of temperature and polariza-
tion anisotropy of the cosmic microwave background
(CMB) such as Wilkinson Microwave Anisotropy Probe
(WMAP) [1–3] or Planck [4]. Now we enter a new era of
precision cosmology by getting in hand various kinds of
large-scale structure measurements in late-time universe,
mainly aiming at unveiling dark universe (see [5] for a
recent review). In particular, clustering of galaxies in a three
dimensional map of the Universe offers us a lot of fruitful
cosmological information via the baryon acoustic oscilla-
tions (BAOs), redshift-space distortion (RSD), or the shape

of galaxy clustering statistics such as the power spectrum
and the bispectrum (for an encompassing review, see [6]).
As a matter of fact, recent works by Baryon Oscillation
Spectroscopic Survey (BOSS) [7] in Sloan Digital Sky
Survey III (SDSS-III) [8] or WiggleZ survey [9] have
already accomplished very accurate measurements of such
signals [10–24]. Planned or near-future galaxy redshift
surveys, which include Subaru Prime Focus Spectrograph
(PFS) Survey [25], Hobby-Eberly Telescope Dark Energy
Experiment (HETDEX) [26], Dark Energy Spectroscopic
Instrument (DESI) [27] and Euclid [28], will continue to
improve measurement accuracy at various redshift and
scales.
In order to unlock the full potential of cosmological

information in the galaxy clustering, it is essential to
understand the relation between underlying matter*shun.saito@ipmu.jp
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distribution and galaxies, known as the so-called galaxy bias
problem. It is often assumed that galaxy distribution well
traces underlying matter distribution which can be directly
probed by cosmological N-body simulations. Given the
fact that we do not have complete knowledge of galaxy
formation scenario in nonlinear structure formation, it is a
common practice to connect observed galaxy distribution to
simulated dark matter halos. This approach is based on the
halo model [29,30], and its associated techniques such as
halo occupation distribution (HOD) and subhalo abundance
matching (SHAM) (e.g., [31–34]) are applied to somewhat
small-scale galaxy clustering (typically ∼Oð0.1–10Þ Mpc)
(see e.g., [35–37] and references therein for recent studies).
Even though dark matter halos can be easily constructed

in N-body simulations, it is important to theoretically
understand clustering of the halos, or halo bias, especially
at large scales around BAOs (∼150Mpc), because the
halo clustering is sensitive to underlying cosmology at the
regimes (where, in other words, the two-halo term is
dominant in the halo-model context). Some authors tried
to formulate the halo or galaxy bias in parametric ways
(see e.g., [38–41]) and showed a successful performance
depending on their specific purpose, although it might be
hard to be justified in more general situations. It is therefore
desirable to develop an analytic formulation to describe
the halo clustering in a physically-well motivated way.
Perturbation theory (PT) is a natural approach along this
direction, and, in the PTapproach, the so-called “local bias”
model [42,43] in which the density field of halos is
deterministically Tailor-expanded in terms of matter den-
sity field at the same position as

δhðxÞ ¼
X
n

bn
n!

δmðxÞn; ð1Þ

where bn is the bias coefficient at nth order, and δh and δm
describes density fields of halos and matter, respectively.
It is well known that the local bias model works well at
linear order to some extent [42], and the fitting formula
for the halo mass function is calibrated so that it also
consistently reproduces the linear bias value in simulations
[44,45]. However, a couple of issues in the model have
been recently pointed out. First of all, the model prefers
different values of nonlinear bias parameter like b2 for the
halo power spectrum and the bispectrum [46,47], although
the model looks well fitted to the spectra by properly
choosing nonlinear bias parameters (see e.g., [48–50]).
In addition, the authors [51–54] show that nonlinear
gravitational evolution naturally induces nonlocal terms,
and there are clear evidences of such a term at least at
second-order perturbation observed in the bispectrum in
simulations [53,54]. These caveats clearly warn adopting
the local bias model from a physical point of view.
In this paper we continue to study how well the bias

model including nonlocal terms performs against the halo
statistics in N-body simulations. In particular, we focus on

how well such a model can simultaneously explain the
power spectrum as well as the bispectrum which again
cannot be realized in the simple local bias model. While
the leading-order (i.e., tree-level) bispectrum requires only
up to second-order perturbation, it is necessary to consider
up to third order as a next-to-leading order correction in
the power spectrum. The author [55] showed that the bias
renormalization procedure allows us to write down a
physical expression for the halo statistics and the third-
order local bias term is absorbed into the linear bias. As we
will revisit later, Ref. [51] shows that all the correction
terms associated with the third-order nonlocal bias can be
summarized into only one term. This bias renormalization
approach has been recently readdressed in terms of the
effective field theory by [56], and they also reached the
same conclusion (see also [57]). Thus we have in hand a
very simple bias model on the basis of PT even if
considering all the local and nonlocal terms up to third
order. Then the natural question that arises is whether the
simple bias model can well explain the simulated halo
power spectrum as well, and also whether the fitted value of
the bias parameter is consistent with what is physically
expected. In order to answer these questions, we study the
halo-matter statistics in a standard ΛCDM universe at a
various halo-mass range and redshift. We jointly fit the PT
model to the power spectrum together with the bispectrum.
An advantage of focusing on the halo-matter statistics
is that it is free from the stochastic bias [58,59] and the
velocity bias [60–63]. We also investigate the cross
spectrum between halo density and matter momentum
which was recently studied in modeling the RSDs in the
Distribution Function approach (see [64–69] for a series of
papers) and should be simultaneously explained by the
same bias values if the model works.
The outline of this paper is as follows. In Sec. II, we first

revisit the argument in [51] and summarize a model to
describe the halo-matter power spectrum and the bispec-
trum including nonlocal terms up to third order. In
particular, we extend the model to the cross power spectrum
between halo density and matter momentum which can be
easily measured from the simulations and can be used to
study the bias model as well. In addition, we study a simple
coevolution picture of dark matter and halo fluids and
derive a third-order solution. In Sec. III we describe our
simulation details and fitting procedure. We then show our
results in Sec. IV in which the bias model is compared with
halo-matter power spectra in detail. Finally we make a
summary and conclusion in in Sec. V.

II. THE HALO-MATTER CROSS STATISTICS IN
THE PRESENCE OF NONLOCAL BIAS TERMS

In this section we explicitly write down expressions for
the halo-matter power spectrum on the basis of the
perturbation theory (PT), including nonlocal bias terms.
For this purpose we revisit an procedure proposed by [51]
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in which all the possible bias terms are introduced by
symmetry arguments and can be properly renormalized.
After we review exactly the same procedure in [51] for the
matter-density and halo-density power spectrum, we will
extend it to the matter-momentum and halo-density cross
spectrum in a similar manner. We also discuss the bispec-
trum and bias renormalization [53]. For readers unfamiliar
with PT, we refer to Appendix A, where basic equations in
the PT formalism and our notations are summarized. While

we here focus on the cross power spectrum, we present
expressions for the autocorrelators in Appendix A as well.

A. The halo-matter density power spectrum

Starting from Eq. (A10) which includes all possible
perturbations up to third order for the next-to-leading order
calculation of the power spectrum (e.g., see [6]), the matter-
halo density power spectrum is written as

Phm
00 ðkÞ ¼ cδPðkÞ þ cδP

ð13Þ
δδ ðkÞ þ cδP

ð22Þ
δδ ðkÞ þ 34

21
cδ2σ

2PðkÞ þ 1

2
cδ3σ

2PðkÞ þ 1

3
cδs2σ

2PðkÞ þ 1

2
cδϵ2σ

2
ϵPðkÞ

þ cδ2
Z

d3q
ð2πÞ3 PðqÞPðjk − qjÞFð2Þ

S ðq; k − qÞ þ cs2
Z

d3q
ð2πÞ3 PðqÞPðjk − qjÞFð2Þ

S ðq; k − qÞSð2Þðq; k − qÞ

þ 2cs2PðkÞ
Z

d3q
ð2πÞ3 PðqÞF

ð2Þ
S ð−q; kÞSð2Þðq; k − qÞ þ 2cstPðkÞ

Z
d3q
ð2πÞ3 PðqÞD

ð2Þ
S ð−q; kÞSð2Þðq; k − qÞ

þ 2cψPðkÞ
Z

d3q
ð2πÞ3 PðqÞ

�
3

2
Dð3Þ

S ðq;−q;−kÞ − 2Fð2Þ
S ð−q; kÞDð2Þ

S ðq; k − qÞ
�
; ð2Þ

where the superscript “h” stands for a quantity for halos and
the subscript “0” stands for the zeroth moment of mass-
weighted velocity. All the bias coefficients, cn, are bare bias
parameters, and do not necessarily have clear physical
meaning as explained later. PðkÞ denotes the linear matter
power spectrum, and the r.m.s of the fluctuated matter field,
σ2, is defined by σ2 ≡ R

q2dqPðqÞ=ð2π2Þ. Note that the
term involving the third-order tidal term, s3, vanishes in this
case. Reference [55] argued that the first and second lines
in Eq. (2) can be renormalized to a physical linear bias as
follows: in the limit of k → 0, one finds

cδPðkÞ þ cδP
ð13Þ
δδ ðkÞ þ cδP

ð22Þ
δδ ðkÞ þ 34

21
cδ2σ

2PðkÞ

þ 1

2
cδ3σ

2PðkÞ þ 1

3
cδs2σ

2PðkÞ þ 1

2
cδϵ2σ

2
ϵPðkÞ

→
k→0

�
cδ þ

34

21
cδ2σ

2 þ 1

2
cδ3σ

2 þ1

3
cδs2σ

2 þ 1

2
cδϵ2σ

2
ϵ

�
PðkÞ:

ð3Þ
In the limit of k → 0, all the terms proportional to PðkÞ
should behave as the linear bias parameter times the linear
power spectrum PðkÞ, which means that all the terms in
the bracket can be interpreted as a renormalized linear bias.
The third-order local bias term, cδ3 , is thus renormalized
into the linear bias and not necessary to be considered.
Reference [51] further found that the fifth, sixth and seventh
lines in Eq. (2), whose origins are the third-order nonlocal
terms, can be renormalized in a similar manner into a linear
bias and just one additional bias parameter. In order to see
this, let us first separate out k → 0 limit of these terms,Z

d3q
ð2πÞ3PðqÞF

ð2Þ
S ð−q;kÞSð2Þðq;k− qÞ→ 34

63
σ2; ð4Þ

Z
d3q
ð2πÞ3 PðqÞD

ð2Þ
S ð−q; kÞSð2Þðq; k − qÞ → −

8

63
σ2; ð5Þ

Z
d3q
ð2πÞ3 PðqÞ

×

�
3

2
Dð3Þ

S ðq;−q;−kÞ−2Fð2Þ
S ð−q; kÞDð2Þ

S ðq; k − qÞ
�
→ 0:

ð6Þ
These terms thus behaves as constants at k → 0 and hence
can be renormalized to linear bias parameters just as
Eq. (3). In addition, Ref. [51] found that these integrals
exactly match each other and behaves as a filter function,
once constants in k → 0 limit are separated out and
normalization factors are properly chosen,Z

d3q
ð2πÞ3 PðqÞF

ð2Þ
S ð−q; kÞSð2Þðq; k − qÞ

¼ −
8

21
σ23ðkÞ þ

34

63
σ2; ð7Þ

Z
d3q
ð2πÞ3 PðqÞD

ð2Þ
S ð−q; kÞSð2Þðq; k − qÞ

¼ 16

105
σ23ðkÞ −

8

63
σ2; ð8Þ

Z
d3q
ð2πÞ3 PðqÞ

×

�
3

2
Dð3Þ

S ðq;−q;−kÞ − 2Fð2Þ
S ð−q; kÞDð2Þ

S ðq; k − qÞ
�

¼ 256

2205
σ23ðkÞ; ð9Þ
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where we define σ23ðkÞ as

σ23ðkÞ≡ k3
Z

r2dr
2π2

PðkrÞIRðrÞ: ð10Þ

For instance in the case of Eq. (7), IRðrÞ is described as,

IRðrÞ ¼
5

128r4
ð1þ r2Þð−3þ 14r2 − 3r4Þ þ 3ðr2 − 1Þ4

256r5
ln

���� 1þ r
1 − r

����: ð11Þ

IRðrÞ is the filtering function satisfying IRðrÞ → 1 at r → 0 and IRðrÞ → 0 at r → ∞ (see Fig. 2 in [51]). Again, these
three terms end up with a constant plus the σ23ðkÞ term even though the functional forms of this filtering function for each
term are all different. Based upon the considerations above all, one finds an expression for the halo-matter density power
spectrum

Phm
00 ðkÞ ¼

�
cδ þ

34

21
cδ2σ

2 þ 1

2
cδ3σ

2 þ 1

3
cδs2σ

2 þ 1

2
cδϵ2σ

2
ϵ þ

68

63
cs2σ

2 −
16

63
cstσ2

�
PNL
δδ ðkÞ

þ cδ2
Z

d3q
ð2πÞ3 PðqÞPðjk − qjÞFð2Þ

S ðq; k − qÞ þ cs2
Z

d3q
ð2πÞ3 PðqÞPðjk − qjÞFð2Þ

S ðq; k − qÞSð2Þðq; k − qÞ

þ
�
−
16

21
cs2 þ

32

105
cst þ

512

2205
cψ

�
σ23ðkÞPðkÞ

¼ b1PNL
δδ ðkÞ þ b2Pb2;δðkÞ þ bs2Pbs2;δðkÞ þ b3nlσ23ðkÞPðkÞ; ð12Þ

where we redefine the bias parameters as

b1 ¼ cδ þ
34

21
cδ2σ

2 þ 1

2
cδ3σ

2 þ 1

3
cδs2σ

2 þ 1

2
cδϵ2σ

2
ϵ

þ 68

63
cs2σ

2 −
16

63
cstσ2; ð13Þ

b2 ¼ cδ2 ; ð14Þ

bs2 ¼ cs2 ; ð15Þ

b3nl ¼ −
16

21
cs2 þ

32

105
cst þ

512

2205
cψ ; ð16Þ

and terms associated with these bias parameters are
defined as

Pb2;δðkÞ≡
Z

d3q
ð2πÞ3 PðqÞPðjk − qjÞFð2Þ

S ðq; k − qÞ; ð17Þ

Pbs2;δðkÞ≡
Z

d3q
ð2πÞ3 PðqÞPðjk − qjÞFð2Þ

S ðq; k − qÞ

× Sð2Þðq; k − qÞ: ð18Þ

Thus all the third-order nonlocal bias terms can be
grouped into only one bias parameter, b3nl. The main
purpose of this paper is to investigate whether the b3nl
term is important to explain the halo-matter power
spectrum in N-body simulations.

B. The cross power spectrum between halo
density and matter momentum

Let us next extend to the case of the cross spectrum
between halo density and matter momentum. Higher-order
nonlocal bias could also affect the cross spectrum between
halo density and matter momentum. An advantage of the
momentum spectrum is that it can be easily measured from
N-body simulations without any ambiguity in interpolating
the velocity divergence field [66]. Also, since the momen-
tum spectrum is an essential ingredient in predicting the
nonlinear RSDs (see [64–69]), it would be important to see
an impact of the nonlocal bias terms on the momentum
spectrum. Here we derive an explicit formula including the
nonlocal bias terms up to third order and show that it can be
renormalized in a similar manner to the case of halo and
matter density correlation.
The cross spectrum between halo density and matter

momentum, Phm
01 ðkÞ is given by

Phm
01 ðkÞð2πÞ3δDðkþ k0Þ
¼ hTh;0

‖ ðkÞTm;l
‖ ðk0Þi

¼ if
μ

k
hδhðkÞθðk0Þi

þ if
Z

d3q
ð2πÞ3

q‖
q2

hδhðkÞθð−qÞδðk0 þ qÞi; ð19Þ

where f is the growth parameter defined by f ≡ d lnD=
d ln a with D and a being the linear growth rate and scale
factor of the Universe, respectively, and μ is cosine of the
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angle between wave vector and line of sight. We define an isotropic part, Phm
01 ðkÞ, as Phm

01 ðkÞ ¼ iμPhm
01 ðkÞ=k, motivated by

the fact that it reduces to

Phm
01 ðkÞ ¼ i

μ

k
cδfPðkÞ; ð20Þ

in linear regime. The bispectrum term in Eq. (19) is not affected by the third-order perturbations, while the first term in
Eq. (19) is. We then redo the similar renormalization procedure in the first term, i.e., the cross spectrum between halo
density and matter velocity fields which becomes

PδhθðkÞ ¼ cδPðkÞ þ cδP
ð13Þ
δθ ðkÞ þ cδP

ð22Þ
δθ ðkÞ þ 34

21
cδ2σ

2PðkÞ þ 1

2
cδ3σ

2PðkÞ þ 1

3
cδs2σ

2PðkÞ þ 1

2
cδϵ2σ

2
ϵPðkÞ

þ cδ2
Z

d3q
ð2πÞ3 PðqÞPðjk − qjÞGð2Þ

S ðq; k − qÞ þ cs2
Z

d3q
ð2πÞ3 PðqÞPðjk − qjÞGð2Þ

S ðq; k − qÞSð2Þðq; k − qÞ

þ 2cs2PðkÞ
Z

d3q
ð2πÞ3 PðqÞF

ð2Þ
S ð−q; kÞSð2Þðq; k − qÞ þ 2cstPðkÞ

Z
d3q
ð2πÞ3 PðqÞD

ð2Þ
S ð−q; kÞSð2Þðq; k − qÞ

þ 2cψPðkÞ
Z

d3q
ð2πÞ3 PðqÞ

�
3

2
Dð3Þ

S ðq;−q;−kÞ − 2Fð2Þ
S ð−q; kÞDð2Þ

S ðq; k − qÞ
�
: ð21Þ

Since the last three lines are exactly same with the terms in
the halo-density and matter-density spectrum, we confirm
that PδhθðkÞ can be similarly renormalized as

PδhθðkÞ ¼ b1PNL
δθ ðkÞ þ b2Pb2;θðkÞ þ bs2Pbs2;θðkÞ

þ b3nlσ23ðkÞPðkÞ; ð22Þ

where we define the terms associated with the second-order
bias as

Pb2;θðkÞ≡
Z

d3q
ð2πÞ3 PðqÞPðjk − qjÞGð2Þ

S ðq; k − qÞ; ð23Þ

Pbs2;θðkÞ≡
Z

d3q
ð2πÞ3 PðqÞPðjk − qjÞGð2Þ

S ðq; k − qÞ

× Sð2Þðq; k − qÞ: ð24Þ

A symmetric structure in integrations of the bispectrum
allows us to write down the second term in Eq. (19) as
[70,71]:

Z
d3q
ð2πÞ3

q‖
q2

hδhðkÞθð−qÞδðk0 þ qÞi

¼ μ

k
fcδBb1ðkÞ þ cδ2Bb2ðkÞ þ cs2Bbs2ðkÞg

× ð2πÞ3δDðkþ k0Þ ð25Þ

≃ μ

k
fb1Bb1ðkÞ þ b2Bb2ðkÞ þ bs2Bbs2ðkÞg

× ð2πÞ3δDðkþ k0Þ; ð26Þ

where Bb1ðkÞ, Bb2ðkÞ and Bbs2ðkÞ are expressed as follows:

μ

k
Bb1ðkÞ≡

Z
d3q
ð2πÞ3

q‖
q2

2fPðqÞPðjk − qjÞFð2Þ
S ðq; k − qÞ

þPðqÞPðkÞFð2Þ
S ðq;−kÞ þ Pðjk − qjÞPðkÞ

×Gð2Þ
S ðk − q;−kÞg; ð27Þ

μ

k
Bb2ðkÞ≡

Z
d3q
ð2πÞ3

q‖
q2

PðqÞPðjk − qjÞ; ð28Þ

μ

k
Bbs2ðkÞ≡

Z
d3q
ð2πÞ3

q‖
q2

PðqÞPðjk−qjÞSð2Þðq;k−qÞ: ð29Þ

Collecting all the terms in Eqs. (22) and (26), we finally
obtain

Phm
01 ðkÞ ¼ b1fPNL

δθ ðkÞ þ Bb1ðkÞg þ b2fPb2;θðkÞ þ Bb2ðkÞg
þ bs2fPbs2;θðkÞ þ Bbs2ðkÞg þ b3nlσ23ðkÞPðkÞ:

ð30Þ

Thus the cross spectrum between halo density and matter
momentum also includes only the b3nl term as a third-order
nonlocal bias. Note that the first bracket, fPNL

δθ þ Bb1ðkÞg,
is nothing but the cross spectrum between matter density
and momentum, Pmm

01 ðkÞ, which is easily measured from
simulations.
In summary, we show that we only need four physical

and renormalized bias parameters to describe the halo-
matter spectra; the renormalized linear bias parameter, b1,
the second-order local bias parameter, b2, the second-order
nonlocal bias parameter, bs2 , and the third-order nonlocal
bias parameter, b3nl. We show the shape of each terms
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discussed so far in Fig. 1, together with the nonlinear matter
power spectra in our simulations. Each line corresponds to
the case in which the bias parameter is equal to be unity. As
shown in the figures, the third-order nonlocal bias terms
can dominate over the second-order local and nonlocal
terms. As we will confirm later, the third-order nonlocal
bias term becomes more significant than the second-order
terms especially as long as the b2 term is sufficiently small.
This is not the case at massive halos with Mhalo ≳ 5 ×
1013½M⊙=h� where b2 becomes large enough to dominate
over the b3nl term.

C. The bispectrum and the bias renormalization

So far we have observed that the four bias parameters,
i.e., ðb1; b2; bs2 ; b3nlÞ are introduced to describe the cross
power spectrum between halo density and matter density,
or the one between halo density and matter momentum at
the next-to-leading order when the nonlocal bias terms are
considered. As is discussed in Ref. [53], the bispectrum at
the lowest order (i.e., at tree level) demands perturbations
only up to the second order, described as

Bhmm
000 ðk1; k2; k3Þ ¼ b1Bmmm

000 ðk1; k2; k3Þ

þ Pðk1ÞPðk2Þ
�
b2 þ bs2

�
μ2k1;k2 −

1

3

��
;

ð31Þ

where μk1;k2 is cosine of the angle between k1 and k2,
and the three arguments satisfy k1 þ k2 þ k3 ¼ 0. In order
to derive this as well as Eq. (26) starting from Eq. (A10),
one may notice that a nontrivial approximation has been
introduced, namely, b1 ≃ c1. However, Ref. [55] argued
that this is not the case. As we have seen in the
renormalization procedure, all the renormalized terms
originate from those in the limit of k → 0. This fact
means that a physical biased field should be defined so

that homogeneous mean density is recovered at k → 0.
In other words, we should start with

δhðxÞ ¼ b1δmðxÞ þ
1

2
b2½δmðxÞ2 − hδmðxÞ2i�

þ 1

2
bs2 ½sðxÞ2 − hsðxÞ2i� þ � � � ; ð32Þ

rather than Eq. (A10), and hence Eqs. (26) and (31) are
naturally derived. The same argument can be found in [56]
as well.
Reference [53] shows that the specific μk1;k2 dependence

in Eq. (31) enables us to reliably determine both of the
second-order bias parameters, b2 and bs2 at the same time
from the large-scale bispectrum. In later section we are
going to simultaneously fit the power spectrum as well as
the bispectrum, while Ref. [53] fit the bispectrum with a
prior on the linear bias b1 determined from the halo-matter
power spectrum only at z ¼ 0. In Appendix B, we present
the results when we fit solely to the bispectrum with b1
treated as free. In short, the differences in two approaches
are generally small especially for bs2, indicating that
bs2 is essentially determined by the characteristic μk1;k2
dependence.

D. Coevolution of halos and dark matter
up to third order

So far we have discussed what kind of nonlocal bias
terms are allowed in terms of symmetry in the fields set by
gravity. Another way of studying the nonlocal bias terms
induced by nonlinear gravitational evolution is to pertur-
batively solve the coupled equations between halos and
dark matter under fluid approximation. This coevolution
picture was first introduced by [72], followed by e.g.,
[53,54,73,74]. Here we simply assume the initial condition
is purely local in the Lagrangian space, and thus this simple
coevolution approach corresponds to the local Lagrangian

FIG. 1 (color online). A comparison of the PT correction terms at z ¼ 0 for Phm
00 (left) and Phm

01 (right). The data points are the nonlinear
matter power spectrum directly measured from our simulations described in Sec. III.
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evolution model. Assuming no velocity bias and a con-
servation of halo number, the continuity and the Euler
equations combined with the Poisson equation for a
matter-halo system are given by

δhðk;yÞ0−θðk;yÞ¼
Z

d3q
ð2πÞ3αðq;k−qÞθðq;yÞδhðk−q;yÞ;

ð33Þ

δmðk; yÞ0− θðk; yÞ¼
Z

d3q
ð2πÞ3 αðq; k − qÞθðq; yÞδmðk − q; yÞ;

ð34Þ

ffθðk; ηÞg0 þ
�
1þ H0

H2

�
θðk; yÞ − 3

2f
ΩmðyÞδmðk; yÞ

¼ f
Z

d3q
ð2πÞ3 βðq; k − qÞθðq; ηÞθðk − q; ηÞ; ð35Þ

where we introduce y≡ lnDðηÞ as a time variable rather
than the conformal time η, and the prime denotes derivative
w.r.t y. The Hubble parameter H is defined by H ¼
da=ðadηÞ. The linear-order solutions for this system are

give by δð1Þm ðk; yÞ ¼ eyδ0ðk; yiÞ, θð1Þðk; yÞ ¼ δð1Þðk; yÞ, and
δð1Þh ðk; yÞ ¼ bE1 ðyÞeyδ0ðk; yiÞ where

bL1 ðyÞ
bL1 ðyiÞ

¼ bE1 ðyÞ − 1

bE1 ðyiÞ − 1
¼ eyi

ey
: ð36Þ

As is shown in Ref. [53,54,75], the second-order solution
for halos is written by

δð2Þh ðk; yÞ ¼ bE1 ðyÞ
Z

d3q
ð2πÞ3 F

ð2Þ
S ðq; k − qÞδð1Þm ðq; yÞ

× δð1Þm ðk − q; yÞ þ
�
1

2
bL2 ðyÞ þ

4

21
bL1 ðyÞ

�

×
Z

d3q
ð2πÞ3 δ

ð1Þ
m ðq; ηÞδð1Þm ðk − q; yÞ − 2

7
bL1 ðyÞ

×
Z

d3q
ð2πÞ3 S

ð2Þðq; k − qÞδð1Þm ðq; yÞδð1Þm ðk − q; yÞ;

ð37Þ

where we used the fact that bLnðyÞ ¼ bLnðyiÞenðy−yiÞ. Hence a
correspondence of the local and nonlocal bias terms at
second order to Eq. (A14) is clearly found, and it shows that
the tidal field is allowed to be a source of the nonlocal bias
at second order:

bcoev2 ¼ bL2 ðyÞ þ
8

21
bL1 ðyÞ; ð38Þ

bcoev
s2

¼ −
4

7
bL1 ðyÞ ¼ −

4

7
ðbE1 ðyÞ − 1Þ: ð39Þ

Continuing to this exercise to third order, we find the
solution as

δð3Þh ðk; yÞ ¼ δð3Þh ðk; yiÞ þ
1

3

Z
d3q1
ð2πÞ3

d3q2
ð2πÞ3G

ð3Þ
S ðq1; q2; k − q1 − q2Þδð1Þm ðq1; yÞδð1Þm ðq2; yÞδð1Þm ðk − q1 − q2; yÞ

þ
�
1

2
bL1 ðyÞ þ

1

3

�Z
d3q1
ð2πÞ3

d3q2
ð2πÞ3 ½αðq1; q2 þ q3ÞFð2Þ

S ðq2; q3Þ�symδ3

þ
�
1

2
bL2 ðyÞ þ

2

21
bL1 ðyÞ

� Z
d3q1
ð2πÞ3

d3q2
ð2πÞ3 ½αðq1; q2 þ q3Þ�symδ3

−
1

4
bs2

Z
d3q1
ð2πÞ3

d3q2
ð2πÞ3 ½αðq1; q2 þ q3ÞSð2Þðq2; q3Þ�symδ3

þ
�
1

2
bL1 ðyÞ þ

1

3

�Z
d3q1
ð2πÞ3

d3q2
ð2πÞ3 ½αðq2 þ q3; q1ÞGð2Þ

S ðq2; q3Þ�symδ3: ð40Þ

Although the third-order solution looks somewhat complicated, it is useful to isolate its contribution to the matter-halo

power spectrum, i.e., hδð3Þh ðk; yÞδð1Þm ðk; yÞi. Subtracting out the terms proportional to the linear bias, we find

Phm;ð31Þ
coev ðkÞ − bE1P

ð31ÞðkÞ ¼ 32

315
bL1σ

2
3PðkÞ þ

�
bL2 þ

1

2
bL3

�
σ2PðkÞ: ð41Þ

Now it is straightforward to correspond this formula to Eq. (12):

bcoev3nl ¼ 32

315
bL1 ðyÞ ¼

32

315
ðbE1 ðyÞ − 1Þ; ð42Þ

b1 ¼ bE1 þ
�
bL2 þ

1

2
bL3

�
σ2: ð43Þ
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Thus the nonlocal bias term at third order which we
discussed in the previous section can be related to the
linear Lagrangian bias in this specific way. We will
compare this prediction with our b3nl measurement from
simulations in the following sections.

III. N-BODY SIMULATIONS AND THE
FITTING METHODOLOGY

A. N-body simulation detail

We performed a suite of N-body simulations using the
publicly available GADGET2 code [76] to make 14 real-
izations at z ¼ 0, 0.5 and 1 with cosmological parameters
in a flat ΛCDM model preferred by the WMAP results [1],
i.e., a mass density parameter Ωm ¼ 0.272, a baryon
density parameter Ωb ¼ 0.0455, a Hubble constant
h ¼ 0.704, a spectral index ns ¼ 0.967, and a normaliza-
tion of the curvature perturbations of Δ2

R ¼ 2.42 × 10−9 at
the pivot scale of k ¼ 0.002 Mpc−1, giving σ8 ¼ 0.81. The
total simulation volume is 47.25½ðGpc=hÞ3� which is larger
roughly by a factor of ten than the current galaxy survey
like BOSS. We generated initial conditions at z ¼ 99 using
the second-order Lagrangian perturbation theory to initialize
the second order growth correctly and allow for a reliable
bispectrum extraction at low redshift. The box size and
number of particles are L ¼ 1500 Mpc=h and Nparticle ¼
10243, respectively, yielding a particle mass resolution
of 2.37 × 1011M⊙=h.
We identify halos using the Friends-of-Friends finder with

a linking length of 0.2 times the mean inter particle spacing.
We only take halos which contain more than 20 particles,
and hence our minimum halo mass is approximately
4.74 × 1012M⊙=h. We divide the halo catalog into several
mass bins at each redshift slice, whose detail is summarized
in Table I. Note that ∼1013M⊙=h halo roughly corresponds
to a typical host halo in which observed galaxies live. In
order to estimate the power spectrum and the bispectrum, the

particles are assigned on a Nc ¼ 1024 grid with the Cloud-
in-Cell algorithm, and the gridded density field is properly
corrected by the window function. We also estimate the
power spectrum of mass-weighted momentum of matter,
following the method in [65,66]. Note that our simulation is
different from that used in [53,65,66,77]. We mainly focus
on combined measurement using the power spectrum and
the bispectrum but will present results in the case of the
bispectrum only in Appendix B.
The errors of the power spectrum are estimated by the

standard deviation among 14 realizations. Strictly speak-
ing, it might be necessary to evaluate the covariance matrix
to take account for the off-diagonal correlation among
different modes. However, we neglect the correlation
between different modes, since we focus on somewhat
large scales, k≲ 0.1h=Mpc. This part can be definitely
improved by a proper treatment of the covariance matrix
with larger number of realizations.

B. Fitting procedure

Let us briefly summarize how we determine the bias
parameters from the simulated power spectra. As explained
in the previous section, we have four bias parameters as
free, i.e., two local bias parameters, b1 and b2, and second-
and third-order nonlocal bias ones, bs2 and b3nl. When
we fit the bias model to the halo-matter density power
spectrum only, the fitted bias parameters are estimated so
that they minimize

χ2P00 ¼
X

ki≤kmax;PðkÞ

½Phm
00 ðkiÞ − P̂hm

00 ðkiÞ�2
ΔPhm

00 ðkiÞ2
: ð44Þ

Here theoretical template of Phm
00 at k ¼ ki is given by

Eq. (12), P̂hm
00 denotes the spectrum measured from the

simulations, ΔPhm
00 denotes the error of the spectrum

amplitude, and kmax;PðkÞ is the maximum wave number in

TABLE I. Summary of halo catalogs used in this paper. We also show the best-fitting values of four bias parameters determined by our
fitting from the power spectrum and the bispectrum. The fitting range, kmax, depends on redshift (see text on how to choose kmax in
detail): ðkmax;PðkÞ; kmax;BðkÞÞ ¼ ð0.08; 0.065Þ, (0.10,0.075), and (0.125,0.075) at z ¼ 0, 0.5 and 1, respectively. Note that the definition
of second-order bias parameters in [53] differs by a factor of two.

Redshift Mass bin M̄halo½1013M⊙=h� b1 b2 bs2 b3nl

1 I 0.763 2.0419� 0.0089 −0.168� 0.027 −1.099� 0.064 0.211� 0.074
II 2.24 2.7957� 0.0114 1.766� 0.039 −1.409� 0.094 0.133� 0.100
III 6.50 4.0294� 0.0170 8.0362� 0.062 −1.708� 0.165 0.245� 0.150

0.5 I 0.769 1.4426� 0.0057 −0.792� 0.018 −0.469� 0.038 0.153� 0.030
II 2.29 1.9033� 0.0078 −0.394� 0.024 −0.785� 0.052 0.170� 0.043
III 6.75 2.7005� 0.0115 1.586� 0.035 −1.286� 0.080 0.268� 0.061
IV 19.3 4.1349� 0.0204 8.650� 0.066 −1.837� 0.155 −0.294� 0.112

0 I 0.773 1.0488� 0.0048 −0.777� 0.013 −0.099� 0.026 0.092� 0.019
II 2.33 1.3094� 0.0062 −0.873� 0.018 −0.267� 0.035 0.132� 0.023
III 6.92 1.7977� 0.0087 −0.462� 0.025 −0.514� 0.051 0.193� 0.035
IV 20.1 2.6741� 0.0136 1.500� 0.040 −1.028� 0.086 0.105� 0.053
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the power spectrum analysis. Likewise we apply exactly the
same procedure for the cross power spectrum between halo-
density and matter-momentum by replacing 00 with 01 in
the subscript in Eq. (44). Note that we always insert the
measured spectra from the simulation for nonlinear matter
part, PNL

δδ for Pmm
00 and fPNL

δθ þ Bb1g for Pmm
01 . We also note

that we use the power spectra averaged over 14 realizations
rather than one in each realization. This is the reason why we
will observe somewhat low values of reduced χ2, and hence
this is not an overfitting issue. When we quote “00 only”
(“01 only”), we simply use χ2PðkÞ ¼ χ2P00 (χ2PðkÞ ¼ χ2P01).

When we include both Phm
00 and Phm

01 , we assume they are

FIG. 2 (color online). The best-fitting values of b3nl as a function of kmax. We present results at z ¼ 1 (top three), at z ¼ 0.5
(middle four), and at z ¼ 0 (bottom four), for light to heavy (from I to IV) halo mass bins. In each panel, we show results in the case of
Phm
00 only (red), Phm

01 only (blue), and both of two (black). The goodness of fit, χ2PðkÞ=dof, is also plotted in the lower part of each panel.
Note that we jointly fit the bispectrum together with the power spectrum. For comparison, the prediction from the coevolution picture
(local Lagrangian bias model), 32=315, is indicated by the horizontal line (cyan solid).
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independent and simply add two χ2 by neglecting the
correlation between two, i.e., χ2PðkÞ ¼ χ2P00 þ χ2P01. In prin-

ciple, we could estimate the covariancematrix which includes
correlation between both signals but the number of our
realizations would not be sufficient to properly estimate it
(see e.g., [78] for a recent study in such a direction).
The similar procedure is adopted for the bispectrum as

well. We search the best-fitting values of the bias param-
eters for the bispectrum so that they minimize

χ2BðkÞ ¼
X

ki;j≤kmax;BðkÞ

½Bhmm
000 ðki; kj; μijÞ − B̂hmm

000 ðki; kj; μijÞ�2
ΔBhmm

000 ðki; kj; μijÞ2
;

ð45Þ
where μi;j is the cosine between k1 and k2, the theoretical
template of Bhmm

000 is given by Eq. (31), ΔBhm
00 denotes the

error of the bispectrum amplitude, and kmax;BðkÞ is the
maximum wave number in the bispectrum analysis. Notice
that the bispectrum depends only on three bias parameters,
b1, b2 and bs2 . We distinguish the maximum wave number
range in the power spectrum case from that in the
bispectrum. It is not entirely clear if higher-order PT terms
for different statistics become dominant at the same wave
number. Our main purpose is to investigate how large the
third-order contribution is, and hence we fix kmax;BðkÞ to
0.065 ð0 − 075Þh=Mpc at z ¼ 0 (z ¼ 0.5 or 1) in the
following analysis. These choices are based on our fitting
results to the bispectrum only, presented in Appendix B.
Thus, we adopt χ2 ¼ χ2PðkÞ þ χ2BðkÞ when we jointly fit the
PT model to the power spectrum and the bispectrum.
In order to fully investigate the probability distribution

of preferred values of the bias parameters, we adopt the
Markov chain Monte Carlo (MCMC) technique, assuming

FIG. 3 (color online). The power spectra with best-fitting bias parameters at z ¼ 1. We here plot Phm
X ðkÞ=ðb1Pmm

X ðkÞÞ − 1 where X is
00 (left) or 01 (right) with the best-fitting values of b1 and b3nl at kmax ¼ 0.125h=Mpc (specified as an arrow). Namely, zero values
(black dotted) mean it matches to the linear bias term, any deviation from zero represents deviation from the linear bias model. The red
solid line corresponds to the case including all contributions. The blue dashed line includes only local bias terms up to second order,
while the green dashed line includes local and nonlocal bias terms up to second order.
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the Gaussian likelihood, i.e., L ∝ expð−χ2=2Þ. For this
end, we modify the COSMOMC code [79], considering
future applications of the code to the actual galaxy sample.
We ensure convergence of each chain, imposing R < 0.003
where R is the standard Gelman-Rubin criteria.

IV. RESULTS

Now we show our measurements of the bias parameters
from the simulated halo-matter power spectra combined

together with the bispectrum. In Fig. 2, we show the best-
fitting values of b3nl as a function of kmax for each mass bin
at each redshift. First of all, the preferred values of b3nl are
nonzero generally for any halo mass bin at any redshift, at
kmax ∼ 0.1h=Mpc. Also, the best-fitting values of b3nl from
Phm
00 ðkÞ are generally in a good agreement with those from

Phm
01 ðkÞ, indicating that the third-order nonlocal bias term is

important to explain both Phm
00 ðkÞ and Phm

01 ðkÞ. If looking
at smaller scales at k≳ 0.1h=Mpc, we start to see a

FIG. 4 (color online). Same as Fig. 3, but at z ¼ 0.5. The best-fitting values are derived at kmax ¼ 0.1h=Mpc (specified as an arrow).
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discrepancy between the two results, and the best-fitting
values tend to vary as a function of kmax. In addition, a
goodness of fit, χ2=ðdofÞ becomes worse at larger k. This
clearly shows that our bias model fails to describe the halo-
matter power spectra at such small scales, and higher-order
contribution would start to kick in. Notice again that our
values of the goodness of fit is somewhat small [Oð0.1Þ]
simply because we adopt the nonlinear matter power
spectra taken from the simulation itself, and we do not
worry about unrealistic overfitting issues here. Since our

b3nl measurements look convergent up to a certain kmax but
start to vary at larger kmax, it is difficult to define the reliable
range of the bias model which could depends on both
redshift and halo mass. We here simply and conservatively
quote the measured values of b3nl at kmax ¼ 0.08; 0.1, and
0.125 at z ¼ 0; 0.5, and 1, respectively, which roughly
correspond to valid range of the standard perturbation
theory [80,81].
We quantify contribution of the third-order nonlocal bias

term to each power spectrum in Figs. 3, 4, and 5 for z ¼ 1,

FIG. 5 (color online). Same as Fig. 3, but at z ¼ 0. The best-fitting values are derived at kmax ¼ 0.08h=Mpc (specified as an arrow).
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0.5 and 0, respectively. We plot Phm
X ðkÞ=ðb1Pmm

X ðkÞÞ − 1
with X being 00 or 01, which manifests deviation from
the linear bias term. The blue lines show the nonlinear
contributions from local term only, i.e., the b2 term, while
the green lines show ones from second-order local plus
nonlocal terms, i.e., the b2 term plus the bs2 one. Our best-
fitting results including the third-order nonlocal bias
term is shown by the red curves. Clearly seen from the
figures, the local bias model cannot explain the simulated

halo-matter spectra, and even including second-order
nonlocal bias terms does not drastically help in general.
Meanwhile, adding the third-order nonlocal bias term
can apparently explain the power spectra very well.
Within the valid range, the fractional differences between
the simulated and fitted spectra are typically at a few
percent level. This result is already expected from the
behavior of the PT terms in Fig. 1. The reason why we
obtain negative values of b3nl at mass bin IV at z ¼ 0.5

z = 0  mass bin I

FIG. 6 (color online). (Upper four panels) comparison between cases with and without combining the bispectrum information for
mass bin I at z ¼ 0. We show the marginalized probability distribution for each bias parameter in the cases of the power spectrum
combined with the bispectrum (red solid), the bispectrum only (blue dashed), and the power spectrum only (green dotted). As a
reference, we show the prediction from the coevolution bcoev3nl assuming b1 ≃ bE1 is equal to the value obtained by joint fitting (cyan).
Note that, in the case of the power spectrum, we use both density-density and density-momentum power spectrum with
kmax;PðkÞ ¼ 0.08h=Mpc. (Lower four panels) the marginalized two-dimensional contours (68% and 95% C.L.) among the nonlinear
bias parameters.
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is obvious from the figures. At these bins, the bispectrum
prefers large second-order bias parameters, especially b2,
whose contribution exceed the measured halo-matter
power spectra. Therefore the negative b3nl is necessary
to compensate with the second-order terms.
Given the fact that the contribution of the second-order

terms are generally lower than that of the third-order
nonlocal term, it is interesting to see to what extent we can
simultaneously constrain four bias parameters only from
the power spectra, i.e., without help of information on the
second-order bias parameters from the bispectrum. We
often encounter a similar situation in analyzing the actual
galaxy survey if we only have the power spectrum

measurement available, although we focus on the unob-
servable halo-matter power spectra throughout this work.
Also, it is interesting to separate the information of the
power spectrum out of that of the bispectrum and to
understand the parameter degeneracy in the PT model.
Figures 6–8 show one-dimensional and two-dimensional
marginalized posterior distribution for constraints on the
bias parameters. Generally speaking, the third-order non-
local bias b3nl is well constrained even only from the
power spectra, while the second-order bias parameters
cannot be tightly constrained only by the power spectra
(green). The second-order nonlocal bias, bs2 cannot be
constrained at all by the power spectra, since the

z = 0.5 mass bin II

FIG. 7 (color online). Same as Fig. 6, but for mass bin II at z ¼ 0.5. Note that, in the case of the power spectrum, we use both density-
density and density-momentum power spectrum with kmax;PðkÞ ¼ 0.1h=Mpc.
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amplitude of the bs2 term in the power spectra is fairly
small compared to other terms as seen in Fig. 1. The
second-order local bias b2 can be constrained by the
power spectra, but we confirm that the bispectrum is more
sensitive to b2. At low and intermediate mass bins (see
Figs. 6 and 7), the preferred values of b2 both from the
power spectra and the bispectrum are consistent with each
other, and hence the resultant values of b3nl in both cases
of PðkÞ and of PðkÞ þ BðkÞ become consistent as well. At
massive bin (see Fig. 8), this story seems a bit different.
Since the preferred values of b1 and b2 from the bispec-
trum at at mass bin IVof z ¼ 0.5 are larger than those from
the power spectra, the well-fitting b3nl from the combined

case becomes lower than the one only from the power
spectrum. Equivalently, the b3nl term become less impor-
tant at higher mass bins, and the b2 terms become
dominant over the b3nl term. Furthermore, the linear bias
value can be constrained solely by the bispectrum and its
agreement with the power spectrum-only result becomes
worse for more massive halos. The constraining power of
the power spectrum on b1 is weaker than what can be found
in the literature. This is a consequence of an anticorrelation
between b1 and b3nl. This fact implies that the b3nl term
becomes important at fairly large scales, k≲ 0.1h=Mpc
and has a non-negligible impact on determination of
the linear bias value. We here do not investigate how

z = 0.5 mass bin IV

FIG. 8 (color online). Same as Fig. 6, but for mass bin IVat z ¼ 0.5. Note that, in the case of the power spectrum, we use both density-
density and density-momentum power spectrum with kmax;PðkÞ ¼ 0.1h=Mpc.
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these correlations affect estimation of cosmological
parameters of interest and will be addressed in future
work.
Finally, we make a comparison between our b3nl mea-

surements with a theoretical prediction in order to make
sure if our results are physically expected. For this purpose,
we compare our results with the prediction, Eq. (42), in the
simple coevolution picture (or the local Lagrangian bias) as
discussed in Sec. II D. The cyan horizontal (vertical) line in
each panel of Fig. 2 (Figs. 6–8) is already drawn, and the
left panel of Fig. 9 summarizes such a comparison which
includes both second- and third-order nonlocal bias param-
eters as a function of the linear bias b1. Notice that it is
not clear if our measured b1 truly corresponds to bE1 [see
Eq. (43)] but we here simply assume b1 ≃ bE1 for simplicity.
As clearly seen in Fig. 9, overall agreement in third-order
nonlocal bias is as good as that in second-order, although
the agreement is apparently not perfect. Also, the b3nl value
at mass bin IV of z ¼ 0.5 exceptionally deviates from the
coevolution prediction. As we discussed above, however,
the value preferred from the power spectrum only is more
consistent with the coevolution prediction (see green dotted
line in Fig. 8). Again, this difference comes from the fact
that the mass bin IVof z ¼ 0.5 prefers larger b2 which more
affects the power spectrum and the bispectrum than the
nonlocal bias terms. There are several sources which could
make the prediction different from the local Lagrangian
bias as we will discuss in the following section. However,
it is worth mentioning that our b3nl measurement is not far
from the coevolution prediction which is one of the
simplest physical models one thinks of. This fact also
implies an evidence of the third-order nonlocal bias
term. In the right panel of Fig. 9, we also compare our
measurements of the second-order local bias b2 from the
joint fit with theoretical prediction that is based on the

peak-background split (PBS) with the universal mass
function (see Appendix D in detail). Clearly seen from
the figure, the measured b2 values are systematically lower
than the theoretical predictions at fixed b1, while the
characteristic dependence on b1 is qualitatively similar.
Note that it is a coincidence that two points around b1 ∼ 4
look in a perfect agreement with the prediction, since they
deviate from predictions in ðb1;MhaloÞ or ðb2;MhaloÞ plane.

V. SUMMARY AND DISCUSSION

The nonlocality of halo bias is naturally induced by
nonlinear gravitational evolution as suggested by recent
studies. In this paper we study how well the PT model
including nonlocal bias effects perform against the halo
statistics simulated in N-body simulations in a ΛCDM
universe. For this purpose we first revisit the bias renorm-
alization scheme proposed by [51] and show that, while the
leading-order bispectrum requires only one second-order
nonlocal bias term, bs2 [see Eq. (31)], the power spectrum
at next-to-leading order demands an additional nonlocal
bias term, b3nl, associated with the third-order perturbation
[see Eq. (12)]. We extend this model to the power spectrum
between halo density and matter momentum, and show that
there is an exactly same correction of the b3nl term in this
case as well [see Eq. (30)]. The fact that we only need one
additional nonlocal bias even at third order may sound
surprising. However, we argue that this is actually expected
since the symmetry in gravity basically restricts the allowed
functional form of nonlocal terms. In order to confirm this,
we show that the PT kernel in the b3nl term exactly matches
to the solution in a simple coevolution picture between dark
matter and halo fluids (see discussion in Sec. II D). Also,
this circumstance evidence becomes even much clearer
when the solution in coevolution picture is found out to be

FIG. 9 (color online). (Left) nonlocal bias values at second and third orders as a function of the linear bias parameter. Each point is
taken from the result in the joint fit of the power spectrum and the bispectrum. Both of them are compared with the values expected from
the local Lagrangian bias in the simple convolution picture (dashed lines). (Right) second-order local bias bias b2 against b1. Again each
point is obtained from our joint fit. For comparison, we draw theory lines which is based on the peak-background split with the universal
mass function (see text in detail). Note that the range of these lines are limited since we here consider relevant halo mass range
only (0.6≲Mhalo½1013M⊙=h� ≲ 21).
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consistent with that derived by the Galileon invariants (see
Appendix C and similar discussions can be found in [54]).
Also we note that Ref. [56] readdress the bias renormal-
ization in terms of the effective field theory (EFT) language
and drew the same conclusion.
Then an inevitable question is whether the model can

really well describe the halo statistics in N-body simu-
lations. In particular, can the model simultaneously explain
the halo power spectrum and the bispectrum which is never
achieved in a simple local bias model [46,47]? To answer
this question, we fit the model including nonlocal bias
terms to the power spectrum, combined with the bispec-
trum. We here focus on the cross spectra between halos and
dark matter which are free from issues such as halo
exclusion [82] or stochasticity [61,83,84]. A novel thing
in this work is to compare the model for the cross spectrum
between halo density and matter momentum. The momen-
tum power spectrum is the essential ingredient in predicting
RSD in the so-called distribution function approach as
initiated by [64]. We show that the fitting values of b3nl up
to a certain kmax (typically, kmax ≲ 0.1h=Mpc) are in a good
agreement for two power spectra, saying that the model
seems to be able to explain the power spectra and the
bispectrum at the same time. We also explore if the derived
values of b3nl are consistent with predictions from the
simple coevolution picture (or the local Lagrangian bias)
and find as a good agreement as second order tidal bias, bs2 ,
although the agreement is not perfect.
Our study does indicate that there is no reason to ignore

the nonlocal bias terms in predicting the halo statistics at a
high accuracy. In fact there have been some evidences
which suggests the third-order nonlocal bias term should be
included in the literature. For instance, Refs. [68,69] find
that they need to introduce two different second-order bias
parameters for the halo density-density, b002 and for the
halo density-momentum, b012 to explain the simulated halo
power spectrum. As is already discussed in [68], the
difference can be, at least qualitatively, explained by the
b3nl term. However, we need to be more careful to analyze
the halo-halo statistics by properly taking stochasticity
noise and velocity bias into account. Even though many
improvements still need to be considered, Ref. [14] applies
the model based on our study with nonlocal bias values
fixed to be the coevolution predictions to the actual galaxy
survey data. One of the reasons why it seems to work is that
the authors primarily focus on the anisotropic clustering
signal to extract RSD which has larger statistical errors
(typically ∼10%) than the isotropic part (i.e., monopole,
typically a few %). Also, additional bias parameters such as
the second-order local bias, b2, and shot-noise-like bias, N,
are conservatively treated as free. In order to extract the
shape information from the monopole, however, more
refined analysis will be required. We leave it as our future
work and hope to report it elsewhere in the near future.
Also, there are extensions of the model considered here,

which could make the fit and the comparisons better and
extend to higher wave numbers. Let us summarize the key
assumptions of our simple coevolution picture again: local
Lagrangian initial conditions, a continuity equation for the
halo fluid, and no velocity bias. The local Lagrangian initial
conditions will be likely to be modified by the presence of
initial bs2 and b3nl due to e.g., ellipsoidal collapse [85].
Since we are fitting for the amplitude of these terms, our
inferred values are a combination of the initial and
dynamical contributions and the agreement with the bs2 ,
b3nl ∝ ðb1 − 1Þ scaling tells us that the initial contributions
are expected be fairly small. Furthermore, the peak model
[86] and studies of proto-haloes inN-body simulations [87]
suggest that there is an initial scale dependent linear bias
b1ðkÞ, which arises from the dependence of the peak
clustering on second derivatives of the field (see [88,89]
for a rigorous derivation, and also see [52,62] for sub-
sequent gravitational evolution taken into account). The
same calculation also reveals that proto-halo velocities are
likely statistically biased on small scales with respect to the
underlying matter. Simple considerations for the motions of
peaks suggest that these effects are damped by gravitational
evolution at linear level. In absence of a well tested
description of these effects at the non-linear level, we
refrain from taking these effects into account.
Let us make a comment on a related work in Ref. [90].

The authors in Ref. [90] predict the halo-matter power
spectrum by fixing bias parameters: the local bias param-
eters, b1 and b2, are calculated by the peak-background
split combined with the non-universal mass function in the
excursion set peak formalism [91–93], and the nonlocal
bias parameters are fixed with the results of the local
Lagrangian bias (i.e., the same as our Sec. II D). In
addition, a crucial difference is that they include k2-type
bias term based on the peak formalism. They claim that
their predictions are in a good agreement with simulations
including cosmology with massive neutrinos [94] at a few
percent level, and the k2-type term, which we ignored, is
important. This sounds contradictory to our results, but we
argue it is not actually the case: in Fig. 9, we observe that
our preferred b3nl values are sometimes larger than the
coevolution prediction. This means that it is necessary to
introduce another component (like k2 term) to well fit to
the simulated data, if the b3nl is fixed to the coevolution
prediction. In addition, as is already pointed out in [53] and
is shown in Fig. 9, the preferred values of the second-order
bias, b2 and bs2 , are not in a perfect agreement with the
simple theoretical predictions. It is interesting to clarify
whether the source of this discrepancy comes truly from the
k2 bias or something different, which would require more
careful investigation.
As a final remark, we make a comment on future

directions of our study. As shown in Fig. 9, our measure-
ments suggests a characteristic dependence of the higher-
order local and nonlocal biases on the linear bias b1.

UNDERSTANDING HIGHER-ORDER NONLOCAL HALO BIAS … PHYSICAL REVIEW D 90, 123522 (2014)

123522-17



This fact implies that there would be a possibility that we
could model higher-order bias terms simply in terms of b1
(or the halo mass Mhalo), which is an ultimate goal of
modeling the halo bias. We believe that our results provide
a hint toward a more refined modeling of the nonlinear
halo bias without any free parameters. Another legitimate
extension of our study is to investigate if the b3nl term
can explain the trispectrum simultaneously. However,
Ref. [56] shows that there exists an additional nonlocal
term even in the tree-level trispectrum. In addition, the
trispectrum analysis requires a gigantic simulation volume
to gain ample signal-to-noise ratio. Thus such an analysis
would take a rigorous amount of work, even though it is
straightforward to do.
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APPENDIX A: PERTURBATION
THEORY BASICS

In this Appendix we summarize basic equations in
perturbation theory.

1. Matter density

A matter density in Fourier space is perturbatively
expanded into

δmðkÞ ¼ δ0ðkÞ þ
Z

d3q
ð2πÞ3 F

ð2Þ
S ðq; k − qÞδ0ðqÞδ0ðk − qÞ

þ
Z

d3q1
ð2πÞ3

d3q2
ð2πÞ3 F

ð3Þ
S ðq1; q2; k − q1 − q2Þ

× δ0ðq1Þδ0ðq2Þδ0ðk − q1 − q2Þ þOðδ04Þ; ðA1Þ

where δ0 is the linear density perturbation and the sym-
metrized PT kernels are given by

Fð2Þ
S ðq1; q2Þ ¼

1

2
fFð2Þðq1; q2Þ þ Fð2Þðq2; q1Þg

¼ 5

7
þ 1

2

q1 · q2
q1q2

�
q1
q2

þ q2
q1

�
þ 2

7

�
q1 · q2
q1q2

�
2

;

ðA2Þ

Gð2Þ
S ðq1; q2Þ ¼

3

7
þ 1

2

q1 · q2
q1q2

�
q1
q2

þ q2
q1

�
þ 4

7

�
q1 · q2
q1q2

�
2

; ðA3Þ

Fð3Þ
S ðq1; q2; q3Þ ¼

1

3!
fFð3Þðq1; q2; q3Þ þ cyclicg

¼ 1

6

�
7

9

q123 · q3
q23

Fð2Þ
S ðq1; q2Þ þ

�
7

9

q123 · ðq1 þ q2Þ
jq1 þ q2j2

þ 2

9

q2123q3 · ðq1 þ q2Þ
jq1 þ q2j2 · q23

�
Gð2Þ

S ðq1; q2Þ
�

þ cyclic; ðA4Þ

Gð3Þ
S ðq1; q2; q3Þ ¼

1

6

�
1

3

q123 · q3
q23

Fð2Þ
S ðq1; q2Þ þ

�
1

3

q123 · ðq1 þ q2Þ
jq1 þ q2j2

þ 2

3

q2123q3 · ðq1 þ q2Þ
jq1 þ q2j2 · q23

�
Gð2Þ

S ðq1; q2Þ
�

þ cyclic; ðA5Þ

where q123 ¼ q1 þ q2 þ q3. The unsymmetrized kernels
are given by

Fð2Þðq1; q2Þ ¼
5

7
αðq1; q2Þ þ

2

7
βðq1; q2Þ; ðA6Þ

Gð2Þðq1; q2Þ ¼
3

7
αðq1; q2Þ þ

4

7
βðq1; q2Þ; ðA7Þ

αðq1; q2Þ ¼
ðq1 þ q2Þ · q1

q21
; ðA8Þ

βðq1; q2Þ ¼
1

2
ðq1 þ q2Þ2

q1 · q2
q21q

2
2

: ðA9Þ

2. Biased tracer’s density

Following an ansatz in McDonald and Roy [51], a halo
density field (or generally biased tracer) is written as

δhðxÞ ¼ cδδmðxÞ þ
1

2
cδ2δmðxÞ2 þ

1

2
cs2sðxÞ2

þ 1

3!
cδ3δmðxÞ3 þ

1

2
cδs2δmðxÞsðxÞ2

þ cψψðxÞ þ cstsðxÞtðxÞ

þ 1

3!
cs3sðxÞ3 þ cϵϵþ � � � ; ðA10Þ
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where each independent variable is defined as

sijðxÞ≡ ∂i∂jϕðxÞ −
1

3
δKijδmðxÞ ¼

�
∂i∂j∂−2 −

1

3
δKij

�
δmðxÞ; ðA11Þ

tijðxÞ≡ ∂ivj −
1

3
δKijθmðxÞ − sijðxÞ ¼

�
∂i∂j∂−2 −

1

3
δKij

�
½θðxÞ − δmðxÞ�; ðA12Þ

ψðxÞ≡ ½θðxÞ − δmðxÞ� −
2

7
sðxÞ2 þ 4

21
δmðxÞ2: ðA13Þ

Note that tij is zero at first order, and ψ is zero up to second order. In Fourier space, the halo density contrast is given by

δhðkÞ ¼ cδδ0ðkÞ þ cδ

Z
d3q
ð2πÞ3 F
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S ðq2; k − q2Þg

× δ0ðq1Þδ0ðq2Þδ0ðk − q1 − q2Þ

þ 2cst

Z
d3q1
ð2πÞ3

d3q2
ð2πÞ3 S

ð2Þðq1; k − q1ÞDð2Þ
S ðq2; q1 − q2Þδ0ðq1Þδ0ðq2Þδ0ðk − q1 − q2Þ; ðA14Þ

where

Sð2Þðq1; q2Þ ¼
�
q1 · q2
q1q2

�
2

−
1

3
; ðA15Þ

Sð3Þðq1; q2; q3Þ ¼
ðq1 · q2Þðq2 · q3Þðq3 · q1Þ

q21q
2
2q

2
3

−
1

3

ðq1 · q2Þ2
q21q

2
2

−
1

3

ðq2 · q3Þ2
q22q

2
3

−
1

3

ðq3 · q1Þ2
q23q

2
1

þ 2

9
; ðA16Þ

DðNÞ ≡ GðNÞ − FðNÞ: ðA17Þ

3. Distribution function approach

In the Distribution Function approach to model the redshift-space distortion proposed in Ref. [64], the redshift-space
power spectrum, PSðkÞ, is expanded into infinite sum of momentum power spectrum,
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PSðkÞ ¼
X
LL0

ð−1ÞL0

L!L0!
ðik‖ÞLþL0

PLL0 ðkÞ; ðA18Þ

where the momentum and its power spectrum are
defined by

TL
‖ ðxÞ≡ f1þ δðxÞgv‖ðxÞL; ðA19Þ

PLL0 ðkÞð2πÞ3δDðkþ k0Þ≡ hTL
‖ ðkÞTL0

‖ ðk0Þi: ðA20Þ

Note that the velocity is defined in units of the Hubble
velocity, and we define the velocity dispersion θ so that
δ ¼ θ in linear regime. The velocity divergence θ is written
in Fourier space as

v‖ðkÞ ¼ −if
k‖
k2

θðkÞ: ðA21Þ

4. Halo-halo power spectrum

The auto power spectrum of halo is similarly given by

Phh
00ðkÞ ¼ b21P

NL
δδ ðkÞ þ 2b1b2Pb2;δðkÞ þ 2b1bs2Pbs2;δðkÞ

þ 2b1b3nlσ23ðkÞPðkÞ þ b22Pb22ðkÞ
þ 2b2bs2Pb2s2ðkÞ þ b2s2Ps22ðkÞ þ N; ðA22Þ

where

Pb22ðkÞ≡ 1

2

Z
d3q
ð2πÞ3 PðqÞfPðjk − qjÞ − PðqÞg; ðA23Þ

Pb2s2ðkÞ≡1

2

Z
d3q
ð2πÞ3PðqÞ

×

�
Pðjk− qjÞSð2Þðq;k− qÞ− 2

3
PðqÞ

�
; ðA24Þ

FIG. 10 (color online). The best-fitting values of the bias parameters only from the bispectrum at z ¼ 0 as a function kmax. Our fiducial
choice at kmax;BðkÞ ¼ 0.065h=Mpc is highlighted with a black solid line. As a reference, the value of b1 preferred by joint fitting with the
power spectrum is indicated with a black dashed line.
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Pbs22ðkÞ≡1

2

Z
d3q
ð2πÞ3PðqÞ

×

�
Pðjk−qjÞSð2Þðq;k−qÞ2−4

9
PðqÞ

�
: ðA25Þ

Here we subtract the constant terms like
R
d3qPðqÞ2 to

keep nonlinear corrections vanishing in the limit of k → 0.
Also, cross spectrum between halo density and halo
momentum is given by

Phh
01ðkÞ ¼ b1ffPNL

δθ ðkÞ þ Bb1ðkÞg þ b1ðb1 − 1ÞBb1ðkÞ
þ b2fPb2;θðkÞ þ b1Bb2ðkÞg
þ bs2fPbs2;θðkÞ þ b1Bbs2ðkÞg
þ b3nlσ23ðkÞPðkÞ: ðA26Þ

APPENDIX B: FITTING BIAS PARAMETERS
ONLY AGAINST THE BISPECTRUM

As we discussed in Sec. II C, the bispectrum is useful to
access the second-order bias parameters, since the tree-level

bispectrum depends only on the bias parameters up to
second order. In other words, it is necessary to carefully
investigate the valid range of the tree-level bispectrum.
Here we show the fitting results using the bispectrum alone
in our simulation. A set of free parameters is ðb1; b2; bs2Þ in
this case. Note that this analysis is slightly different from
that in previous work [53]: we vary b1 as a free parameter,
while the authors in [53] fixed the value of b1 taken from
the halo-matter power spectrum. Since we intend to
combine the power spectrum with the bispectrum and
we have already seen that there exists an anticorrelation
between b1 and b3nl in the joint fit, it is helpful to isolate the
information only from the bispectrum.
Figures 10–12 show bias parameters derived at z ¼ 0,

0.5 and 1, respectively, from our MCMC fitting as a
function of kmax. As found in [53], we see non-zero
second-order tidal bias bs2 for a variety of halo mass bins
and redshifts. In addition the figures show that larger kmax

results in general deviate more from low kmax ones with
higher χ2 values, implying the PT model certainly breaks
down at such small scales. Based upon these considerations

FIG. 11 (color online). Same as Fig. 10, but at z ¼ 0.5.
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we choose the valid range of the maximum wave number in
the bispectrum in a redshift-dependent way: kmax;BðkÞ ¼
0.065ð0.075Þh=Mpc at z ¼ 0 (z ¼ 0.5 or 1). Note this
choice is fully consistent with the z ¼ 0 result in Ref. [53].
Interestingly, this is achieved without adding information
on the linear bias b1 from the power spectrum. In fact the
preferred values of b1 only from the bispectrum tend to
more deviate from ones in the joint-fit results at higher mass
bins at higher redshift. This issue is also addressed in
Figs. 6–8. When the preferred b1 value from the bispectrum
differs from that from the power spectrum, the bias values
presented here could be different from those exhibited in
the main text.

APPENDIX C: CONSISTENCY CHECK WITH
THE GALILEON INVARIANT APPROACH

In Sec. II D we derived solutions up to third order for the
simple coevolution equations of dark matter and halo fluids
starting from initial condition with purely local bias (i.e.,
local Lagrangian bias). As a matter of fact such solutions

have been already derived in Ref. [54,95], but the authors
took a different route which is based on Galileon symmetry
in gravity. In this Appendix we review the Galileon
invariant approach and check that this approach is perfectly
consistent with ours as expected.
In the Lagrangian picture, gravitational evolution of

displacement field is solely governed by the velocity
potential, Φv, defined by θ ¼ ∇2Φv. Since the halo dis-
tribution is a scalar under translations and rotation in three
dimensional space, it should be written down in terms of
scalar invariants of ∇i∇jΦv. It is known that there are only
three such invariants in three dimensional space, so-called
Galileons [96]:

G1 ¼ ∇2Φv; ðC1Þ

G2 ¼ ð∇i∇jΦvÞ2 − ð∇2ΦvÞ2; ðC2Þ

G3 ¼ ð∇2ΦvÞ3 þ 2ð∇i∇jΦvÞð∇j∇kΦvÞð∇k∇iΦvÞ
− 3ð∇i∇jΦvÞ2∇2Φv: ðC3Þ

FIG. 12 (color online). Same as Fig. 10, but at z ¼ 1.

SHUN SAITO et al. PHYSICAL REVIEW D 90, 123522 (2014)

123522-22



Reference [54] rewrote the coevolution equations and
derived the solutions in terms of Galileons. Since their
approach solves the exactly same gravity system, it is quite
natural to achieve the consistent solution with what we
derived in Sec. II D. Note that this approach does not hold if
there exists a velocity bias, since relative motion between
dark matter and halo fluids obviously breaks down the
Galileon symmetry. Let us first begin with the second-order
solution which is obtained as (ϵ ¼ 1 and y → ∞ in Eq. (95)
in Ref. [54])

δð2Þh ¼ bE1δ
ð2Þ þ bL2

2
δð1Þ2 −

2

7
bL1G

ð2Þ
2 ðΦvÞ; ðC4Þ

where Gð2Þ
2 ðΦvÞ in Fourier space is

Gð2Þ
2 ðΦvÞðq1; q2Þ ¼

ðq1 · q2Þ2
q21q

2
2

− 1: ðC5Þ

Thus the Fourier-transformed version of Eq. (C4) matches
Eq. (37). Note that the simple relation between Eulerian
and Lagrangian bias, bE2 ¼ bL2 þ ð8=21ÞbL1 is used.
Likewise the third-order solution is given by (ϵ ¼ 1 and
y → ∞ in Eq. (99) in Ref. [54])

δð3Þh ¼ bE1δ
ð3Þ þ bL2δ

ð1ÞδLð2Þ þ
�
bL3
6
−
bL2
2

�
δð1Þ3

−
2

7
bL2δ

ð1ÞGð2Þ
2 ðΦvÞ −

22

126
bL1∇½Gð2Þ

2 ðΦvÞvð1Þ�

−
1

9
bL1G

ð3Þ
2 ðΦvÞ; ðC6Þ

where δLð2Þ ¼ δð1Þ2 þ vð1Þ · ∇δð1Þ þ 2Gð2Þ
2 =7, and the

(unsymmetrized) third-order part of the second-order
Galileon is written in Fourier space as

Gð3Þ
2 ðΦvÞðq1; q2; q3Þ ¼ 2

�fq1 · ðq2 þ q3Þg2
q21

�
1

2

q2 · q3
q22q

2
3

−
3

7

1

ðq2 þ q3Þ2
�ðq2 · q3Þ2

q22q
2
3

− 1

��

− ðq2 þ q3Þ2
�
1

2

q2 · q3
q22q

2
3

−
3

7

1

ðq2 þ q3Þ2
�ðq2 · q3Þ2

q22q
2
3

− 1

���
δ0ðq1Þδ0ðq2Þδ0ðq3Þ: ðC7Þ

Atedious and long calculation shows that this solution exactly
matches Eq. (40). Here also bE3 ¼ −ð708=567ÞbL1 −
ð13=7ÞbL2 þ bL3 is helpful to find the match. As discussed in
Ref. [54] (see also [56]), it is not necessary to start with
Eq. (A14)and thereareduplicated termsin third-order terms in
Eq. (A14). However, this fact does not alter our discussion
sinceall thenonlocal third-order termscanbesummarized into
the b3nl term anyway as shown in Sec. II D or in Ref. [51].

APPENDIX D: PREDICTING LOCAL
BIAS PARAMETERS FROM THE

PEAK-BACKGROUND SPLIT WITH
THE UNIVERSAL MASS FUNCTION

In this Appendix, we summarize how to predict the local
bias parameters, b1 and b2, on the basis of a simple peak-
background split [86] combined with the universal halo mass
function. For this purpose we here adopt the Sheth-Tormen
(ST) fitting formula for the universal mass function [44]. The
similar contents can be found in the literature (see e.g., [97])
and, this Appendix follows the notation in Refs. [53,98,99].
The universal halo mass function basically assume that it

depends only the peak hight ν defined as

νðR; zÞ ¼ δ2c
σðR; zÞ2 ; ðD1Þ

where we set the density threshold δc to be 1.686 based on
the spherical collapse, and the variance of the matter
fluctuation field smoothed over the scale R is given by

σ2ðR; zÞ ¼
Z

k2dk
2π2

Pðk; zÞjWðkRÞj2; ðD2Þ

with WðkRÞ being the top-hat window function, i.e.,
WðxÞ ¼ 3ðsin x − x cos xÞ=x3. Here the Lagrangian radius
R is simply connected to the halo mass as R ¼
f3M=ð4πρ̄m0Þg1=3. Note that R does not depend on red-
shift. In the peak-background split, the local Lagrangian
bias parameters are written down as

bL1 ðM; zÞ ¼ −
1

n̄
2ν

δc

∂n
∂ν ; ðD3Þ

bL2 ðM; zÞ ¼ 4

n̄
ν2

δ2c

∂2n
∂ν2 þ

2

n̄
ν

δ2c

∂n
∂ν : ðD4Þ

In the case of the ST mass function, the derivatives are
analytically expressed by

1

n̄
∂n
∂ν ¼ −

qν − 1

2ν
−

p
νf1þ ðqνÞpg ; ðD5Þ

1

n̄
∂2n
∂ν2 ¼ p2 þ νpq

ν2f1þ ðqνÞpg þ
ðqνÞ2 − 2qν − 1

4ν2
; ðD6Þ

where we adopt ðp; qÞ ¼ ð0.15; 0.75Þ. Finally we obtain
the Eulerian local bias parameters using Eqs. (36) and (38).
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