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We develop a nonsingular bouncing cosmology using a nontrivial coupling of general relativity to
fermionic fields. The usual big bang singularity is avoided thanks to a negative energy density contribution
from the fermions. Our theory is ghost free since the fermionic operator that generates the bounce is
equivalent to torsion, which has no kinetic terms. The physical system consists of standard general
relativity plus a topological sector for gravity and fermionic matter described by Dirac fields with a
nonminimal coupling. We show that a scale-invariant power spectrum generated in the contracting phase
can be recovered by suitable choices of fermion number density and bare mass, thus providing a possible
alternative to the inflationary scenario.
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I. INTRODUCTION

The pioneering work of Hawking and Penrose demon-
strated that at initial times the Friedmann–Lemaître–
Robertson–Walker (FLRW) metric of the standard big bang
cosmology suffers from singularities in all curvature invar-
iants [1]. Their theorem states that the initial singularity is
unavoidable if space-time is described by general relativity
and if matter obeys the null energy condition. Over the years
nonsingular bouncing cosmologies have been proposed to
avoid the big bang singularity by obviating one or all of
the assumptions behind the Hawking–Penrose theorem.
However, a successful theory of the early Universe must
predict the observed nearly scale-invariant spectrum of
adiabatic fluctuations in the cosmic microwave background
radiation (CMBR). Scale invariance was attempted in the
context of bouncingmodelswith a contracting phase such as
ekpyrotic [2], string gas [3] and pre-big-bang scenarios [4].
On the other hand, it has proven difficult to obtain adiabatic
scale-invariant fluctuations in the contracting phase in a
number of these models, mainly due to issues in mode
matching between the contracting and expanding phases [4].
In pioneering works by Brandenberger, Finelli, and

independently by Wands [4,5], it was shown that it is
possible to generate a scale-invariant power spectrum in a
matter dominated contracting universe. These authors
demonstrated a “duality” between the scale-invariant power
spectrum generated in the inflationary epoch and a con-
tracting matter dominated phase. During the contracting
phase, gauge-invariant perturbations that cross the Hubble
scale are scale invariant if the scale factor evolves as

aðtÞ ∼ ð−tÞ2=3. Furthermore, if the bounce is nonsingular,
the scale-invariant modes can be matched to scale-invariant
modes in the expanding phase.
A handful of matter bounce scenarios has since

been proposed, mostly based on fundamental scalar fields
[2,6–9]. In this paper we present a matter bounce scenario
based on Dirac fermions, specifically, on the four-fermion
interaction. This line of research has been previously
addressed in Ref. [10] from the perspective of a wide class
of generic potentials of the Dirac field. Our work differs
from Ref. [10], where the four-fermion interaction was
neglected in computing the scalar perturbation and a de
Sitter background expansion was assumed.
In this work we follow the perspective taken by

Refs. [11,12], where a torsion induced four-fermion inter-
action yields a nonsingular bounce. In Ref. [13], the role of a
parity violating four-fermion self-interaction in a torsion-
free theory has been studied. In this work, we propose
both a nonminimal coupling of fermions (as analyzed in
Refs. [14–16]) and a topological gravitational term endowed
with torsion (see for instance Ref. [17]). We show that these
two terms generate four-fermion interactions of which the
dynamics yield a scale-invariant power spectrum.1

Furthermore, the four-fermion current density modifies
the Friedman equations to have a negative energy density
that redshifts like ∼aðtÞ6. We show that the resulting
bounce is nonsingular provided that anisotropic stress is
subdominant,2 consistent with previous literature.
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1The presence of the torsion background turns the topological
term in the Holst action from a surface term into a contribution to
the four-fermion interaction term.

2In a companion paper [18], some of us used these findings as
a starting point to discuss consequences for the fate of black hole
solutions [19], which for a suitable choice of some parameters of
the theory may never form.
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Moreover, we show for the first time that the adiabatic
quantum fluctuation of fermions in the contracting phase
can be scale invariant. Indeed, as we may straightforwardly
infer from the result of Brandenberger and Finelli, since the
bounce is nonsingular our scale-invariant curvature pertur-
bation induced by the fermion quantum fluctuations will
enter the expanding phase as a scale-invariant fluctuation.
An advantage of the mechanism shown in this paper is
that it does not require any fundamental scalar field.
The fermionic field is sufficient to account for both the
bounce and the generation of nearly scale-invariant scalar
perturbations.
The following is an outline of the paper. In Sec. II we

introduce the theoretical framework and cite the relevant
works in the literature. In Sec. III we address the conse-
quences of the model for the matter-bounce scenario. In
Sec. IV we address the cosmological perturbations induced
by the fermionic field. In Sec. V we discuss consistency
with experimental data. In Sec. VI we provide some
concluding remarks and mention works in progress.

II. THEORY

In what follows we provide our theoretical frame-
work and conventions following the formalism of
Refs. [11,14,15,17,20,21]. We start by considering a
generalization of the Einstein–Hilbert action with a topo-
logical term: this is the Holst action for gravity in the
Palatini formalism which allows us to couple gravity to
chiral fermions. We then couple this theory to a Dirac field
ψ , of which the complex conjugate reads ψ̄ ¼ ðψ�ÞTγ0. The
action for the fermionic field is cast in terms of the Dirac
matrices, γI with I ¼ 0;…; 3 and γ5, expressed in the
Dirac–Pauli basis. The action for pure gravity can be cast in
terms of the gravitational field gμν ¼ eIμeJνηIJ, where eIμ is
the tetrad/frame field (with inverse eμI and determinant e),
and the Lorentz connection ωIJ

μ (of which the curvature is
FIJ
μν ¼ 2∂ ½μωIJ

ν� þ ½ωμ;ων�IJ). The action for the fermion

fields involves the spinors ψ and ψ̄ ¼ ψ†γ0.
The total action is the sum of the Einstein–Cartan–Holst

(ECH) action plus the nonminimal covariant Dirac action.3

The ECH action is (see Ref. [18])

SHolst ¼
1

2κ

Z
M
d4xjejeμI eνJPIJ

KLFμν
KLðωÞ; ð1Þ

where κ ¼ 8πGN is the reduced Planck length square

and the operator PIJ
KL ¼ δ½IKδ

J�
L − ϵIJKL=ð2γÞ, ϵIJKL

being the Levi-Civita symbol, is defined in terms of the
Barbero–Immirzi parameter γ and can be inverted for

γ2 ≠ −1. The Dirac action is SDirac ¼ 1
2

R
d4xjejLDirac,

where

LDirac ¼
1

2
½ψ̄γIeμI

�
1 −

ı
α
γ5

�
ı∇μψ −mψ̄ψ � þ H:c:; ð2Þ

in which α ∈ R is the so-called nonminimal coupling
parameter. The Einstein–Cartan action can be found if
we consider SECH ¼ SGR þ SDirac and α ¼ γ, with a term
that reduces to the Nieh–Yan invariant [16] when the
second Cartan structure equation holds. From the point
of view of the Holst action (1), minimal coupling is
recovered in the limit α → �∞. Constraints on α and γ
can be derived from the four-fermion axial-current
Lagrangian (7), based on measurements of lepton-quark
contact interactions [22,23], but these are not at all
stringent.
The covariant derivative for Dirac spinors is defined to

be ∇μ ≡ ∂μ þ 1
4
ωIJ
μ γ½IγJ�, while the field strength of the

Lorentz connection is obtained from ½∇μ;∇ν� ¼ 1
4
FIJ
μνγ½IγJ�.

Because of the presence of fermions, a torsional part of
the connection enters the nonminimal ECH action.
Nevertheless, the latter can be integrated out of the theory
through the Cartan equation, which is found by varying the
total action with respect to the connection ωIJ

μ . We provide
the usual definition of the contortion tensor, denoted as CIJ

μ

and defined by ð∇μ − ~∇μÞVI ¼ Cμ I
JVJ, where ~∇μ is the

covariant derivative compatible with the tetrad eIμ and VJ a
vector in the internal space. The Cartan equation then
relates the contortion tensor CIJ

μ to the fermionic currents
and tetrad,

eμI CμJK ¼ κ

4

γ

γ2 þ 1
ðβϵIJKLJL − 2θηI½JJK�Þ;

JL ¼ ψ̄γLγ5ψ ; ð3Þ

where the coefficients are functions of the free parameters
within the nonminimal ECH theory, β ¼ γ þ 1=α, and
θ ¼ 1 − γ=α. Thanks to (3) the nonminimal ECH action
can be completely recast in terms of the metric compatible
connection, as a sum of the Einstein–Hilbert action and the
Dirac action. The latter is now written in terms of metric
compatible variables and now includes a novel interaction
term that captures the new physics within the nonminimal
ECH theory SECH. The theory then becomes

SECH ¼ SGR þ SDirac þ SInt; ð4Þ

where the Einstein–Hilbert action is expressed in terms of
the mixed-indices Riemann tensor RIJ

μν ¼ FIJ
μν½ ~ωðeÞ�,

SGR ¼ 1

2κ

Z
M
d4xjejeμI eνJRIJ

μν; ð5Þ

3Notice that, in the absence of the gravitational Holst topo-
logical term, the whole theory provided with torsion and
minimally coupled fermions is referred to in the literature as
the Einstein–Cartan–Sciama–Kibble theory. See e.g. Ref. [20].
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the Dirac action SDirac on curved space-time reads

SDirac ¼
1

2

Z
M
d4xjejðψ̄γIeμI ı ~∇μψ −mψ̄ψÞ þ H:c:; ð6Þ

and the interacting term is

SInt ¼ −ξκ
Z
M
d4xjejJLJMηLM; ð7Þ

where we define the coefficient ξ as a function of the
fundamental parameters of the theory,

ξ ≔
3

16

γ2

γ2 þ 1

�
1þ 2

αγ
−

1

α2

�
: ð8Þ

In what will follow, it is useful to compute the energy-
momentum tensor,

Tfer
μν ¼ 1

4
ψ̄γIeIðμı

~∇νÞψ þ H:c: − gμνLfer: ð9Þ

In canonical quantum field theory, spinors are operator-
valued fields ψ̂ that act on a definite Hilbert space. We can
express a classical spinor as the expectation value of the
spinor operator on an appropriate quantum state jsi, such
that ψ ¼ hsjψ̂ jsi, which is a complex number. The observ-
able bilinear that will enter the classical equation will be
evaluated on such a quantum state, and their renormalized
value will be obtained by subtracting the vacuum expect-
ation value, namely h…iren ≡ hsj…jsi − h0j…j0i.
The Dirac equation on a curved background for the

interacting system is found to be4

γIeμI ı ~∇μψ −mψ ¼ 2ξκðψ̄ψ þ ψ̄γ5ψγ5 þ ψ̄γIψγ
IÞψ :

ð10Þ

III. NONSINGULAR BOUNCE

In previous bouncing models, the issue of the robustness
of the singularity avoidance depends on whether quantum
corrections (i.e. curvature or matter) were under control at
the bounce [4]. The advantage of our model is that torsion
in this scheme, which is responsible for the bounce, has no
kinetic term (i.e. it is an auxiliary field) and will not
experience any quantum corrections as we approach the
bounce.
We would like to find self-consistent initial values of the

fermionic densities so as to not spoil isotropy of our FLRW
space-time. First we cast our metric eIμ in FLRW form,

which in the comoving gauge reads eI0 ¼ δI0 and
eIj ¼ δIjaðtÞ. Homogeneity and isotropy on spatial hyper-
surfaces demand a vanishing fermionic current.
As for the Dirac field components, the vanishing of the

spatial fermionic current yields [10] ψ ¼ ðψ0; 0; 0; 0Þ. In
the comoving gauge, the only nonvanishing spin connec-
tion components for ωIJK ¼ ωIJ

μ e
μ
K are ω0ij ¼ −ωi0j ¼

−Hδij, where the Hubble parameter is defined by H ¼
_a=a and “ .” represents the time derivative. This implies
~∇0 ¼ ∂0 and ~∇i ¼ ∂i þ aH=2δijdiagðσj;−σjÞ, where σj

denotes Pauli matrices. The Dirac equation then follows,

_ψ0 þ
3

2
Hψ0 þ ıðmþ 4κξψ⋆

0ψ0Þψ0 ¼ 0; ð11Þ

in which ⋆ denotes complex conjugation. It is easy to derive
the equation of motion for the bilinear ψ⋆

0ψ0,

d
dt

ψ⋆
0ψ0 þ 3Hψ⋆

0ψ0 ¼ 0; ð12Þ

which yields the familiar expression in terms of a constant
initial density n0,

ψ⋆
0ψ0 ∼

n0
a3

: ð13Þ

Using the solutions of (12), the Friedmann equation
becomes

H2 ¼ ξ
κ2

3

n20
a6

þmκ

3

n0
a3

: ð14Þ

We see from (14) that the four-fermion term has the
crucial 1

a6
redshifting which will control the bounce. We

now consider a contracting scale factor and immediately
recognize that the bounce is due to the vanishing of the total
energy density. As we approach the would-be singularity
(the scale factor approaching zero), the negative energy (for
ξ < 0) four-fermion term dominates and drives the Hubble
parameter to zero, resulting in a nonsingular bounce.
At the bounce we will have to obtain the initial value of

_H which we can get from the second Friedmann equation,

_H −H2 ¼ ä
a
¼ −

1

6

�
mκ

n0
a3

þ 4ξκ2
n20
a6

�
: ð15Þ

At the bounce, t ¼ t0, the vanishing of H ¼ H0 in (14),
the scale factor approaches a constant, a0 ¼ ð−ξκn0=mÞ1=3.
For negative values of the ξ parameter, the scale factor a0
reaches its minimum, as from (15) one finds that
_H0 ¼ −m2=ð3ξÞ. Notice that both the bilinear ψ̄ψ and
the field ψ reach their maxima at t0: although the effective
potential in Sfer is unbounded in ψ when ξ is negative, the
gravitational bounce prevents the classically unbounded
energy spectrum from taking infinite negative values. It is

4To further simplify the four-fermion term, we have used the
Pauli–Fierz identity

ðψ̄γ5γIψÞðψ̄γ5γIψÞ ¼ ðψ̄ψÞ2 þ ðψ̄γ5ψÞ2 þ ðψ̄γIψÞðψ̄γIψÞ:
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then straightforward to find the deterministic evolution of
the scale factor that leads to the bounce:

a ¼
�
3mκn0

4
ðt − t0Þ2 − ξ

κn0
m

�1
3

: ð16Þ

This solution can be shown to be stable under perturbations
to the fermionic matter field if the anisotropic and
inhomogeneous contribution to the energy density, which
reads

~ρ ∼
Tr½γiγj�
M2

p
ψ̄ψhδψ̄δψi; ð17Þ

is subdominant with respect to the isotropic contribution in
the right-hand side of (14). The criterion to have a
subdominant contribution is

hδψ̄δψi=M2
p ≪ m: ð18Þ

We show in Fig. 1 the range of values in the (γ, α)
parameter space for which ξ is negative and the matter
bounce happens. The bounce takes place when the
interaction energy of the fermion fields provides a
negative contribution that violates the null energy con-
dition, as shown for nonconventional fermion fields in
Refs. [10,24,25].

IV. COSMOLOGICAL CURVATURE
PERTURBATIONS

In this section, we demonstrate that fermions can induce
scale-invariant adiabatic perturbations. We show this in a
way similar to the treatment of scalar fields, in that we solve
the mode functions for the fermionic perturbations and
evaluate its contribution to the gauge invariant curvature
perturbation. Following Ref. [10], we introduce a quantity
that is conserved on large scales and can be related to

CMBR temperature fluctuations, analogous to the Bardeen
variable,5 i.e.

ζ ¼ δρ

ρþ p
: ð19Þ

After some algebra and the use of the Pauli–Fierz identity,
we obtain

ζ ¼ 1

mψ̄ψ þ 2ξκJLJL
fðmþ ξκψ̄ψÞðδψ̄ψ þ ψ̄δψÞ

þ ξκ½ψ̄γ5ψðδψ̄γ5ψ þ ψ̄γ5δψÞ
þ ψ̄γLψðδψ̄γLψ þ ψ̄γLδψÞ�g:

We can further simplify ζ by using the background
solutions for the spinors:

ζ ¼ fðtÞðδψ̄ψ þ ψ̄δψÞ;

with fðtÞ≃ ð1 − ξκψ̄ψ=mÞ
ψ̄ψ

: ð20Þ

The power spectrum PðkÞ is implicitly defined in terms
of the equal-time two-point function of ζ,

hζðt; ~xÞζðt; ~xþ ~rÞi ¼
Z

dk
k
sin kr
kr

PðkÞ; ð21Þ

where the expectation value is taken in the vacuum state
and defined by aj0i ¼ bj0i ¼ 0. Using the simplified
expression for ζ in terms of δψ and the background
Dirac field, the two-point function becomes

hζðt; ~xÞζðt; ~xÞi ¼ f2ðtÞ ψ̄ψ
4

hδψ̄δψi: ð22Þ

This finally provides the expression for the power spectrum

PðkÞ ∼
X
h

ma3ðtÞ − 2ξκn0
4mn0

k3

4π2
v̄hðt; ~kÞvhðt; ~kÞ; ð23Þ

where the mode function vh is obtained by expanding the
quantum fluctuations of the spinor:

FIG. 1. Sign of ξ on the plane (γ, α). Natural values of the
fundamental parameters are allowed in order to obtain ξ < 0.

5The cosmological models of which the parameters α and γ
encode a negative ξ may have application as alternative model of
inflation. Below we study the perturbation variable sourced by
fermionic matter.
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δψ ¼
X
h

Z
d3k

ð2πÞ3=2

× ðuhðt; ~kÞað~k; hÞeı~k·~x þ vhðt; ~kÞb†ð~k; hÞe−ı~k·~xÞ:
ð24Þ

We now proceed to evaluate the solution of the mode
function vh of the spinor perturbation. Using the back-
ground solution of ψ , and a conformal rescaling,
~ψ ¼ a3=2ψ , we obtain the equation of motion for the spinor
perturbation�

ıγμ∂μ −maðηÞ − 2ξκn0
a2ðηÞ

�fδψ ¼ 0: ð25Þ

We can now solve the Dirac equation (25) in terms of the
following mode6 functions [26]:

~f�h ¼
1ffiffiffi
2

p ½ ~uL;hð~k; ηÞ þ ~uR;hð~k; ηÞ�;

~g�h ¼
1ffiffiffi
2

p ½ ~vL;hð~k; ηÞ þ ~vR;hð~k; ηÞ�: ð26Þ

Equation (25) can be expressed in terms of f�h,

~f00�hþ
�
k2þm2a2þ ıma0 þ2ξκn0

�
m
a
− ı

a0

a3

��
~f�h¼0;

ð27Þ

where �h denotes helicity and the and 0 denotes a
derivative with respect to conformal time. An identical
system of coupled equations is recovered for ~gh. Rescaling
(27) by κ and then taking the limits η20 ≪ κ and
κm2 ≪ 1, provided that also κ2m2 ≪ η20 is fulfilled,
Eq. (27) reduces to

~f00�h þ
�
k2 −

ν2 − 1

4η2

�
~f�h ¼ 0; ð28Þ

where the parameter ν is related to the fermion coupling
parameter ξ by

ν2 ¼ 1 − 8ξ: ð29Þ

An equation identical to (28) is then found for ~g�h; their
solutions have been extensively studied in the literature and
for nondensitized components read

f�hðk; ηÞ ¼
ffiffiffiffi
m
k

r ffiffiffiffiffiffiffiffiffiffiffiffiffi
−πkη
8a3ðηÞ

s
Zjνjð−kηÞ; ð30Þ

Zjνj denoting the Bessel functions labeled by the parameter
jνj. In the contracting epoch and on subhorizon scales,
when −kη ≫ 1, both the fermionic perturbations f�hðk; ηÞ
and g�hðk; ηÞ are oscillatory and suppressed by a factor
a3=2ðηÞ. In this limit, the factor

ffiffiffiffiffiffiffiffiffi
m=k

p
in (30) determines

the quantum vacuum initial conditions [27].
For super-Hubble perturbations, i.e. −kη ≪ 1, the

solutions of (28) are Bessel functions, Zjνj ≃
ΓðjνjÞð−kηÞ−jνj=2−1=2, in which ΓðjνjÞ denotes the Euler
function.7 We now see that ν, which is related to four-
fermion coupling parameter, determines a scale-invariant
power spectrum. Far away from the bounce, the power
spectrum (23) can be evaluated to be

PðkÞ≃mk2jΓðjνjÞj2
16n0

jkηj−jνj:

A value of jνj ¼ 2 then ensures scale invariance, providing
the expression for the power spectrum,

PðkÞ≃ m
16n0η2

; ð31Þ

which is evaluated at the end of the matter contracting
phase tE, at which the scale factor takes the value aE. The
resulting expression would then be

PS ≃mH2
E

32n0
; ð32Þ

where ηE ¼ 2=ðaEHEÞ ¼ 2=HE has been applied. Notice
that the time tE marks the moment at which perturbations
become constant, throughout the rest of the primordial
epoch, until they reenter the Hubble radius.

V. CONSISTENCY WITH OBSERVATIONS

An exact scale invariance of the power spectrum
would immediately constrain the parameter ξ to take the
value

jξj ¼ 3

8
: ð33Þ

6Given a unit eigenspinor ξh, the helical components of the
mode functions are

~uðt; ~kÞ ¼
X
h

~uhðt; ~kÞ ¼
X
h

�
~uL;hð~k; ηÞ
~uR;hð~k; ηÞ

�
ξh;

~vðt; ~kÞ ¼
X
h

~vhðt; ~kÞ ¼
X
h

�
~vR;hð~k; ηÞ
~vL;hð~k; ηÞ

�
ξh:

7For any value of ν, this provides perturbations δψðη; ~xÞ and
δψ 0ðη; ~xÞ which decrease during the expanding phase of the
Universe.
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But observed deviations from scale invariance, namely
ns ¼ 0.960� 0.007 [28], as parametrized from (31)
through the relation

ns − 1≡ d lnPðkÞ
d ln k

¼ 2 − jνj; ð34Þ

require a slightly different value for ξ, i.e.

ξ ¼ 1 − ð3 − nsÞ2
8

≃ −0.395� 0.004; ð35Þ

once we have taken into account (29).
Notice that the value of ξ consistent with the cosmic

microwave background (35) will restrict the bare param-
eters in our theory (γ and α) to a one-parameter family of
theories. Finally, the choice jξj≃ 4 × 10−1 is also clearly
consistent with particle physics data, given the lack of a
stringent constraint coming from the lepton-quark contact
interactions. Measurements constrain jξj < 1032 [22,23],
which in turn may allow a region of natural values for the
parameters entering the nonminimal Einstein–Cartan–
Hilbert theory resulting from (1) and (2).
Recently, there has been much discussion about the

possible detection of primordial gravitational waves by the
BICEP2 collaboration [29]. The result has since been
questioned in the literature by a few studies (see e.g.
Refs. [30] and [31]), which points out possible flaws in the
data analysis. It has been shown that a proper dust profile
might still account for all or most of the signal of the
primordial gravitational waves [28].
With a view toward more detailed data analyses to be

delivered by BICEP2 and other collaborations, it is sensible
in this work to show the derivation of the phenomenologi-
cal parameter r, which accounts for the ratio between the
primordial gravitational waves’ power spectrum and the
scalar perturbations power spectrum. This can be achieved,
recalling that at the perturbative level both the scalar and
the tensor metric fluctuations can be treated linearly and as
uncoupled degrees of freedom. Thus, the derivation of the
primordial gravitational waves’ power spectrum will be
immediately achieved following the standard procedure
outlined in Ref. [32], which is specialized to general
matter-bounce scenarios (see e.g. [33]). The primordial
gravitational power spectrum is

PT ¼ 1

ϑ2
H2

E

M2
p
; ð36Þ

where ϑ ¼ 8πð2q − 3Þð1 − 3qÞ (the coefficient q is a
background parameter associated with the contracting
phase and typically required to be less than unity) and
the comoving Hubble parameter HE is evaluated at the end
of the matter contracting phase, just before the phase

transition to the bounce. The maximal amplitude of the
Hubble rate can then be evaluated from requiring the scale
factor to be of order mffiffi

ξ
p , once the Universe has been

assumed to evolve through the bounce.
Most of the bouncing models that generate adiabatic

fluctuations in the contraction phase (before the bounce),
including the ekpyrotic scenario, would be disfavored or
eventually ruled out if the claim by the BICEP2 collabo-
ration [29] on the detection of B modes coming from
primordial gravitational waves, and the related value
of the tensor to scalar ratio r≃ 0.2, is confirmed. The
model in this paper, consisting of only one fermionic
species, would then suffer a similar fate, as the theoretical
value for r consistent with the mass parameter of the model
is found to be too large. Indeed, it follows from (32) and
(36) that

r≃ 32

ϑ2
n0

mM2
p
; ð37Þ

which cannot match experimental constraints consistently
with the conditions η20 ≪ κ and κm2 ≪ 1 previously
required for scale invariance. Therefore, we conclude that
if the BICEP2 detection is confirmed in the future then our
specific model could be ruled out.8

VI. SUMMARY AND CONCLUSION

When general covariance accommodates nonminimal
coupling in the fermionic sector, a four-fermion interaction
modifies the cosmological evolution to yield a bounce. In
this work we have demonstrated that the same fermions that
regulate the singularity also generate scale-invariant quan-
tum fluctuations in the contracting phase. Using the argu-
ments of Brandenberger and Finelli, we can easily match
these fermionic perturbations to the scale-invariant modes
in the expanding phase. The bounce is nonsingular because
the torsion, which is responsible for the bounce, does not
receive quantum corrections. The gravitational wave power
spectrum and the resulting tensor to scalar ratio have been
derived. In a future paper, it will be interesting to compute
corrections to the tensor to scalar ratio due to the coupling
of the gravitons to the fermions.
Furthermore, to fully understand the generation of scale-

invariant scalar perturbations, it is essential to address the
mechanism here discussed in terms of the canonical
Mukhanov–Sasaki variables, to which both matter and
metric perturbations contribute. In a forthcoming paper
[35], some of us are considering how to recover those
variables by looking at the second-order action of the

8Nevertheless, the introduction of a second fermionic species
in the analysis can account for a new degree of freedom able to
match a smaller value of r. This latter argument has been explored
in Ref. [34].
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theory. In this context, it is interesting to notice that, while
matter perturbations are derived from the relevant fermionic
bilinears, which behave as scalar and vector fields, pertur-
bations of the fermionic bilinears must be expressed in
terms of the fundamental fermionic fields, the dynamics of
which is dictated by first-order differential equations. This
feature is at the origin of the very different behavior of
fermionic matter perturbations relative to scalar field
perturbations.
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