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One working hypothesis on which analyses of cosmological data are based is the zero ensemble mean
hypothesis, which is related to the statistical homogeneity of cosmological perturbations. This hypothesis,
however, should be tested by observational data in the current era of precision cosmology. Herein, we test
the hypothesis by analyzing recent, foreground-reduced cosmic microwave background (CMB) maps,
combining the spherical harmonic coefficients of the masked CMB temperature anisotropies in such a way
that the combined variables can be treated as statistically independent samples. We find evidence against
the zero mean hypothesis in two particular ranges of multipoles, with significance levels of 2.5σ and 3.1σ
in the multipole ranges of l ≈ 61–86 and 213–256, respectively, for both the Planck and Wilkinson
Microwave Anisotropy Probe maps. The latter signal is consistent with our previous result found by using
brute-force Monte Carlo simulations. However, within the method employed in this paper we conclude that
the zero mean hypothesis is consistent with the current CMB data on the basis of Stouffer’s weighted Z
statistics, which takes multiple testing into account.
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I. INTRODUCTION

Recent precise measurements of anisotropies of the
cosmic microwave background (CMB) as well as a number
of probes of the large-scale structure of the universe have
led us to the standard, concordant model of cosmology.
In the standard cosmological model, the universe contains
small density fluctuations on top of otherwise flat, homo-
geneous, and isotropic space-time. The density fluctuations
are thought to be generated through quantum fluctuations
in the accelerating expansion phase in the early universe,
i.e., inflation. An important diagnostic characteristic of
inflation models is that they predict statistically homo-
geneous and isotropic Gaussian fluctuations with a near
scale-invariant power spectrum (for a review, see Ref. [1]).
Among these features, the Gaussianity and approximate

scale invariance have been intensively tested by a number
of observations and verified with high significance [2–5],
while the statistical homogeneity and isotropy have been
less tested and often assumed implicitly in cosmological
analyses [6]. Recently, the test of statistical isotropy has
attracted much attention [7–11], after the authors of Ref. [8]
found hints for the breaking of statistical isotropy in the
Wilkinson Microwave Anisotropy Probe (WMAP) CMB
anisotropy data (see also Refs. [12,13]). The existence of
the statistical anisotropy has been confirmed by Planck
data [14], and more recently Akrami et al. have found the
statistical anisotropy at the 3.3σ level by measuring the
local variance, using the 1000 available Planck Full Focal
Plane simulations [15]. On the other hand, no evidence has

been found in a sample of luminous red galaxies observed
by the Sloan Digital Sky Survey [16].
In this paper, we test statistical homogeneity using recent

full-sky CMB temperature maps provided by the WMAP
and Planck satellites. Specifically, we test the null hypoth-
esis that the means of cosmological perturbations are
zero in spherical harmonic space, which corresponds to
the usual Fourier space in three-dimensional space. It is
understood that the zero mean hypothesis is related to
statistical homogeneity as follows [17]. We usually assume
that, because of the cosmological principle, perturbation
variables, such as the CMB temperature, can be decom-
posed into a space-independent background value and
perturbations, as T ¼ T0ðtÞ þ δTðt; ~xÞ with

hδTðt; ~xÞi ¼ 0; ð1Þ

where the angle brackets denote an ensemble average.
Note that this decomposition can be done only if the
expectation value of T is constant, i.e., hTðt; ~xÞi ¼ const
with fixed time. It is always possible to satisfy Eq. (1) even
if the expectation is not constant, but in that case the
background temperature cannot be space independent.
The condition that this expectation value is constant is
equivalent to the statistically homogeneous (stationary)
condition of the mean,

hδTðt; ~xÞi ¼ hδTðt; ~xþ ~XÞi ∀ ~X ∈ R3; ð2Þ

where the time coordinate t is defined for the background
temperature T to be homogeneous. Hence, the zero mean
hypothesis is equivalent to the statistical homogeneity of*ichiki@a.phys.nagoya‑u.ac.jp

PHYSICAL REVIEW D 90, 123008 (2014)

1550-7998=2014=90(12)=123008(9) 123008-1 © 2014 American Physical Society

http://dx.doi.org/10.1103/PhysRevD.90.123008
http://dx.doi.org/10.1103/PhysRevD.90.123008
http://dx.doi.org/10.1103/PhysRevD.90.123008
http://dx.doi.org/10.1103/PhysRevD.90.123008


the mean. The temperature anisotropy can be written, in the
linearized theory, as

δTð~x; n̂; tÞ ¼
Z

d3k
ð2πÞ3 T ð~k; n̂Þϕð~kÞei~k·~x; ð3Þ

where ϕð~kÞ are the Fourier modes of the initial density

perturbations and T ð~k; n̂Þ is the linear transfer function that
relates the initial density perturbations to the currently
observed temperature anisotropies. Because the temper-
ature fluctuations are observed on the sphere, it is common
practice to express them with real spherical harmonic
coefficients

almð~xÞ ¼
Z

d2n̂δTð~x; n̂; tÞRlmðn̂Þ; ð4Þ

where Rlm is the real set of spherical harmonics. Because
the transfer function in Eq. (3) is completely determined
by the cosmological perturbation theory given a cosmo-
logical model, the zero mean condition hδTðt; ~xÞi ¼ 0 is

equivalent to the conditions hϕð~kÞi ¼ halmð~xÞi ¼ 0. In the
following, we test whether the condition halmi ¼ 0 is
satisfied using the latest CMB data, replacing the ensemble
average with the directional average assuming the statistical
homogeneity and isotropy in the mean.
Studies on the zero mean hypothesis using CMB data

can be found in Refs. [17] and [18]. One complication
when testing the zero mean hypothesis with CMB data is
the existence of the mask, which suppresses foreground
contamination but generates correlations between the
samples. Picon analyzed CMB data by constructing
v-vectors that disentangle the correlations [17], while
Kashino et al. utilized Monte Calro simulations to take
into account the correlations in the samples [18]. In this
paper we build on the work of Ref. [17] and extend the
analysis toward higher multipoles using the latest CMB
data from Planck.
To assess any statistical properties of the foreground-

reduced CMB maps strictly, one needs to use specific
simulations. These simulations directly reflect uncertainties
in the foreground cleaning methods, residuals of the antenna
beam shape, anisotropy of the noise and others [7]. For the
Planck experiment, we adopt a hundred CMB and noise
simulations produced by the Planck collaboration [19] and
use these simulations to address these issues. In addition we
compare the WMAP and Planck maps, which have different
residuals of the antenna beam shape. We also compare the
different foreground-reduced Planck maps, which have
different uncertainties in the foreground cleaning methods.
We will see that these maps give consistent results.

II. METHOD

Herein we summarize the method developed by
Ref. [17]. Observed temperature fluctuations, δTðn̂Þobs,

involve a convolution with the detector beam window B
and the pixel smoothing kernel K and can be expressed as

δTobsðn̂Þ ¼ Mðn̂ÞðK � ½B � δTCMBðn̂Þ þ Nðn̂Þ�Þ; ð5Þ
where δTCMBðn̂Þ is the CMB signal we want to estimate,
Nðn̂Þ is instrument noise and Mðn̂Þ is the mask. Here
we have omitted the foreground assuming that Mðn̂Þ can
successfully mask the foreground contaminated regions.
In spherical harmonic space, the above equation is
expressed as

aobslm ¼
X

Mlm;l0m0afull skyl0m0 ; ð6Þ

where afull skylm ¼ KlBlaCMB
lm þ Klnlm consists of the

spherical harmonic coefficients of the sky, including signal
and noise, and Mlm;l0m0 is the mask-coupling matrix.
Because instrumental noise is expected to be well described
by a Gaussian distribution as shown in the WMAP [20] and
Planck papers, ensemble averages of aobslm are zero if those
of aCMB

lm are zero. Considering an axisymmetric mask that
satisfiesMlm;l0m0 ¼ Mlm;l0mδmm0 and using matrix notation
for a fixed m, the above equation can be expressed as

~aobsm ¼ M · ~afull skym ; ð7Þ
where the dot represents the inner product over multipoles
l. To remove the effect of the mask from the observed
spherical harmonic coefficients and disentangle the cou-
pling, consider m-independent v-vectors that satisfy the
relation

~vt ¼ ~vtM; ð8Þ
where

vlm ¼
�
vl for jmj ≤ lmin andlmin ≤ l ≤ lmax

0 ðotherwiseÞ: ð9Þ

Let us construct a variable dm as the dot product of ~v
and ~aobsm ,

dm ≡ ~vt · ~aobs ¼ ~vtM~afull skym ¼ ~vt · ~afull skym ; ð10Þ
for jmj < mmax. The new stochastic variable dm has the
following properties:
(1) Foreground insensitive, because we work on aobslm ,

the spherical harmonic coefficients of the masked sky;
(2) Statistically independent, because they are con-

structed as a linear combination of statistically
independent variables aCMB

lm and nlm;
(3) Gaussian with zero mean, if aCMB

lm and nlm are
as well;

(4) Having m-independent variance, where σ2 ¼Plmax
lmin

KlðB2
lCl þ NlÞv2l.
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Owing to these properties, we can formulate a simple
statistical test of the zero mean hypothesis. In our test
below, we estimate σ2 directly from the data.
To obtain the v-vectors, it is convenient to work in

pixel space. In pixel space, Eq. (8) is written as
ð1 −Mðn̂ÞÞvðn̂Þ ¼ 0. Substituting vðn̂Þ ¼ P

vlmYlmðn̂Þ
and defining the matrix

Dil ¼ ð1 −Mðn̂iÞÞ
X

jmj≤lmin

Ylmðn̂iÞ; ð11Þ

where i runs over all pixels and lmin ≤ l ≤ lmax, we can
rewrite the system of equations in Eq. (8) as

D~v ¼ 0; ð12Þ

or, in component notation,
P

lDilvl ¼ 0. The dimension
of the matrix D is ðlmax − lmin þ 1; NpixÞ, where we have
used the Healpix pixelization schemewithNside ¼ 256, and
therefore Npix ¼ 786432. We find an approximate solution
of this system of equations using singular value decom-
position (SVD). The SVD of the matrix D is expressed as

D ¼ UΣVT; ð13Þ

where UUT ¼ VVT ¼ I. The columns of U and V are
orthogonal eigenvectors of DDT and DTD, respectively,
and Σ is a diagonal matrix containing the singular values
of the matrixD in descending order. We choose the vector ~v
to be the last right singular vector, so that

jD~vj2 ¼ Σ2
last: ð14Þ

The last singular value, Σlast, should be small but nonzero,
and therefore our solution is only approximate. Following
Ref. [17], we choose the binning of multipoles so that the
last singular value divided by the norms of the mask and the
sky encoded in ~v is sufficiently small (≲10−8).

III. RESULT

A. Test using a simple statistic

We tested the zero mean hypothesis with the stochastic
variable dm, which is constructed as a linear combination
of alm given by Eq. (10). To perform the inner product in
Eq. (10), we divide the multipoles into bins [17], and the
ranges of these bins are shown in Fig. 1. In the figure, we
show histograms of the variable dm, constructed from
the WMAP (red) and Planck (black) maps. The variable
dm is normalized by the sample variance σ. It is evident
from the figure that in the examined multipole range
the Planck and WMAP maps give consistent results.
The means of the distributions are consistent with zero,
except for possible deviations for the multipole ranges of
l ≈ 61–86 and l ≈ 213–256.

In Fig. 2, we depict the result of the test showing how
many sigmas the observed data deviate from the zero mean.
Here we perform a simple test assuming Gaussian statistics
as follows. We estimate the mean from the sample by
computing d̄ ¼ P

mdm=ð2lmin þ 1Þ and then obtain the
error in the estimate of the mean from the formula
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FIG. 1 (color online). Histograms of stochastic variable dm
normalized by the sample variance. Binning in l space has been
done and is shown in the figure. If the alm of the CMB follow a
Gaussian distribution with a zero mean, so does the variable dm.
The red histograms were obtained from the WMAP map and the
black from the Planck map.
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FIG. 2 (color online). Deviations from the zero mean hypoth-
esis fromWMAP nine-year data (red dashed) and Planck SMICA
(black solid) maps. The vertical error bars are �σ, while the
horizontal error bars are the width of the binning.
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σðd̄Þ ¼ σffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2lmin þ 1

p ; ð15Þ

where σ2 ≡Pðdm − d̄Þ2=ð2lminÞ is the sample variance.
The Z-scores in the figure are simply defined by Z ¼
d̄=σðd̄Þ for each multipole bin.
There are hints of deviations in the ranges around l ≈ 70

and l ≈ 230. Significance levels are 2.5σ for the former
and 3.1σ for the latter. For the latter signal, the significance
is slightly larger for the Planck map. The other multipole
ranges are consistent with the zero mean hypothesis.

B. Test using Planck simulations

In the simple test presented above we assume symmetric
instrumental beams and isotropic noise. However, in
actual experiments such as the WMAP and Planck ones,
beams are not perfectly symmetric, and noise is anisotropic
due to the scan strategy. In fact, asymmetric instrumental
beams can introduce statistical artifacts (e.g., Ref. [21]),
and anisotropic scan strategy can break the zero mean
assumption in the noise. To see whether these effects
change the results in the previous section, we adopt the
hundred CMB and noise sky simulations produced by the
Planck collaboration and apply the same method to these
sky maps. In these simulations they have taken into account
the scan strategy, the instrumental performance, and the
noise property of the Planck experiment.

Figure 3 shows the histograms of the means using the
hundred Planck simulations of CMB with noises at the
100 and 143 GHz bands. The means of the simulations are
shown to be consistent with the zero mean hypothesis, as
shown in the right panel of Fig. 3. Again, we find the
deviations in the multipole ranges around l ≈ 70 and
l ≈ 230 significant. For the former, we find two samples
that show larger deviations from zero than the actual
Planck data, and for the latter, we find no sample out of
the hundred simulations that shows the larger deviation.
The p values are summarized in Table I.
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FIG. 3 (color online). Histograms (left) and plots (right) of the means hdmi calculated using the Planck (CMBþ noise) simulations at
the 100 (black) and 143 GHz (red) bands. The means derived from the actual Planck SMICA map are shown as the blue dashed lines
(left) and points (right). Probability to exceed (PTE) is also shown based on the simulations at the 100 GHz band.

TABLE I. Probabilities of supporting the null hypothesis
(p values) that the CMB fluctuations have a zero mean, using
the hundred Planck sky simulations.

Bin �20° cut
lmin lmax Simulation

19 38 54%
39 60 6%
61 86 2%
87 112 61%
113 142 41%
143 176 96%
177 212 5%
213 256 < 1%
256 300 58%
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We should caution, however, that the simulations used
here do not exactly correspond to the data we analyze, i.e.
the Spectral Matching Independent Component Analysis
(SMICA) map. Therefore, these simulations should be
recognized as an estimate of Planck’s instrumental effects
in the SMICA map. Furthermore, while we find no sample
out of the simulations that shows the larger deviation at the
213≲ l≲ 256 bin, one should use more simulations to
confirm the significant detection.

IV. DISCUSSION

A. Instrument noise

The formulation described in the previous section ignores
the effect of the instrument noise. Although instrument noise
that is expected to have a zero mean would not bias the test
of the zero mean hypothesis, it degrades the statistical
power. To demonstrate how the instrument noise of the
WMAP and Planck could affect the test of the zero mean
hypothesis, we construct the variable dm from the expected
noise values for the sky in the WMAP and Planck SMICA
maps and show the results in Fig. 4 for the multipole range
of l ≈ 213–256. As expected, the noise in the Planck map is
negligibly small compared with the signal for this angular
scale, because of its high angular resolution. On the other
hand, noise can contribute up to 40% for the WMAP case,
and this might be a reason for a smaller S/N from the
WMAP than that from Planck at this scale (see Fig. 2). Thus,
we did not explore the test at smaller scales, l≳ 300.
While the instrumental noise of the Planck satellite at

angular scales considered here should be significantly lower
than the CMB signal as shown in Fig. 4, that of the WMAP
satellite begins to dominate at highest multipole bins and
may bring unwanted statistical artifacts. Therefore, we make
a simple test by simulating the anisotropic noise based on
the hit counts of the WMAP observation. Specifically, we
create a hundred noise maps based on the hit count data of
the WMAP W-band observation, apply the same method to
the maps, and obtain the distributions of dm of the WMAP
anisotropic noise. In Fig. 5, we show the result of our

hundred noise simulation of the WMAP anisotropic noise
together with the actual data points. While, on large angular
scales, the WMAP noise is negligibly small compared with
the signal, they become comparable at the 257≲ l≲ 300
bin. Thus, as we discussed above, we did not explore the test
at smaller scales, even though theWMAP noise is consistent
with zero mean.
While anisotropic noise will have zero mean, the

correlated noise in the time-ordered data could potentially
violate the zero mean hypothesis to some extent, making
striping artifacts in the map. However, because the effect
will be different between WMAP and Planck, we therefore
expect that it is not a major concern given that the results
from these two experiments agree.

B. Foreground

Another issue we have to address is the foreground. One
disadvantage of the simple and clear method described in
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FIG. 4 (color online). Histograms of stochastic variable dm from the signal plus noise (red; solid line) and expected noise only (blue;
dashed line), normalized by the sample variance for the bin of 213 ≤ l ≤ 256. The top panel is for theWMAP data, and the bottom is for
Planck (SMICA).
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sample for the actual data. We multiply the y axis by l for
visualization purposes.
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this paper is that it must utilize an axisymmetric mask to
simplify the convolution of the mask as in Eq. (7), while
the foreground is, of course, not axisymmetric. We compare
our axisymmetric mask with the ones used for the
CMB power spectrum estimates of WMAP and Planck
in Fig. 6. Although directions toward the galactic disk
where the cosmological CMB is heavily contaminated
are removed by our axisymmetric mask, some parts of
the sky at high galactic latitudes that are removed from
the WMAP and Planck analyses are included in ours. To
estimate how the foreground has contaminated the results
in the previous section, we examine the same analysis
but with more extensive and more aggressive masks that
cut the region in the galactic latitude jbj ≤ 20°� 5°. The
results are shown in Fig. 7. Overall, we find mutually
consistent results. In fact, for the eighth bin (l ≈ 213–256),
the significance remains the same even for jbj ≤ 25°
although the standard deviation σ becomes larger because
of the smaller analyzed sky area. This is consistent with
what the previous work found with the WMAP seven-year
map [18].
The same analysis is also done using other types of

foreground-reduced maps from Planck as the SMICA map,
namely, the spectral estimation via expectation maximiza-
tion (SEVEM) map and the needlet internal linear

combination (NILC) map. These maps are generated
through processes completely different from those of
SMICA maps and thus have different weights to both
the frequencies and multipoles.
Tables II and III summarize the probabilities of support-

ing the null hypothesis for different sky cuts and different
foreground-reduced maps. We find that all the different
foreground-reduced maps from Planck give consistent,
almost indistinguishable results. The WMAP and Planck
data are also consistent with each other, suggesting that
instrumental and scanning effects that may cause apparent
violations of statistical homogeneity are negligible. At the
eighth bin (l ≈ 213–256) the signal is slightly reduced for
the WMAP map, but the small signal may be attributable to
the instrument noise as discussed above. We also note that,
while the results in Tables II and III are based on the simple
equation [Eq. (15)], that in Table I is derived directly from
the histogram of Planck simulations, without assuming
Gaussianity. The results in the tables clearly show the same
tendency.
Even though our result shows that the different

foreground-reduced maps give consistent results, it does
not necessarily mean that foreground contamination is not
an issue, because these foreground subtraction methods are
calibrated off the same Planck foreground model. To see

FIG. 6 (color online). Comparison of the masks used in this paper and cosmological analyses by the Planck (left) and WMAP (right)
collaborations. The masked regions in the Planck and WMAP analyses are shown in cyan. Our axisymmetric mask is along the galactic
plane and shown in orange.
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how the foreground residuals could have an effect on the
results, we do a few simple tests with a varying amount of
residual foreground contamination using the SMICA
residual map at the high frequency instrument (HFI)
100 GHz band, which is shown in Fig. 8. Foreground
intensity of 100%, 10%, and 1% of the residual map are
added to the SMICA CMB map, and we apply the same
method to the three maps. The result is shown in the left
panel of Fig. 7. We find that our results are stable against
the residual foreground contamination if the foreground
residuals are less than 10%.
Another potential issue would be that the zero levels of

temperature (i.e., monopoles) in the Planck experiment are
unconstrained. For example, as discussed in Ref. [22], the
reported monopoles with uncertainties are −300.84� 2.23,
−22.83� 0.78, and −28.09� 0.64 μK at the 30, 44, and
70 GHz bands, respectively. Because it is not trivial how the
uncertainty in the monopole temperature affects the sig-
nificance of the statistical inhomogeneity found at high
multipole ranges, we do a simple test to check the effect.
Specifically, we apply the same method to the map to which
we add an additional monopole component with �10 μK,

which is much larger than the uncertainty listed above.
We found that the effect can be safely neglected for higher
multipole regions considered in our analysis.
An analysis has been made by Kashino et al. [18], where

we found an anomalously large deviation from the zero
mean hypothesis at the multipole range l ≈ 221–240
using Monte Carlo simulations with the WMAP maps.
The deviation was as large as 99.93% confidence level,
regardless of the different frequency maps and different
masks. The multipole ranges that show deviations from
the zero mean hypothesis are consistent between Kashino
et al. [18] and the results presented in this paper, although
the methods used are completely independent from
each other.

C. Look-elsewhere effect

Finally, let us evaluate the significance as a whole to
draw a conclusion against the null hypothesis. Because we
have tested nine multipole bins for Planck and WMAP
maps, we should take into account the fact that apparent
anomalies can arise just as statistical outliers in multiple
testing. The effect is often called the look-elsewhere effect.
To take this effect into account, we combine p values by
calculating the Stouffer’s weighted Z (Liptak–Stouffer
method), which is defined as [23]

Z≡
P

n
1 wiZiffiffiffiffiffiffiffiffiffiffiffiffiffiffiP

n
1 w

2
i

p : ð16Þ

Here Zi is the so-called Z-score defined by
Zi ¼ Φ−1ð1 − piÞ, where Φ is the standard normal cumu-
lative distribution function and wi is the number of
degrees of freedom for the ith bin. The combined variable
Z, which follows the standard normal distribution if the
common hypothesis is true, reflects the fact that we have
done multiple tests for a common hypothesis. From the
p values listed in Table II, we find the values of Stouffer’s
weighted Z as

Z ¼ 1.74 ðSMICAÞ; 1.14 ðWMAPÞ; ð17Þ

TABLE II. Probabilities of supporting the null hypothesis
(p values) that the CMB fluctuations have a zero mean, for
different maps.

Bin �20° cut
lmin lmax SMICA SEVEM NILC WMAP

19 38 56.1% 56.2% 56.3% 65.3%
39 60 13.1% 13.3% 13.2% 11.2%
61 86 1.38% 1.25% 1.14% 0.659%
87 112 58.8% 53.1% 53.6% 42.0%
113 142 46.2% 47.8% 47.8% 52.9%
143 176 95.8% 99.6% 99.7% 87.2%
177 212 5.61% 6.11% 6.13% 4.33%
213 256 0.192% 0.213% 0.175% 1.00%
256 300 58.8% 64.1% 63.1% 90.8%
Stouffer’s Z 1.74 1.33 1.38 1.14%

TABLE III. Probabilities of supporting the null hypothesis
(p values) that the CMB fluctuations have a zero mean, for
different sky cuts.

Bin �15° �20° �25°
lmin lmax SMICA

19 38 59.6% 56.1% 52.7%
39 60 13.1% 13.1% 12.9%
61 86 1.28% 1.38% 1.88%
87 112 63.8% 58.8% 51.6%
113 142 40.1% 46.2% 74.1%
143 176 99.7% 95.8% 92.0%
177 212 5.11% 5.61% 14.4%
213 256 0.511% 0.192% 0.193%
256 300 84.9% 58.8% 28.0%

FIG. 8 (color online). The SMICA residual foreground map at
the HFI 100 GHz band.
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which means the percentages to reject the zero mean
hypothesis are 91.8% and 74.5%, respectively. Therefore,
we may conclude that the zero mean hypothesis is consistent
with observational data as a whole.
There is the possibility to perform additional tests to

confirm whether or not the anomalous deviations from the
zero mean hypothesis found here are just statistical fluc-
tuations due to a particular realization of the Universe. A
straightforward test is to make use of full-sky CMB
polarization data that will soon be released from the
Planck collaboration. Although the polarization anisotro-
pies are made from common curvature fluctuations, their
transfer functions do not completely coincide with those of
temperature anisotropies, and thus they will lend additional
statistical power. Another test is to look into large-scale
structure data, which offers an independent probe for
primordial fluctuations [24–26]. The comoving scale that
corresponds to the multipole range of l ≈ 213–256 is
approximately k ≈ 0.015–0.018 Mpc−1, which is at the
edge of the current galaxy survey by baryon oscillation
spectroscopic survey (BOSS) [27] and will be within reach
in future galaxy surveys, such as Euclid [28], large synoptic
survey telescope (LSST) [29], square kilometre array
(SKA) [30], and others. Interesting ideas have been dis-
cussed in Refs. [25,31–34], which include arguments that
cosmic star formation histories and the kinetic Sunyaev–
Zel’dovich effect can be used to probe inside our past light
cone and thus become powerful tools to probe into the
cosmic homogeneity.
Before concluding, we would like to comment on the

connection with studies on non-Gaussianity in the CMB. In
analyses of higher-order statistics, such as the bispectrum,
the zero mean condition has been implicitly assumed, and
one estimates a correlation of the form halmal0m0al″m″i.
Consider a case where the mean of alm was not zero but the
bispectrum was zero around the mean; it is expected that

the three point correlation of the above form would have an
amplitude on the order of

halmal0m0al″m″i ∼ Clhalmi: ð18Þ

Therefore, constraints on non-Gaussianity using the bis-
pectrum in the literature could be used to put constraints on
the mean of the spherical harmonic coefficients when this is
the case.

V. CONCLUSION

We have tested one working cosmological hypothesis,
which states that cosmological perturbations have a zero
ensemble mean, using the latest CMB temperature
anisotropy maps from the WMAP and Planck satellites.
We find evidence against the zero mean hypothesis in two
particular ranges of multipoles, with significance levels of
2.5σ at l ≈ 61–86 and 3.1σ at l ≈ 213–256. However, in
the present analysis, we conclude that the zero mean
hypothesis is consistent with the current observational data
on the basis of the Stouffer’s weighted-Z statistics, which
takes into account multiple testing. The zero mean hypoth-
esis can be further tested by future CMB polarization data
that will be available soon from the Planck satellite.
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