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We use the thin-shell Darmois–Israel formalism to model and assess the stability of the interfaces
separating phases, e.g., the core and the crust, within compact stars. We exemplify the relevance and
non-triviality of this treatment in the simplest case of an incompressible star, in constant pressure phase
transitions, and in the case of strange quark stars with crust.
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I. INTRODUCTION

In the Newtonian theory of gravity, the procedure to deal
with a given surface of discontinuity is well known. One
should simply impose the continuity of the gravitational
potential across it, and the discontinuity of the gravitational
field comes from its surfacemass. Such boundary conditions
can be easily concluded from the (linear) field equation,
given the precise notion of reference systems. Nevertheless,
in general relativity, the problem is muchmore involved, due
to the nonlinearity of the field equations and the principle of
general covariance [1,2]. For the elucidation of the problem
and references, see Refs. [1,2,10]. The solution to this
problem consists of imposing specific boundary conditions
to the induced metric tensor and the extrinsic curvature [3,4]
on a hypersurface splitting spacetimes in a manifestly
covariant way. Such a procedure is generically called either
the thin-shell formalism or the Darmois–Israel formalism. It
has been applied to a variety of scenarios, assessing the
physical properties of e.g., dynamic thin-layers [5–15],
quantum fields in thin-shell spacetimes [16,17], wormholes
[10,18], and radiating spheres [19–24]. It was already shown
that such a formalism is equivalent to searching for dis-
tributional solutions to Einstein’s equations [25]. For details
about the derivation of the hypersurface conditions in this
scenario, see Ref. [4].
The thin-shell formalism would be meaningful for stars

that are expected to display interfacial layers much smaller
than their characteristic sizes [26], endowed genericallywith
nontrivial quantities, such as surface tensions and surface
energy densities. Some systems of our interest in this line
can be, for example, compact stars with interfaces sepa-
rating their cores and their crusts, e.g., strange quark stars
and neutron stars. We highlight that the Darmois–Israel

formalism gives the nontrivial properties of transitional
layers, fully taking into account general relativity but just
under the macroscopic point of view. More generally, the
thin-shell formalism would be the proper formalism for
approaching any gravitational system that presents discon-
tinuous behaviors in their physical parameters.
We consider here a star with different phases as the

match of given spacetimes split by hypersurfaces that could
possess nontrivial properties, which in turn lead to non-
trivial dynamics, imputable to general relativity. The
dynamics of a shell does not imply compression or dilution
of the matter contents in the spacetimes, since it is induced
by fixed geometries associated with its adjacent spacetimes.
When a shell moves, one phase (thick layer) tends to
“swallow” the other, leading the shell to “absorb” degrees
of freedom to it [27], in order to compensate the changes of
the energy momentum in the adjacent phases and on itself.
All of these aspects shall be clarified subsequently.
Duly taking into account surface degrees of freedom in a

stratified astrophysical system is of cardinal importance
because they guarantee that the global spacetime repre-
sented by the union of the spacetime solutions matched at
given interfaces is also a solution of the general relativistic
equations. The consistency of the match of spacetimes is far
from trivial owing to the intrinsic nonlinearity of the
Einstein’s general theory of relativity.
Our aim in this article is to analyze, within the thin-shell

formalism, the stability of transitional/interfacial thin layers
present in compact stars against radial displacements of the
shell. These latter perturbations are the outcome of surface
ones only. They are assumed to occur adiabatically and
therefore will propagate with the speed of the sound
[28,29], to be properly inspected for these continuous
systems. To evidence the intrinsic role that the surface
degrees of freedom (surfaces tensions and surface energy
densities) play in stars with discontinuities, we shall work
in the context in which just surface perturbations are
present. This analysis is believed to be important since

*jonaspedro.pereira@icranet.org
†jaziel.coelho@icranet.org
‡jorge.rueda@icra.it

PHYSICAL REVIEW D 90, 123011 (2014)

1550-7998=2014=90(12)=123011(11) 123011-1 © 2014 American Physical Society

http://dx.doi.org/10.1103/PhysRevD.90.123011
http://dx.doi.org/10.1103/PhysRevD.90.123011
http://dx.doi.org/10.1103/PhysRevD.90.123011
http://dx.doi.org/10.1103/PhysRevD.90.123011


instabilities of interfaces in compact stars (triggered by
physical mechanisms we shall not investigate) might be a
direct sign of instabilities of the whole systems, even in the
absence of perturbations in the glued spacetimes. Besides,
it would pave the way for stability analyses in which the
phases of the system are also perturbed.
The article is organized as follows. In Sec. II, we

introduce the general equations of the thin-shell formalism,
while in Sec. III, we make a physical interpretation of the
shell’s parameters leading to a general relativistic extension
of the concepts of surface energy density, surface tension,
and the Young–Laplace equation of the mechanical equi-
librium of phase-separating interfaces. The equation of
motion of the thin shell and the condition for the shell’s
stability are derived in Sec. IV. The consequences of the
treatment for the case of constant-pressure phase-
transitions are outlined in Sec. V. We present in Sec. VI
the application of the formalism to the simplest case of stars
made of incompressible matter and to the case of strange
quark stars with crust. Section VII shows the extension of
the thin-shell treatment of an interface in the case of slow
rotation. Finally, in Sec. VIII, we outline and discuss the
main conclusions of the article. We use geometric units
G ¼ c ¼ 1 throughout the article. Unless it is not otherwise
stated, we work with a signature þ2. Greek indices run
from zero to 3, while Latin ones run from zero to 2.

II. THIN-SHELL FORMALISM IN THE
SPHERICALLY SYMMETRIC CASE

The Darmois–Israel formalism can be enunciated as
follows [10]. Consider two pseudo-Riemannian manifolds,
Mþ and M−, endowed with metric fields gþαβðxμþÞ and
g−αβðxμ−Þ, with respect to two independent coordinate systems
xμþ and xμ−. Assume that such manifolds have boundaries Σþ
and Σ−. If such boundaries are identified, then a natural
match of manifolds can be done, in which the resultant
manifold, M, is the union of the aforementioned ones. Call
such a common hypersurface Σ. Assume that a coordinate
system ya is adapted to it. As any hypersurface, it represents
a constraint of the spacetime coordinates, here defined as
Ψ�ðxμ�Þ ¼ 0. It can also be written in the parametric form
xμ� ¼ xμ�ðyaÞ. A natural basis can be defined on Σ by means
of tangent vectors to its coordinate curves. Define the
components of it as eμ�a ≐ ∂xμ�=∂ya. With these basis
vectors, one can easily find the induced metric on Σ, hab,
when the spacetime line element is constraint to such a
hypersurface. From our previous reasoning, it is clear that
such an induced geometrymust be unique. Indeed, this is the
first boundary conditions one has to impose in order to have
a well-defined pseudo-Riemannian manifold made out of
the glue of two other ones. This can be viewed as the general
relativistic generalization of the continuity of the gravita-
tional potential across a surface in the Newtonian theory of
gravity. The geometry of Σ is

hab ¼ g�μνe
μ�
a eν�b ; ð1Þ

which is independent of the coordinate systems xμ� utilized.
The normal unit 4-vector to Σ is defined such that

n�μ ≐ ϵ∂μΨ�

jgαβ� ∂αΨ�∂βΨ�j12 ; ð2Þ

where ∂μ ≐ ∂=∂xμ and it is tacit that xμ is actually a
shortcut to xμ�. Besides, n

αnα ¼ ϵ ¼ �1, depending on the
nature of the hypersurface. Notice that the case in which nα
is null is not contemplated here. Equation (2) also guar-
antees that nμ∂μΨ > 0.
Another important quantity for characterizing a hyper-

surface is its extrinsic curvature (or second fundamental
form)

Kab ≐ nα;βeαae
β
b; ð3Þ

where we did not put the “�” labels just to not overload the
notation. One sees that the extrinsic curvature components
are the tetrad decomposition of the tensor nμ;ν, thence a
tangent vector [4].
Let us define the jump of a given tensorial quantity

across Σ as ½A�þ− ≐ AðxþÞjΣ − Aðx−ÞjΣ. It is implicit in the
previous definition that Aðx�ÞjΣ stands for a given quantity
A being evaluated in arbitrary points belonging to the
disjoint regions implied by Σ and then taking the limit at
which they tend to an arbitrary point on Σ. The energy-
momentum tensor on Σ coming from general relativity that
guarantees a distributional solution to the field equation,
Sμν, can be expressed in terms of the jump of the extrinsic
curvature by means of the Lanczos equation [1,25]

Sμν ¼ Sijeiμe
j
ν; Sij ¼ −

ϵ

8π
ð½Kij�þ− − hij½K�þ−Þ; ð4Þ

where K ≐ hlmKlm. This is the second boundary condition
one should impose. Clearly, it is the (manifestly covariant)
generalization of the jump the gravitational field experi-
ences in the Newtonian theory. Note that Sμν also contrib-
utes to the energy-momentum tensor of the matched
manifold as SμνδðΨÞ, δ the Dirac delta, and this is essential
to guarantee the validity of the Bianchi identities for M
[25]. The evolution equation to Sij is [4]

Sabja ¼ −ϵ½Tαβeαbn
β�þ− ; ð5Þ

where Aabjc ≐ Aμν;αe
μ
aeνbe

α
c [4]. One sees from the above

equation that thin shells in continuous systems naturally are
subjected to current fluxes, generically given by ja ¼
Tαβeαanβ [4]. Notice that thin-shells gluing vacuum space-
times do not present such currents.
For spherically symmetric spacetimes, followingRef. [10],

we take the line element of the glued spacetimes as

ds2� ¼ −e2α�ðr�Þdt2� þ e2β�ðr�Þdr2� þ r2�dΩ2
�; ð6Þ
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where

dΩ2
� ¼ dθ2� þ sin2θ�dφ2

�: ð7Þ

We consider that the hypersurface Σ is described by the
equationΨ� ¼ r� − RðτÞ ¼ 0, where τ is the proper time of
an observer on it. Besides, we take θ� ¼ θ and φ� ¼ φ for
the remaining coordinates on Σ. In other words, we are
selecting a geodetic observer for describing the geometry of
the thin shell. For the above choice of coordinates, it is clear
that eμ�0 ¼ Uμ

�, the 4-velocity of Σ, and hence, nμUμ ¼ 0.
The geometry of Σ is only well defined (or unique) when

_t� ¼ eβ�−α�
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

_R2 þ e−2β�
p

; ð8Þ
wherewe are defining the dot operation as the derivativewith
respect to τ. Taking into account the previous points, the
geometry of Σ is therefore

ds2Σ ¼ −dτ2 þ R2ðτÞðdθ2 þ sin2θdφ2Þ: ð9Þ

The Lanczos equation (4) for the spherically symmetric
case implies that [10]

Sab ¼ diagð−σ;P;PÞ; ð10Þ
with

σ ¼ −
1

4πR
½

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

e−2β þ _R2
p

�þ− ; ð11Þ

P ¼ −
σ

2
þ 1

8πR

�

Rα0ðe−2β þ _R2Þ þ R̈Rþ β0R _R2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

e−2β þ _R2
p

�þ

−
;

ð12Þ
where the prime was defined as the derivative with respect
to the radial coordinate defined in each region of the glued
manifold M. Equations (5) and (10) for this case give [10]

_σ ¼ −
2 _R
R

ðσ þ PÞ þ Δ _R; ð13Þ

with

Δ ≐ 1

4πR
½ðα0 þ β0Þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

e−2β þ _R2
p

�þ− : ð14Þ

Equation (13) can be rewritten in the much more appealing
form

d
dτ

ð4πR2σÞ ¼ −
�

P −
ΔR
2

�

d
dτ

ð4πR2Þ; ð15Þ

resembling a first law of thermodynamics for the spheri-
cally symmetric surface. This then would lead us to the
interpretation of σ as the energy density on Σ, with P as the

pressure (surface tension) connected with the work done by
the internal forces in the shell. In the next section, we shall
see that this is indeed the case. Besides, 4πR2 _RΔ is the
work done by the nonzero normal flux of momentum
TαβUβnα across Σ.
We would like also to emphasize that the thin-shell

formalism in the spherically symmetric case leads to
Eqs. (11) and (12) [or Eq. (15)], while the unknown
variables to the problem are σ, P, and R. This means that
an equation of stateP ¼ PðσÞmust be given for closing the
system of equations. Such an equation of state would
embrace the microphysics of the matter inside the shell.
Otherwise, a free parameter will be present in the
formalism.
It isworthmentioning that the above equations are general

in the spherically symmetric case and can be applied to
configurations with any energy-momentum tensor consis-
tent with such an assumption. This therefore includes
configurations endowed with a nonvanishing electric (but
notmagnetic) field,E. The total energy-momentum tensor is
in such a case the sum of the isotropic matter energy-
momentum tensor, ðTα

βÞmatter ¼ diagð−ρ; P; P; PÞ, and the
anisotropic electrostatic energy-momentum Maxwell ten-
sor, ðTα

βÞelec ¼ ð8πÞ−1E2diagð−1−; 1; 1; 1Þ, leading to a
total radial pressure, Pr ¼ P − ð8πÞ−1E2, different from
the resultant tangential pressures, P⊥ ≐ Pθθ ¼ Pφφ ¼
Pþ ð8πÞ−1E2. However, the energy-momentum tensor of
the hypersurface holds still the perfect-fluid form (10) since
the pressure anisotropy exists only in the radial direction
dimension, which is suppressed by definition in the thin-
shell treatment of an interface.

III. PHYSICAL INTERPRETATION OF THE
THIN-SHELL PARAMETERS

In this section, we interpret the quantities σ and P arising
from the thin-shell formalism for the spherically symmetric
case. For the sake of simplicity, we do not consider the
presence of electric charge. The Einstein equations describ-
ing in this case can be written as [30]

e−2βðrÞ ≐ 1 −
2mðrÞ

r
; mðrÞ ¼ 4π

Z

r

0

ρðr̄Þr̄2dr̄; ð16Þ

α0 ¼ 8πpr3 þ 2mðrÞ
2rfr − 2mðrÞg ; ð17Þ

where we defined ρ and p as the energy density and the
radial pressure, respectively, as measured by local Lorentz
observers. Here, we suppressed the � labels anew just to
not overload the notation. It is clear that σ and P must be
relativistic generalizations to classical quantities. In this
regard, we proceed with their weak field analysis for an
equilibrium configuration at r ¼ R0. This is done by
assuming that m�ðR0Þ=R0 ≪ 1. For this case, it is easy
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to show that Eqs. (11) and (12), on account of Eqs. (16) and
(17), read

σ0 ¼
1

4π
½gðR0Þ�þ− ; gðR0Þ ≐ mðR0Þ

R2
0

; ð18Þ

P0 ¼
1

2
R0½pðR0Þ�þ− : ð19Þ

We see from Eq. (18) that σ is indeed the generalization of
the surface energy density (mass density) of the shell.
Equation (19) is the well-known Young–Laplace equation
for the mechanical equilibrium of a spherically symmetric
bubblelike system [31], and hence P can be identified as
the general relativistic generalization of the surface tension.
For the latter case, we notice that in the lowest order of
approximation the surface tension is just obtained by
geometric considerations as in the Young–Laplace
approach. For higher-order corrections, once more from
Eqs. (16) and (12) in the static case, we have

P0¼
1

2
R0½p�þ− þ

G
16πR3

0

½m2�þ− þ
G½pm�þ−
2c2

þG2½m3�þ−
8πc2R4

0

þ…;

ð20Þ
where we have restored the units for completeness. From
the above expression, it is manifest the appearance of
gravitational and general relativistic corrections to the
surface tension. We stress that the above well-known
classical results for σ and P are a direct consequence of
the Darmois–Israel formalism. Hence, any general relativ-
istic system endowed with nontrivial surface quantities
must be described by the aforementioned method.

IV. STABILITY OF THE THIN SHELL AGAINST
RADIAL PERTURBATIONS

We now proceed with the stability analyses of the thin
shell against radial perturbations (the description in which
also the adjacent spacetimes are perturbed will be analyzed
elsewhere). We start by rewriting Eq. (11) in the suggestive
form [10]

VðRÞ þ _R2 ¼ 0; ð21Þ
where we have introduced the shell’s effective potential

VðRÞ ≐ 1

2
ðe−2β− þ e−2βþÞ − 1

4
ð4πRσÞ2 − 1

4

�½e−2β�þ−
4πRσ

�

2

:

ð22Þ
The solution, RðτÞ ¼ R0 ¼constant, implies that
VðR0Þ ¼ V 0ðR0Þ ¼ 0, which in turn leads R0 to be auto-
matically a critical point to the effective potential. Assume
now small radial displacements from this solution. As it is
well known, just in the case V00ðR0Þ > 0, one has a stable

behavior of the system. From Eqs. (22) and (13) and the
identity A0jΣ ¼ ð _A= _RÞjΣ, after some simple calculations,
one shows that the stability condition, for the case σ > 0,
can be written as

~V 00 > 0; ð23Þ

where

~V 00 ≐ −½e−βfð2ηþ 1Þð1þ R0β
0Þ − R2

0ðα00 − β0α0Þg�þ− ;
ð24Þ

being

v2s ≐ η ≐ ∂P
∂σ ; ð25Þ

as we show in Appendix A, the squared of the speed of the
sound in the shell.
We are not interested here in exploring the microphysics

of the shell. Thence, we will allow η to be a free parameter
in our description. Nevertheless, it must be borne in mind
that a physical system is ascribed solely to an equation of
state (therefore a single value of η for a given point), and
our analyses with free η can be seen as the construction of a
generic stability catalog for given matched spacetimes. It is
worth mentioning that the issue of equations of state for
surfaces remains thus far knotty even in the forefront
investigations of material sciences, in which there are
yet phenomenological models awaiting theoretical frame-
works [32].
By requesting the stability condition (23), we shall

constrain η as well as other parameters appearing in β�
and α� that particularize the configuration, so that they lead
to stable solutions to the thin shell. In doing so, we shall
impose that the speed of the sound in the shell does not
exceed the speed of light, i.e., jvsj ≤ c.

A. Newtonian limit of the stability condition

It is instructive to analyze the above stability condition
[Eq. (23)] in the Newtonian limit. The relevant equations to
be taken into account here are Eqs. (16) and (17) in the
weak field limit, in which one can make the approximations

β≃mðrÞ
r

and α0 ≃ ϕ0 ¼ mðrÞ
r2

; ð26Þ

where ϕ is the gravitational potential, such that the
gravitational field is ~g ¼ −∇ϕ. We are also assuming that
mðrÞ=r ≪ 1. When one substitutes Eq. (26) into Eq. (23),
one concludes that the stability at R0 is translated into

2η

�

m0ðR0Þ − 2
mðR0Þ
R0

�þ

−
¼ 2ηR2

0½ϕ00�þ− < 0: ð27Þ
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That the stability condition is related to the second
derivative of a potential is self-explanatory. Its jump being
negative at a surface of discontinuity means that the norm
of the gravitational force density must decrease, as one
excepts from stable systems. The Poisson equation for the
potential given by Eq. (26) reads

m0ðrÞ
r2

¼ 4πρðrÞ; ð28Þ

with ρðrÞ the mass density at r. Putting Eq. (28) into
Eq. (27), the latter can be cast as

4η

�

2πρðR0ÞR2
0 −

mðR0Þ
R0

�þ

−
< 0: ð29Þ

From the above equation and previous considerations on η,
one sees that thin shells with no surface mass densities are
stable if ½ρðR0Þ�þ− < 0. This is exactly what one intuitively
expects for stars. For vacuum systems, the stability sim-
plifies to ½mðR0Þ�þ− > 0; i.e., the surface mass on R0 should
be positive. The physical reason for having stability even
for a shell embedded in vacuum spacetimes is due to the
induced gravitational surface tension, as it can be seen
from Eq. (20).

V. INTERFACES AT CONSTANT PRESSURE

We turn now to show a first immediate consequence of
the thin-shell formalism: an astrophysical body with an
interface splitting two phases under a constant pressure is
stable against radial displacements whenever the mass the
interfacial shell nests is much smaller than the total mass of
the system. The hypotheses imply that ½p�þ− ¼ 0 and σ ¼ 0,
which leads to ½eβ�þ− ¼ 0. For this case, Einstein’s equations
on the hypersurface Σ give

½β0�þ− ¼ 4πe2βR½ρ�þ− and ½α0�þ− ¼ 0: ð30Þ

In the static case, from Eqs. (12) and (30), we have that
P ¼ 0. The aforesaid hypotheses do not render the system
continuous since ½ρ�þ− is yet unspecified. In the dynamic
case, generally P ≠ 0. From Eq. (23) and the above
equation, the stability condition becomes

2ηR0½β0�þ− < 0: ð31Þ

We have shown that η is the square speed of the sound, and
therefore it must be positive. Hence, from Eqs. (30) and
(31), we see that the hypersurface is stable if and only if
½ρ�þ− < 0, as one expects from a physically reasonable
configuration with a monotonically decreasing energy
density with the distance. Therefore, we have generically
shown that the interface of a system separating a constant
pressure phase transition with negligible interfacial mass is
always stable against radial perturbations. This result is

therefore applicable to the stars with constant pressure
phase-transitions, either in the scope of the Maxwell or
Gibbs phase-transition constructions. It is important to
recall, however, that in systems with more than one
conserved charge (e.g., baryon and electric) the Gibbs
construction leads to the appearance of mixed phases, in
between the pure phases, with an equilibrium pressure that
varies with the density. This may lead, in turn, to a spatially
extended phase transition of non-negligible thickness with
respect to the star radius (see, e.g., Ref. [26] and references
therein). It is clear that such an extended mixed-phase
region, separating the two pure phases, cannot be treated
within a thin-shell approach. Nevertheless, its interfaces
demarcating the onset and the termination of a mixed phase
always can, as well as thin mixed phases. For the afore-
mentioned constructions, in a sense, the thin-shell treatment
is more suitable to model configurations in which the phase
transition follows a Maxwell construction, where the phases
are in “contact” each other.1 It is worth mentioning that these
treatments of the existing phases in compact stars subject the
system to the condition of local charge neutrality, and so
they do not account for the possible presence of interior
Coulomb fields. Indeed, the complete equilibrium of the
multicomponent fluid in the cores of compact stars needs the
presence of an electric charge separation caused by grav-
itopolarization effects [34,35], favoring a sharp core-crust
transition that ensures the global, but not the local, charge
neutrality [36,37]. To keep the presentation of the applica-
tions apropos of the thin-shell scenario as simple as possible,
we consider hereafter the configurations in the limit in which
the system is locally neutrality, leaving the more complex
case of global charge neutrality to be treated elsewhere.

VI. SOME SPECIFIC EXAMPLES OF THIN-SHELL
INTERFACES IN COMPACT STARS

A. Incompressible stars with interfaces

To gain more intuition about the main aspects of the thin-
shell formalism, it is instructive to work first with an exact
fully relativistic case. In this regard, we analyze in this
section the stability of stars with constant densities that
present “phase transitions.” Let us assume a star that has a
constant density ρ− from the origin to a radius R (that could
be even dynamic), and from R until its surface Rs, it has
another constant density ρþ. Assume further that its
associated discontinuity surface Σ has a negligible energy
density when compared to either regions it defines. We
shall seek solutions that are regular at r ¼ 0. The integra-
tion of the Einstein equations with the aforesaid assump-
tions lead us to the following solutions. For r < R,

1There is yet a debate in the literature concerning the use of
Maxwell or Gibbs constructions for thermodynamic phase
transitions in multicomponent systems such as the ones present
in compact stars because they lead basically to the same results
for the masses and radii of neutron stars [33].
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e−2β
− ¼ 1 −

8πr2ρ−

3
; e2α

− ¼ A−
0

�

ρ− þ p−

ρ− þ p−
0

�

−2
;

ð32Þ
where A−

0 and p−
0 are arbitrary constants of integration and

the inner pressure p− is

p− ¼ ρ−
fðρ− þ 3p−

0 Þð1 − 8πρ−r2

3
Þ12 − ðρ− þ p−

0 Þg
3ðρ− þ p−

0 Þ − ðρ− þ 3p−
0 Þð1 − 8πρ−r2

3
Þ12

: ð33Þ

For R < r ≤ Rs,

e−2β
þ ¼ 1 −

8π

3r
fR3ðρ− − ρþÞ þ ρþr3g; ð34Þ

e2α
þ ¼ Aþ

0

�

ρþ þ pþ

ρþ þ pþ
0

�

−2
; ð35Þ

with

Aþ
0 ¼

�

1 −
2M
Rs

��

ρþ

ρþ þ pþ
0

�

2

; ð36Þ

pþ ¼ ρþ
ðρþ þ 3pþ

0 Þð3 − 8πρþr2Þ12 − ðρþ þ pþ
0 Þð3 − 8πρþR2Þ12

3ðρþ þ pþ
0 Þð3 − 8πρþR2Þ12 − ðρþ þ 3pþ

0 Þð3 − 8πρþr2Þ12 ; ð37Þ

pþ
0 ¼ ρþ

ð3 − 8πρþR2
sÞ12 − ð3 − 8πρþR2Þ12

ð3 − 8πρþR2Þ12 − 3ð3 − 8πρþR2
sÞ12

: ð38Þ

The total mass of the system is defined such that

M ≐ 4π

3
fR3ðρ− − ρþÞ þ ρþR3

sg: ð39Þ

In the above equations, it was assumed that the outer
pressure at Rs vanishes. Equation (36) guarantees the
outside match of the star with the Schwarzschild metric.
In the scope of the stability of a thin shell immersed in a
continuous system, the constant multiplicative factor on the
time-time metric component is not of importance. This is
related to the freedom in rescaling the time coordinate for
the metric in Eq. (6). Therefore, A�

0 will not play any
relevance to our stability analyses. Notice further that we
can also have solutions with pþðRÞ ¼ p−ðRÞ, by properly
adjusting the arbitrary constant of integration p−

0 . As we
already know from the preceding section, this case is stable
if and only if ½ρ�þ− < 0. Let us analyze another case, in
which p−

0 is a free parameter.
It is convenient to relate R and Rs, as well as ρ�. Let us

assume that Rs ¼ C1R and ρ− ¼ C2ρ
þ. We stress the fact

that the solution for constant densities leads to the
constraint of ρR2

s being of the order of unity. Assuming
that the radii of our systems are similar to the ones expected
for neutron stars, reasonable values for the r coordinate
would be of the order of 106 cm. Therefore, the maximum
densities allowed for constant density stars would be
ρmax ≃ 10−12 cm−2 ¼ 1016 g cm−3. Such densities are
well above the nuclear one, of the order of
1014 g cm−3 ≃ 10−14 cm−2. The pressure at the origin p−

0

for this stratified system is arbitrary. Nevertheless, reason-
able values for it are of the order of (or higher
than) p−

0 ≃ 1035 dyn cm−2 ≃ 10−13 cm−2.

By replacing Eqs. (32), (34), and (35) in Eq. (23), we would
have a very involved expression. Numerical analyses are
much more enlightening. Figures 1, 2, and 3 show some
aspects from the numerical evaluation of Eq. (23) for some
specific scenarios.
One can see from Figs. 1 and 2 that C2 and R play a

relevant role in the stability of the system, unlike C1. These
results are expected since any change in C1 would lead to
physically similar configurations, with just a rescaling of
the outer region, while a modification of C2 and R would
lead to an alteration in the normal flux of momentum
through Σ, which clearly affects the stability. Besides, also
the central pressure influences the stability of the system.
This can be checked in Fig. 3. The aforementioned figures

0.2 0.4 0.6 0.8 1.0
Η

0.1

0.0

0.1

0.2

0.3

0.4

0.5
V ''

C2 5.0

C2 3.0

C2 1.02

C2 0.5
p0 1036dyn cm2, C1 3, R 4Km, Ρ 1014g cm3

FIG. 1. Stability of thin shells as a function of the square of the
speed of sound η, for various values of the parameterC2. One sees
here that for the choice of the remaining parameters close to the
ones of ordinary neutron stars not any configuration for the
system would lead to stable solutions. Interestingly, the case
½ρ�þ− > 0 (dashed curve) gives a window of stable solutions,
contrary to what is expected from the classical Newtonian case, in
which stable solutions are only possible with a negative jump of
the mass density.
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also show that fully general relativistic analyses may
considerably change the classical picture, where the
stability condition would merely read ½ρ�þ− < 0. Indeed,
as we can see in the specific case of C2 ¼ 0.5 (dashed
curve) in Fig. 1, there is the possibility of having some
stable solutions with ½ρ�þ− > 0. The reason for this is the
important role played by the pressure in the system as well
as by general relativistic corrections.

B. Strange stars with crust

Weapply now the formalism to the special case of strange
quark stars. In the core of astrophysical compact objects,
such as neutron stars, the matter is expected to reach
densities that are several times the nuclear saturation density,
ρnuc ≈ 3 × 1014 g cm−3. Calculations based on microscopic
equations of state, which include only nucleonic degrees of
freedom, show that the central densities of the most massive
neutron stars can be of the order of 7–10ρnuc. In the
traditional models, ordinary nuclear matter is assumed to
be the true ground state of matter. However, it has been

suggested that strange quark matter may be the authentic
ground state of all matter [38–42]. According to the strange
matter hypothesis, the interior of neutron stars would be
predominantly composed of up, down, and strange quarks,
plus leptons that ensure the charge neutrality and the weak
equilibrium of the star. These hypothetical compact stars
composed of strange matter are referred to as strange stars.
Being self-bound by the strong force, the quark pressure in
strange stars vanishes at a finite value of the energy density,
leading to the formation of a sharp surface. Since the
electrons that guarantee the neutrality are blind to the strong
force, they actually leak out from this sharp surface, creating
a thin electron layer of a fewhundredFermi inwhich a strong
electric field exists. It has been suggested (see, e.g.,
Ref. [42]) that strange stars do not need to be bare cores
as the ones just described, but, instead, they can support,
above the electronic layer, a crust of ordinary matter similar
to the outer crust of neutron stars. Therefore, owing to the
very small size of the transition interface between the strange
matter core and the crust in a strange star, we can analyze it
within the thin-shell formalism and assess its stability.
To have some insights about this interesting case, we

start our analyses with its simplest microscopic quark
matter model, the MIT bag model [43]. Such a model
assumes that quarks constitute a free Fermi gas inside a
“bag” of which the width is related to the value of the
energy density at which the pressure vanishes, i.e., the
vacuum energy density. In the limit of vanishing strange
quark mass, ms → 0, the equation of state reduces to the
simple linear expression [42]

p ¼ 1

3
ðρ − 4BÞ; ð40Þ

where B is the bag constant. As in Ref. [42], we shall adopt,
without loss of generality, B ¼ ð145 MeVÞ4. The precise
value of the bag constant does not change the main
qualitative conclusions to be drawn here.
We are interested here in investigating whether or not it is

possible for the strange star to have a crust on top of its
core’s surface (with zero quark pressure). The density of the
crust at the edge with the electronic layer has to be lower
than the neutron-drip value, ρdrip ≈ 4.3 × 1011 g cm−3,
since, having zero electric charge, any free neutron created
in the crust would flow to the core where it would be
converted into strange matter. For the crust matter, we use
the Baym–Pethick–Sutherland equation of state [44].
We solved Einstein’s equations (16)–(17) for the above

described equation of state for selected values of the central
density and different densities at the base of the crust,
which we denoted to as ρbcr, in each case. Then, we seek
values of the parameter η that satisfy the stability condition
(23) of the shell’s effective potential. Our numerical results
show that thin shells splitting the quark phases from crusts
are always unstable for densities at the base of the crust of
the order of the neutron-drip density. In Fig. 4, one can
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p0 1036dyn cm2, C1 2, R 105cm, 1014g cm3

FIG. 2. Stability of thin shells as a function of the square of the
speed of sound η, for various values of the parameterC2. One sees
here that the change of the choice of the parameters C2 and R as
related to Fig. 1 modifies the stability of the system.
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C2 5.0

C2 3.0
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0.8, C1 10, R 1Km, 1015g cm3

FIG. 3. Stability of thin shells as a function of the central
pressure p−

0 (in units of cm−2), for various values of the parameter
C2. For the parameters chosen, the change of C2 and R influences
the stability for a given equation of state, as exemplified here
by η ¼ 0.8.
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indeed verify that a quark star would be stable just if its
density at the base of the crust was some hundred times the
neutron-drip one, which is clearly not permissible in the
strange star hypothesis recalled above.
The previous result suggests us that strange stars should

just have a tiny a crust cloaking the quark’s core surface.
Therefore, we should seek for solutions in which the quark
core would be matched directly with the Schwarzschild
exterior spacetime, hence treating the crust itself as part of
the thin shell. We recall that the quark stars we are
analyzing here have at their core’s edge null pressures

and ρ ¼ 4B. For this case and matching with
Schwarzschild’s solutions, we already know from Sec. V
that the associated thin shells are stable, irrespective of the
fluids they host. Physically speaking, this result means that
extremely thin crusts could always be taken as parts of thin
shells. Table I suggests that, indeed, very low densities at
the base of the crusts would allow us to interpret the crusts
as constituents of thin shells.

VII. EXTENSION TO SLOW ROTATION

We turn now to show that our results remain unchanged
even in the case in which the shell is allowed to have a small
rotation. This is indeedwhat one expects, andwe show it here
just for self-consistency. For this case, one supposes that

ds2� ¼ ds2�ðs:s:Þ − 2f�ðr�Þr2�sin2θ�a�dt�dφ�; ð41Þ

where a� are the rotation parameters in the regions M�.
Besides, the first term on the right-hand side of Eq. (41) is
simply a shortcut for the spherically symmetric line element
given by Eq. (6). We take ~Σ, the hypersurface for this slow
rotation case, in first order of approximation to be also
spherically symmetric [r� ¼ RðτÞ], but at this time,we adapt
on it the coordinates ~ya ¼ ðτ; ~θ; ~φÞ, such that

t� ¼ T�ðτÞ; φ� ¼ ~φþ C�ðτÞ; θ� ¼ ~θ: ð42Þ

Then, it can be readily demonstrated that the geometry of ~Σ is
well defined (unique) if

d
dτ

C� ¼ f�ðRÞ _T�a�; _T� ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

e−2β� þ _R2
p

eβ�−α� :

ð43Þ

The above conditions guarantee that the geometry of ~Σ is

d~s2j ~Σ ¼ ~habd~yad~yb ¼ −dτ2 þ R2ðτÞðd~θ2 þ sin2 ~θd ~φ2Þ:
ð44Þ

Undemanding calculations lead to the additional extrinsic
curvature

K�
τ ~φ ¼ e−β�−α�R2f0�sin

2 ~θa�: ð45Þ

The diagonalization of the surface energy-momentum tensor
in this case is done by solving the eigenvalue equation
Sab ~ub ¼ − ~σ ~ua. The unknown quantities here are ~σ and ~ua,
complementedwith the normalization condition ~ua ~ua ¼ −1.
Besides, ~ua are the components of the tetrad decomposition
of the 4-velocity of the shell with respect to the coordinate
system ~ya. The pressure in the surface energy-momentum
tensor in the ~ya coordinate system is simply
2 ~P ¼ Sabð ~ua ~ub þ ~habÞ. The solution to the above eigen-
value problem is

1.9
2.2
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2.8
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bcr drip

0.2

0.2

0.4

0.6

0.8

1.0

1.2
v2

min

FIG. 4. v2min “minimum square velocity” as a function of the
“density at the base of the crust,” ρbcr, normalized by
ρdrip ≈ 4.3 × 1011 g cm−3. Negative values for v2min mean that
any equation of state leads to stable solutions. Each curve is
related to a given central density, in units of the nuclear density,
ρnuc ≈ 2.7 × 1014 g cm−3 ≈ 628ρdrip. From Eq. (40), one sees that
the pressure vanishes at the density 4B ≈ 1.51ρnuc ≈ 948ρdrip. The
crust was matched to the core exactly when the aforesaid density
was reached for each case analyzed. The densities at the base of
the crust that would render stable solutions to the thin shells are
only of the order of hundreds of the neutron-drip density. Such
densities are not admissible for crusts on quark cores.

TABLE I. Width of the crusts for various strange star configu-
rations and densities at the base of the crust.

ρbcr=ρdrip ΔRcrust=R Mcrust=Mcore

ρc ¼ 3.5ρnuc, Rc ¼ 11.42 km, Mc ¼ 1.77M⊙
10−9 2.88 × 10−7 1.25 × 10−16

10−5 3.49 × 10−4 2.97 × 10−12

10−2 6.06 × 10−3 3.50 × 10−8

10 4.56 × 10−3 4.65 × 10−5

ρc ¼ 5.0ρnuc, Rc ¼ 11.34 km, Mc ¼ 1.97M⊙
10−9 2.32 × 10−7 1.13 × 10−16

10−5 2.81 × 10−4 2.10 × 10−12

10−2 4.87 × 10−3 2.48 × 10−8

10 3.67 × 10−3 3.28 × 10−5

ρc ¼ 8.0ρnuc, Rc ¼ 10.85 km, Mc ¼ 2.02M⊙
10−9 2.01 × 10−7 2.20 × 10−16

10−5 2.43 × 10−4 1.56 × 10−12

10−2 4.21 × 10−3 1.84 × 10−8

10 3.17 × 10−3 2.44 × 10−5
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~σ ¼ σ; ~P ¼ P; ~ua ¼ ð1;0;ωÞ; ω¼ −
S ~φ

τ

σþP
:

ð46Þ

Notice that ω is polar angle dependent. Equations (46)
and (42) tell us that inertial observers inside the shell are
rotating with angular velocity proportional to dCþ=dτ with
respect to the fixed stars when the inner spacetime
is spherically symmetric. For the shell itself, Ωshell
∝ ωþ dCþ=dτ. At first order, there is no change in the
parameters of the shell. As we commented formerly, this is
already accounted since the corrections imprinted by the
rotation to the shell parameters must be independent of its
direction of rotation. Nevertheless, up to first order of
correction on the rotational parameters a�, a frame dragging
effect is present, of which the associated angular velocity
gives direct information about the surface energy-momentum
tensor parameters. We shall elaborate upon these issues in a
forthcoming publication.

VIII. CONCLUSIONS AND DISCUSSION

In the scope of the thin-shell formalism applied to stars,
we have shown that, whenever one considers phase
transitions at constant pressures and with a negligible
masses on the surfaces splitting them, the latter ones are
always stable. This is relevant for commonly implemented
phase transitions based on either the Maxwell or Gibbs
constructions, since this would justify their use within the
thin-shell formalism. In this case, the degrees of freedom on
the surface of discontinuity present in the dynamic case
would always lead to stable configurations. Our analyses
also show that only tiny crusts, associated with thin shells,
could envelop on the surfaces of quark stars (at zero
pressure). Nevertheless, whenever the match between the
core and the crust is not done at the strange star’s surface
(where the quark pressure is null), it is always possible for
the system to harbor thick crusts. This is so due to the steep
increase of the quark pressure inward, which would always
allow a stable glue of the core with a crust at a radial
position at which their pressures are equal, as we have
shown previously.
When perturbations in the phases are also present, in

principle they would also be dependent upon the surface
degrees of freedom by means of additional boundary
conditions to be taken for the stability problem, to be
properly defined, which would also change the set of
eigenfrequencies of the system. This will be investigated in
a forthcoming publication. At this first approach, the
aforementioned subtleties were not taken into account,
and we restricted ourselves to finding constraints in which
the surface perturbative analyses give a definite answer to
the stability. This is due to the fact that the scenario in
which the phases are not perturbed evidences directly the
consequences of the dynamics of the degrees of freedom of

a shell, giving us thence insights for more elaborate
analyses.
Concerning second and higher (even-)order corrections

to the rotational parameters of the shell in the stability
analyses, a more detailed study is in order, to be attained
elsewhere. Such a case could be relevant to assess the
stability of millisecond pulsars. For the first order correc-
tions to the rotational parameters, just frame-dragging
effects are of relevance. If they were measured, then one
could obtain direct information of the shell parameters,
which could shed some light on the issues raised in
this work.
In addition to the simple example of quark matter

analyzed in this work, there is the possibility of inducing
conformal degrees of freedom into the transition hypersur-
face. This would be the case of the transition from hadronic
(quark-confined) matter to the color superconducting
[color-flavor-locked (CFL)] deconfined quark matter phase
[45,46], or in the case of the quantum Hall state between
CFL and the hadronic phases [47–49]. These systems lead
to trace-free surface energy-momentum tensors, which in
the spherically symmetric case imply P ¼ σ=2 [see
Eq. (10)]. Detailed stability analyses can be then done
also in these cases once the phases associated with the
transition hypersurface are given.2 The location of the
hypersurface clearly depends on the precise knowledge of
the equation of state of the different phases. For instance,
the transition CFL-hadronic hypersurface is located at a
smaller radius with respect to the one considered here for
the core-crust transition in a strange star, since the former
transition occurs at higher matter densities. Based on our
results of Sec. V, we can conclude that, also in those more
complex stratified stars, the stability of the hypersurfaces is
guaranteed whenever the transition takes place at constant
pressure. This is in contrast with the impossibility of having
stable thin shells in other contexts of linear thin-shell
equations of state in the spherically symmetric case [8].
This can be also derived from Eqs. (13), (14) [with Δ ¼ 0],
(21), and (22).
Avery thought-provoking case that is possible to analyze

in the Darmois–Israel formalism is the one in which the
surface energy density satisfies σ < 0. If this is valid,
irrespective of its magnitude, then the inequality in Eq. (23)
should be reversed. Such a case would in principle render
stable unstable configurations for the case σ > 0. In this
line, and in view of the very short-distance scales involved
in the interfaces, it is tempting to state that quantum-
mechanical effects such as the Casimir one could be of
some relevance there. Indeed, a simple calculation (using
the expression for the energy density to the Casimir effect
for two concentric spheres; see, e.g., Ref. [50]), shows that

2It is worth stressing that the stability analyses done in Ref. [27]
are not correct since flux terms [Eq. (14)], which are always
present in continuous systems, were not taken into account there.
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its energy density is of the same order of magnitude as the
Coulomb energy for a shell as the one present in the strange
stars. This is an interesting issue that deserves to be better
scrutinized.
Since there are good reasons for stars being stratified,

surfaces degrees of freedom on surfaces of discontinuity
could play a role there. It is then necessary to search for their
observational fingerprints. In this regard, the “glitches”
observed in pulsars could be a sign of the stratification
of a system and deserve a closer look in light of the results
presented in this work. The precession of the particle’s
orbits around a compact star could also give us information
about surface/interface quantities, for instance, related to the
presence of a thin crust cloaking the core. The connection of
this with the observed quasiperiodic oscillations, for in-
stance, in low x-ray binaries [51], could be particularly
relevant (see, e.g., Ref. [52] and references therein).
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APPENDIX: SPEED OF THE SOUND
FOR SHELLS EMBEDDED IN

CONTINUOUS SYSTEMS

In this section, we use the −2 metric signature. To
describe the stability of a dynamic thin shell, one has to
study the properties of perturbations (sound) propagating
on Σ, as we have just shown by Eq. (23). Since our shell is
embedded in a continuous medium, the normal flux of
momentum, the right-hand side of Eq. (5), must be properly
taken into account. For the spherically symmetric case, this
can be easily done, as we shall show in this Appendix. The
important points to be realized are that the geometry of Σ,
given by Eq. (9), for each instant of time τ, is flat and that
the energy momentum of Σ is those of a perfect fluid.
Hence, we can work with Cartesian coordinates, come back
to spherical ones at the end of the calculation, and then
suppress the radial coordinate for finding the dynamics of
perturbations on Σ. From the above comments, we can pose
the problem in the following form. Given

Tμν
;ν ¼ fμðxνÞ; Tμν ¼ ðρþ pÞuμuν − pημν; ðA1Þ

with fμ a given 4-vector dependent upon the spacetime
coordinates, we want to find the equation governing
the evolution of the perturbations on the pressure p, the
energy-density ρ, and the velocity of the fluid ~v, when the
unperturbed solution for the latter is zero. From Eq. (A1),
we have that Eq. (A1) can be split into

ðρuμÞ;μ þ ρuμ;μ ¼ fμuμ ðA2Þ

and

ðρþ pÞuν;μuμ þ ðp;μ þ fμÞðuμuν − ημνÞ ¼ 0: ðA3Þ

The above equations admit a solution with uμ ¼ δμ0 if and
only if

ρ;t ¼ f0; p;i ¼ −fi; ðA4Þ

where i ¼ 1; 2; 3. Now, let us suppose that ~uμ ¼ ð1; δviÞ,
~p ¼ pþ δp, and ~ρ ¼ ρþ δρ, where p and ρ are given by
the solutions to Eqs. (A4) and δρ and δp are functions of
the spacetime coordinates. By putting ~ρ, ~p, and ~uμ into
Eqs. (A2) and (A3), taking into account Eq. (A4) and
working up to first order of approximation in the δ terms,
one has

ðδρÞ;t þ ½ðρþ pÞδvi�;i ¼ 0 ðA5Þ

and

½ðρþ pÞδvi�;t þ ðδpÞ;i ¼ 0; ðA6Þ

where we defined ðδpÞ;i ≐ ∂ðδpÞ=∂xi. Equations (A5) and
(A6) lead us to

ðδρÞ;tt − ½ðv2cδρÞ;i�;i ¼ 0; ðA7Þ

where we assumed that

δp ¼ ∂p
∂ρ δρ ≐ v2cδρ: ðA8Þ

In other words, we considered the system to be adiabatic.
By assuming that vc ¼ vcðxμÞ, we have that Eq. (A7) reads

∂2δρ

∂t2 − ð∇2v2cÞδρ − v2c∇2δρ − δij∂iv2c∂j∂δρ ¼ 0; ðA9Þ

with ∇2 ≐ δij∂i∂j and δij ¼ −ηij. We see from the above
equation that, in general, there will be a damping factor for
the propagation of disturbances.
From Eq. (23), we need to analyze the speed of the

sound at the equilibrium point of the shell [critical point
of the effective potential in Eq. (22)] in order to assess

J. P. PEREIRA, J. G. COELHO, AND JORGE A. RUEDA PHYSICAL REVIEW D 90, 123011 (2014)

123011-10



its stability. To analyze these propagations on the
surface of Σ, we should leave out the r coordinate of
Eq. (A9), taking it as a constant, keeping just the
spherical ones. By the spherical symmetry of the

system, it is clear that vc is neither dependent on θ
nor φ. Hence, from Eq. (A9), we conclude that the usual
expression for the speed of the sound is the one to be
used in our stability analyses.
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