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We compute the parametrized post-Newtonian (PPN) parameters γ and β for general scalar-tensor
theories in the Einstein frame, which we compare to the existing PPN formulation in the Jordan frame for
alternative theories of gravity. This computation is important for scalar-tensor theories that are expressed in
the Einstein frame, such as chameleon and symmetron theories, which can incorporate hiding mechanisms
that predict environment-dependent PPN parameters. We introduce a general formalism for scalar-tensor
theories and constrain it using the limit on γ given by the Cassini experiment. In particular, we discuss
massive Brans-Dicke scalar fields for extended sources. Next, using a recently proposed Earth satellite
experiment, in which atomic clocks are used for spacecraft tracking, we compute the observable
perturbations in the redshift induced by PPN parameters deviating from their general relativistic values.
Our estimates suggest that jγ − 1j ∼ jβ − 1j ∼ 10−6 may be detectable by a satellite that carries a clock with
fractional frequency uncertainty Δf=f ∼ 10−16 in an eccentric orbit around the Earth. Such space
experiments are within reach of existing atomic clock technology. We discuss further the requirements
necessary for such a mission to detect deviations from Einstein relativity.
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I. INTRODUCTION

General relativity (GR) is the widely accepted theory to
explain gravitation. Nonetheless, there are other theories
of gravity which also satisfy the experimental constraints
and remain candidates for the correct theory of gravity.
These theories are being constrained by various high
precision experiments. In particular, the recent develop-
ment of ultraprecise frequency standards and atom inter-
ferometers provide new opportunities for testing different
aspects of gravity. In this paper, we focus on scalar-tensor
theories, which are a class of alternative theories of gravity
that in addition to the metric tensor include a scalar field.
We are interested both in developing the theoretical
framework for testing these theories and in estimating
potential constraints from upcoming satellite missions that
carry clocks in space.
Scalar-tensor theories are widely used in particle physics,

string theory and cosmology to model poorly understood
phenomena for which we may have some observations
such as in the case of dark matter and dark energy, but the
new physics remains tantalizingly just out of reach.
Effective scalar fields can arise from underlying, not-yet
understood fundamental physics such as compactified extra
dimensions [1] or string theory, which includes the dilaton
scalar field [2]. Since the detection of the Higgs particle [3]

we know that scalar (spin-0) particles exist in nature. The
phase of inflation [4], a short period of rapid expansion in
the very early Universe, could have been caused by a scalar
field. Quintessence models make use of scalar fields
causing the late-time acceleration of the Universe and
therefore they could replace the cosmological constant
and explain dark energy [5]. These scalar fields may couple
to matter in ways that slightly violate general relativity and
could be detected as our instrumentation becomes more
precise.
The most accessible test bed for theories of gravity is the

external environment of compact bodies such as binary
pulsars or Solar System objects. Here, the gravitational
field is weak, allowing the use of the parametrized post-
Newtonian formalism (PPN). While there are infinitely
many possible frames, typically, the Lagrangians of these
theories are expressed either in the Jordan or the Einstein
frame. In the Jordan frame, the scalar field multiplies the
Ricci scalar and any present matter fields couple directly to
the frame metric, while in the Einstein frame the Ricci
scalar appears alone (as in traditional Einstein gravity)
and the matter fields couple to a conformally related metric.
We focus on the γ and β parameters predicted by scalar-
tensor theories for which we have existent experimental
constraints.
The simplest scalar-tensor theory is the original Brans-

Dicke theory, where the massless scalar field and its
constant coupling function (in the Jordan frame) lead to*andreas.schaerer@physik.uzh.ch
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γ ¼ ðω0 þ 1Þ=ðω0 þ 2Þ and β ¼ 1 [6]. For the case of a
massive Brans-Dicke field, which contains a potential
U ∼m2φ2 in addition to the constant coupling, these
parameters were determined in [7]. The introduction of
the mass term induces the γ parameter to become distance
dependent. The parameters for chameleon theories were
derived in [8]. In special cases, PPN parameters have been
calculated for more general theories such as scalar-tensor-
vector theories where, as its name implies, an additional
vector field enters the stage of gravitation [9]. For general
scalar-tensor theories formulated in the Jordan frame, they
were determined by Hohmann et al. [10].
We calculate the PPN parameters for a general scalar-

tensor theory expressed in the Einstein frame. We show
how this formalism can be useful for finding the PPN
parameters for specific choices of scalar-tensor theories.
Next, turning to a variety of scalar-tensor theories which
predict constant PPN parameters, we investigate the near-
future prospects for the measurement of deviations from
Einstein relativity using a class of Earth-orbiting atomic
clock experiments introduced in our earlier work, Angélil
et al. (2014) [11].
The PPN parameters are typically calculated for a

spacetime consisting of a point source surrounded by
vacuum. This assumption is, in general, not appropriate
to solve the scalar field equation of motion. For example in
chameleon scalar field theories [12] or symmetron theories
[13], the field behaves in a complex way inside the Earth
due to its high density, significantly altering the external
field profile. This also implies that the PPN parameters can
depend on the environment. Performing an experiment
around Earth may reveal different PPN parameters com-
pared to the same experiment performed in the vicinity of
the Sun.
Therefore, to discuss constraints on the PPN parameters

in general we introduce a simple formalism containing a
free parameter which can depend on the properties of both
the theory and the source mass under consideration. It can
account for the effects arising from the finite size of the
source like screening effects in chameleon theories. We
solve the scalar field equation for a massive Brans-Dicke
scalar field inside and outside a sphere of constant density
and show that our ansatz indeed represents the typical field
profile of a massive scalar. The most stringent constraint in
the Solar System comes from measurements of the Cassini
spacecraft, which limit the size of the γ PPN parameter
around the Sun [14]. We use this limit to improve
constraints on massive Brans-Dicke theory discussed in
[7,10] by regarding the Sun as a homogeneous sphere
instead of a point source. However, while the Sun has low
density, it is not an ideal candidate to probe theories that
propose hiding mechanisms due to its high compactness
M=R. Since both the Earth and the Moon have lower
compactness, they are more suitable to test theories such as
chameleon theories.

In the second part of the paper, we bring attention to
the increasing accuracy of space-qualified atomic
clocks. Our estimates show that a space clock that
can reach the accuracy of the Atomic Clock Ensemble
in Space (ACES) [15] Δf=f ∼ 10−16 in an eccentric
orbit around the Earth could place constraints on the β
and γ PPN parameters around the Earth of about 10−6

over the course of one orbit. It can be expected that in
the future, many space missions will use either an
ultraprecise atomic clock or a transponder that can
reflect signals from clocks on Earth and in space to
track the spacecraft. These will allow the ability to
constrain or detect signals from alternative theories of
gravity. The estimates presented here are obtained by
taking the difference between the redshift signal gen-
erated by general relativity γ ¼ β ¼ 1, and the signal
generated by a theory with γ and β different from one.
The numbers obtained here are large enough to suggest
detectability if a clock-carrying mission on an orbit
like that of the originally proposed satellite Space-Time
Explorer and QUantum Equivalence Principle Test
(STE-QUEST) were to fly [16]. However, to make
any definitive statements further work that aims to
recover the signal of specific alternative theory of
gravity from realistic data would be needed. We show
that the difference in the redshift signal between general
relativity and a small deviation peaks around the peri-
center. We study the width of these peaks to find the
time scale which needs to be resolved in order to be
sensitive to such deviations.
The outline of this paper is as follows. In Sec. II A,

the parametrized post-Newtonian formalism is briefly
reviewed. Section II B discusses the action and the equa-
tions of motion of a scalar-tensor theory in both the Jordan
and the Einstein frame. The conformal transformation
relating these frames is addressed, whereas more details
can be found in Appendix A. After briefly reviewing the
procedure to obtain the PPN parameters in the Jordan frame
in II C, we calculate these parameters in detail for any
theory formulated in the Einstein frame in Sec. II D. In
Sec. III, we address constraints on scalar theories. We bring
attention to the importance of screening mechanisms and
propose a simple framework to constrain scalar theories
and discuss current and future experimental constraints.
Note that in this paper we restrict attention to local
constraints on the PPN parameters and do not discuss
cosmological constraints on scalar models. We apply this
formalism to some examples: (A) Brans-Dicke theory, the
simplest case of a scalar-tensor theory, (B) massless fields
with a more general coupling, (C) massive Brans-Dicke
theory, and (D) chameleon fields, an example for a field
with a screening mechanism. Next, in Sec. IV, we address
the possibility of constraining PPN parameters in Earth
orbit using satellites endowed with state-of-the-art atomic
clocks. To do so, we estimate the relativistic effects coming
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from varying PPN parameters using a numerical orbit
simulation.
Throughout this work we set the units to c ¼ ℏ ¼ 1, and

therefore the reduced Planck mass is MPl ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1=8πG

p
.

II. SCALAR-TENSOR THEORIES IN THE
EINSTEIN FRAME

A. The parametrized post-Newtonian formalism

The most common way to parametrize theories of gravity
in the weak field is to use the parametrized post-Newtonian
(PPN) formalism [17]. There, the standard general relativ-
istic metric is generalized with a collection of parameters
which are permitted to take any value decreed by the
alternative theory under consideration.
We start with the Schwarzschild metric written in

isotropic coordinates ðt; χ; θ;φÞ,
ds2 ¼ gμνdxμdxν

¼ −
ð1 − GM

2χ Þ2
ð1þ GM

2χ Þ2
dt2 þ

�
1þGM

2χ

�
4

ðdχ2 þ χ2dΩ2Þ;

ð1Þ
where dΩ ≔ dθ2 þ sin2 θdφ2. This is the vacuum solution
of the Einstein field equations outside a spherically
symmetric noncharged and nonrotating massM. G denotes
the Newtonian gravitational constant. In this paper, we are
interested in Solar System constraints and since within the
Solar System gravitational fields are weak and typical
velocities are small, it is sufficient to consider the post-
Newtonian limit of this metric. To do so, we introduce a
parameter ϵ. Its power tracks the order of a term, where
ϵ ∼GM=r, although numerically ϵ ¼ 1. Massive particles
moving on an orbit typically have velocities v2 ≈GM=r
and therefore ϵ ∼ v2 (note that other authors use the
convention ϵ ∼ v). Typically, we have GM=r ≪ 1 within
the Solar System. Therefore, after endowing the different
terms in the Schwarzschild metric with the appropriate ϵn,
we can perform an expansion in ϵ and neglect higher order
terms. For the post-Newtonian level, we keep terms up to
order ϵ2 in g00 and up to order ϵ in gij. Many alternative
theories of gravity predict solutions which start to deviate
from the ones predicted by general relativity at this level.
Therefore, the parameters γ and β are added to the metric to
model deviations from general relativity (γ ¼ β ¼ 1) [17].
Here, we promote the γ and β from constants to functions of
χ. Additionally, the gravitational “constant” is allowed to
change with distance.
This gives the metric

ds2J ¼ − ½1 − hð1ÞJ00ðχÞϵ − hð2ÞJ00ðχÞϵ2�dt2J
þ ½1þ hð1ÞJχχðχÞϵ�ðdχ2 þ χ2dΩ2Þ ð2Þ

with

hð1ÞJ00ðχÞ ¼
2GJðχÞMJ

χ
;

hð1ÞJχχðχÞ ¼ γðχÞ 2GJðχÞMJ

χ
;

hð2ÞJ00ðχÞ ¼ −βðχÞ 4G
2
J ðχÞM2

J

2χ2
: ð3Þ

The index J indicates that this metric is formulated in the
Jordan frame (see the next section). Note that if more
intricate spacetimes are considered, additional parameters
may enter the metric.

B. The choice of frame

The action of a scalar-tensor theory can be written in
various ways. In the Jordan frame it is

S ¼
Z

d4x
ffiffiffiffiffiffiffiffi
−gJ

p M2
Pl

2

�
φRJ −

ωðφÞ
φ

ð∇JφÞ2 −UðφÞ
�

þ
Z

d4x
ffiffiffiffiffiffiffiffi
−gJ

p
LJ
mðΦm; gJμνÞ; ð4Þ

where the theory is characterized by the coupling
function ωðφÞ and the scalar potential UðφÞ, both
functions of the scalar field. The scalar field is considered
to be positive everywhere and we assume that U ≥ 0
and ω > −3=2.
There are two characteristic properties of this frame.

First, the nonminimally coupling term φRJ represents the
coupling between the scalar field and curvature. Second,
matter fields Φm couple to the frame metric gJμν which is
used to determine the Christoffel symbols, the Ricci tensor,
and to raise and lower indices. By varying this action with
respect to the metric and the scalar field, the tensor and the
scalar equations of motion,

RJ
μν ¼

1

φ

�
8πG

�
TJ
μν −

ωþ 1

2ωþ 3
gJμνTJ

�
þ∇J

μ∂νφ

þ ω

φ
∂μφ∂νφ −

1

2
gJμν

1

2ωþ 3

∂ω
∂φ ð∇JφÞ2

þ 1

2
gJμν

2ωþ 1

2ωþ 3
U þ 1

2
gJμν

1

2ωþ 3
φ
∂U
∂φ

�
; ð5aÞ

∇2
Jφ¼ 1

2ωþ3

�
8πGTJ−

∂ω
∂φð∇JφÞ2−2Uþφ

∂U
∂φ

�
; ð5bÞ

are obtained, where ∇2
J ≔ gμνJ ∇J

μ∂ν. By ∇J
μ we denote the

covariant derivative obtained from the Jordan frame metric.
By TJ

μν and TJ ¼ gμνJ TJ
μν we denote the stress-energy tensor

and its trace in the Jordan frame.
Alternatively, a scalar-tensor theory can be expressed in

the Einstein frame,
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S ¼
Z

d4x
ffiffiffiffiffiffiffiffi
−gE

p M2
Pl

2
½RE − 2ð∇EϕÞ2 − VðϕÞ�

þ
Z

d4x
ffiffiffiffiffiffiffiffi
−gE

p
LE
mðΦm; FðϕÞ−1gEμνÞ; ð6Þ

with the corresponding equations of motion:

RE
μν ¼ 8πG

�
TE
μν −

1

2
gEμνTE

�
þ 2∂μϕ∂νϕþ 1

2
gEμνVðϕÞ;

ð7aÞ

∇2
Eϕ ¼ 8πG

4

1

F
∂F
∂ϕ TE þ

1

4

∂V
∂ϕ : ð7bÞ

Here, the theory is determined by the coupling function
FðϕÞ and the potential VðϕÞ. In this frame, the field
couples minimally to gravity and therefore, the gravity
part of the action takes the form of the Einstein-Hilbert
action in general relativity. This comes at the price that
the matter fields do not couple to the Einstein frame
metric directly but to the combination FðϕÞ−1gEμν, and
therefore, the coupling explicitly depends on the scalar
field. But there is an obvious advantage when working in
the Einstein frame: there, the equations of motion (7) are
much simpler compared to the ones in the Jordan frame

(5), even though these two frames are mathematically
equivalent.
To avoid confusion between these two frames we label

quantities with indices J and E, depending on the frame
they are coming from. The two frames are related to each
other by a conformal transformation,

gJμν ¼ FðϕÞ−1gEμν; ð8Þ

with φ ¼ F > 0, i.e., the scalar field in the Jordan frame
mimics the coupling function in the Einstein frame. The
positiveness of the fields is required to avoid a change of
sign in the metric line element when going from one to the
other frame. This conformal transformation is discussed in
Appendix A.

C. PPN parameters in the Jordan frame

The PPN parameters γ and β have been calculated for
a general scalar-tensor theory stated in the Jordan frame
[10]. Here, we give a very short overview of their
derivation. One starts with the ansatz for the metric
(2) where χ is the radial coordinate in isotropic coor-
dinates. Expanding the scalar field φ, the coupling
function ω and the potential U in powers of ϵ (see
Appendix A) and solving the equations of motion (5)
order by order, one finds [10]

GJðχÞ ¼
G
φ0

�
1þ 1

2ω0 þ 3
e−mJχ

�
; ð9aÞ

γðχÞ ¼
1 − 1

2ω0þ3
e−mJχ

1þ 1
2ω0þ3

e−mJχ
; ð9bÞ

βðχÞ ¼ 1þ φ0ω1

ð2ω0 þ 3Þ3ð1þ e−mJχ

2ω0þ3
Þ2 e

−2mJχ

þ mJχ

2ð2ω0 þ 3Þð1þ e−mJχ

2ω0þ3
Þ2
�
2e−mJχ lnðmJχÞ − e−2mJχ − 2ðmJχ þ emJχÞEið−2mJχÞ

þ 3φ0

2ω0 þ 3

�
U3

U2

−
1

φ0

−
ω1

2ω0 þ 3

�
½e−mJχEið−mJχÞ − emJχEið−3mJχÞ�

�
; ð9cÞ

where

mJ ≔

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2U2φ0

2ω0 þ 3

s
ð10Þ

can be interpreted as the inverse range of the field or,
roughly speaking, the mass of the field. In this expression
we use the notation U2 ¼ U00ðφ0Þ=2. Here, we make use of
the exponential integral

Eið−xÞ ≔ −
Z

∞

x
da

e−a

a
: ð11Þ

D. PPN parameters in the Einstein frame

In this section, we complement the Hohmann et al. [10]
approach by calculating the PPN parameters for a general
scalar-tensor theory formulated in the Einstein frame. To do
so, the equations of motion are solved order by order in the
Einstein frame. Finally, we transform to the Jordan frame
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where the PPN parameters are defined. For the sake of
understandability we perform the calculation in detail.
Here, we consider a spacetime consisting of a point mass

surrounded by vacuum. The stress-energy tensor is given
by that of a perfect fluid [17],

Tμν ¼ ðρþ ρΠþ pÞuμuν þ pgμν; ð12Þ

with the rest-mass density ρ, the pressure p, the specific
energy density Π and the four-velocity uμ, satisfying
uμuμ ¼ −1. For Solar System tests we typically have
ρ ≫ p and ρ ≫ ρΠ, so we may neglect both the effects
of pressure and specific energy density. If the mass is at rest
(ui ¼ 0), we obtain Tμν ¼ diagðρ; 0; 0; 0Þ. For a point
source we have ρE ¼ MEδðrÞϵ, where the index E implies
that a quantity is defined in the Einstein frame.
For the metric in the Einstein frame we make the ansatz

ds2E ¼ − ½1 − hð1ÞE00ðrÞϵ − hð2ÞE00ðrÞϵ2�dt2E
þ ½1þ hð1ÞErrðrÞϵ�ðdr2 þ r2dΩ2Þ; ð13Þ

where we choose isotropic coordinates with radial coor-
dinate r. We expand the scalar field in powers of ϵ and
subsequently the coupling function and the potential are
expanded around some constant value ϕ0:

ϕðrÞ ¼ ϕ0 þ ϕ1ðrÞϵþ ϕ2ðrÞϵ2; ð14aÞ

FðϕÞ ¼ F0 þ F1ðϕ − ϕ0Þ þ F2ðϕ − ϕ0Þ2 þ F3ðϕ − ϕ0Þ3;
ð14bÞ

VðϕÞ ¼ V0 þ V1ðϕ − ϕ0Þ þ V2ðϕ − ϕ0Þ2 þ V3ðϕ − ϕ0Þ3:
ð14cÞ

The left-hand sides of the equations (7a), the components
of the Ricci tensor, are

RE
00 ¼ −

1

2
∇2

rh
ð1Þ
E00ϵ −

1

2

�
∇2

rh
ð2Þ
E00 − hð1ÞErr∇2

rh
ð1Þ
E00

þ 1

2
ð∂rh

ð1Þ
E00Þ2 þ

1

2
ð∂rh

ð1Þ
E00Þð∂rh

ð1Þ
ErrÞ

�
ϵ2 þOðϵ3Þ;

ð15aÞ

RE
rr ¼

�
−∂2

rh
ð1Þ
Err −

1

r
∂rh

ð1Þ
Err þ

1

2
∂2
rh

ð1Þ
E00

�
ϵþOðϵ2Þ;

ð15bÞ

RE
θθ ¼

1

2
r2
�
−∂2

rh
ð1Þ
Err −

3

r
∂rh

ð1Þ
Err þ

1

r
∂rh

ð1Þ
E00

�
ϵþOðϵ2Þ;

ð15cÞ

RE
φφ ¼ RE

θθ sin
2 θ þOðϵ2Þ ð15dÞ

to the required orders. All other components are identically
zero. The right-hand sides are

RE
μν ¼

1

2
ημνV0 þ

�
8πG

�
δ0μδ

0
ν þ

1

2
ημν

�
MEδðrÞ

þ 1

2
ðhð1ÞEμνV0 þ ημνV1ϕ1Þ

�
ϵ

þ
�
8πG
2

ðhð1ÞEμν þ ημνh
ð1Þ
E00ÞMEδðrÞ

þ 2∂rϕ1∂rϕ1δ
r
μδ

r
ν þ

1

2
ημνV2ϕ

2
1

þ 1

2
ðhð1ÞEμνϕ1 þ ημνϕ2ÞV1

�
ϵ2 þOðϵ3Þ: ð16Þ

The flat-space Minkowski metric is, with our choice of
coordinates, ημν ¼ diagð−1; 1; r2; r2 sin2 θÞ. Calculating
both sides of the scalar equation yields

∇2
Eϕ ¼ ∇2

rϕ1ϵþ
�
∇2

rϕ2 − hð1ÞErr∇2
rϕ1

þ 1

2
ð∂rh

ð1Þ
Err − ∂rh

ð1Þ
E00Þ∂rϕ1

�
ϵ2 ð17Þ

and

∇2
Eϕ ¼ 1

4
V1 þ

�
−
F1

F0

2πGMEδðrÞ þ
1

2
V2ϕ1

�
ϵ

þ
��

2πGME

�
F2
1

F2
0

−
2F2

F0

�
ϕ1

− 2πGME
F1

F0

hð1ÞE00

�
δðrÞ þ 3

4
V3ϕ

2
1 þ

1

2
V2ϕ2

�
ϵ2:

ð18Þ

By ∇2
r we mean the flat space spherical coordinate Laplace

operator, ∇2
r ≔ ∂2

r þ 2=r∂r. First, we consider the zeroth-
order equations

0 ¼ 1

2
ημνV0; ð19aÞ

0 ¼ 1

4
V1; ð19bÞ

which require V0 ¼ V1 ¼ 0. At first order in ϵ, the scalar
equation is

ð∇2
r −m2

EÞϕ1 ¼ −
F1

F0

2πGMEδðrÞ; ð20Þ

with solution
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ϕ1ðrÞ ¼
F1

2F0

GME

r
e−mEr; ð21Þ

where we have defined

m2
E ≔

1

2
V2: ð22Þ

The first order 00-tensor equation and its solution are

−
1

2
∇2

rh
ð1Þ
E00 ¼ 8πG

1

2
MEδðrÞ

→ hð1ÞE00ðrÞ ¼
2GME

r
: ð23Þ

At the same order, the rr equation is

−∂2
rh

ð1Þ
Err −

1

r
∂rh

ð1Þ
Err þ

1

2
∂2
rh

ð1Þ
E00 ¼ 8πG

1

2
MEδðrÞ ð24Þ

and the θθ-equation turns into

−∂2
rh

ð1Þ
Err −

3

r
∂rh

ð1Þ
Err þ

1

r
∂rh

ð1Þ
E00 ¼ 8πGMEδðrÞ: ð25Þ

Summing these two equations yields

∇2
rh

ð1Þ
Err ¼ −8πGMEδðrÞ; ð26Þ

with solution

hð1ÞErrðrÞ ¼
2GME

r
: ð27Þ

The 00-tensor equation at second order turns into

∇2
rh

ð2Þ
E00 ¼ −

4G2M2
E

r4
þ F2

1

4F2
0

V2

G2M2
E

r2
e−2mEr2 ; ð28Þ

where we dropped a term proportional to δðrÞhð1ÞErr since it
corresponds to gravitational self-energy [10] and we get the
solution

hð2ÞE00ðrÞ ¼ −
4G2M2

E

2r2

�
1 −

F2
1

4F2
0

�
1

2
mEre−2mEr

þm2
Er

2Eið−2mErÞ
��

: ð29Þ

We notice that the metric component at post-Newtonian
order has an additional term compared to the Schwarzschild
metric of general relativity. The second order scalar field
equation is

∇2
rϕ2 − hð1ÞErr∇2

rϕ1 þ
1

2
ð∂rh

ð1Þ
Err − ∂rh

ð1Þ
E00Þ∂rϕ1

¼ 3

4
V3ϕ

2
1 þ

1

2
V2ϕ2: ð30Þ

Also here, we dropped the gravitational self-energy terms

proportional to ϕ1δðrÞ, hð1ÞE00δðrÞ and hð1ÞErrδðrÞ. For the
solution we find

ϕ2ðrÞ ¼
1

4

F1

2F0

mE
4G2M2

E

r

× ½emErEið−2mErÞ − e−mEr lnðmErÞ�

þ 1

2mE

3F2
1

64F2
0

V3

4G2M2
E

r

× ½emErEið−3mErÞ − e−mErEið−mErÞ�: ð31Þ
We have thus solved the equations of motion to post-

Newtonian order. To determine the PPN parameters we
must turn to the Jordan frame where they are defined. The
metric line elements in the two frames are related by the
conformal transformation (8), giving

ds2J ¼ FðϕÞ−1ds2E
¼ −

�
1 −

�
hð1ÞE00 þ

F1

F0

ϕ1

�
ϵ −

�
hð2ÞE00 −

F1

F0

hð1ÞE00ϕ1

þ
�
F2

F0

−
F2
1

F2
0

�
ϕ2
1 þ

F1

F0

ϕ2

�
ϵ2
�
dt2E
F0

;

þ
�
1þ

�
hð1ÞErr −

F1

F0

ϕ1

�
ϵ

��
dr2

F0

þ r2

F0

dΩ2

�
: ð32Þ

Comparing this to the metric in the Jordan frame (2), we
find

hð1ÞJ00 ¼
2GJMJ

χ
¼! hð1ÞE00 þ

F1

F0

ϕ1; ð33aÞ

hð1ÞJχχ ¼ γðχÞ 2GJMJ

χ
¼! hð1ÞErr −

F1

F0

ϕ1; ð33bÞ

hð2ÞJ00 ¼ −βðχÞ 4G
2
JM

2
J

2χ2

¼! hð2ÞE00 −
F1

F0

hð1ÞE00ϕ1 þ
�
F2

F0

−
F2
1

F2
0

�
ϕ2
1 þ

F1

F0

ϕ2 ð33cÞ

with

tJ ¼
tEffiffiffiffiffiffi
F0

p ; ð34aÞ

χ ¼ rffiffiffiffiffiffi
F0

p : ð34bÞ

From the hð1ÞJ00 relation we can identify the effective
gravitational constant in the Jordan frame
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GJðrÞ ¼
r

2F0ME

�
hð1ÞE00 þ

F1

F0

ϕ1

�
; ð35Þ

where the masses in the Jordan frame satisfy

mJ ¼
ffiffiffiffiffiffi
F0

p
mE; ð36aÞ

MJ ¼
ffiffiffiffiffiffi
F0

p
ME; ð36bÞ

such that mJχ ¼ mEr. With this we obtain the γ parameter

γðrÞ ¼
hð1ÞErr −

F1

F0
ϕ1

hð1ÞE00 þ F1

F0
ϕ1

: ð37Þ

Finally, the β parameter is

βðrÞ ¼ 2χ2

4G2
J ðrÞM2

J

×

�
F1

F0

hð1ÞE00ϕ1 −
�
F2

F0

−
F2
1

F2
0

�
ϕ2
1 −

F1

F0

ϕ2 − hð2ÞE00

�

¼ 1þ 1

ðhð1ÞE00 þ F1

F0
ϕ1Þ2

×

��
F2
1

F2
0

−
2F2

F0

�
ϕ2
1 − ðhð1ÞE00Þ2 −

2F1

F0

ϕ2 − 2hð2ÞE00

�
:

ð38Þ

Inserting the scalar field and metric components deter-
mined above, we obtain the PPN parameters for a scalar-
tensor theory formulated in the Einstein frame:

GJðrÞ ¼
G
F0

�
1þ F2

1

4F2
0

e−mEr

�
; ð39aÞ

γðrÞ ¼
1 − F2

1

4F2
0

e−mEr

1þ F2
1

4F2
0

e−mEr
; ð39bÞ

βðrÞ ¼ 1þ F2
1

4F2
0ð1þ F2

1

4F2
0

e−mErÞ2
�
F2
1

4F2
0

−
F2

2F0

�
e−2mEr

þ F2
1mEr

32F2
0ð1þ F2

1

4F2
0

e−mErÞ2
�
8e−mEr lnmEr − 4e−2mEr − 8ðemEr þmErÞEið−2mErÞ

þ 3
F1

F0

V3

V2

ðe−mErEið−mErÞ − emErEið−3mErÞÞ
�
: ð39cÞ

To compare this result to the one found in [10], we use
the transformation laws for the coupling functions (A8) and
the potentials (A9). Indeed, this leads to Eq. (9).
If we choose to neglect the second order deviation from

the Schwarzschild metric (i.e., hð2ÞE00 ¼ −2G2M2
E=r

2) and
only consider the leading order scalar field contribution
(i.e., we set ϕ2 ¼ 0), then the effective coupling constant
and the PPN parameters simplify to

GJðrÞ ¼
G
F0

�
1þ F1

2F0

r
GME

ϕ1

�
; ð40aÞ

γðrÞ ¼
1 − F1

2F0

r
GME

ϕ1

1þ F1

2F0

r
GME

ϕ1

; ð40bÞ

βðrÞ ¼ 1þ
ð F2

1

4F2
0

− F2

2F0
Þϕ2

1

ðGME
r þ F1

2F0
ϕ1Þ2

: ð40cÞ

We notice that on the one hand, any nontrivial scalar-tensor
theory predicts a γ different from its general relativity
value 1. On the other hand, it is still possible to have
β ¼ 1: if F2

1=F0 − 2F2 ¼ 0. This condition is equivalent
to F0ðϕ0Þ2=Fðϕ0Þ − F00ðϕ0Þ ¼ 0 which is solved by
FðϕÞ ¼ c1 expðc2ϕÞ. An exponential coupling function
in the Einstein frame corresponds to a constant coupling
function in the Jordan frame, ω ¼ ω0, and therefore to
a Brans-Dicke-like theory as for instance the original
chameleon model (see Secs. III A and III D).
In the following section we discuss current constraints on

the PPN parameters and apply them to our formalism. In
particular the constraint on γ coming from the Cassini
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spacecraft is discussed. This is followed by some important
examples of scalar-tensor theories.

III. EXPERIMENTAL FRAMEWORK
AND CONSTRAINTS

Above we have discussed the scalar field in vacuum
outside a point source in the weak field limit. The
assumption of a point source is obviously not correct for
experiments performed around extended objects as the Earth
or the Sun. Within such an object the field can behave very
different to that of a point source and screening mechanisms
can show up due to nonlinear effects. But still, since the
density in the Solar System is very low, one can expect the
field to maintain the form ϕ1 ∼ e−mr=r in the low density
region outside some source. Therefore, we make the ansatz

φðχÞ ¼ φ0 þ φ1ðχÞ ¼ φ0 þ ξ
2

2ω0 þ 3

GMJ

χ
e−mJðχ−XÞ;

ð41aÞ

ϕðrÞ ¼ ϕ0 þ ϕ1ðrÞ ¼ ϕ0 þ ξ
F1

2F0

GME

r
e−mEðr−RÞ ð41bÞ

for the exterior field up to first order, written in the Jordan
and the Einstein frame, respectively. By X (Jordan frame)
and R ¼ ffiffiffiffiffiffi

F0

p
X (Einstein frame) we denote the size of the

object. Therefore, the field starts falling off exponentially at
the surface of the source instead of at its center. Notice that
we introduced some arbitrary parameter ξ. By doing so, we
are able to discuss constraints on the PPNparameters around
more realistic sources, also for theories containing screening
mechanisms without knowing their exact nature. The ξ
parameter describes how much the exterior field deviates
from that generated by a point source (ξ ¼ 1) with the same
mass. In other words, a source can act as an effective point
source of mass ξM. In particular, we will show in Sec. III C
that a massive Brans-Dicke scalar field takes this form if we
consider the source to be a sphere with constant density. We
find an expression for ξ which depends on both the mass of
the scalar field and the radius of the source.
Plugging the ansatz above into (40) we find the effective

gravitational constant and the PPN parameters

GJ ¼
G
F0

�
1þ ξ

F2
1

4F2
0

e−mEðr−RÞ
�

¼ G
φ0

�
1þ ξ

1

2ω0 þ 3
e−mJðχ−XÞ

�
; ð42aÞ

γ ¼
1 − ξ

F2
1

4F2
0

e−mEðr−RÞ

1þ ξ
F2
1

4F2
0

e−mEðr−RÞ
¼

1 − ξ
2ω0þ3

e−mJðχ−XÞ

1þ ξ
2ω0þ3

e−mJðχ−XÞ ;

ð42bÞ

β ¼ 1þ
ð1 − 2F0F2

F2
1

Þ
½1þ ðξ F2

1

4F2
0

e−mEðr−RÞÞ−1�2

¼ 1þ
φ0ω1

2ω0þ3

½1þ ðξ 1
2ω0þ3

e−mJðχ−XÞÞ−1�2 : ð42cÞ

Typically, experimental constraints on PPN parameters are
used to limit the ðω0; ~mJÞ-parameter space [7,10]. The
definition of the ω0-independent mass

~mJ ≔
ffiffiffiffiffiffiffiffiffiffiffiffiffi
2U2φ0

p
ð43Þ

is required in order to have two independent parameters
since the original mass mJ, defined in (10), depends on ω0.
But since we want to incorporate possible screening
mechanisms in extended sources, giving us the additional
parameter ξ, we consider a slightly different approach. We
define a new parameter,

α ≔
ξ

2ω0 þ 3
¼ ξ

F2
1

4F2
0

; ð44Þ

allowing us to constrain the ðα; mJÞ-parameter space.
Notice that α contains two different kinds of parameters.
First, the components of the scalar coupling functions, ω0

and F2
1=F

2
0, depend on the underlying theory of gravity

only and are the same everywhere. Second, the parameter ξ
can depend on properties of the source, as its composition.
Therefore, it can vary drastically among different sources.
There are different experimental constraints on the PPN

parameters. The most stringent one comes from measuring
the frequency shift of a radio signal sent from and to the
Cassini spacecraft while close to conjunction with the Sun,
with γ ¼ 1þ ð2.1� 2.3Þ × 10−5 at the 1σ-confidence level
[14]. The closest distance between the propagating signal
and the center of the Sun was 1.6 solar radii. We can now
use this to constrain the parameter space ðαSun; mEÞ, as
shown in Fig. 1.
The perihelion precession of Mercury gives the con-

straint j2γ − β − 1j < 3 × 10−3 [6]. Planetary ephemerides
are used to constrain jγ − 1j and jβ − 1j to the 10−5 level
[18,19]. But since the gravitational interaction does not take
place at a fixed distance from some massive body, this limit
cannot be used to constrain the distance dependent param-
eters discussed here.
Scalar theories can also be constrained by accurate

measurements of the periods of binary pulsars: if scalar
radiation is emitted, it results in a change of the orbital
period [20].
The GAIA mission launched in 2013, located at the Sun-

Earth Lagrange point L2, is expected to improve the
constraint on γ to the 10−6 level [21] via relativistic
astrometry by precisely monitoring the 3D motion of
planets and stars in our Galaxy.
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In the following subsections, we consider specific
theories of gravity and use the above formalism to calculate
their PPN parameters. The Cassini measurement can then
be used to constrain these theories. As atomic clocks
become more accurate, clock carrying satellites that orbit
the Earth will place constraints on the value of the PPN
parameters around our own planet. We will discuss such
measurements in Sec. IV.

A. Brans-Dicke theory

The simplest example and the prototype of scalar-tensor
theories is Brans-Dicke theory [22]. In the Jordan frame it is
defined to have a constant coupling ω ¼ ω0 and a vanish-
ing scalar potential, leaving the field massless, mJ ¼ 0.
Therefore, the PPN parameters will not have a distance
dependence and we have ξ ¼ 1 because no hiding mecha-
nism occurs.
In this theory, ω0 is the only parameter. With (A5)

and (A6a) we obtain the coupling function FðϕÞ ¼
F0 exp½�2ðϕ − ϕ0Þ=

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2ω0 þ 3

p �. Therefore, in the
Einstein frame, Brans-Dicke theories have an exponential
coupling function with no scalar potential term. This gives
β ¼ 1 as in general relativity and γ ¼ ðω0 þ 1Þ=ðω0 þ 2Þ.
Using the Cassini constraint on γ, one finds that ω0 >
40000 at the 2σ level.

B. Eddington-Robertson metric

Assuming that the potential vanishes U ¼ V ¼ 0 and
then solving the equations of motion yields the PPN
parameters

GJ ¼
G
φ0

�
1þ 1

2ω0 þ 3

�
¼ G

F0

�
1þ F2

1

4F2
0

�
; ð45aÞ

γ ¼ 1þ ω0

2þ ω0

¼
1 − F2

1

4F2
0

1þ F2
1

4F2
0

; ð45bÞ

β ¼ 1þ φ0ω1

ð2ω0 þ 3Þð2ω0 þ 4Þ2 ¼ 1þ
F2
1

4F2
0

ð F2
1

4F2
0

− F2

2F0
Þ

ð1þ F2
1

4F2
0

Þ2
:

ð45cÞ

Due to the absence of the potential there is no distance
dependence in bothGJ and the PPN parameters. The metric
(2) with these constant parameters was given by Eddington
and Robertson [23]. So, for fixed values of γ and β we can
invert these expressions to obtain the components of the
coupling function in the Jordan frame,

ω0 ¼ −
2γ − 1

γ − 1
; ð46aÞ

ω1 ¼ −
4ðβ − 1Þðγ þ 1Þ

φ0ðγ − 1Þ3 ; ð46bÞ

and accordingly in the Einstein frame,

F2
1

4F2
0

¼ 1 − γ

1þ γ
; ð47aÞ

F2

2F0

¼ 5 − 4β − 2γ þ γ2

1 − γ2
: ð47bÞ

C. Massive Brans-Dicke theory

Here, we solve the scalar field equation of a massive
Brans-Dicke scalar field generated by a more realistic

FIG. 1 (color online). Cassini constraint on scalar-tensor theories. The Cassini constraint γ ¼ 1þ ð2.1� 2.3Þ × 10−5 (at 1σ level)
together with Eq. (42b) and χ − XSun ¼ 0.6 solar radii ¼ 0.00279 AU are used to constrain the ðαSun; mJÞ-parameter space. The solid
lines divide the plots into regions that are excluded (probability < 5%) and that are allowed at the 2σ level and at the 1σ level,
respectively. The x axis shows the mass, i.e., the inverse range, of the scalar field in the Jordan frame in terms of inverse astronomical
units mAU ¼ 1=AU, the y axis shows αSun ¼ ξSun=ð2ω0 þ 3Þ ¼ ξSunF2

1=ð4F2
0Þ where ξSun is a parameter characteristic for the Sun.
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source than a point mass. We consider a coupling function
which is, as in the original Brans-Dicke theory, exponen-
tial in the Einstein frame and thus constant (ω ¼ ω0) in the
Jordan frame. Further, in the Einstein frame we add a
quadratic potential V ¼ V2ðϕ − ϕ0Þ2 with V2 ¼ 2mE.
This corresponds to the potential U ¼ U2ðφ − φ0Þ2 in
the Jordan frame.
For the case of a point source, constraints on massive

Brans-Dicke fields have been discussed in [7,10]. There,
the authors used the Cassini constraint on γ to limit the
ð ~mJ;ω0Þ-parameter space. Here, we extend this discussion
by replacing the point source with a more realistic density
distribution. This will allow us to determine the parameter
ξ, introduced in (41).
We consider a static spherically symmetric mass with

radius R and constant density ρE0 [i.e., ρEðrÞ ¼ ρE0 for
r < R and ρEðrÞ ¼ 0 otherwise] and we neglect the
gravitational effects of pressure. Further, we assume that
the mass is surrounded by vacuum. The equation of motion
is given by

ð∇2
r −m2

EÞϕ1ðrÞ ¼ −
F1

F0

2πGρEðrÞ; ð48Þ

which follows from (20). To solve this equation we make
use of the Green function Gð~rÞ ¼ −e−mEr=4πr, solving the
equation ð∇2

r −m2
EÞGð~rÞ ¼ δð~rÞ. Then we find the scalar

field by integrating

ϕ1ð~rÞ ¼
Z

Gðjð~rÞ − ð~sÞjÞ
�
−
F1

F0

2πGρEðsÞ
�
d3~s

¼ F1

F0

πGρE0

×
Z

π

0

Z
R

0

e−mE

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
r2þs2−2rs cos θ

p
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
r2 þ s2 − 2rs cos θ

p s2 sin θdsdθ:

ð49Þ

To obtain the exterior solution ϕext
1 ðr > RÞ, the integrand is

expanded around s=r ¼ 0, since r > s for all s. This allows
each term of the Taylor series to be integrated, giving

ϕext
1 ðr > RÞ ¼ F1

F0

πGρE0
r

e−mEr

×
X∞
k¼0

m2k
E R2kþ3

2

ð2kþ 1Þ!ð2kþ 3Þ : ð50Þ

Finally, this can be written as

ϕext
1 ðr > RÞ ¼

�
3
mER coshðmERÞ − sinhðmERÞ

R3m3
E

e−mER

�

×
F1

2F0

GME

r
e−mEðr−RÞ; ð51Þ

where in the last step we substituted ME ¼ 4π=3ρE0R3.
The interior solution ϕext

1 ðr < RÞ is obtained by splitting
the integral over s into two parts. First, we perform the
integral

R
r
0 where we can expand around s=r ¼ 0 and find

the solution analogous to the exterior solution. Second, for
the integral from

R
R
r we can expand around r=s ¼ 0.

Together, we find

ϕint
1 ðr < RÞ ¼ 3

F1

2F0

GME

R3

�
e−mEr

m2
E

ðcoshðmErÞþ sinh ðmErÞÞ

− e−mER
1þmER
m3

Er
sinh ðmErÞ

�
: ð52Þ

Notice that the exterior solution (51) precisely coincides
with the general ansatz (41) if we choose

ξ ¼ 3
mER coshðmERÞ − sinhðmERÞ

R3m3
E

e−mER: ð53Þ

The solution expressed in the Jordan frame is

φext
1 ðχ > XÞ ¼

�
3
mJX coshðmJXÞ − sinhðmJXÞ

X3m3
J

e−mJX

�

×
2

2ω0 þ 3

GMJ

χ
e−mJðχ−XÞ;

φint
1 ðχ < XÞ ¼ 6

2ω0 þ 3

GMJ

X3

×

�
e−mJχ

m2
J

ðcosh ðmJχÞ þ sinh ðmJχÞÞ

− e−mJX
1þmJX
m3

Jχ
sinh ðmJχÞ

�
: ð54Þ

Since the γ parameter (42b) depends on ξ, it depends on
the size of the source. In the massless limit mE=J → 0, ξ
approaches unity. Then, γ depends on properties of the
theory only and is independent of R. In the limit of
vanishing radius, ξ approaches unity as well, giving the
same result as for a point source.
While in [7] the interaction distance is assumed to be

r ¼ 1 AU, Hohmann et al. [10] choose r ¼ 1.6 solar radii
since this is the closest distance between the signal and the
Sun. This dramatically improves the constraints on ~mJ and
ω0. Including ξ given by (53), which accounts for the
assumption that the Sun is a sphere with constant density,
the constraint on the ð ~mJ;ω0Þ-parameter space given by the
Cassini experiment is shown in Fig. 2 (solid lines), where
we assume that r ¼ 1.6 solar radii. Comparing to the
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dashed lines which represent the analogous result for a
point source, we notice that the constraints are more
stringent if an extended source is considered. This is due
to the fact that, even though ξ < 1, the field falls off like
e−mEðr−RÞ instead of e−mEr.

D. Chameleon theory

Another example of a class of scalar-tensor theories are
chameleon theories, introduced by Khoury and Weltman
[12]. They allow a very light cosmological scalar field that
couples to matter with gravitational strength and satisfies
current observational constraints. Formulated in the Einstein
frame, chameleons have, as Brans-Dicke theory does, an
exponential coupling functionFðϕÞ ¼ expð−2 ffiffiffi

2
p

kiϕÞ. The
coupling constants ki may vary for differentmatter species i,
but for simplicity we assume that they take the same value k
for all kinds of matter. This assumption is taken in accor-
dance with general relativity where gravitation couples
universally to all matter species and thereby ensures that
theweak equivalence principle is satisfied. The presence of a
scalar field would lead to an additional (or fifth) force and
consequently, a matter-dependent scalar coupling would
lead to violations of the weak equivalence principle. A
possible model to explain such a matter-dependent scalar
coupling is given by Damour and Donoghue [24].
In contrast to Brans-Dicke, chameleons have a scalar

potential, giving the field a mass and therefore a finite
range. Typically, runaway potentials like an inverse power-
law potential V ∼ ϕ−n are considered. The interplay
between such a potential and the exponential coupling
causes the range of the scalar field to depend on the
surrounding matter density. In a dense region, like inside
the Earth or within its atmosphere, the scalar field becomes
so massive that the force corresponding to the scalar field

becomes short ranged. This hiding feature makes it very
difficult to detect the chameleon field with Earth-based
experiments. On larger scales the field is long ranged and it
might be detectable by experiments performed in space.
The exterior scalar field generated by a compact object

like a planet or a star is determined only by the very outer
layer of the object, we say that it has a thin shell. It is shown
in [12] that the exterior field is

ϕðrÞ ¼ ϕ0 − 3δ
ffiffiffi
2

p
k
GME

r
e−mEðr−RÞ; ð55Þ

where δ ≔ ΔR=R ≪ 1 is the thin shell parameter. The
chameleon field profile corresponds to the field (41) with
ξ ¼ 3δ, giving the parameter

γðrÞ ¼ 1 − 6δk2e−mEðr−RÞ

1þ 6δk2e−mEðr−RÞ : ð56Þ

This is the same result as found in [8]. Furthermore, β ¼ 1
holds since the coupling is mediated by an exponential
function.
The thin shell factor is proportional to ðϕ∞ − ϕcÞ=kΦc

where Φc ¼ GM=R is the Newtonian potential of an object
at its surface or, in other words, its compactness. ϕc and ϕ∞
are the field values inside and infinitely far away from the
compact object. They are density dependent and therefore
the thin shell parameter depends on the composition of an
object. Typically, it holds that ϕ∞ ≫ ϕc, such that approx-
imately δ ∼ ϕ∞=kΦc, allowing us to compare the ability of
testing chameleons around different compact objects in the
Solar System just by comparing their Newtonian potentials
Φc. From this point of view, the Sun is not a promising
candidate to probe chameleons due to its high compactness.
The Earth, and even better the Moon, are more appropriate.

FIG. 2 (color online). Cassini constraint on massive Brans-Dicke theory. The constraint on PPN γ given by the Cassini experiment is
used to constrain the ð ~mJ;ω0Þ-parameter space for massive Brans-Dicke theory. For this theory, the parameter ξ in the expression for γ is
given by (53). For the interaction distance we take χ − XSun ¼ 0.6 solar radii. The solid lines separate the regions which are excluded
(probability< 5%), that are allowed at the 2σ level and at the 1σ level, respectively. The dashed lines show the corresponding boundaries
between these regions for the case where the Sun is considered to be a point mass. The x axis shows the ω0-independent mass ~mJ in
terms of inverse astronomical units mAU ¼ 1=AU, the y axis shows ω0.
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The Cassini experiment can be used to constrain the
ðδSun; mEÞ-parameter space for fixed k using Eq. (56). For
k ∼ 1 and small masses for the scalar field, this constrains
δSun to the 10−6 level. For larger masses the thin-shell factor
may take much larger values. A constraint on γ in Earth’s
orbit would produce the analogous result but for the thin-
shell factor of the Earth.
It is important to keep in mind that also a satellite which

aims to probe gravity is not a test mass and can therefore
acquire a thin shell itself. This would further suppress any
GR-violating signals. Khoury and Weltman estimate that a
typical satellite does not have a thin shell if the condition
10−15 < δ < 10−7 is satisfied [12].
In [8] it is argued that chameleons are ruled out due to the

incompatibility of Solar System and cosmological con-
straints. But anyway, they provide an interesting example
of a theory predicting deviations from general relativity
which depend not only on the distance from some massive
object but also on its mass, radius and composition. It is not
only important to probe gravity to high levels of accuracy,
but also around different celestial bodies.

IV. MEASURING PPN PARAMETERS IN
EARTH’S EXTERIOR FIELD

In 2016, the Atomic Clock Ensemble in Space (ACES)
mission will place an atomic clock on the International
Space Station (ISS) that is expected to reach a fractional
frequency uncertainty of Δf=f ∼ 10−16 [15]. In the future,
space clocks will continue to improve. After ACES, there
are plans to put an optical clock on the ISS as part of the
Space Optical Clock project. The best optical clocks on
Earth have already reached accuracies of Δf=f ∼ 10−18

over an integration period of 25000 sec [25,26], and
significant progress is being made towards building optical
clocks that are mobile, more compact and more reliable.
In this section, we investigate the effect that the PPN

parameters have on a satellite that carries an atomic clock
and orbits the Earth. In this experiment, a precise clock on a
satellite broadcasts tick signals down to a terrestrial
receiving station which records their arrival times using
a local, more accurate clock. The rate at which the ticks
arrive is the redshift. This setup allows the orbit to be
tracked down to the clock accuracy. For given Keplerian
initial conditions, we simulate both the general relativistic
orbit as well as the orbit in an alternative theory of gravity
with parameters different from those of general relativity.
This solves the forward problem, and taking the difference
of these two signals provides a way to give upper limits on
how well the PPN parameters can be constrained by this type
of mission. To investigate PPN parameter predictability more
thoroughly, the full inverse problem needs to be solved,
which entails reconstructing the full four-dimensional tra-
jectory of the satellite by fitting different models to redshift
data. Mock redshift data can be generated from solutions to
the forward problem with different parameters and added

noise. We leave attempts to solve the inverse problem to
future work.
We choose an eccentric orbit like that originally pro-

posed for STE-QUEST [16]. We solve the forward problem
using the code introduced by Angélil et al. [11,27]. Note
that the effects that the PPN parameters have on the orbit
dominate, while their effects on the light path between the
emitter and the receiver are about 2 orders of magnitude
smaller [11,27].
The trajectory of a spacecraft in Earth’s external field

is found by integrating Hamilton’s equations. We have
seen that for general scalar-tensor theories the PPN param-
eters depend on the location where they are tested. If
the potential is set to zero, making the field massless, the
PPN parameters γ and β are constant (see Sec. III B). The
corresponding metric in the Jordan frame is

gtt ¼ −1þ 2GM
r

ϵ −
2G2M2

r2
ðβ − γÞϵ2; ð57aÞ

grr ¼ 1þ 2GM
r

γϵ; ð57bÞ

gθθ ¼ r2; ð57cÞ

gφφ ¼ r2 sin2 θ; ð57dÞ

where we consider nonisotropic Schwarzschild coordi-
nates. (We write r instead of χ for the radial coordinate
and drop all J indices.) This is a special case of (B4) with
AðrÞ ¼ 1; BðrÞ ¼ β and CðrÞ ¼ γ. The corresponding
Hamiltonian for a satellite’s trajectory in Earth’s external
field is obtained from (C1),

H ¼ −
p2
t

2
þ
�
−
GMp2

t

r
þ p2

r

2
þ p2

θ

2r2
þ p2

φ

2r2sin2θ

�
ϵ

þ
�
−
2G2M2p2

t

r2

�
1 −

1

2
β þ 1

2
γ

�
−
GMp2

r

r
γ

�
ϵ2

¼ −
p2
t

2
þ
�
−
GMp2

t

r
þ ~p2

2

�
ϵ

þ
�
−
2G2M2p2

t

r2

�
1 −

1

2
β þ 1

2
γ

�
−
GM
r

ð~x · ~pÞ2
r2

γ

�
ϵ2;

ð58Þ

where we change to Cartesian coordinates in the second
line. Notice that β does not show up individually, but only
in combination with γ. The equations of motion are given
by Hamilton’s equations.
We specify the orbit by choosing Keplerian initial

conditions. We position the Earth clock beneath perihelion,
the satellite’s point of closest approach. Hamilton’s equa-
tions are integrated over 4.5 orbits, once for the general
relativistic metric (γ ¼ β ¼ 1), giving the redshift signal
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zGR, and then for one where these parameters slightly differ
from unity, giving znon-GR. Taking the difference of the two
signals,

Δz ¼ zGR − znon-GR; ð59Þ

allows us to find the maximum difference in the redshift,
jΔzjmax, averaged over one orbit. Such a difference in the
redshift signal should be detectable if this residual redshift
is within the accuracy of the experiment.
There are numerous both relativistic and nonrelativistic

effects which enter the dynamics that have not been
considered here. They will need to be accurately modeled
as part of the parameter recovery procedure. Nonrelativistic
effects include atmospheric drag, solar radiation pressure
and Earth’s Newtonian multipole field. Angélil et al. (2014)
[11] calculate a host of general relativistic effects on the
satellite and the light-path trajectories. The γ and β
variations discussed in this paper correspond to modified
Schwarzschild terms in the Hamiltonian. The standard GR
frame-dragging effect, the Shapiro effect (bent light paths),
spin-squared effects on the orbit, as well as further yet
weaker effects would need to be included when searching
for deviations from non-GR values of γ and β. Effects that
come into play at different orders (refer to different blocks
in Table I in [11]) will not be degenerate with one another
due to their fundamentally different r dependence, pro-
vided the satellite trajectory is elliptical, inducing a
sufficient field strength modulation over the course of
the integration time. Further discussion on these effects
may also be found in [28].
In our approach, where we subtract the redshift signal

predicted by general relativity from that with different PPN
parameters, all these effects will cancel out in the sub-
traction process. A further approximation made is to allow
the Earth to be transparent to the tick signals. In reality,
however, certain portions of the experiment would miss
data during line-of-sight loss. This would be in part
compensated by having multiple ground stations so that
at any given point a clock on Earth will be within the
satellite’s line of sight.
We choose an eccentric orbit with semimajor axis a ¼

32090 km and eccentricity e ¼ 0.779. Such an orbit has a
perihelion distance of 7092 km, corresponding to an
altitude of about 700 km above ground. This orbit was
chosen for the original proposal of the satellite mission
STE-QUEST [16] and we take it as our reference orbit. We
then compare the general relativity orbit to the orbit with
PPN parameters differing from unity by subtracting the
redshift signal of the modified orbit from the general
relativistic orbit. Figure 3 shows the result for the choice
γ ¼ 1þ 10−5, β ¼ 1.
We find that the difference peaks around pericenter, and

builds up with every orbit. For just one orbit we can read off
the maximum difference in redshift Δz ¼ 2 × 10−15.

The absolute value of the maximum difference in the
redshift signal over one orbit, indicated by its color/grey
scale, is plotted for a range of parameters in Fig. 4. It is
evident that, theoretically, using a clock of accuracy
Δf=f ∼ 10−16 one should be able to constrain jγ − 1j∼
jβ − 1j ∼ 10−6.
Along lines with β − γ ¼ constant the absolute value of

the signal is the same. This comes from the fact that the
signal is mainly caused by the term in the Hamiltonian (58)

FIG. 3 (color online). Difference in redshift curve. The differ-
ence in the redshift signal between the GR orbit and the orbit with
γ ¼ 1þ 10−5 and β ¼ 1, Δz ¼ zGR − znon-GR, is plotted as a
function of time t (in hours).

FIG. 4 (color online). Logarithmic parameter space plot. This
parameter space plot shows the maximum difference in the
redshift between the GR orbit and that for a range of positive
values for γ and β over one orbit. The solid line corresponds to the
value 10−16. For the orbit we chose our reference orbit.
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proportional to ~β ≔ 1 − ðβ − γÞ=2, while the effect of the
one proportional to γ is negligible. Therefore, j ~β − 1j
remains the same if β and γ are interchanged, while the
sign of the difference in the redshift signal flips.
Thus, having a clock on our reference orbit would allow

to perform interesting tests of gravitational effects. It is
instructive to examine several kinds of orbits to see which
ones provide the strongest residuals. On the one hand, we
want the satellite to pass by the Earth closely, therefore
having a small pericenter distance in order to have strong
gravitational effects. On the other hand, it should be far
enough to minimize effects as inhomogeneities of the
Earth’s gravitational potential or atmospheric drag [28].
We fix the pericenter distance at d ¼ 700 km above the
ground. Then, we vary the eccentricity from a circular orbit
e ¼ 0 to a highly eccentric orbit e ¼ 0.9, or equivalently,
we vary the semimajor axis a from the pericenter distance
(circular orbit) up to 71000 km. These quantities are related
by d ¼ að1 − eÞ. In Fig. 5, the maximum difference in the
redshift signal over one orbit between general relativity and
some scalar-tensor theories with different γ ≠ 1 are shown
as a function of the eccentricity and the semimajor axis. We

FIG. 5 (color online). Redshift signal and peak width as a function of eccentricity. We compare the GR orbit to ones where
γ slightly deviates from one. While the pericenter distance is fixed at d ¼ 7100 km, i.e., about 700 km above ground, the eccentricity
e, or equivalently the semimajor axis a, is changed. The triangle, circle and square data points show the maximum difference in the
redshift signal, jΔzjmax, for one orbit. The cross data points show the full width at half maximum (FWHM) for a signal peak for
γ ¼ 1þ 10−5 and β ¼ 1. The analogous for other choices of the parameters are omitted since they would yield the same result: the
width is essentially constant for varying PPN parameters. We notice that the duration of the peak is of order 100 seconds for all
eccentricities. This is the time scale which needs to be resolved to detect possible variations of the PPN parameters from their GR
values.

FIG. 6 (color online). Lorentzian fit of a peak. The data points
show the difference in the redshift signal between a GR orbit and
γ ¼ 1þ 10−5; β ¼ 1, as a function of time (in seconds), centered
around the pericenter. A Lorentzian fðtÞ ¼ A=ð2πÞΓ½ðt − t0Þ2 þ
Γ2=4�−1 þ d is fitted, allowing to determine the full width at half
maximum.
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notice that for increasing eccentricity the magnitude of the
signal increases significantly.
Now, we investigate the widths of the peaks of the

difference in the redshift signals. The peaks are approxi-
mated by fitting a Lorentzian fðtÞ ¼ A=ð2πÞΓ½ðt − t0Þ2þ
Γ2=4�−1 þ d, an example is shown in Fig. 6. From the fit we
can easily determine the full width at half maximum. In
Fig. 5, the peak width is plotted against the eccentricity for
the case γ ¼ 1þ 10−5 and β ¼ 1. Even though the width
decreases for growing eccentricities, its value remains of
order ∼100 seconds: this is the time scale that needs to be
resolved in order to find deviations coming from nonunity
PPN parameters. While the width depends on the orbit, it is
essentially independent of the PPN parameters, as the
values change very little in the investigated range.

V. CONCLUSION

We calculate the PPN parameters γ and β for scalar-
tensor theories formulated in the Einstein frame for the case
of a pointlike source. This extends the discussion of such
theories in the Jordan frame given in [10]. To discuss tests
of gravitation in the vicinity of more realistic sources we
introduce a simple formalism which can take into account
effects arising from the finite size of the source. We use the
Cassini limit on PPN γ to put constraints on this formalism.
In particular, we update the constraints on the parameter
space of massive Brans-Dicke scalar fields by replacing the
assumption of a point source with that of a constant-density
sphere. This provides more stringent constraints since the
proximity to the source is increased due to the extended
radius of the object.
We emphasize that the presence of a scalar potential

makes the field finitely ranged and therefore it is crucial
to perform tests of gravitation at different distances.
Additionally, performing experiments around different
sources is particularly interesting because the exterior field
profile is likely to depend on properties of an object like its
compactness or its composition.
In the second part of the paper we discuss the possibility

of testing scalar-tensor theories in Earth orbit using atomic
clocks. Their rapid development and the current interest in
satellite missions carrying such clocks opens the possibility
to perform comprehensive tests of gravitation within the
next decade. Such missions will provide constraints on the
PPN parameters in the vicinity of the Earth. We calculate
the relativistic effects on the satellite orbit coming from
non-GR parameters γ and β. High-performance atomic
clocks are sensitive to the associated change in the redshift
signal. We find that with currently available clock tech-
nology and reasonable choices of spacecraft orbits one
should be able to constrain jγ − 1j ∼ jβ − 1j ∼ 10−6. Our
estimates provide upper limits to PPN parameters that
could be measured by a clock in orbit. However, in order to
provide more definite answers on possible constraints, one
would have to solve the full inverse problem, where the

relevant parameters are reconstructed from a redshift signal
that contains all relevant effects. We show that a PPN
parameter varying from one produces a change in the
redshift signal, peaking around pericenter of the eccentric
orbit. While the magnitude of the peak is determined by
both the value of the parameters and the chosen orbit, its
width, and therefore the time scale which needs to be
resolved, depends only on the orbit specifications.
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APPENDIX A: CONFORMAL
TRANSFORMATION BETWEEN
JORDAN AND EINSTEIN FRAME

In this section, we discuss the conformal transformation
relating the metrics in the Jordan and the Einstein frame.
Starting in the Jordan frame (the converse is equivalent), we
define the Einstein frame metric by gEμν ≔ φgJμν. For the
square root of the trace of the metric and the Ricci scalars it
holds

ffiffiffiffiffiffiffiffi−gJ
p ¼ φ−2 ffiffiffiffiffiffiffiffi−gE

p
and RJ ¼ φ½RE þ 6∇2

E lnφ
1=2−

6ð∇E lnφ1=2Þ2�, respectively [29]. Plugging this into the
Jordan frame action (4) and integrating by parts yields

S ¼
Z

d4x
ffiffiffiffiffiffiffiffi
−gE

p M2
Pl

2

�
RE −

2ωþ 3

2φ2
ð∇EφÞ2 − V

�

þ
Z

d4x
ffiffiffiffiffiffiffiffi
−gE

p
LE
mðΦm;φ−1gEμνÞ; ðA1Þ

where we defined V ≔ φ−2U and LE
m ≔ φ−2LJ

m. To bring
this into the desired form (6) we define a new scalar field ϕ
by demanding

−2ð∇EϕÞ2 ¼ −
2ωþ 3

2φ2
ð∇EφÞ2; ðA2Þ

implying �∂ϕ
∂φ

�
2

¼ 2ωþ 3

4φ2
: ðA3Þ

Defining the Einstein frame coupling function by F ≔ φ,
we obtain �∂F

∂ϕ
�

2

¼ 4F2

2ωþ 3
: ðA4Þ

This requires ω > −3=2 everywhere, and therefore
ω0 > −3=2. Solving for ω yields

ω ¼ 2F2

�∂F
∂ϕ

�
−2

−
3

2
: ðA5Þ
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Using F ¼ φ and expanding both expressions in powers
of ϵ,

F ¼ F0 þ F1ðϕ − ϕ0Þ þ F2ðϕ − ϕ0Þ2 ðA6aÞ

φ ¼ φ0 þ φ1ϵþ φ2ϵ
2; ðA6bÞ

one obtains

φ0 ¼ F0; φ1 ¼ F1ϕ1; φ2 ¼ F2ϕ
2
1 þ F1ϕ2;

ϕ1 ¼
1

F1

φ1; ϕ2 ¼
1

F1

φ2 −
F2

F3
1

φ2
1: ðA7Þ

The relations between the coefficients of the couplings in
the two frames are given by

ω0 ¼
2F2

0

F2
1

−
3

2
; ω1 ¼

4F0

F2
1

−
8F2

0F2

F4
1

;

F0 ¼ φ0; F1 ¼ � 2φ0ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2ω0 þ 3

p ;

F2 ¼
2φ0

2ω0 þ 3

�
1 −

φ0ω1

2ω0 þ 3

�
; ðA8Þ

and for the potentials, using U ¼ F2V, one finds

U2 ¼
F2
0

F2
1

V2; U3 ¼
2F0

F2
1

�
1 −

F0F2

F2
1

�
V2 þ

F2
0

F3
1

V3;

V2 ¼
4

2ω0 þ 3
U2;

V3 ¼ � 8

ð2ω0 þ 3Þ3=2
�
−
�
1þ φ0ω1

2ω0 þ 3

�
U2 þ φ0U3

�
:

ðA9Þ

The coordinates in the two frames are related by tJ ¼
tE=

ffiffiffiffiffiffi
F0

p
and χ ¼ r=

ffiffiffiffiffiffi
F0

p
. Note there is a� ambiguity when

going from the Jordan to the Einstein frame: two theories in
the Einstein frame related by F1; V3↔ − F1;−V3 corre-
spond to the same theory in the Jordan frame.

APPENDIX B: METRIC IN NONISOTROPIC
COORDINATES

The PPN parameters are defined by introducing
parameters to the individual terms of the expanded
Schwarzschild metric written in isotropic coordinates.
But often it is useful to consider the metric expressed
in nonisotropic coordinates. This is achieved by defining
a new radial coordinate r while the other coordinates
remain the same. (Do not confuse the notion of r with
the radial coordinate in the Einstein frame used earlier
on.) We write the metric in isotropic coordinates in the
general form:

gtt ¼ −
�
1 −

2GM
χ

AðχÞϵþ 2G2M2

χ2
BðχÞϵ2

�
þOðϵ3Þ;

ðB1aÞ

gχχ ¼ 1þ 2GM
χ

CðχÞϵþOðϵ2Þ; ðB1bÞ

gθθ ¼
�
1þ 2GM

χ
CðχÞϵ

�
χ2 þOðϵ2Þ; ðB1cÞ

gφφ ¼
�
1þ 2GM

χ
CðχÞϵ

�
χ2 sin2 θ þOðϵ2Þ: ðB1dÞ

By introducing a new radial coordinate

r ≔ χ

�
1þ 2GM

4χ
CðχÞϵ

�
2

; ðB2Þ

which can be inverted to (outside the Schwarzschild
radius)

χ ¼ r

�
1

2
−
GM
2r

CðrÞϵþ 1

2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 −

2GM
r

CðrÞϵ
r �

; ðB3Þ

we obtain

gtt ¼ −1þ 2GM
r

AðrÞϵ − 2G2M2

r2
½BðrÞ − AðrÞCðrÞ�ϵ2;

ðB4aÞ

grr ¼ 1þ 2GM
r

½CðrÞ − C0ðrÞr�ϵ; ðB4bÞ

gθθ ¼ r2; ðB4cÞ

gφφ ¼ r2 sin2 θ: ðB4dÞ

Here, we used that gχχdχ2 ¼ grrdr2. Transforming to
Cartesian coordinates, the metric becomes

gtt ¼ −1þ 2GM
r

AðrÞϵ − 2G2M2

r2
½BðrÞ − AðrÞCðrÞ�ϵ2;

ðB5aÞ

gxixj ¼ δij þ
2GM
r

½CðrÞ − C0ðrÞr� xixj
r2

ϵ; ðB5bÞ

where we used FðrÞdr2 þ r2dθ2 þ r2 sin2 θdφ2 ¼ d~x2þ
½FðrÞ − 1�ð~x=rd~xÞ2.

APPENDIX C: HAMILTONIAN

The Hamiltonian is given byH ¼ 1=2gμνpμpν, where pμ

is the canonical four-momentum. Here, we consider the
metric (B4), which we expand in powers of ϵ ∼GM=r. The
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orbital velocity of a nonrelativistic particle in a weak
gravitational field is v ≈

ffiffiffiffiffiffiffiffiffiffiffiffiffi
GM=r

p
∼ ϵ1=2, requiring

pr; pθ=r; pφ=ðr sin θÞ ∼ v ∼ ϵ1=2. Plugging the inverse
metric into the formula for the Hamiltonian and assigning
the terms to the appropriate orders in ϵ yields

H ¼ −
p2
t

2
þ
h
−
GMp2

t

r
AðrÞ þ p2

r

2
þ p2

θ

2r2
þ p2

φ

2r2sin2θ

i
ϵ

þ
h
−
2G2M2p2

t

r2

�
AðrÞ2 − 1

2
BðrÞ þ 1

2
AðrÞCðrÞ

�

−
GMp2

r

r
ðCðrÞ − rC0ðrÞÞ

i
ϵ2: ðC1Þ

From this it is evident why we drop all terms in the
spatial metric components that are second and higher
order in ϵ: they contribute to the Hamiltonian at third and
higher orders. Notice that the expansion of the
Hamiltonian for a signal propagating in the same space-
time looks different, since, even though we start with the
same Hamiltonian, some terms contribute at different
orders. This comes from the fact that photons travel with
the speed of light and therefore, pt; pr; pθ=r and
pφ=ðr sin θÞ are of order 1. The equations of motion
are given by Hamilton’s equations dpμ=dλ ¼ −∂H=∂xμ
and dxμ=dλ ¼ ∂H=∂pμ.
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