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We study the occurrence of cuspy events on a light string stretched between two Y-junctions with fixed
heavy strings. We first present an analytic study and give a solid criterion to discriminate between cuspy
and noncuspy string configurations. We then describe a numerical code, built to test this analysis. Our
numerical investigation allows us to look at the correlations between the string network’s parameters and
the occurrence of cuspy phenomena. We show that the presence of large-amplitude waves on the light string
leads to cuspy events. We then relate the occurrence of cuspy events to features like the number of vibration
modes on the string or the string’s root-mean-square velocity.
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I. INTRODUCTION

Cosmic strings [1–4] can arise as a result of phase
transitions followed by spontaneously symmetry breakings
in the early Universe. Such one-dimensional false vacuum
remnants were shown [5,6] to be generically formed at the
end of hybrid inflation within the context of grand unified
theories. The evolution of a cosmic string network has been
the core ofmany analytical and numerical studies. It has been
long known and well accepted that long strings enter the
scaling regime, rendering a cosmic string network cosmo-
logically acceptable. Much later it was also shown [7], by
means of numerical simulations, that cosmic string loops in
an expanding universe also achieve a scaling solution, and an
analyticalmodel has been proposed [8] to derive the expected
number density distribution of cosmic string loops at any
redshift soon after the time of string formation to today.
Cosmic superstrings [9,10], the string theory analogues

of the solitonic strings, are generically formed [11] at the
end of brane inflation. In contrast to the Abelian field
theory strings, which can only interact through intercom-
mutation and exchange of partners with probability of order
unity, collisions of cosmic superstrings typically occur with
smaller-than-unity probabilities and can lead to the for-
mation of Y-junctions at which three strings meet [12–14].
This characteristic property of cosmic superstrings is of
particular interest since it can strongly effect the dynamics
of the network evolution [15–19] leading to potentially
observable phenomenological signatures [9,18,20,21].
The effect of junctions on the evolution of cosmic super-

string networks was the central subject of several numerical
[22–25] and analytical [15–19,21,26–28] studies.

One of the most important channels of radiation emis-
sion from cosmic (super)strings is gravity waves [29–37].
They can be emitted either as bursts, namely by cusps
and kinks, or as a stochastic background. To estimate the
emission of gravity waves from cosmic (super)strings it is
therefore crucial to evaluate the influence of some param-
eters, such as the interstring distance, the coherence distance
and the wiggliness, on the number of cusps. It is usually
assumed that cusps appear on the string and their number is
just considered as a free and unknown parameter, to be
estimated, for example, from numerical simulations. The
aim of this analysis is to roughly evaluate the occurrence of
cusps on a string network and in particular to relate to relate
the probability of cusp’s formation to the relevant string
parameters to the relevant string parameters.
In what follows, we present first an analytical and then a

numerical study of a string stretched between two junc-
tions, and its periodic noninteracting evolution. We con-
sider the specific configuration of two equal tension heavy
strings linked by a light string. As explained in the
following, the conclusions drawn in such case can be
generalized to realistic strings configurations under certain
circumstances which we discuss in Sec. II. We estimate the
influence of the string parameters on the average number of
cuspsy events appearing on the string during its evolution.
In particular, we first look at the periodicity requirements
and symmetries on the string, in order to allow for a Fourier
decomposition. An analytical study then draws a link
between waves and cuspy phenomena on the string, where
by cuspy phenomena we mean both cusps and pseudo-
cusps. Recall that the former are points on the string
reaching temporarily the speed of light c ¼ 1. The latter are
highly relativistic configurations close to cusps but reach-
ing a velocity between 10−3 and 10−6 below c. We then
present our numerical simulation which allows us to draw a
specific string configuration and to subsequently compute
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the number of cusps and pseudocusps within a period of a
noninteracting evolution. Finally, we discuss our results
with respect to two parameters, one that sets the interstring
distance and another one that measures the waviness of the
string—that is, how many large-amplitude waves are on the
string and how large they are.

II. GENERAL SETUP

In the context of string theory, stable bound states of
fundamental strings and one-dimensional Dirichlet branes
can be formed, leading to the emergence of Y-junctions
[38]. These junctions can also appear in the context of
semilocal string interactions. These types of strings are
generally thought to have cusps, especially in the case of a
string stretched between two junctions [18]. Here, we start
with a simplified and idealized version of such a configu-
ration in order to look at the parameters influencing the
occurrence and number of cusps.
The Y-junction configuration we will study is made up of

two heavy strings connected via a light string. Hence,
without loss of generality we consider the heavy strings to
be of equal tension.1 So in what follows, we have two
tensions: the tension of the heavy strings and that of the
light string.
We here consider two heavy strings in the (xz) plane,

oriented along the z axis, and then we tilt them by an angle
�Ψ with respect to the z direction (see Fig. 1) and space
them out by a distance Δ. The heavy strings are considered
heavy enough to be at rest at least for a time longer than
the time scale of the light string’s movement. This implies
either that the heavy strings’ tension is very large (at least of
order 102 times) compared to the light string’s one, or at
least that the time scale of the light string’s movement is
short compared to the ratio of the light string’s length to the
heavy strings’ velocity (with respect to the light string). In
addition, since the heavy strings can be considered as
straight in the vicinity of the junction and since the
boundary conditions are what matter here, the heavy strings
will be taken as infinitely straight. Note that even though
the case studied here is not generic, the conclusions are
applicable to generalizations of this specific configuration
as shown in the Appendix A.
The boundary conditions for a light string ending on

two junctions with the aforementioned heavy strings are
given by

_x⊥ðt; 0Þ ¼ x0
∥ðt; 0Þ ¼ 0; ð2:1aÞ

_x⊥ðt; σmÞ ¼ x0
∥ðt; σmÞ ¼ 0; ð2:1bÞ

where f0ðσ; tÞ ¼ ∂σfðσ; tÞ and _fðσ; tÞ ¼ ∂tfðσ; tÞ and
where the subscripts ⊥, ∥ indicate the projection along
the directions orthogonal, parallel to the (local) end string,
respectively. The string’s position vector x depends on two
world sheet coordinates, namely the cosmological time t2

and the spacelike coordinate σ ∈ ½0; σm�, denoting the
position on the string, with σm being the parameter length
of the string, that is, the maximal value for σ since the
minimal value is 0. Hence, in terms of the coordinates
(x; y; z) of x, conditions (2.1), at any time t, read

_xyðt; 0Þ ¼ 0; ð2:2aÞ

_xxðt; 0Þ cosΨ − _xzðt; 0Þ sinΨ ¼ 0; ð2:2bÞ

x0xðt; 0Þ sinΨþ x0zðt; 0Þ cosΨ ¼ 0; ð2:2cÞ

and

_xyðt; σmÞ ¼ 0; ð2:2dÞ

_xxðt; σmÞ cosΨþ _xzðt; σmÞ sinΨ ¼ 0; ð2:2eÞ

− x0xðt; σmÞ sinΨþ x0zðt; σmÞ cosΨ ¼ 0: ð2:2fÞ

Following the usual approach, one imposes the conformal
gauge conditions ð_xμÞ2 þ ðx0μÞ2 ¼ 0 and _xμx0μ ¼ 0 and the
temporal gauge τ ¼ t≡ x0, to get x00 − ẍ ¼ 0. To solve this
equation we decompose the position vectors into left and
right movers, aðσ þ tÞ, bðσ − tÞ, as

xðt; σÞ≡ 1

2
½aðσ þ tÞ þ bðσ − tÞ�; ð2:3Þ

leading to the system of equations

a0yðtÞ ¼ b0yð−tÞ; ð2:4aÞ

FIG. 1 (color online). A light string stretched between two
junctions with heavy strings.

1The formation of a junction depends on various parameters,
such as the collision velocity and the tensions. However, once
the junction is formed, the tensions will not influence the
dynamics [27].

2One can indeed choose to work in the time gauge, so that the
timelike coordinate τ is indeed the cosmological time t.
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½a0zðtÞ − b0zð−tÞ� tanΨ ¼ a0xðtÞ − b0xð−tÞ; ð2:4bÞ

a0zðtÞ þ b0zð−tÞ ¼ −½a0xðtÞ þ b0xð−tÞ� tanΨ; ð2:4cÞ

and

a0yðσm þ tÞ ¼ b0yðσm − tÞ; ð2:4dÞ

½a0zðσm þ tÞ − b0zðσm − tÞ� tanΨ
¼ −a0xðσm þ tÞ þ b0xðσm − tÞ; ð2:4eÞ

a0zðσm þ tÞ þ b0zðσm − tÞ
¼ ½a0xðσm þ tÞ þ b0xðσm − tÞ� tanΨ: ð2:4fÞ

A. Periodicity requirements

Equations (2.4a) and (2.4d) imply

a0yð−σm þ tÞ ¼ a0yðσm þ tÞ; ð2:5Þ

namely that a0yðσ þ tÞ [and hence b0yðσ − tÞ] is 2σm
periodic.
Redefining t → tþ σm in Eqs. (2.4e) and (2.4f) and

combining with Eqs. (2.4b) and (2.4c), we get the differ-
ence equation

a0zðtÞ ¼ −Ra0zð−2σm þ tÞ − a0zð−4σm þ tÞ; ð2:6Þ

where

R≡ −2 cosð4ΨÞ; ð2:7Þ

and similarly for a0xðtÞ. Setting t → t − 2nσm and defining

an ≡ a0xð−2ðnþ 1Þσm þ tÞ
½or similarly a0zð−2ðnþ 1Þσm þ tÞ�; ð2:8Þ

Eq. (2.6) reads

anþ2 ¼ −Ranþ1 − an; ð2:9Þ

with general solution

an ¼ 2E cos ðnΨ̄Þ þ 2F sin ðnΨ̄Þ; ð2:10Þ

where Ψ̄ ¼ arccos ð−R=2Þ ¼ 4Ψmod2π, and the constants
E and F are chosen to give a0 and a1 [i.e., a0xð−2σm þ tÞ
and a0xð−4σm þ tÞ].
We want to determine if the function an is periodic, i.e.

we want to findm ∈ Z so that am ¼ a0. Note that in such a
case, an is m periodic and a0x and a0z are 2mσm periodic.
From Eq. (2.10), it is clear that this occurs for

m ¼ 2πM

Ψ̄
; ð2:11Þ

where M ∈ Z. Using the definition of Ψ̄, we find that such
a solution exists provided

Ψ̄ ¼ arccos ð−R=2Þ ¼ pπ
q

⇔ 4Ψ ¼ pπ
q

; ð2:12Þ

for p; q ∈ Z, for which the function an is then periodic in
a0 ¼ am ¼ a2qM=p, for any arbitrary integer M; that is, the
function a0xðσ þ tÞ is then periodic in σ → σ þ 2qMσm=p,
for any arbitrary integer M.
Solving Eq. (2.12) for Ψ, we find that the function

a0xðσ þ tÞ is periodic with period 2σm=Q provided

Ψ¼ 1

2
arctan

 
�

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1− cosðQπÞ
1þ cosðQπÞ

s !
⇔Ψ¼Qπ

4
; ð2:13Þ

where Q is a rational: Q ∈ Q. Thus, for a dense subset of
angles in the range Ψ ∈ ½−π=2; π=2�, a0xðσ þ tÞ and
a0zðσ þ tÞ are periodic, and hence they can be decomposed
in a Fourier series to simplify the analysis.
Concern over what happens for angles not satisfying

Eq. (2.12) can be alleviated by noting that although the
functions a0xðσ þ tÞ are not periodic, they are arbitrarily
close to periodic, and this is sufficient for our requirements
here, that is, for our qualitative study. It might also be worth
noting that the period can be large, which might cause
problems for our approximation namely that the end strings
are static over one period—indeed, if the period is very
long, the heavy strings can no longer be considered static
over such a large time scale.
Finally, recall this specific setup is considered for its

simplicity. The conclusions on the overall periodicity or
quasiperiodicity, drawn from the above analysis, are
thought to be generic though, since the configuration
choices made here leave the string’s dynamical properties
unchanged. In addition, we studied in the Appendix A how
these results on periodicity are modified in a more realistic
and more complex string configuration, confirming our
initial intuition.

B. Symmetries

To proceed, let us focus on the symmetries between the
two movers on the string. Using Eqs. (2.4), we obtain

b0xð−tÞ ¼
1

1þ tan2Ψ
ðð1 − tan2ΨÞa0xðtÞ − 2 tanΨa0zðtÞÞ;

ð2:14aÞ

b0zð−tÞ ¼
−1

1þ tan2Ψ
ðð1 − tan2ΨÞa0zðtÞ þ 2 tanΨa0xðtÞÞ;

ð2:14bÞ
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b0yð−tÞ ¼ a0yðtÞ: ð2:14cÞ

Since b0ðσ−tÞ¼x0ðσ;tÞ− _xðσ;tÞ we remark that b0ð−tÞ ¼
−b0ðtÞ, and then writing the above set of equations in vector
notation, we get

b0ðtÞ ¼ Ta0ðtÞ; ð2:15Þ

where the matrix T is defined by

T ¼

0
B@

− 1−tan2Ψ
1þtan2Ψ 0 2 tanΨ

1þtan2Ψ

0 −1 0
2 tanΨ
1þtan2Ψ 0 1−tan2Ψ

1þtan2Ψ

1
CA

¼

0
B@

− cos ð2ΨÞ 0 sin ð2ΨÞ
0 −1 0

sin ð2ΨÞ 0 cos ð2ΨÞ

1
CA: ð2:16Þ

This matrix is diagonalized by a change of basis, such
that the z axis is parallel to the σ ¼ 0 end string. In this
basis, we get

b0ðtÞ ¼

0
B@

−1 0 0

0 −1 0

0 0 1

1
CAa0ðtÞ: ð2:17Þ

Thus, b0ðtÞ is simply given by a reflection of a0ðtÞ through
the axis parallel to the end string.
Note in particular that the square velocity of the string is

v:vðt; σÞ ¼ 1

2
ð1þ a0ðσ þ tÞ:b0ðσ − tÞÞ ð2:18Þ

¼ 1

2
ð1þ a0∥ðσ þ tÞa0∥ðσ þ tÞ − a0⊥ðσ þ tÞa0⊥ðσ þ tÞÞ;

ð2:19Þ

where a0∥ and a0⊥ are the components of a0 parallel and
perpendicular to the (σ ¼ 0) end string, respectively.

III. THE PROBABILITY OF CUSPS AND
PSEUDOCUSPS

Let us recall that cusps appear when the two curves a0 and
−b0 cross each other on the unit sphere—remembering that
ja0j ¼ 1 ¼ jb0j as a consequence of the Visaroso condition.
This is equivalent to defining cusps as points reaching, for
some instant t, the speed of light c ¼ 1. Indeed, _xðσ;tÞ≡
1=2ða0ðσþtÞ−b0ðσ−tÞÞ¼a0ðσþtÞ¼b0ðσ−tÞ in the case
of cusps.
There is a similar event we will address, and we will refer

to as a pseudocusp, which occurs when the two curves a0
and −b0 are very close (and we will see how close) to each
other, without however, intersecting. Pseudocusps have to

be considered first because when trying to determine
statistically the frequency of cusps, one might not be able
to assess very accurately whether two approaching curves
actually cross each other or they are simply nearby;
similarly pseudocusps can also arise if one tries to estimate
the occurrence of cusps numerically because discretization
would generically generate grid approximations. In addi-
tion, being as we are interested in gravity waves emitted by
the string’s ongoing events such as cusps, it is important to
also compute the gravitational signals emitted from any
highly relativistic region of the string.
In order to investigate the occurrence of cusps and

pseudocusps on the string over a periodic nondynamical
evolution and the influence of several parameters on such
occurrence, wewill study the average positions and standard
deviation ofa0 and−b0 on the unit sphere.Wewill then relate
this probability to the parameters of the string and the
network in order to determine the characteristics that can
lead to cuspy events. Note that in the following, a “cusp”
refers to either an actual cusp or a pseudocusp.

A. Analytical considerations

Here we define the z axis as the axis of reflection that
relates a0 and −b0, namely we align the z axis with the a0∥.
Then the vectors a0 can be written in cylindrical coordinates
about this z axis as in Fig. 2, yielding

a0 ¼
(
ð
ffiffiffiffiffiffiffiffiffiffiffiffi
1 − z2

p
cosϕ1ðzÞ;

ffiffiffiffiffiffiffiffiffiffiffiffi
1 − z2

p
sinϕ1ðzÞ; zÞ

ð
ffiffiffiffiffiffiffiffiffiffiffiffi
1 − z2

p
cosϕ2ðzÞ; −

ffiffiffiffiffiffiffiffiffiffiffiffi
1 − z2

p
sinϕ2ðzÞ; zÞ

;

ð3:1Þ

for z ∈ ðzmin; zmaxÞ, where the two vectors come from the
fact that most of the time the loop is at least double valued

FIG. 2 (color online). Cylindrical coordinates about the z axis
and the angles ϕiðzÞfor the description of a0 on the unit sphere.
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in the z-coordinate. Cusps will appear whenever ϕ1ðzÞ þ
ϕ2ðzÞ ¼ π, hence this is the condition we want to inves-
tigate. Let us define 2L as the periodicity of the a0 loop
(which from the previous section needs not to be the same
as the length l of the string and can be different for different
components). Hence,

ha0xiσ ≡ 1

2L

Z
L

−L
dσa0xðσ þ tÞ

¼ 1

2ðzmin − zmaxÞ
Z

zmax

zmin

dz
ffiffiffiffiffiffiffiffiffiffiffiffi
1 − z2

p
ðcosϕ1 þ cosϕ2Þ;

ð3:2Þ

and

ha0yiσ ≡ 1

2L

Z
L

−L
dσa0yðσ þ tÞ

¼ 1

2ðzmin − zmaxÞ
Z

zmax

zmin

dz
ffiffiffiffiffiffiffiffiffiffiffiffi
1 − z2

p
ðsinϕ1 − sinϕ2Þ;

ð3:3Þ

where we have dropped the explicit dependence of ϕi on z
for notational simplicity.

Similarly, we can write

ha0xa0xiσ≡ 1

2L

Z
L

−L
dσa0xðσþ tÞa0xðσþ tÞ

¼ 1

2ðzmin− zmaxÞ
Z

zmax

zmin

dzð1−z2Þðcos2ϕ1þ cos2ϕ2Þ;

ð3:4aÞ

ha0ya0yiσ≡ 1

2L

Z
L

−L
dσa0yðσþ tÞa0yðσþ tÞ

¼ 1

2ðzmin− zmaxÞ
Z

zmax

zmin

dzð1−z2Þðsin2ϕ1þ sin2ϕ2Þ:

ð3:4bÞ

The sum of Eqs. (3.4a) and (3.4b) leads to

ha0xa0xiσ þ ha0ya0yiσ ¼
1

zmax − zmin

Z
zmax

zmin

dzð1 − z2Þ

¼ h1 − z2iz; ð3:5Þ

thus providing a direct relationship between ha0xa0xiσ and
ha0ya0yiσ. Adding Eq. (3.5) to the difference of Eqs. (3.4a)
and (3.4b), we get

ha0xa0xiσ ¼
1

zmax − zmin

Z
zmax

zmin

dzð1 − z2Þ
�
2cos2

�
ϕ1 þ ϕ2

2

�
cos2

�
ϕ1 − ϕ2

2

�
− cos2

�
ϕ1 þ ϕ2

2

�
− cos2

�
ϕ1 − ϕ2

2

�
þ 1

�
:

ð3:6Þ

Let us consider the simplifying assumption ϕ1ðzÞ ≈ ϕ2ðzÞ,
which we will later justify. Note that this condition
means that the a0 configuration is approximately symmetric
through the ðxzÞ plane. Hence, Eq. (3.2) becomes

ha0xiσ ≈
1

zmax − zmin

Z
zmax

zmin

dz
ffiffiffiffiffiffiffiffiffiffiffiffi
1 − z2

p
cos

�
ϕ1 þ ϕ2

2

�
;

ð3:7Þ

while Eq. (3.6) reads

ha0xa0xiσ ≈
1

zmax − zmin

Z
zmax

zmin

dzð1 − z2Þcos2
�
ϕ1 þ ϕ2

2

�
:

ð3:8Þ

Let us note that if the string is straight, the curve described
by a0 is reduced to a point at the x ¼ 1 pole; the further the
string deviates from a straight line, the further the a0 curve
will deviate from this pole. Only wavy strings could thus
generate a curve that spans further than the x > 0 half-
sphere, that is, further than the ðϕ1;ϕ2Þ ∈ ½0; π=2½2 half-
sphere. Thus, the right-hand side of Eq. (3.7) is positive and

it becomes smaller and smaller for wavier strings without
changing sign. The condition we are interested in here is
ðϕ1 þ ϕ2Þ ≥ π, since this would indicate that the curve
described by a0 on the unit sphere spans over more than
a whole half-sphere, implying a crossing with a0 by
symmetry. Namely we would like to find the parameters
for which there is a high probability that exists a z ∈
ðzmin; zmaxÞ such that ϕ1ðzÞ þ ϕ2ðzÞ ≥ π, or equivalently
such that

cos

�
ϕ1ðzÞ þ ϕ2ðzÞ

2

�
≤ 0: ð3:9Þ

Noting that jzminj ≤ 1 and zmax ≤ 1, we have 0 ≤ 1 − z2 ≤
1 for all z ∈ ðzmin; zmaxÞ and hence we can rewrite the above
condition as

ffiffiffiffiffiffiffiffiffiffiffiffi
1 − z2

p
cos

�
ϕ1ðzÞ þ ϕ2ðzÞ

2

�
≤ 0: ð3:10Þ

The average of this quantity is given by Eq. (3.7) and the
fluctuations about this average are given by Eq. (3.8). In
particular, the standard deviation is
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σ2
ð
ffiffiffiffiffiffiffi
1−z2

p
cos ððϕ1þϕ2Þ=2ÞÞ

≈ ha0xa0xiσ − ha0xi2σ: ð3:11Þ

Thus, we have the average (which is positive) and the
standard deviation of a quantity, for which we want to
calculate the probability to be somewhere negative. This is
likely to happen if the standard deviation is larger than a
significant fraction of the average. This means that the
probability of the quantity of interest being negative is
significant when

ασ2
ð
ffiffiffiffiffiffiffi
1−z2

p
cos ððϕ1þϕ2Þ=2ÞÞ

≳ h
ffiffiffiffiffiffiffiffiffiffiffiffi
1 − z2

p
cos ððϕ1 þ ϕ2Þ=2Þi2x;

ð3:12Þ

with α being between 1 and 5. It corresponds to a few times
the standard deviation being larger than (or comparable to)
the average. To illustrate the idea, let our quantity a0x follow
a Gaussian distribution; then, for instance α ¼ 2 would
mean that a string should present a significant number
of cusps if Eq. (3.10) was satisfied for about 2.5% of the
points on the string (2σ corresponding to a 95% confidence
level).
Thus, using Eqs. (3.7) and (3.11) we find that there is a

significant probability of having cusps provided

ha0xa0xiσ ≳ 1þ α

α

�jΔj
σm

�
2

¼ 1þ α

α
Δ2

a; ð3:13Þ

where we have used that a0 is periodic in 2L ¼ 2σm [from
Eq. (2.5)], defined

Δ ¼ ðΔ; 0; 0Þ≡ xðσm; tÞ − xð0; tÞ; ð3:14Þ

Δa ≡ 1

2σm

Z
σm

−σm
dσa0xðσ þ tÞ;

Δb ≡ 1

2σm

Z
σm

−σm
dσb0xðσ þ tÞ; ð3:15Þ

and used the relations Δa ¼ −Δb and Δ=σm ¼ ðΔa − ΔbÞ=
2 ¼ Δa. This is a key result as it gives a simple way to
discriminate between cuspy and noncuspy strings, simple in
the quantities to compute and in the physical meaning
behind inequality (3.13).
The prefactor ð1þ αÞ=α lies somewhere between 1 and

2, the latter being too conservative [it corresponds to α ¼ 1,
meaning there should be cusps only if more than 15% of the
curve satisfy Eq. (3.10)] and the former not constraining
enough [where α ≫ 1, that is, a very small fraction of the
curve satisfying Eq. (3.10) is sufficient to generate cusps
along the string].
Note that the approximation ϕ1ðzÞ ≈ ϕ2ðzÞ can be easily

satisfied when looking at the string with a probabilistic
point of view. Indeed, one can continuously deform the
curve a0 to get a symmetric curve with respect to the ðxzÞ

plane. If this transformation conserves the statistical
description of the curve, it does not change significantly
the probability of the curve to intersect its image under the
symmetry with respect to the z axis. What should be
conserved in the transformation is only the proportion of
the curve reaching a certain distance to its mean position. It
is possible to continuously deform our curve maintaining
such properties, especially if we are looking at a large
population of strings in which tiny variations on each string
are smoothed over the number of them.
Recall that we have defined the z axis so that the heavy

string at the σ ¼ 0 junction is aligned along this z axis.
Equation (3.13) implies a minimum distance reached by the
x component of a0 (and −b0) from its average circle,
defined as the circle in the ðyzÞ plane whose center C is at a
distanceΔa from the center of the sphere on the x axis. This
equation can be also understood as implying a boundary on
how irregular the velocities of the two movers have to be to
generate a substantial amount of cusps.
In order to make a link with the parameters of the string

network and the individual string, let us first recall that Δ is
the distance between the two ends of the string, stretched
between the two junctions. Rescaling Δ by the parameter
length of the string σm, this gives the distance in the unit
sphere between the two average circles for a0 and −b0. At a
fixed length, if Δ increases, the two circles are shifted away
and the probability of cusps decreases; at fixed Δ, if the
length increases, the cumulated length of the curve’s parts
reaching the minimum distance increases too so the number
of cusps becomes larger. Hence, the number of cusps is
lower for straighter strings. Moreover, if the string has
large-amplitude waves, the curves a0 and −b0 deviate from
their average position and the number of cusps increases.
Hence, strings with large waves are expected to have more
cusp events. At a fixed length, if the curves have fewer large
waves, they will exhibit a larger amplitude and thus there
will be more cusps. So, a long string with large-amplitude
waves should exhibit more cusps than a short straight string
or a small-scale structured string.
Recall this is a qualitative analysis of a nondynamical

noninteracting string with Y-junctions and let us emphasize
that the aim here is to estimate the number of cusp events.
Still, it is important to identify the relevant parameters in
such setups and to understand their influence. This will be
done in more detail in the following analysis presented
mainly in Sec. IV and linked to some of the usual network
and string parameters in Sec. IV E.

B. Pseudocusps and velocity

Let us recall that a pseudocusp is defined as a point at
which the left and right movers’ 3-velocity vectors a0 and
b0 are very close to each other, enough for the point to be
highly relativistic, but not exactly equal to each other. We
define σclos� ¼ σclos � tclos. to be the null coordinates for
which these two vectors are the closest in this neighborhood,

ELGHOZI, NELSON, AND SAKELLARIADOU PHYSICAL REVIEW D 90, 123517 (2014)

123517-6



and denote by θc the angle between the two vectors at σclos� ..
We also denote

lμ ¼ _xμðσclos:; tclos:Þ ¼ 1=2ðaμðσclos:þ Þ − bμðσclos:− ÞÞ ð3:16Þ

and δμ ¼ 1=2ðaμðσclos:þ Þ þ bμðσclos:− ÞÞ ð3:17Þ

the half-sum and the half-difference between the left and
right movers’ 4-velocities, respectively. Note that, despite
what it looks like, we here call lμ the half-sum recalling the
vectors we are interested in are a0μ and −b0μ.
The 4-vector lμ is the 4-velocity at the point of interest

and we recall that it is a null vector in the cusp case. In the
case of pseudocusps, the time-component l0 is also equal to
1, but the norm of the 3-velocity of the string at that point
ðσclosþ ; σclos− Þ equals

jlij ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ cosðθcÞ

2

r
≈ 1 − θ2c=8; ð3:18Þ

however, δμ is spacelike, with δ0 ¼ 0 in the time gauge, and

jδij ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − cosðθcÞ

2

r
≈ θc=2: ð3:19Þ

The angle θc can be thought of as measuring the softness of
a relativistic part of the string. The larger it is, the smaller
the velocity and the softer the pseudocusp; for θc ¼ 0, the
event is an actual cusp and the velocity reaches c ¼ 1.
We would also like to evaluate the number of pseudo-

cusps statistically. The problem has to be looked at using
the unit sphere description along with the mean and
standard deviation of the curves drawn by a0 (and −b0).
Let us first recall that a pseudocusp is related to the a0 curve
approaching its symmetric counterpart without crossing it,
while a cusp is linked to the curve crossing its counterpart.
Let us then define the relative distance between the curves
as a positive number when the curves remain in their
natural half-sphere, becoming negative when the curves
cross each other (i.e. between two crossings). One can then
relate every pair of cusps and every pseudocusp to a
minimal value of the distance: if this minimum is positive
the string presents here a pseudocusp, and a pair of cusps if
it is negative.
In addition, below the mean value of this relative

distance, the lower the distance, the smaller the proportion
of the curve reaching such a distance. Still, a minimal
distance being small and positive happens roughly as often
as a minimum being small and negative. This implies that a
pseudocusp should appear as often as a pair of narrow
cusps; we here define narrow cusps as a pair of cusps for
which the minimal distance reached is small and negative
(in opposition to what could be called large cusps, for
which the minimum distance becomes large and negative
between the two cusps).

In terms of the relative occurrence of cusps and pseu-
docusps, one can deduce that a string with cusps should
also present pseudocusps. In addition, since large cusps
are rarer than narrow cusps, there should be a bit more
than twice as many cusps as there are pseudocusps,
approximately.

IV. NUMERICAL SIMULATION

A. Method

We develop a simulation of the previously described
configuration in order to check the considerations made and
to evaluate the occurrence of cusps and pseudocusps. Our
code depends on the parameters of both the string network
and the individual string—namely ξ and ξ̄, as we will see
below—and is based on the following assumptions. First,
the string’s ends are fixed on the heavy strings, being
themselves insensitive to the motion of the light string and
to any transfer of momentum. In addition, the quasiperiodic
cases are neglected and the position and velocity of the
string at t ¼ 0 are defined by a Fourier series (i.e. by the
amplitude of each mode). These amplitudes are all drawn in
½−hm; hm�,3 where hm is a prefixed highest value and the
modes are the n first harmonics of the string (up to n
nodes); with n and hm being parameters of the simulation.
More precisely, they set up the oscillatory behavior of the
string, fixing a limit to the highest frequency and to the
amplitude reached in its Fourier decomposition.
The parameter length σm and the interstring distance Δ

are also inputs in the simulation. Indeed, to geometrically
set up the system, one needs the end-to-end distance;
additionally, the parameter length of the string is related to
the fundamental frequency and to how wavy or wiggly the
string can be. Clearly, Δ bounds σm, since the string cannot
be shorter than the distance between its end points; one
can also see that for σm → Δ (and σm > Δ), the curves a0
and −b0 get confined away from each other in the pole
regions and ultimately shrink to a point in the case σm ¼ Δ.
Since wewill be mainly interested in their ratio, we chose to
fix Δ by assigning to the end points invariable coordinate
triplets while promoting σm as one of the main parameters
of the code.
The network’s parameters are often chosen to be ξ, ξ̄ and

ζ, representing the average interstring distance in the
network, the coherence length scale (or large-scale struc-
ture) and the wiggliness (or small-scale structure); see, for
instance, Ref. [39]. Equivalently, ζ is related to small
wiggles and to edgy bends on the string, while ξ̄ character-
izes large-amplitude waves. We denote by ripple both of

3A uniform distribution in the interval ½−hm; hm� has been
initially encoded. Note though that there is a bias: indeed, high
values of the amplitude imply high velocities, i.e. more strings
whose parts may travel faster than c ¼ 1, which is obviously
forbidden. These strings are dismissed immediately, distorting
a posteriori the uniform draw within the interval.
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these variations along the string, wiggles and wiggliness
being related to the small-scale structure and thus to ζ,
while (large-amplitude) waves and waviness refer to the
large-scale structure, that is, to ξ̄. Figure 3 gives a schematic
representation of these ζ and ξ̄ length scales.
In our simulation, Δ can be identified as the distance ξ4

between two heavy strings, even though what matters here
is the ratio Δ=σm. Note that this ratio could also be related
to the large- and small-scale structure since a longer string
has to exhibit more ripples, whatever the size of these
ripples. Here, there is no small-scale structure strictly
speaking since the number of modes is quite low. So the
wiggliness ζ is not defined and its influence is therefore not
addressed. In addition, there is no clear input for the large-
scale structure, and its characteristic length ξ̄ is to be linked
with several other parameters such as the number and
amplitude of the vibration modes at t ¼ 0 or during a
period. A crude estimation could be one fourth of a wave-
length of the highest frequency mode present on the string,
that is, ξ̄ ∼ σm=2n̄, where n̄ is the highest frequencymode on
the string (and not the input n, which is only a bound
on the highest possible mode). One could also consider
the amplitude of the waves, for instance estimating the
standard deviation of the y and z components of the position
of the string at t ¼ 0. The geometric mean of these two
figures would represent even more accurately the character-
istic size of a wave on the string, taking into account the two
directions of extension of such large-amplitude waves.
Among the other ways to evaluate how wavy the string

is, is to use the standard deviation of the x component of the
left and right movers’ velocities, namely ha0xa0xi − ha02x i
(and the same with b0x) since it quantifies how far and how
often the string goes away from a straight(er) position.
Indeed, the straight line is represented by a constant a0 and
−b0, while a large standard deviation from this pointlike

curve means strong variations in the movers’ amplitudes
and smaller radii of curvature along the string.
Our simulation thus starts from these assumptions and

parameters, and a significant number of different string
configurations is simulated. Each string’s (noninteracting)
evolution is then computed over a period. The string is then
decomposed in a large number of points (each of them
corresponding to a segment in our numerical simulation) and
the period is decomposed in time lapses. We thus obtain a
velocity distribution and its evolution over the period. The
number of cusps is found by analyzing the curves on the unit
sphere and looking for actual crossings; the velocity is then
computed and checked to reach c ¼ 1 within the numerical
uncertainties—which are generally5 below 10−6. The pseu-
docusps are all the other highly relativistic areas; here,
we consider as “highly relativistic” any velocity above
0.999c. Note that the vast majority of the pseudocusps’
velocities are6 in the range ½1–10−3; 1–10−6�, helping to
split between cusps (1–v < 10−6) and pseudocusps
(10−6 ≤ 1–v ≤ 10−3). Finally, it is checked that pseudo-
cusps correspond to configurations with a very small gap
between the two curves on the unit sphere; the angle θc
between the two vectors a0 and −b0 is computed and its
minimum found (within the grid approximation).
Even though our analysis is performed within a

specific setup, our qualitative results remain valid in
the more realistic string configurations. The slow motion
of the heavy strings can be ignored as compared to that
of the light strings, while the periodicity can be safely
considered as generic. The absence of a dynamical
analysis and interaction between strings, chosen for the
simplicity of the computations, should not modify the
way the network parameters influence the occurrence of
cusps and pseudocusps. In conclusion, our setup could
represent a network of heavy and light strings interacting
at a time scale which is not too small compared to
the period of the light string’s movement. Hence, the
correlation between the network parameters and the
occurrence of cuspy events should be valid independently
of whether our simplifying assumptions are relaxed or
not. Appendix B presents some example snapshots of a
simulated string.

B. Description of pseudocusps

In the following, we call computed velocity the one from
the simulation’s direct evaluations, namely the highest
velocity locally reached as it has been computed, and
theoretical velocity the value obtained using our model
of pseudocusps, namely the one we got using the

FIG. 3 (color online). ξ̄ and ζ, two of the network’s length
scales.

4We here consider for simplicity an overall interstring distance
ξ, and generally only one set of parameters. As discussed in
Sec. IV E, one can also consider that the light string and the heavy
string networks have different characteristics, leading to the
definition of ξlight and ξheavy. In such a scenario, Δ would be
related to ξheavy only.

5We found about 10% of the cusps with velocities outside a
10−6-wide band around 1, and 3% outside a 10−5-wide band.

6We found more than 80% of the pseudocusps’ velocities
below 1–10−5 and about 90% below 1–10−6. Figures are
presented here for the computed velocity.
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approximation ð1 − θ2c=8þ θ4c=384Þ from Eq. (3.18).7 One
can note that the latter cannot be above 1. We obtain that
there is a very good agreement between these two estima-
tions of string the velocity at the pseudocusps.
Figure 4 shows, for almost 4300 pseudocusps,8 the

computed velocity vs the theoretically estimated one.
The red line draws the equality case and one can immedi-
ately note that vth ≤ vcp (except in a very few cases almost
not visible on this plot). This is probably due to the methods
used: In the first case, the velocity has to be above 0.999
whereas in the second one it is always below 1. In addition,
the computed velocity is subject to quite a lot of grid
and computational uncertainties and can thus reach 1 (or
even a higher value) fairly easily.9 Finally, more than 80%
present a difference between the two velocities which is
below 10−4.
Note, though, that all these discrepancies are actually

gathering on the same cases. Indeed, among the 6% of
pseudocusps with theoretical velocity below 0.999c, 80%
give a computed velocity above 1–10−6. Also, almost 60%
of the pseudocusps presenting velocity discrepancies larger
than 10−4 have either an abnormally small theoretical
velocity or an abnormally large computed velocity.

C. Occurrence of cusps and pseudocusps

In order to check if the criterion set up in Eq. (3.13) is
actually discriminating between configurations with cuspy
phenomena and those without any cusp or pseudocusp, we

simulated and studied a significant number of strings (237)
within a variety of parameters. From the curves a0 and −b0
have been calculated both the number of cusps and
pseudocusps and the mean and standard deviation of a0
in the x direction. A very good agreement has been found
between the presence of cuspy phenomena and the com-
pletion of our criterion.
In Fig. 5 we plot the number of cuspy phenomena versus

the ratio

Rðα ¼ 4.1Þ≡ ha0xa0xi
αþ1
α Δ2

a

����
α¼4.1

¼ ha0xa0xi
1.24Δ2

a
; ð4:1Þ

where the constrain parameter α can take any arbitrary
value. Here it has been a posteriori fixed to 4.1, for
convenient reasons we will explain below. Recall that once
α is fitted, we are expecting to have only strings with no
cusps or pseudocusps for a ratio RðαÞ < 1, and strings with
cuspy phenomena for RðαÞ > 1. Phrased differently, we
should have neither noncuspy strings with RðαÞ > 1, nor
cuspy ones with RðαÞ < 1.
Note though that our statistical approach—both from the

definition of the ratio RðαÞ and from the number of strings
considered—will probably lead to strings in the tail of the
distribution. Indeed, even with the most reliable choice of
α, we are expecting to find a small range of value around 1
for which there are both strings with and without cuspy
phenomena. If such an interval around 1 is not too large,
this is not in contradiction with our previous analysis and
does not affect the coherence of the results presented here.
Each simulated string is represented by two aligned10

dots: we use the red one to read on the vertical axis the
number of cusps, and the blue one for the number of cuspy
phenomena (both cusps and pseudocusps). The shaded
colored vertical lines are guides to read and have no
physical meaning; it also helps tracking points whose
vertical coordinate is off the plotted range. The choice
of the value of α and of where we divide the plane in two
has to be discussed in view of the results. Before getting
into the details, one can notice that the chosen value indeed
fits with our set of points: on the left of the black dashed
line standing at R ¼ 1 are mainly noncuspy strings, while
on the right one we can find almost only cuspy strings. In
addition, as we have foreseen, the range in which one
can find both behaviors is restricted—roughly between 0.9
and 1.1. This means that strings satisfying the inequality

Rðα ¼ 4.1Þ≳ 1 ⇔ ha0xa0xi≳ 1.24Δ2
a ð4:2Þ

would generally present cusps, and vice versa.
To be more accurate, let us zoom on what is happening

around 0.9–1.1 and let us discuss the ways to draw the

FIG. 4 (color online). Pseudocusps: theoretically estimated
velocity versus computed velocity. Note that 80% of the
pseudocusps present a difference between the two velocities
below 10−4, meaning that it is represented here by a point in the
red-shaded area.

7The approximation used here takes into account one more
term, even if it is very often insignificant compared to the
numerical uncertainties.

8About 8% of the almost 4700 pseudocusps studied here are
not represented on this plot.

9We found the computed velocity of almost 10% of the
pseudocusps to be above 1þ 10−6. Recall that our uncertainties
are generally of the order of 10−6.

10Since the two dots stand for the same string, the ratio on the
horizontal axis is the same.
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limiting ratio. One may note that different rules can be set
up to cut the plane in two parts (one without and another
one with cusps). First, one can decide to look at the highest
ratio associated with a string presenting no cuspy events in
order to fix the separating ratio (let us call it the highest
with no cuspy events ratio, i.e. the HNCE). One can also
consider the string with the lowest ratio and at least one
cusp or pseudocusp (giving the lowest with cuspy events
ratio, or LWCE). Note that since the HNCE is higher than
the LWCE, there is a ratio interval in which we found both
strings with and without cusps—again, as was expected.
Alternatively, one can choose to look at cusps only and
follow the same method, giving two other boundary ratios
[namely the HNC and the LWC, C standing for cusp(s)].
Note that these two new values are higher than their cuspy
phenomena counterparts as pseudocusps are more likely
to happen than cusps for borderline configurations. One
thus gets four different ratio values which can equally be
considered as valid turning points. One also has two
intervals within which cuspy phenomena and cusps appear.
Depending on which rule one decides to apply, one gets a

different line splitting the plane, giving a different value for
α. Again, this is nothing to worry about since we obtained
quite close values, between 0.9 to 1.1.11 In each of the two
in-between intervals, we obtained strings with a small
number of cuspy phenomena: less than 4 cusps or less than
5 pseudocusps. Also, for larger ratios, we only get a very
few strings presenting so few cuspy phenomena and these
have all reasonably small ratios. These results confirm the
expected behavior apart from the exceptional strings lying

in the tail of the distribution and thus not giving the typical
response which are within an anticipated range.
Figure 6 focuses on the bottom left corner of Fig. 512

and has been divided in two plots: on the left and in red,
Fig. 6(a) shows the number of cusps only versus the ratio
Rð4.1Þ; on the right and in blue, Fig. 6(b) does the same for
all cuspy events. On each of them, two of the four
aforementioned ratios are represented by solid-colored
lines: two red lines for the LWC and the HNC in Fig. 6
and two blue ones for the LWCE and the HNCE in
Fig. 6(a). Note that in Fig. 6(b) is also displayed a blue
dashed line marking the HNCE ratio (i.e., the highest of the
two ratios for all cuspy phenomena); it is lying roughly in
the middle of the interval considering cusps only (on the
graph, the two solid red lines).
We would like to determine a value for the ratio which

splits the plane in two regions (without and with cuspy
phenomena), knowing that in a small neighborhood around
this value one should expect to find irregularities, which we
expect to be sufficiently rare and small. One can see that the
HNCE ratio satisfies our needs:

(i) on the left (i.e., for smaller ratios than the value of
the HNCE) most of them presenting no cusp and no
pseudocusp;

(ii) on the right (i.e., for higher ratios) lies only strings
with at least two cusps and pseudocusps, most of
them presenting more than three cusps and five
cuspy phenomena.

In addition, recall that our analytic work to find the ratio
RðαÞ is identifying cusps and pseudocusps (see Sec. III A),
so the most meaningful turning point values we found are
the ones related to all cuspy phenomena (HNCE and

FIG. 5 (color online). Number of cusps (red) and cuspy phenomena (blue) vs ratio ha0xa0xi=1.24Δ2
a. The black dashed line standing at

R ¼ 1 is splitting the plane in two parts: noncuspy strings for low ratios and cuspy strings for high ratios.

11We decided to neglect the two strings (over 237) presenting
exceptional behaviors: one with no cusp and a quite high ratio—
compared to the second-highest ratio for a string with no cusp—
and one with a very large number of pseudocusps but a low ratio
and no cusp. They are thought to be statistically irrelevant.

12Again, the shaded colored lines connecting points are guides
for reading and help tracking points off the plot.
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LWCE). Hence, the choice we made at the beginning to
set α ¼ 4.1.
We have set up here a quick and efficient method to

discriminate between cuspy strings and noncuspy ones.

D. Number of cusps and pseudocusps

One can now try to find which parameters influence the
number of cusps and pseudocusps on a string. As we have
seen already, there is a strong dependence on the interstring
distanceΔ ¼ ξ and the parameter length of the string σm (or
rather on Δ=σm) as well as some important correlation with
the mean-squared x component of the string’s movers’
velocities ha0xa0xi and hb0xb0xi.
In order to understand these relations in more detail, we

first analyze the influence of the Fourier modes initially
implemented in the string and found that only the xmodes13

influence the number of cusps, both via the number of
modes and their amplitudes. In Fig. 7, we plot the root
mean square of the amplitudes versus the number of modes;
a color gradient is representing the strings grouped accord-
ing to the number of cuspy events (from 0 in red to above
120 in purple). It is first obvious that more modes imply a
lower rms amplitude. This is due to the physical constraint
to have no supraluminal points on the string.14 In addition,
one can note that a low number of x modes implies a low
number of cusps, especially for low rms amplitudes. Also,
many modes generate strings with statistically many more
cusps. For a fixed number of modes, higher amplitudes are
associated with strings with more cusps, whereas at a fixed
rms amplitude, more modes implies more cusps. This is to

be expected for several reasons. First of all, a higher rms
amplitude as well as more modes imply more energy in the
string’s vibrations. More energy means a higher average
energy and favors highly relativistic points. On a more
specific point of view, these high amplitudes and numerous
modes imply large deviations from a straighter line, both
for the physical string and for the curves a0 and −b0. This
implies a wavier string, hence more crossing on the unit
sphere.
One can then study the correlation with the rms velocity

of the string, which is related to what we just mentioned; we
plot in Fig. 8 the number of x modes vs the rms velocity15

of the string; again, a color gradient is representing the
strings grouped according to the number of cuspy events
(from 0 in red to above 120 in purple). One can first notice
that the rms velocity reaches a maximum around 0.7–0.71.

FIG. 6 (color online). Zoom around the low numbers of cuspy events. The vertical lines mark where the different splitting rules divide
the plane. (a) cusps only; (b) cusps and pseudocusps.

rm
s 

am
pl

itu
de

0 cuspy phen.
1, 2
3, 5
6, 10
11, 20
21, 30
31, 50
51, 80
81, 120
120, 1000

0 5 10 15 20 25 30
0.

0.02

0.04

0.06

0.08

0.1

0.12

0.14

number of modes

FIG. 7 (color online). Root-mean-square amplitude of the x
modes versus the number of x modes. From red to purple, strings
with 0 to between 120 and 1000 cuspy events.

13The y and z modes are not found to be correlated to the
number of cusps. The number and amplitudes of these modes
are only indirectly linked to those of the x modes via the fact
that ðaμÞ2 ¼ 1.

14This constraint is enforced during the evolution of the string
but has to be carefully checked at t ¼ 0.

15We are here talking about the time-averaged root-mean-
square velocity along the string.
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This is due to the Virasoro and gauge conditions used on
the finite string; indeed, it implies for the rms veloc-
ity v2rms < 1=2 ⇔ vrms <

ffiffiffiffiffiffiffi
0.5

p ≃ 0.707.
In addition to the previously studied correlation between

the number of cuspy events and the number of xmodes, there
is a strong dependence on the rms velocity of the string,
as expected. One can split the set of strings in four groups
according to their rms velocity: below 0.58, between
0.58 and 0.67, between 0.67 and 0.69 and above 0.69.
While the first subset of string shows no cusps or pseudo-
cusps, the last one contains almost all the strings with more
than 120 cuspy events and almost no string without any.
To be more explicit, for each subset of strings grouped

according to the number of cuspy events, Fig. 9 shows the
percentage of strings in each interval of rms velocity. One
can indeed notice that in the highest interval (that is, for rms
velocity above 0.69) one only finds a few of the strings
without cusps or pseudocusps (about 8%) but most of the
strings with more than 50 cuspy events (80% to 90% of
them). We also computed the average number of cuspy
events in each of the four rms velocity subsets and obtained:

ðiÞ 0.0� 0.0 cuspy phenomena for strings whose

rms velocity is in½0.50; 0.58�;
ðiiÞ 4.3� 1.5 cuspy phenomena for strings whose

rms velocity is in ½0.58; 0.67�;
ðiiiÞ 21� 3.9 cuspy phenomena for strings whose

rms velocity is in ½0.67; 0.69�;
ðivÞ 130� 16 cuspy phenomena for strings whose

rms velocity is in ½0.69; 0.71�:

There is again an interesting correlation between the rms
velocity of the string, which is closely related to the energy
of the string, and the number of cusps and pseudocusps.

Finally, and in order to return to a previously mentioned
concern, one might want to look at the correlation with the
radius of curvature along the string.16 Indeed, it can in turn
be linked to the large-amplitude waves’ characteristic
length since it represents the average size of waves on
the string; note though that it is several times larger than the
characteristic length since it also takes into account the flat
parts of the string between such waves.
With this in mind, we plot the standard deviation versus

the (mean) radius of curvature for each string. We split up
the set of strings according to the number of cuspy events
and also draw the superposition of all the subgraphs.
Figure 10 shows, from top to bottom and from left to
right, the ten subgraphs along with the overall graph in the
bottom left corner. For each separate subset has been
computed the mean and the standard error17 of the radius
of curvature, showing how it evolves with the number of
cuspy events. They have been added via a solid line on the
mean and a colored shaded area around it encompassing 5
times the standard deviation.
First of all, one can notice that the standard deviation

grows almost linearly with the mean radius of curvature,
albeit with some dispersion at large values. More interest-
ingly, the radius of curvature is smaller for strings with
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FIG. 9 (color online). Bar chart of the percentage of the strings
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color representation as previously. Note that a number-of-cuspy-
phenomena subset of strings, or CP subset, is a subset of strings
presenting a number of cuspy phenomena within a specific range.
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with 0 to between 120 and 1000 cuspy events.

16We are here dealing with the radius of curvature averaged
along the string. For clarity, in the following we call (mean)
radius of curvature the time average of the already space-
averaged radius of curvature for each string separately; the
standard deviation of the radius of curvature is then the deviation
during a period of time from this average. We thus end up with
two figures per string.

17Here, the mean and the standard error are computed among
the strings of a same subset on the (mean) radius of curvature,
giving us two figures for each subset. Note that we define the
standard error as σffiffiffiffi

Ns
p where σ is the standard deviation in the

subset and Ns is the number of strings in this subset.
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many cusps: this shows again the foreseen correlation
according to which a wavier string presents more cusps and
pseudocusps. This can be seen from the overall graph, on
which, for instance, points with a radius of curvature larger
than 200 have generally less than 5 cuspy events, most of
them having none. It can also be deduced from the
subgraphs in Fig. 10. More precisely, the mean of each
subset is decreasing with the number of cuspy events, from
210 for noncuspy strings to 75 for very cuspy ones. The
standard deviation is also decreasing, apart from the less
populated subsets (for instance, subsets of strings with 1 to
5 cusps and pseudocusps have larger standard deviations
than the one for noncuspy strings since the latter includes
many more strings).

E. Correlation with the parameters of the network

As mentioned previously, we are mainly interested in the
parameters of two networks: the interstring distance ξ and
the coherence length ξ̄. We have defined Δ to be the
distance between the junctions, hence it could be consid-
ered as the interstring distance (since it is the distance
between two heavy strings) but, physically, the ratio with
the parameter length is more relevant. In our simulation, the
end-to-end distance is fixed and the parameter length of the
string plays a scaling role. Indeed, it turns the ratio Δ=σm

into our length parameter since it gives the sum of the
average vectors ha0iσ and hb0iσ (which is along the x axis)
in the unit sphere description. We can thus associate the
interstring distance with this simulation’s parameters ratio

ξ ∼
Δ
σm

: ð4:3Þ

In the case of a double network consisting of both heavy
and light strings, each one is associated with a set of
parameters: ξlight, ξ̄light and ξheavy, ξ̄heavy. In agreement with
the configuration we are studying, our analysis does not
take into account the light string network’s interstring
distance ξlight but only the heavy one’s via ξheavy ∼ Δ=σm.
The definition of the coherence length is more subtle for

several reasons. First of all, our simulation do not input
directly a typical length apart from the minimal wavelength
of the vibrations on the string. Instead, random numbers are
drawn to define the string’s structure, implying that we need
to compute afterwards the length scale. In addition, in our
numerical approach, one may use different ways to define
the characteristic size for waves and wiggles on the string
and even different definitions of large-amplitude waves.
Still, let us explore some of the possibilities, starting with

the usual definition [39,40] computing the correlation
between two points along the string via
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ξ̄≡
Z

∞

0

dσha0xðσ1 þ tÞ:a0xðσ2 þ tÞi: ð4:4Þ

But because our strings are by construction fully correlated,
this definition is of no use. Indeed, defining the string’s
position with a Fourier decomposition implies that the
whole string is correlated; mathematically, this result comes
from the fact that the average of a sum of sines and cosines
is 0, resulting in ξ̄ ¼ σm. Thus, we need to define our
persistence length differently.
In the search for different formulations, one could

think of the radius of curvature. This number defines for
each string a condensed typical size of all the ripples on
the string during the whole period. Unfortunately, it takes
into account the flat parts of the string whose radius of
curvature is obviously very large. This makes the string’s
radius of curvature difficult to use in order to define a
specific length scale but still allows us to notice some
correlation: the number of cusps and pseudocusps grows
with smaller radii of curvature. This means that the
information about the large-amplitude waves is, at least
partially, encoded in the radius of curvature even if we
cannot simply access it.
Let us use what seems to be the simplest and most

reliable way to define a scale for the large-amplitude
waves on the string: the vibrations’ frequency. Indeed, the
modes set up on the string at t ¼ 0 are stable and keep
the same amplitude during the evolution. Even if they can
be hidden at a specific time by other frequencies and are
not visible when looking at the string itself (or at its
radius of curvature), they are characteristic of the way the
string vibrates. Moreover, this parameter can be easily
controlled from the input to the simulation and also
evaluated once the string is drawn. The only remaining
issue has to do with the number of the largest frequencies
to be accounted for. Obviously, we could not only use the
lowest frequency, that is, the largest wavelength, because
it would not take into account the waves on the string—
especially in our case where the largest wavelength is
fixed and equal to twice the length of the string. We
could use the highest frequency only and define the
large-amplitude waves’ characteristic length directly
according to the associated wavelength. This is not ideal
though because there could be configurations where the
highest frequency mode’s amplitude is very small com-
pared to that of the second-highest frequency. This would
indeed distort the data by increasing the highest frequency
(compared to the physically relevant one), thus decreasing
the interesting length scale. In general, this definition
would also be too sensitive to the high-frequency part of
the Fourier decomposition and not enough to the whole
spectrum.
One way to deal with this issue is to compute a length

scale based on all the wavelengths λk ≡ σm=k, taking each
one into account according to their rank k and to the

associated amplitude Ak.
18 Different possibilities have been

considered but what seemed to be the most accurate and the
simplest is to use the average wavelength λ̄. One has to note
first that in order to keep the velocity below c ¼ 1 at all
times, one needs to choose amplitudes such that Ak ∼ λk
(under the simplifying assumption that all modes carry
roughly the same amount of energy). Keeping this in mind,

looking at
P ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

A2
k þ λ2k

q
is equivalent to considering

P
λk.

Hence, we define the coherence length in terms of the
mean wavelength λ̄≡ 2σmHn̄=n̄, giving

ξ̄ ∼
λ̄

4
¼ σmHn̄

2n̄
≃ σmðlnðn̄Þ þ γÞ

2n̄
; ð4:5Þ

where n̄ is the highest frequency mode on the string (and
again not the parameter n of the simulation) and Hn ¼P

n
k¼1 1=k is the harmonic series. Recall Hn ≃ lnðnÞ þ γ

with γ ≃ 0.577 and that the difference Hn − lnðnÞ − γ is
larger than 10% of Hn only for n ≤ 3, meaning that the
approximation is sufficient for our estimation as soon as
n > 3. Finally, note that since the number of modes is quite
low in our simulation (at most 16 modes are taken into
account), this cannot overlap with a definition of the
wiggliness ζ.
We have here estimated the two parameters of our strings’

network in terms of two parameters of the simulation.19 As
foreseen, the parameter length of the string σm plays an
important role for defining both the interstring distance and
the coherence length. The number of modes seems like the
most obvious and accurate way to define a large waves
length scale.

V. CONCLUSIONS

Gravitational waves, even though they have yet to be
observed, are at the center of attention. They are the next
tool for cosmology and high-energy astrophysics and
should soon give us a stream of new data to analyze.
Similarly, cosmic strings are thought to be unavoidable in
most of the cosmic scenarios and should provide insight
into the symmetry breaking they are remnants of or the
theory to which they belong.
In this study, we have concentrated on a particular

configuration made of a light string stretched between
two junctions with heavy strings. It is important to note that
even if we considered simplifying assumptions, the overall
behavior and the results should remain in more realistic
configurations as long as the end points of the light string

18Even if the amplitudes are drawn in a symmetric interval
around 0, one of them being actually null is statistically
insignificant. This implies that the kth wavelength is of the form
2σm=k, recalling that the fundamental excitation has no nodes and
thus has a wavelength equal to twice the string’s length.

19We used three parameters—Δ, σm and neff—but in fact Δ is
not a variable, leaving two actual parameters.
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can be seen as fixed during a period of oscillation. We then
looked at highly relativistic points since they are sources of
high-frequency bursts of gravity waves. Such cuspy events
appear on a string when the left and right movers’ velocities
are temporarily equal (or approximately equal), making
them reasonably easy to identify. We split them into two
classes: the actual cusps, resulting from crossings of the
two movers’ velocity curves and hence reaching momen-
tarily the speed of light c ¼ 1, and the so-called pseudo-
cusps, resulting from a close approach between the two
curves and hence reaching highly relativistic velocities,
typically below c ¼ 1 by 10−3 to 10−6.
Since cuspy events emit large amounts of energy in the

form of gravitational wave bursts, to estimate the signal that
could be detected in the neighborhood of the Earth by
ground- and space-based detectors, one needs to know how
frequently they occur. We have here aimed to quantify this
and analyze it in terms of the parameters characterizing the
string configuration, as well as the string network through
the usual network parameters ξ and ξ̄ (but not ζ).
Our analytical approach allowed us to identify the

symmetries of the problem. Indeed, because of the boun-
dary conditions, the string moves (almost) always periodi-
cally. In addition, on the unit sphere, the left and right
movers’ velocities are symmetric with respect to the axis
parallel to the heavy strings. This simplifies the problem
enough to evaluate the frequency of cusps and pseudocusps
on the string with respect to a few parameters.
We found that cusps should be frequent for strings

satisfying [see Eq. (3.13)]

ha0xa0xiσ ≳ 1þ α

α

�jΔj
σm

�
2

;

where a is the left mover on the string, jΔj the end-to-end
vector’s norm and x its direction (the subscript x thus
referring to the projection on the x axis), σm the parameter
length of the string and α a parameter we subsequently
estimated around α≃ 4.1. It is important to notice that such
cuspy strings should present many important waves.
We then used a simulation to get a statistically important

number of strings within a range of parameters, in order to
check this behavior. The set of 237 strings we obtained
presents 8719 cusps and 4659 pseudocusps, i.e. there are
slightly less than half the number of cusps—as roughly
expected. We analyzed the occurrence of cuspy events with
respect to several other features, confirming our analytical
work and the general behavior of such strings.
In particular, we first checked that our characterization of

pseudocusps from the minimal angle between the two
curves on the unit sphere is relevant. For instance, the
velocity we obtained from this description is very close to
the one obtained directly from the simulation (within grid
and computational inaccuracies). In addition, the presence
of cusps and pseudocusps increases according to the

inequality Eq. (3.13), giving us an accurate tool to
discriminate between cuspy and noncuspy strings. More
importantly, it also depends on the number and amplitude
of the vibration modes in the x direction; this confirms
more directly the fact that the wavier a string is, the more
cuspy events it presents.
We also analyzed the influence of the rms velocity on

the string: as one could expect, the more energy there is on
the string, the more cusps appear. This is consistent with the
fact that more vibrating modes imply more cusps, since
both indicate more energy. Finally, we found the radius of
curvature along the string is also correlated to the number
of cusps and pseudocusps, favoring again the mentioned
behavior (a smaller radius of curvature is equivalent to
more waves, which are in turn linked to more cusps).
Expressing the usual network parameters in terms of

our simulation’s parameters, we refined the link between the
numerical description and the way cosmic strings networks
are traditionally pictured. This should allow future work,
whether on gravitational waves or on interacting evolution
of the network, to assess, use and further continue this work.
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APPENDIX A: GENERALIZED STRING
CONFIGURATION

We here extend our initial string configuration detailed in
Sec. II, in order to show that the quasiperiodicity of the
movement of the light string is indeed generic.

1. Coplanar heavy strings with various angles

In this section, we choose different angles at the two
junctions and denote Ψ0 (respectively Ψm) the angle
between the z axis and the heavy string at the σ ¼ 0
(respectively σ ¼ σm) junction. In addition, by setting the
upper half-plane to be the symmetric of the lower half-plane,
one forms a ðπ − 2Ψ0Þ [respectively ðπ − 2ΨmÞ] angle along
the heavy string.Note that here, the two heavy strings remain
coplanar and orthogonal to the y axis, as shown in Fig. 11.
One can then define S0 ¼ signðx0zð0; tÞÞ and Sm ¼

signðx0zðσm; tÞÞ the signs of the z component of the light
string’s velocity at each end. These both take the valueþ1 or
−1 depending on whether we consider the z < 0 or z > 0
half-plane, respectively. They allow us to write in a compact
way all the boundary conditions coming from Eqs. (2.1),
giving

_xyðt; 0Þ ¼ 0; ðA1aÞ
_xxðt; 0Þ − S0 tanðΨ0Þ_xzðt; 0Þ ¼ 0; ðA1bÞ

S0 tanðΨ0Þx0xðt; 0Þ þ x0zðt; 0Þ ¼ 0; ðA1cÞ
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and

_xyðt; σmÞ ¼ 0; ðA1dÞ
_xxðt; σmÞ þ Sm tanðΨmÞ_xzðt; σmÞ ¼ 0; ðA1eÞ

Sm tanðΨmÞx0xðt; σmÞ − x0zðt; σmÞ ¼ 0; ðA1fÞ

leading to the system of equations

a0yðtÞ ¼ b0yð−tÞ; ðA2aÞ

½a0zðtÞ − b0zð−tÞ�S0 tanΨ0 ¼ a0xðtÞ − b0xð−tÞ; ðA2bÞ

a0zðtÞ þ a0zð−tÞ ¼ −½a0xðtÞ þ b0xð−tÞ�S0 tanΨ0;

ðA2cÞ

and
a0yð2σm þ tÞ ¼ b0yð−tÞ; ðA2dÞ

½a0zð2σmþ tÞ−b0zð−tÞ�Sm tanΨm ¼−a0xð2σmþ tÞþb0xð−tÞ;
ðA2eÞ

a0zð2σmþ tÞþb0zð−tÞ ¼ ½a0xð2σmþ tÞþb0xð−tÞ�Sm tanΨm;

ðA2fÞ
replacing Eqs. (2.4). Manipulating Eqs. (A2b) and (A2c)
allows us to express a0xðtÞ and b0xð−tÞ in terms of a0zðtÞ,
b0zð−tÞ and polynomials of ðS0 tanΨ0Þ, and thus a0xð2σm þ tÞ
after a shift t → 2σm þ t. Replacing in Eqs. (A2e) and
(A2f), one gets two equations involving a0zð2σmþtÞ, a0zðtÞ,
b0zð−2σm − tÞ and b0zð−tÞ, and combinations of ðS0 tanΨ0Þ
and ðSm tanΨmÞ.
Shifting the variable t → 2σm þ t, one gets four equa-

tions involving six variables: a0zð4σm þ tÞ, a0zð2σm þ tÞ,
a0zðtÞ, b0zð−4σm − tÞ, b0zð−2σm − tÞ and b0zð−tÞ. One can
then use three of them to eliminate the three b0z variables—
namely b0zð−4σm − tÞ, b0zð−2σm − tÞ and b0zð−tÞ—to obtain
an expression similar to Eq. (2.6),

a0zðtÞ ¼ −Ra0zð−2σm þ tÞ − a0zð−4σm þ tÞ; ðA3Þ
where

R≡ −2 cos ð2S0Ψ0 þ 2SmΨmÞ; ðA4Þ

and similarly for a0x.
This expression is very similar to the one we obtained

in the initial setting, which we can retrieve by setting
Sm ¼ 1 ¼ S0 and Ψ0 ¼ Ψm. In addition, this equation also
reveals that the functions a0x and a0z are periodic for a dense
subset of angles, otherwise quasiperiodic; one simply needs
to replace 2Ψ by Ψ0 �Ψm. This justifies our initial simpler
choice.

2. Noncoplanar heavy strings

In this section, we choose to modify the initial configu-
ration by rotating the σm-end string in the plane containing
the y axis, as shown in Fig. 12. In other words, one rotates
the string around the axis which is perpendicular both to the
initial position of the string and to the y axis, that is, the axis
directed by the vector ðcosΨ; 0; sinΨÞ.

(a) (b)

FIG. 12 (color online). A light string stretched between two junctions with heavy strings. Here the σ ¼ σm end string has been rotated
in the plane containing the y axis by an angle Φ. The two heavy strings are no longer coplanar. (a) front view; (b) side view.

FIG. 11 (color online). A light string stretched between two
junctions with heavy strings. Here the upper half-plane is
symmetric to the lower half-plane and each heavy string forms
a different angle with the z axis. The heavy strings are coplanar.
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This rotation generates a coupling between a0y and the
other components of a0, namely a0x and a0z, contrarily to
previous cases. Indeed, the boundary conditions at σ ¼ 0
remain the same while the ones at σ ¼ σm become

− sinΨ sinΦða0xð2σm þ tÞ − b0xð−tÞÞ
þ cosΦða0yð2σm þ tÞ − b0yð−tÞÞ
þ cosΨ sinΦða0zð2σm þ tÞ − b0zð−tÞÞ ¼ 0; ðA5aÞ
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FIG. 13 (color online). A simulated light string (in blue) stretched between two junctions with fixed heavy strings (in red). t0 ¼ t=σm is
the rescaled time. ζ ∼ Δ=σm ¼ 0.25 and ζ̄ ∼ 2.
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ða0xð2σm þ tÞ − b0xð−tÞÞ
þ tanΨða0zð2σm þ tÞ − b0zð−tÞÞ ¼ 0; ðA5bÞ

sinΨ cosΦða0xð2σm þ tÞ þ b0xð−tÞÞ
þ sinΦða0yð2σm þ tÞ þ b0yð−tÞÞ
− cosΨ cosΦða0zð2σm þ tÞ þ b0zð−tÞÞ ¼ 0; ðA5cÞ

replacing Eqs. (2.4d)–(2.4f). These are significantly more
complicated than previously and imply that one needs to
manipulate more equations to obtain a relationship similar
to Eq. (2.6). In the end, this coupling generates a 3rd-order
equation for a0x and a0z instead of the 2nd-order one that
is Eq. (2.6).
We believe that the conclusion on the periodicity,

obtained in the previous string configurations, is still valid
in this general setup, basically since the energy density per
unit length remains constant (no emission has been
incorporated). Indeed, the energy being constant implies
that any damping or amplification in one of the components
of the signal along the string is linked to some compensa-
tion somewhere else in the system.
In the previous situations, if, say, the energy of the y

component was null at the beginning, it remained that
way; similarly, the energy loss in, say, the x component
was balanced by the gain in the z component. In our
noncoplanar situation, one needs to take into account
all three components in a very entangled and more
complex way. This suggests that a loss of energy in,
say, the z component is going to be balanced by an
amplification in, say, the y component. Indeed, at the
σ ¼ σm junction, this kind of transfer can happen since
all three modes are coupled. In addition, it is believed
that the damping in the z direction could be seen as a
source term in the x and y directions, linked to a general
conservation of energy density and implying a globally
periodic movement.
More precisely, the 3rd-order equation is of the

form

anþ3 − R̄anþ2 þ R̄anþ1 − an ¼ 0 ðA6Þ

where R̄ depends solely on the angles; it gives solutions of
the form

an ¼ Aen þ eunðB cos vnþ C sin vnÞ ðA7Þ
where A, B and C are constants depending on the initial
conditions (i.e. on a0, a1 and a2) and u and v depend directly
and solely on R̄. Taking A to be nonzero gives unphysical
solutions since one needs to keep in mind that
a0y ¼ �

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − ða0xÞ2 − ða0zÞ2

p
.20 One would get large values

for a0x and a0z as n grows, giving a negative value for
ð1 − ða0xÞ2 − ða0zÞ2Þ. Similarly, one cannot understand physi-
cally the exponential prefactor eun unless there is a mecha-
nism to either suppress this factor or reverse it after some
time. Indeed, let us divide this in three cases: if u is null, one
obtains a periodic motion; if u > 0, we find ourselves in the
case described previously, that is, unphysical complex values
for a0y; finally, if u < 0, one would have a situation where
a0z ¼ 0 ¼ a0x and all the energy lies in a0y, which is unrealistic
as well. Amechanism suppressing or reversing this prefactor
would imply a balance between each component through
time, which again makes sense physically.
Generally, it is believed that the rotation of the σ ¼ σm

string should not change the global understanding of the
movement of the light string, meaning that what was
considered as consistent in the coplanar case should remain
valid here.

APPENDIX B: SNAPSHOTS OF THE
SIMULATION

We present in Fig. 13 some snapshots of a string
simulated using our code. The chosen parameters here
are such that ζ ∼ Δ=σm ¼ 0.25 and ζ̄ ∼ 2 since 4 modes
have been implemented on the string. Finally, we use here a
rescaled time t0 ≡ t=σm, meaning that t0 ¼ 1 after a half of
the period. Note though that using symmetries, one can
deduce how the string is behaving in the second half of the
period from the string’s position during the first half.
Finally, note that Ψ ¼ 0.

[1] T. W. B. Kibble, J. Phys. A 9, 1387 (1976).
[2] A. Vilenkin and E. P. S. Shellard, Cosmic Strings and

Other Topological Defects (Cambridge University Press,
Cambridge, 1994).

[3] M. B. Hindmarsh and T.W. B. Kibble, Rep. Prog. Phys. 58,
477 (1995).

[4] M. Sakellariadou, Springer Lect. Notes Phys. 718, 247
(2007).

[5] R. Jeannerot, J. Rocher, and M. Sakellariadou, Phys. Rev. D
68, 103514 (2003).

[6] M. Sakellariadou, Springer Lect. Notes Phys. 738, 359
(2008).

[7] C. Ringeval, M. Sakellariadou, and F. Bouchet, J. Cosmol.
Astropart. Phys. 02 (2007) 023.

[8] L. Lorenz, C. Ringeval, and M. Sakellariadou, J. Cosmol.
Astropart. Phys. 10 (2010) 003.

20Indeed, recall a02 ¼ 1 ¼ ða0xÞ2 þ ða0yÞ2 þ ða0zÞ2.

ELGHOZI, NELSON, AND SAKELLARIADOU PHYSICAL REVIEW D 90, 123517 (2014)

123517-18

http://dx.doi.org/10.1088/0305-4470/9/8/029
http://dx.doi.org/10.1088/0034-4885/58/5/001
http://dx.doi.org/10.1088/0034-4885/58/5/001
http://dx.doi.org/10.1007/3-540-70859-6
http://dx.doi.org/10.1007/3-540-70859-6
http://dx.doi.org/10.1103/PhysRevD.68.103514
http://dx.doi.org/10.1103/PhysRevD.68.103514
http://dx.doi.org/10.1007/978-3-540-74353-8
http://dx.doi.org/10.1007/978-3-540-74353-8
http://dx.doi.org/10.1088/1475-7516/2007/02/023
http://dx.doi.org/10.1088/1475-7516/2007/02/023
http://dx.doi.org/10.1088/1475-7516/2010/10/003
http://dx.doi.org/10.1088/1475-7516/2010/10/003


[9] J. Polchinski, Int. J. Mod. Phys. A 20, 3413 (2005) [AIP
Conf. Proc. 743, 331 (2005)].

[10] M. Sakellariadou, Phil. Trans. R. Soc. A 366, 2881
(2008).

[11] S. Sarangi and S. H. H. Tye, Phys. Lett. B 536, 185
(2002).

[12] J. Polchinski, Phys. Lett. B 209, 252 (1988).
[13] E. J. Copeland, R. C. Myers, and J. Polchinski, J. High

Energy Phys. 06 (2004) 013.
[14] M. G. Jackson, N. T. Jones, and J. Polchinski, J. High

Energy Phys. 10 (2005) 013.
[15] M. Sakellariadou, J. Cosmol. Astropart. Phys. 04 (2005)

003.
[16] S.-H. H. Tye, I. Wasserman, and M. Wyman, Phys. Rev. D

71, 103508 (2005); 71, 129906 (2005).
[17] A. Avgoustidis and E. P. S. Shellard, Phys. Rev. D 73 (2006)

041301.
[18] A.-C. Davis, W. Nelson, S. Rajamanoharan, and M.

Sakellariadou, J. Cosmol. Astropart. Phys. 11 (2008) 022.
[19] A. Pourtsidou, A. Avgoustidis, E. J. Copeland, L. Pogosian,

and D. A. Steer, Phys. Rev. D 83, 063525 (2011).
[20] E. J. Copeland, L. Pogosian, and T. Vachaspati, Classical

Quantum Gravity 28, 204009 (2011).
[21] A. Avgoustidis, E. J. Copeland, A. Moss, L. Pogosian, A.

Pourtsidou, and D. A. Steer, Phys. Rev. Lett. 107, 121301
(2011).

[22] A. Rajantie, M. Sakellariadou, and H. Stoica, J. Cosmol.
Astropart. Phys. 11 (2007) 021.

[23] J. Urrestilla and A. Vilenkin, J. High Energy Phys. 02
(2008) 037.

[24] M. Sakellariadou and H. Stoica, J. Cosmol. Astropart. Phys.
08 (2008) 038.

[25] N. Bevis, E. J. Copeland, P. Y.Martin, G. Niz, A. Pourtsidou,
P. M. Saffin, and D. A. Steer, Phys. Rev. D 80, 125030
(2009).

[26] E. J. Copeland, T. W. B. Kibble, and D. A. Steer, Phys. Rev.
Lett. 97, 021602 (2006).

[27] E. J. Copeland, T. W. B. Kibble, and D. A. Steer, Phys. Rev.
D 75, 065024 (2007).

[28] E. J. Copeland, H. Firouzjahi, T. W. B. Kibble, and D. A.
Steer, Phys. Rev. D 77, 063521 (2008).

[29] T. Vachaspati and A. Vilenkin, Phys. Rev. D 31, 3052
(1985).

[30] M. Sakellariadou, Phys. Rev. D 42, 354 (1990); 43, 4150
(1991).

[31] T.Damour andA.Vilenkin, Phys. Rev. Lett. 85, 3761 (2000).
[32] T. Damour and A. Vilenkin, Phys. Rev. D 64, 064008

(2001).
[33] R. Brandenberger, H. Firouzjahi, J. Karouby, and S.

Khosravi, J. Cosmol. Astropart. Phys. 01 (2009) 008.
[34] B. P. Abbott et al. (LIGO Scientific Collaboration), Phys.

Rev. D 80, 062002 (2009).
[35] S. Olmez, V. Mandic, and X. Siemens, Phys. Rev. D 81,

104028 (2010).
[36] P. Binetruy, A. Bohe, T. Hertog, and D. A. Steer, Phys. Rev.

D 82, 126007 (2010).
[37] T. Regimbau, S. Giampanis, X. Siemens, and V. Mandic,

Phys. Rev. D 85, 066001 (2012).
[38] E. J. Copeland, R. C. Myers, and J. Polchinski, J. High

Energy Phys. 06 (2004) 013.
[39] D. Austin, E. J. Copeland, and T.W. B. Kibble, Phys. Rev. D

48, 5594 (1993).
[40] G. R. Vincent, M. Hindmarsh, and M. Sakellariadou, Phys.

Rev. D 56, 637 (1997).

CUSPS AND PSEUDOCUSPS IN STRINGS WITH Y-JUNCTIONS PHYSICAL REVIEW D 90, 123517 (2014)

123517-19

http://dx.doi.org/10.1142/S0217751X05026686
http://dx.doi.org/10.1063/1.1848338
http://dx.doi.org/10.1063/1.1848338
http://dx.doi.org/10.1098/rsta.2008.0068
http://dx.doi.org/10.1098/rsta.2008.0068
http://dx.doi.org/10.1016/S0370-2693(02)01824-5
http://dx.doi.org/10.1016/S0370-2693(02)01824-5
http://dx.doi.org/10.1016/0370-2693(88)90942-2
http://dx.doi.org/10.1088/1126-6708/2004/06/013
http://dx.doi.org/10.1088/1126-6708/2004/06/013
http://dx.doi.org/10.1088/1126-6708/2005/10/013
http://dx.doi.org/10.1088/1126-6708/2005/10/013
http://dx.doi.org/10.1088/1475-7516/2005/04/003
http://dx.doi.org/10.1088/1475-7516/2005/04/003
http://dx.doi.org/10.1103/PhysRevD.71.103508
http://dx.doi.org/10.1103/PhysRevD.71.103508
http://dx.doi.org/10.1103/PhysRevD.71.129906
http://dx.doi.org/10.1103/PhysRevD.73.041301
http://dx.doi.org/10.1103/PhysRevD.73.041301
http://dx.doi.org/10.1088/1475-7516/2008/11/022
http://dx.doi.org/10.1103/PhysRevD.83.063525
http://dx.doi.org/10.1088/0264-9381/28/20/204009
http://dx.doi.org/10.1088/0264-9381/28/20/204009
http://dx.doi.org/10.1103/PhysRevLett.107.121301
http://dx.doi.org/10.1103/PhysRevLett.107.121301
http://dx.doi.org/10.1088/1475-7516/2007/11/021
http://dx.doi.org/10.1088/1475-7516/2007/11/021
http://dx.doi.org/10.1088/1126-6708/2008/02/037
http://dx.doi.org/10.1088/1126-6708/2008/02/037
http://dx.doi.org/10.1088/1475-7516/2008/08/038
http://dx.doi.org/10.1088/1475-7516/2008/08/038
http://dx.doi.org/10.1103/PhysRevD.80.125030
http://dx.doi.org/10.1103/PhysRevD.80.125030
http://dx.doi.org/10.1103/PhysRevLett.97.021602
http://dx.doi.org/10.1103/PhysRevLett.97.021602
http://dx.doi.org/10.1103/PhysRevD.75.065024
http://dx.doi.org/10.1103/PhysRevD.75.065024
http://dx.doi.org/10.1103/PhysRevD.77.063521
http://dx.doi.org/10.1103/PhysRevD.31.3052
http://dx.doi.org/10.1103/PhysRevD.31.3052
http://dx.doi.org/10.1103/PhysRevD.42.354
http://dx.doi.org/10.1103/PhysRevD.43.4150.2
http://dx.doi.org/10.1103/PhysRevD.43.4150.2
http://dx.doi.org/10.1103/PhysRevLett.85.3761
http://dx.doi.org/10.1103/PhysRevD.64.064008
http://dx.doi.org/10.1103/PhysRevD.64.064008
http://dx.doi.org/10.1088/1475-7516/2009/01/008
http://dx.doi.org/10.1103/PhysRevD.80.062002
http://dx.doi.org/10.1103/PhysRevD.80.062002
http://dx.doi.org/10.1103/PhysRevD.81.104028
http://dx.doi.org/10.1103/PhysRevD.81.104028
http://dx.doi.org/10.1103/PhysRevD.82.126007
http://dx.doi.org/10.1103/PhysRevD.82.126007
http://dx.doi.org/10.1103/PhysRevD.85.066001
http://dx.doi.org/10.1088/1126-6708/2004/06/013
http://dx.doi.org/10.1088/1126-6708/2004/06/013
http://dx.doi.org/10.1103/PhysRevD.48.5594
http://dx.doi.org/10.1103/PhysRevD.48.5594
http://dx.doi.org/10.1103/PhysRevD.56.637
http://dx.doi.org/10.1103/PhysRevD.56.637

