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We propose an association between the phase-space mixing level of a self-gravitating system and the
indistinguishability of its constituents (stars or dark matter particles). This represents a refinement in the
study of systems exhibiting incomplete violent relaxation. Within a combinatorial analysis similar to that
of Lynden-Bell, we make use of this association to obtain a distribution function that deviates from the
Maxwell-Boltzmann distribution, increasing its slope for high energies. Considering the smallness of the
occupation numbers for large distances from the center of the system, we apply a correction to Stirling’s
approximation which increases the distribution slope also for low energies. The distribution function thus
obtained presents some resemblance to the “S” shape of distributions associated with cuspy density profiles
(as compared to the distribution function obtained from the Einasto profile), although it is not quite able
to produce sharp cusps. We also argue how the association between mixing level and indistinguishability
can provide a physical meaning to the assumption of particle-permutation symmetry in the N-particle
distribution function, when it is used to derive the one-particle Vlasov equation, which raises doubts about
the validity of this equation during violent relaxation.

DOI: 10.1103/PhysRevD.90.123004 PACS numbers: 98.62.Ck, 98.62.Dm, 98.62.Gq, 98.65.Cw

I. INTRODUCTION

Self-gravitating systems are known to present conceptual
challenges for their description in terms of thermodynamics
and statistical mechanics, e.g. nonextensivity, negative heat
capacity and the inequivalence of (or even the impossibility
of defining) canonical and microcanonical ensembles—see
[1,2]. The main source of these difficulties lies in the long-
range nature of the gravitational interaction: differently
from an ideal molecular gas in which particles remain in
uniform motion only modified by close encounters, in self-
gravitating systems the particles (e.g. stars or dark matter
constituents) are always interacting with the gravitational
field collectively produced. Also, differently from charged
plasmas, in self-gravitating systems the interaction is only
attractive and there is no shortening of the interaction
range such as the Debye shielding. As a consequence of
gravitational instability, density contrasts tend to increase,
leading to the appearance of nonlinear phenomena that
cannot be treated perturbatively.
From the observational point of view, the common

shape of many elliptical galaxies seems to represent a final

equilibrium configuration, despite the fact that the relax-
ation time for two-body processes is larger than the age of
the Universe [2]. The process that can explain this relaxed
state is violent relaxation: particles attain a quasistationary
state by interacting with the violently changing gravita-
tional field during the first stages of structure collapse [3,4].
The time scale for this process is the crossing time τcr,
the time necessary for a particle to cross the galaxy, which
is much lower than τcol, the time scale of relaxation by
two-body, or collisional, processes [5]. Thus, on time scales
smaller than τco1, self-gravitating systems can be treated as
collisionless, i.e. without two-body interactions, in such a
way that a test particle can be considered as only interacting
with the collectively generated mean gravitational field.
N-body simulations also provide important information

about the stationary state achieved by these systems after
the collapse. For example the cuspy, “universal” density
profiles of dark matter halos [6] are well fit by simple
functions, such as the Navarro-Frenk-White (NFW) or
Einasto profiles [7–9]—see Appendix A. Interestingly,
the observed projected density profiles of galaxy clusters
measured via gravitational lensing seem to be well fit by
these same functions [10,11]. For galaxies, the situation is
more complicated, as some of them (the cored cases) are*lberaldo@if.usp.br
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not well fit by these functions, presumably due to the
influence of baryonic components such as stars, gas,
supernovae explosions etc. [12], or because of a possible
dark matter self-interaction [13]. This is the so-called cusp-
core problem.
Despite the success of numerical simulations in repro-

ducing some properties of the observed objects, a clear
explanation of the process driving a collisionless self-
gravitating system to equilibrium is lacking. Even globular
clusters, classically viewed as being characterized by
collisional processes, seem to present evidences of colli-
sionless dynamics [14], which are yet to be clearly under-
stood. See [5,15–17] for some important papers on the
subject, [18,19] for reviews and [20,21] for recent models.
For collisionless systems, it is usually assumed that the

evolution of the one-particle distribution function fðx; v; tÞ
is governed by the Vlasov (or collisionless Boltzmann)
equation [see [2,22]]

df
dt

¼ ∂f
∂t þ v ·

∂f
∂r −∇ϕ ·

∂f
∂v ¼ 0; ð1Þ

where ϕ is the self-consistent, collectively generated
gravitational potential.
As we discuss in Sec. II, in a study of violent relaxation

processes [5], Lynden-Bell translates the constraint pro-
vided by this equation into an exclusion principle when
maximizing the number of configurations (complexions)
compatible with the conservation of energy and total mass.
In this procedure, it is assumed that the system is well
mixed, i.e. that each particle1 has equal a priori probability
to be in any region of phase-space. This hypothesis is
known to be appropriate e.g. for ideal gases, for each
molecule is able to assume any position and velocity due to
the highly random motions provided by collisions with
other molecules. For instance, in a gas in normal conditions
of pressure and temperature, each molecule suffers ≈105

collisions per second. In some sense, we could say that each
molecule approximately occupies all available phase-space
in a relatively small time scale. This is the reason why one
can assume that particles have equal a priori probability
to be in any region of phase-space, thus allowing the
equivalence between temporal and phase-space averages,
the so-called Ergodic Hypothesis [23]. However, there are
situations in which such mixing is not complete (see
[16,24] and references therein), in the sense that the
particles are not able to visit all regions of phase-space,
particularly in self-gravitating systems at the end of violent
relaxation. This exposes the need for a model that deals
with intermediate mixing levels.
In thiswork,we propose a connection between themixing

level and the concept of indistinguishability, and study the

implications of this association for the quasistationary states
generated by the violent relaxation process. By “mixing”we
donotmean “phasemixing,”which is a process associated to
deterministic orbits in an integrable potential. Instead, we
refer to “chaotic mixing,” i.e. that related to the exponential
divergence of stochastic trajectories, that allows each
particle to explore a large region of phase-space and
consequently different particles to visit the same regions
of phase-space. See [25] for an overview of this distinction
and for references to important works on these lines.
Although we did not make this quantitative analysis, it
would be possible to estimate this mixing level in N-body
simulations comparing temporal and phase-space averages
in different regions of phase-space, for example. As we will
see in Sec. IV, in this work we used a very simplified
criterion to classify well mixed and poorly mixed regions.
We start in Sec. II by describing how to obtain theLynden-

Bell distribution from combinatorial arguments, making
explicit the role of the distinguishability. In Sec. III we
discuss the concept of indistinguishability and present a
criterion to define it in terms of mixing. In Sec. IV we
determine a new distribution function obtained according to
this criterion and calculate the density profile ρðrÞ generated
by this distribution. Similar to the Isothermal Sphere, this
density profile yields infinite mass due to scaling in the
external regions. As a solution to this problem we take into
account the smallness of occupation numbers in this region,
as proposed by [20]. In Sec. V we introduce this correction
and present the resulting distribution function and density
profile. In Sec. VI we show how the criterion proposed gives
a physical interpretation to the hypothesis of permutation
symmetry of the N-particle distribution function, which is
assumed in deducing the Vlasov equation by means of
the Bogoliubov-Born-Green-Kirkwood-Yvon (BBGKY)
hierarchy. We argue that this symmetry hypothesis, and
consequently the Vlasov equation, may not be valid during
violent relaxation. Finally, in Sec. VII we summarize our
results and discuss possible tests of this model.

II. LYNDEN-BELL DISTRIBUTION FUNCTION

The most important feature of Lynden-Bell’s statistical
analysis of violent relaxation is the introduction of an
exclusion principle due to the constraint imposed by the
Vlasov equation, Eq. (1). Since in this case the phase-space
density is constant, it is argued that each particle occupies
its own region in phase-space (its own micro-cell), without
superposition with other regions.
In order to obtain the distribution function from a

combinatorial analysis, we divide the phase-space into J
macro-cells [see [5,15]]. Each macro-cell i is divided into νi
micro-cells, of which ni are occupied by one particle and
the other νi − ni micro-cells are empty. For simplicity, we
consider that all the particles have the same mass m. In the
case of the simplest models of dark matter particles, this is
exactly what is expected, but in the case of stars in globular

1There is an interesting discussion regarding the use of
particles or phase elements (exploring the fluid analogy)—see
[15]. Here we will just refer to particles.
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clusters or galaxies a mass distribution could bring some
differences—see [5,15]. In this way the total mass of the
system is

M ¼
XJ
i¼1

nim ¼ Nm; ð2Þ

where N is the total number of particles. The objective of
the following calculation is to derive the distribution
function F, that represents the average number of particles
per state (F ∝ ni=νi), maximizing the number of complex-
ions, i.e. the number of micro-sates WðfnigÞ compatible
with the macroscopic constraints of energy and mass
conservation. The total energy is given by

H ¼
XJ
i¼1

nim

�
1

2
jvij2 þ

1

2
ϕi

�
; ð3Þ

where

ϕi ¼ −
XJ

j¼1;j≠i

Gmnj
jxi − xjj

ð4Þ

is the potential in the ith macro-cell, with position and
velocity represented by xi and vi, respectively. The
calculation of W involves two steps: determining the
number of possible configurations inside a macro-cell
and the number of possibilities for exchanges between
different macro-cells.
Inside the ith macro-cell, the number of ways to organize

ni distinguishable particles in νi available micro-cells, but
no more than one particle per micro-cell, is

ωi ¼
νi!

ðνi − niÞ!
: ð5Þ

The same happens for all macro-cells i ¼ 1; 2;…; J, and
so the total number of possibilities for exchanges inside
macro-cells is ω1 · ω2 � � �ωJ.
For exchanges between different macro-cells, the num-

ber of ways to organize N distinguishable particles in the J
macro-cells, keeping fixed the number ni of particles in
each macro-cell is

N J ¼
N!

n1! · n2! � � � nJ!
; ð6Þ

and the total number of complexions is

WðfnigÞ ¼
�

N!

n1!…nJ!

��
ν1!

ðν1 − n1Þ!
…

νJ!

ðνJ − nJÞ!
�
: ð7Þ

To obtain the equilibrium configuration, we maximize the
entropy S ¼ lnW with respect to the occupation numbers
ni, introducing the constraints of mass and energy con-
servation with Lagrange multipliers λ and η, which implies

δ lnW − λδM − ηδH ¼ 0: ð8Þ

Now we use Stirling’s approximation

ln n! ≈ nðln n − 1Þ; ð9Þ
which is valid for n ≫ 1. Note, however, that in the external
regions of self-gravitating systems, where the density goes
to zero, this approximation is not expected to be valid, as
noticed by [20]. Neglecting momentarily this point and
using Eq. (9), we obtain

ln

�
νi − ni
ni

�
¼ λmþ ηmEi; ð10Þ

where

Ei ¼
1

2
jvij2 þ ϕi < 0 ð11Þ

is the energy per unit mass of the ith macro-cell. Finally,
we obtain the Lynden-Bell distribution function

ni
νi

∝
fðεiÞ
f0

¼ FðεiÞ ¼
1

1þ e−βðεi−μÞ
; ð12Þ

where f0 is the fine-grained phase-space density, kept
constant during all violent relaxation process due to the
constraint of Vlasov equation. This distribution is identical
to the Fermi-Dirac distribution, despite the use of distin-
guishable particles. In the above expression, we have
defined dimensionless energies as:

εi ¼ −
Ei

jϕi0j
¼ φi −

1

2
u2
i ; ð13Þ

where φi ¼ −ϕi=jϕi0j is the dimensionless gravitational
potential, ui ¼ vi=jϕi0j1=2 is the dimensionless velocity,
ϕi0 ¼ ϕið0Þ is the central potential and finally β ¼ ηmjϕi0j
and μ ¼ λ=ηjϕi0j are dimensionless parameters. The
parameter μ, analogous to the chemical potential, deter-
mines the position of the transition between two-regimes of
small and high occupation numbers (degenerate situation).
The parameter β, analogous to the temperature, determines
how abrupt this transition is.
If, in order to guarantee the dynamical exclusion

principle, we require that ni=νi ≪ 1, or FðεiÞ ≪ 1, we
see that the distribution function (12) tends to the Maxwell-
Boltzmann case FðεÞ ¼ exp½βðε − μÞ�, that would be
obtained if we had not introduced the exclusion principle.
Besides this conceptual problem, we know that the
Maxwell-Boltzmann distribution yields an infinite mass
system, which contradicts the assumption of finite mass
[15]. Another criticism to Lynden-Bell’s approach is that it
assumes equiprobability of all micro-states, but as violent
relaxation occurs in such a short time scale, possibly there
is not enough time to complete the mixing process (see
[16,24] and references therein).
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Let us return to the calculation of W, but now treating
particles as indistinguishable [26]. The number of ways to
organize ni indistinguishable particles in νi micro-cells,
instead of Eq. (5), is

ωi ¼
νi!

ni!ðνi − niÞ!
: ð14Þ

Now with indistinguishable particles, the exchange
between different macro-cells, keeping the number ni of
particles per macro-cell fixed, does not produce different
micro-states and now we have N J ¼ 1 ⇒

WðfnigÞ ¼
ν1!

n1!ðν1 − n1Þ!
� � � νJ!

nJ!ðνJ − nJÞ!
: ð15Þ

But since the only difference from Eq. (7) obtained with
distinguishable particles is the factor N!, and for the
maximization only the occupation numbers ni are relevant,
the final distribution function is exactly the same as Eq. (12).
At this point, one can argue that the above results

indicate the unimportance of (in)distinguishability in the
derivation of the distribution function. However, in Sec. IV
we propose that indistinguishability must be associated to
the mixing level of the system. According to this criterion,
the scheme of [26] seems consistent because it assumes
indistinguishable particles and complete mixing (equiprob-
ability of states). On the other hand, the scheme of [5]
seems inconsistent, because it assumes equiprobability
while taking distinguishable particles.

III. PARTICLE INDISTINGUISHABILITY

As discussed in the previous section, in the statistical
interpretation of entropy formulated by Boltzmann, the
most probable thermodynamic states (macro-states) are
those with the largest number of micro-states compatible
with the constraints of the problem, i.e. the largest number
of complexionsW. In counting these states, the distinguish-
ability is conceptually important because one needs to
know whether the permutation between two particles
characterizes a new micro-state. The particles are called
distinguishable when this permutation creates a new micro-
state and indistinguishable when the permutation does not
create a new micro-state.
According to the standard picture, as found in textbooks

[27,28], identical particles must be treated as indistinguish-
able in the context of quantum mechanics (due to the
superposition of wave functions) and as distinguishable in
the context of classical mechanics [see [27]]. In this respect,
the ideal gas was originally treated as being constituted of
distinguishable particles. Later it was realized that this
assumption leads to undesirable consequences such as the
Gibbs paradox (see Appendix B) and required an ad hoc
correction equivalent to treating the system as consisting of
indistinguishable particles. With the advent of quantum

mechanics, this solution has been considered definitive,
because the gas particles should ultimately have quantum
behavior and thus be indistinguishable [27]. On the other
hand, in the ideal crystal model, particles are treated as
distinguishable [27,29]. The common justification is that
each particle is confined to a well-defined region of space,
oscillating around an equilibrium point without super-
posing the wave functions of neighbor molecules.
Thus, it is commonly accepted that indistinguishability is

only justified in the presence of quantum effects and that in
the absence of such effects, particles have to be treated as
distinguishable. However, it has been shown many years
ago that it is perfectly possible to formulate a statistical
mechanics of indistinguishable particles in the context of
classical mechanics [30,31]. Also, it is intriguing that when
studying colloids (systems composed of particles of inter-
mediate size between large molecules and small grains in
suspension, i.e. macroscopic particles), the use of standard
expressions for the entropy with the assumption of dis-
tinguishable particles leads to the same conceptual contra-
dictions of the ideal gas of distinguishable particles [32].
Therefore, a universal criterion for defining particle (in)

distinguishability does not seem to be a trivial issue
[see [33]]. Before presenting our proposed criterion, we
note that in the study of N-body dynamical systems it is
common to observe the presence of separated regions
(“islands”) of phase-space inside which particles are mixed,
i.e. continuously filling the phase-space with stochastic
trajectories, but not mixed to particles in other islands [23].
With this picture in mind, we propose that particles

in a mixed region of phase-space must be treated as
indistinguishable among themselves, but distinguishable
from particles in a different island. This criterion has some
similarity with that discussed by [34], according to which
the kind of permutations that are important to distinguish-
ability are not mere changes of index, but those that can
really (physically) be performed. In this sense, the permu-
tation of two identical particles in a region of phase-space
accessible to both does not create a new micro-state, thus
particles should be treated as indistinguishable. However, if
these particles are each one in a different region of phase-
space, mutually inaccessible to each other, a permutation
represents a new micro-state and particles should be treated
as distinguishable.
Contrary to the standard scenario, the criterion proposed

here allows us to treat systems (under certain circum-
stances) as composed by indistinguishable particles even if
these components are macroscopic objects like colloidal
particles or stars.2 The relation between this proposed
criterion and the incompleteness of violent relaxation will

2It is worth mentioning that Saslaw [35], 45 years ago, had also
discussed the possibility of a parametrization of levels of
distinguishability in gravitational systems, but with an approach
different from ours.
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be discussed in the next section, where we determine the
resulting distribution function. In Sec. VI we apply this
reasoning to argue that the Vlasov equation may not be
valid during violent relaxation.

IV. PARTIALLY MIXED DISTRIBUTION
FUNCTIONS

There are evidences that the violent relaxation process in
self-gravitating systems is not able to produce full mixing
in phase-space [19,24,36,37], i.e. particles cannot access all
possible micro-states before the achievement of a stationary
state. With this in mind and following the association
discussed in Sec. III, we make a combinatorial analysis
similar to Lynden-Bell’s scheme but treating particles as
indistinguishable for exchanges inside well mixed regions
(in phase-space), but distinguishable for exchanges
between disconnected regions, i.e. not mixed together.
Using numerical simulations, [38] have concluded that

during violent relaxation, despite particles forgetting their
initial positions and velocities, the ordering of the particles
energies is approximately conserved during the evolution
of the system. In some sense, this is equivalent to particles
with similar energies being mixed among them but not with
particles of different energies. Since the energy is defined
in a coarse-grained sense for each macro-cell, Eq. (11),
we use the criterion proposed here to treat particles as
indistinguishable for exchanges inside a macro-cell but
distinguishable for exchanges between macro-cells. A more
precise classification could be done defining some index
measuring how randomic is the energy ranking in respect
to the initial energies. This index could be monitored in
N-body simulations, but this is out of the scope of the
present work.
In our analysis, we do not use the Vlasov equation

as a constraint translated into an exclusion principle as
done by Lynden-Bell. The first reason for this is the
theoretical problem already discussed in Sec. II: requiring
that FðεiÞ ≪ 1—in order to guarantee the exclusion
principle—leads to a Maxwell-Boltzmann distribution,
which is exactly what would be obtained without the
exclusion principle. The second reason is due to the
possible nonvalidity of the Vlasov equation during violent
relaxation, as discussed in Sec. VI.
The distribution function is calculated as follows: the

number of ways to organize ni indistinguishable particles
inside a macro-cell allowing cohabitation in the νi micro-
cells is given by

ωi ¼
ðni þ νi − 1Þ!
ni!ðνi − 1Þ! ; ð16Þ

which is the same factor as in the Bose-Einstein distribu-
tion. Together with expression (6) for exchanges of dis-
tinguishable particles between macro-cells, and neglecting
unity terms, the number of complexions results

WðfnigÞ ¼
�

N!

ðn1!Þ2 � � � ðnJ!Þ2
��ðn1 þ ν1Þ!

ðν1Þ!
� � � ðnJ þ νJÞ!

ðνJÞ!
�
:

ð17Þ

Now following the same procedures as before and maxi-
mizing lnW subject to energy and mass conservation,
instead of Eq. (10), we obtain

ln

�
νi þ ni
n2i

�
¼ λmþ ηmEi; ð18Þ

from which we finally have:

FðεÞ ¼ 1

2
eβðε−μÞ−kð

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ 4e−βðε−μÞþk

p
þ 1Þ; ð19Þ

where k ¼ ln νi. Note that, differently from the Lynden-Bell
or Maxwell-Boltzmann, this distribution function depends
on the number νi of micro-cells accessible inside each
macro-cell. In principle, we could suppose that this number
has some dependence on energy, but here we treat it as a
constant, being a parameter degenerated with β and μ.3

This distribution function is shown as the thick blue lines
in Fig. 1 for μ ¼ 0.5, β ¼ ð10; 15Þ and k ¼ 0. We see
that it approaches the Maxwell-Boltzmann distribution
in the region ε > μ, which represents the low velocity
regime [see Eq. (13)]. On the other hand, for ε≲ μ (high
velocities), we have FðεÞ ∝ exp½1

2
βðε − μÞ�, which repre-

sents another Maxwell-Boltzmann distribution with twice
the original “temperature.”
Having determined the distribution function FðεÞ,

Eq. (19), we can now calculate the density profiles ρðrÞ
of spherically symmetric and isotropic structures generated
by the model. In order to do that, we define a dimensionless
distance from the center x ¼ r=a, a density profile
~ρ ¼ ρ=ðf0jϕ0j3=2Þ and the constant A ¼ 4πG

ffiffiffiffiffiffiffiffijϕ0j
p

a2f0,
where a is a scale parameter and G is the gravitational
constant. In these units, we have

~ρðφÞ ¼ 4π

Z
φ

−∞
FðεÞ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2ðφ − εÞ

p
dε: ð20Þ

With this relation, we solve Poisson equation
ð∇2φ ¼ −A~ρÞ to determine φðxÞ and consequently ~ρðxÞ.
Supposing spherical symmetry, this equation reads

d2φ
dx2

þ 2

x
dφ
dx

¼ −A~ρðφÞ: ð21Þ

We numerically solve this equation with a 4th order Runge-
Kutta algorithm imposing the conditions φð0Þ ¼ 1 and
dφð0Þ=dx ¼ 0 and fixing A ¼ 10. The results are shown in

3From now on, for simplicity we omit the indices in the
variables and parameters of the distribution function.
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Fig. 2, with the density profiles normalized by their values
at x ¼ 0.1.
We see that our model generates a density profile similar

to that of the Isothermal Sphere generated by the Maxwell-
Boltzmann distribution: it has a core and it oscillates
around ∝ x−2 in the external regions. This can be more
clearly seen in Fig. 3, that shows the density slope
γðxÞ ¼ −d lnðρÞ=d lnðxÞ. As is well known, a density
profile varying as ∝ x−2 in the external region generates
an infinite mass distribution, in contradiction with the
initial constraint of finite mass, and our model is not able,
per se, to solve this problem. Instead, we need an extra
ingredient related to a correction for the smallness of
occupation numbers in the external region, which is
discussed in the next section.

Although not used in the rest of the paper, we also
consider the case of introducing an exclusion principle,
since it can be tested in other applications. The number
of ways to organize indistinguishable particles inside a
macro-cell, preventing co-habitation of micro-cells, is
given by expression (14). Together with expression (6)
for the number of ways to exchange distinguishable
particles between macro-cells, it results in

WðfnigÞ ¼
�

N!

ðn1!Þ2 � � � ðnJ!Þ2
��

ν1!

ðν1 − n1Þ!
� � � νJ!

ðνJ − nJÞ!
�
:

ð22Þ
Following the same procedures as before, we obtain

ln

�
νi − ni
n2i

�
¼ λmþ ηmEi; ð23Þ

from which results

FðεÞ ¼ 1

2
eβðε−μÞ−k

� ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ 4e−βðε−μÞþk

p
− 1

�
: ð24Þ

It is interesting to note that, as in Fermi-Dirac versus
Bose-Einstein distributions, the only difference between
Eqs. (19) and (24) is a � sign.

V. CORRECTION FOR SMALL
OCCUPATION NUMBERS

In the external regions, as the density profile goes to
zero, the occupation numbers assume small values, invali-
dating the use of the Stirling’s approximation, Eq. (9), in
deriving the distribution function. With this in mind, [20]
proposed a correction that when applied to the Maxwell-
Boltzmann case, gives rise to a distribution function
identical to that of King models [4], which goes smoothly
to zero as ε approaches a free parameter ε0.

x-310 -210 -110 1

0.
1

ρ∼
(x

)/
ρ∼

-410

-310

-210

-110

1

10

210

Partially mixed

Maxwell-Boltzmann

FIG. 2 (color online). Density profiles generated by our model
(thick blue), in comparison with the Isothermal Sphere generated
by the Maxwell-Boltzmann distribution (thin green). Values of
parameters are the same as in Fig. 1.

x-310 -210 -110 1

)/
d 

ln
 (

r)
ρ∼

 =
 -

d 
ln

 (
γ

0

0.5

1

1.5

2

2.5

3

3.5

4
Partially mixed

Maxwell-Boltzmann

FIG. 3 (color online). Density slope of the model proposed here
(thick blue lines) in comparison with that generated by the
Maxwell-Boltzmann distribution (thin green lines). The slope
goes to 2 in the external regions, what produces an infinite mass.
Parameters as in Fig. 1.

ε0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9

)ε
F

(

-410

-310

-210

-110

1

10

210

310

410

Partially mixed

Maxwell-Boltzmann

FIG. 1 (color online). Distribution function proposed in this
work, Eq. (19) (thick blue), in comparison with the Maxwell-
Boltzmann distribution (thin green). The proposed distribution
matches the Maxwell-Boltzmann for ε > μ, but deviates to ano-
ther Maxwell-Boltzmann with twice the original “temperature”
for ε ≲ μ. All curves are for μ ¼ 0.5. Continuous curves are for
β ¼ 15 and dashed curves for β ¼ 10.
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The maximization procedure done in Sec. II can be
represented identifying n! ¼ Γðnþ 1Þ and remembering
the definition of the digamma function ψðnÞ ¼ d lnΓ=dn.
The Stirling’s approximation, Eq. (9), corresponds to
ψðnþ 1Þ ≈ ln n and the correction proposed by [20] is
given by

ψðnþ 1Þ ≈ lnðnþ e−γÞ; ð25Þ
where γ ¼ −ψð1Þ ≈ 0.57721566 is Euler’s constant. This
approximation turns out to be excellent, even for very small
numbers—see Fig. 1 of [20].
In fact, if we take this correction for the Maxwell-

Boltzmann distribution, as done by [20], we obtain

ln
�

νi
ni þ e−γ

�
¼ λmþ ηmEi; ð26Þ

which implies that

FðεÞ ¼ ½eβðε−μÞ − e−k−γ�: ð27Þ
As FðεÞ necessarily goes to zero for some energy, we see
that the correction for small numbers already introduces a
dependence on νi ¼ ek, even in the Maxwell-Boltzmann
case. If we now impose that the distribution function is zero
for ε ¼ ε0, we have

FðεÞ ¼ eβðε0−μÞ½eβðε−ε0Þ − 1�; ð28Þ
which corresponds to the King model [4].
If we now apply this correction to our model, instead of

Eq. (18), we obtain

ln

�
νi þ ni − 1þ e−γ

ðni þ e−γÞ2
�

¼ λmþ ηmEi; ð29Þ

implying that

FðεÞ ¼ 1

ekþγ

×

	
1

2
eβðε−μÞþγð

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ 4ðek − 1Þe−βðε−μÞ

q
þ 1Þ − 1



;

ð30Þ
and again doing fðε0Þ ¼ 0 we have

ek ¼ e−γðe−βðε0−μÞ−γ − 1Þ þ 1: ð31Þ
In Fig. 4, the thick blue lines show this distribution function
for β ¼ ð10; 15Þ, μ ¼ 0; 4 and with ε0 ¼ 0.03. Again we see
that for decreasing energies, the distribution changes from a
Maxwell-Boltzmann to another Maxwell-Boltzmann, but
for ε ≈ ε0 it goes to zero. The thin green lines are the King’s
models, obtained as a Maxwell-Boltzmann corrected for
small occupation numbers.
For a qualitative comparison,we also show the distribution

function associatedwith theEinasto density profile [39]—see

Appendix A, which describes the details of this calculation,
made here for the first time, as far asweknow.The two curves
shown are for n ¼ 2.5 and n ¼ 5.0, representing typical
values for galactic and galaxy cluster scale, respectively.
Note that the distribution function associated with the

Einasto profile, as well as cuspy density profiles in general
[see [40]] has a “S” shape, with FðεÞ going to zero for small
ε and going to increasing slopes for large ε. It is interesting
that the model proposed here, although not presenting
exactly the same shape, gives a correction in the same
direction, increasing the slope for large values of ε.
As done previously, we calculate the density profiles

generated by this function, which are shown in Fig. 5, again

ε0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9

)ε
F

(

-410

-310

-210

-110

1

10

210

310

410 Partially mixed
Maxwell-Boltzmann
Einasto - n = 2.5
Einasto - n = 5.0

FIG. 4 (color online). Distribution function corrected for
the smallness of occupation numbers, Eq. (30) (thick blue), in
comparison with the Maxwell-Boltzmann (also corrected, equiv-
alent to King’s) distribution (thin green). Distribution functions
associated with cuspy density profiles (like the Einasto, shown
for two values of parameter n) have a “S” shape that our model is
not quite able to reproduce, although the correction being in
the right direction, i.e. increasing the slope of FðεÞ for high ε.
All curves are for μ ¼ 0.4 and ε0 ¼ 0.03. Continuous curves are
for β ¼ 15 and big dashed curves for β ¼ 10.

x-310 -210 -110 1

0.
1

ρ∼
(x

)/
ρ∼

-510

-410

-310

-210

-110

1

10

210

Partially mixed
Maxwell-Boltzmann
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FIG. 5 (color online). Density profiles generated by the model
corrected for small occupation numbers (thick blue), in com-
parison with that generated by the corrected Maxwell-Boltzmann
distribution or King’s model (thin green) and with the Einasto
profile. Values or parameters are the same as in Fig. 4.
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normalized by the density at x ¼ 0.1. We see that now the
density profile is steeper than ∝ x−2 in the external region,
and in fact the problem of infinite mass is solved. Also
shown are the corrected Isothermal Sphere (King’s model)
and the Einasto density profile. For completeness, we
also show in Fig. 6 the density slope obtained after the
correction for small occupation numbers.

VI. VALIDITY OF THE VLASOV EQUATION

Let us return to the discussion of the violent relaxation
process to see how the association proposed here (between
the mixing level and the indistinguishability) can give a
clearer meaning to an important hypothesis assumed in the
deduction of the Vlasov equation.
Intuitively, one expects that during violent relaxation, a

process that starts far from equilibrium, the total field varies
in a very complex way, producing chaotic motions and
driving the system to an equilibrium (or stationary) state. In
fact, as pointed out in [41], the presence of chaotic motions
combined with the rapid approach to a stationary state
observed in numerical simulations seems to indicate this
effect. However the Vlasov equation is reversible in time,
which is incompatible with a process driving the system to
an equilibrium (or relaxed) state characterized by a maxi-
mum entropy. In fact, [42] have shown that if the system is
described by Eq. (1), there is no upper limit for the entropy
associated with any convex function CðfÞ, in particular
for the Boltzmann entropy, represented by CðfÞ ¼ f ln f.
The standard argument to solve this problem is that the
evolution to an equilibrium state is given in a coarse-
grained sense, while the Vlasov equation concerns the
fine-grained distribution function.
The deduction of the equation governing the evolution

of the one-particle distribution function f is usually
done starting from the Liouville equation. It states that
an isolated system composed of N particles collectively

represented by the N-particle joint distribution function
fðNÞðx1;p1;…;xN;pN; tÞ necessarily respects [see [43]]

dfðNÞ

dt
¼ 0: ð32Þ

This equation can be statistically interpreted as the evolu-
tion of the system as a whole being smooth, free of sudden
changes, which is adequate since it describes an isolated
system (by definition free of external influences), whose
particles move according to Hamilton equations.
The next step to obtain the equation for the one-particle

distribution f is the construction of the so-called
BBGKY hierarchy [see [2,22,44]], and it involves some
extra assumptions. The first one is the symmetry of
fðNÞðx1;p1;…;xN;pN; tÞ relative to changes of coordi-
nates and momenta of the particles. This makes the phase-
space averaged contribution of each particle to the total
force exerted on the test particle to be the same, implying
Eq. (C5)—see Appendix C. The second hypothesis is that
of molecular chaos, i.e., that the two-particle distribution
function is just the product of two one-particle distribution
functions, the correlations being negligible, as is expressed
by Eq. (C8). With these two hypothesis, one obtains Vlasov
equation, Eq. (1).
Far from being just a calculation strategy, these assump-

tions have a deep statistical meaning, and without them
it is not possible (to the best of our knowledge) to obtain
the Vlasov equation. The symmetry of fðNÞ is commonly
treated as a direct consequence of the assumption of
identical particles [see [2,22]]. However, there is no
mechanical principle that guarantees this symmetry.
Instead, it is an extra hypothesis, with important statistical
content. In our context it is equivalent to treating particles
not only as identical but as indistinguishable and, accord-
ing to the criterion discussed in Sec. III, it refers to the
possibility of all particles to visit the same regions of
phase-space. As already pointed out by [22], the BBGKY
hierarchy was developed to describe molecules in fluids
and ions in plasmas close to equilibrium. These systems are
very different from a self-gravitating system during violent
relaxation, which is a phenomenon that starts far from
equilibrium. Besides, as discussed in Sec. I, self-gravitating
systems are not able to fully mix the phase-space, or at least
are expected to be much less effective in doing so than
plasmas or fluids in laboratory.
From this discussion, it seems that there is no reason to

suppose that the symmetry of fðNÞ is a valid hypothesis
during violent relaxation. Besides that, the correlations in
situations far from equilibrium may be large [see [45]],
which also may contradict the assumption of molecular
chaos, Eq. (C8). Thus the Vlasov equation does not seem to
be valid during this process. In fact, as pointed out by [46],
the relation between the full N-body problem and the
associated transport equation (presumably the Vlasov
equation) is far more complicated than usually assumed.

x-310 -210 -110 1
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d 

ln
 (
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 =
 -

d 
ln

 (
γ
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Maxwell-Boltzmann
Einasto - n=2.5
Einasto - n=5.0

FIG. 6 (color online). Density slope generated by the model
corrected for small occupation numbers (thick blue) in compari-
son with that generated by the corrected Maxwell-Boltzmann
distribution or King’s model (thin green) and with the Einasto
profile. Parameters as in Fig. 4.

BERALDO E SILVA, LIMA, SODRÉ, AND PEREZ PHYSICAL REVIEW D 90, 123004 (2014)

123004-8



Although we do not propose any concrete alternative to the
Vlasov equation, we expect that during violent relaxation
the one-particle distribution f must be described by a full
transport equation,

∂f
∂t þ v ·

∂f
∂r −∇ϕ ·

∂f
∂v ¼ L½f�; ð33Þ

where L½f� is a stochastic term (see [47]) related to chaotic
changes of the potential.
This can be so even if we can neglect 2-body inter-

actions. The idea of the “collisional” term in the Boltzmann
equation is associated, not exactly with collisions, but to
any stochastic process that suddenly changes the proba-
bility flux of the test particle [see [44]]. In ideal gases, these
processes are realized by the collisions, but for systems
with long-range interactions, it can be a chaotically time
changing mean field. As the distribution function f carries
information about the system as a whole, the long-range
interactions transmit the small perturbations of all particles
to the test particle.
The above discussion is relevant for what we have

proposed in this paper for two reasons: first, it reinforces
our expectation that self-gravitating systems can achieve a
stationary state as a consequence of going through irre-
versible processes, without the need to advocate the coarse-
grained sense usually attributed to this evolution [42].
In other words, a real “arrow of time” is introduced if the
Vlasov equation is not valid during the violent relaxation
process and the stationary state can be predicted by the old
strategy of maximizing the complexions, i.e. the number
of possible micro-configurations given the constraints of
the problem. Second, it is questionable whether or not the
Vlasov equation should imply an exclusion principle
constraint (as discussed in Sec. II). In case this equation
is not valid during violent relaxation, there would be even
less reason to impose such constraint. That is why we did
not impose in our analysis the exclusion principle proposed
by Lynden-Bell [5].

VII. CONCLUSION

We propose a new criterion to choose between distin-
guishability and indistinguishability, namely the level of
mixing in phase-space. According to this, in systems that
do not have enough time to completely mix phase elements,
particles in well mixed regions must be treated as indis-
tinguishable and particles in poorly mixed regions must be
treated as distinguishable. This criterion is consistent with
the standard classification of ideal gases as being made of
indistinguishable particles and of crystals as being made
of distinguishable particles. However it opens new per-
spectives on the classification of systems of macroscopic
constituents like colloids and self-gravitating systems.
It also provides a solution to the Gibbs paradox without
the need of arguments related to the quantum nature of
particles (see Appendix B).

Violent relaxation is known to be incomplete, in the
sense that the particles (or stars) cannot explore all regions
of phase-space before the achievement of a stationary state.
Thus the model proposed here can represent a solution
to this problem, explicitly translating this incompleteness
in the combinatorial analysis. According to [38], during
violent relaxation the particles “forget” the positions and
velocities but keep the initial order in their energies. We
express this fact treating particles as indistinguishable for
exchanges inside a macro-cell (that defines an energy value)
but as distinguishable for exchanges between macro-cells.
The result is a new distribution function that tends to

the Maxwell-Boltzmann distribution for high energies, but
deviates to another Maxwell-Boltzmann distribution with
twice the original “temperature” for low energies.
The density profiles generated by this distribution func-

tion resemble those predicted by the Maxwell-Boltzmann
distribution, the Isothermal Sphere. As so, they vary as
∝ x−2 in the external regions, yielding an infinite mass
system. However, in the external regions the occupation
numbers are small, invalidating the use of Stirling’s approxi-
mation. Using the correction proposed by [20], we obtain a
distribution function that goes to zero for an energy fixed
by a parameter ε0. The density profile generated by this
corrected distribution function is steeper in the external
region, effectively solving the infinite mass problem.
It is interesting to note that the corrected distribution

function resembles the “S” shape of the distribution asso-
ciated with the Einasto profile, or at least provides a
correction in the right direction. The high energy part of
this function determines the behavior of the density profile
in the inner region [40] and our model seems to go in the
right direction to generate high densities that could mimic
a cuspy profile.
The new distribution function obtained in this work can

be tested and used in several astrophysical applications. For
example, the resulting density profile can be fit to gravi-
tational lensing data from galaxy clusters, as done for other
models in [11]. Another direct test can be made with data
from rotation curves of spiral galaxies. On smaller scales,
analyses of the density profile can also be made from
optical data of globular clusters. A caveat that we should
point out is that the dissipative nature of the baryon collapse
also affects the density profile of astrophysical objects [48],
which complicates the comparison with observational data.
The velocity distribution associated to the model can be

tested by fitting to the simulated data of structure formation,
as done by [49,50] to test different models. In the analysis
of direct detection experiments such as the XENON [51]
and CDMS [52] projects, the velocity distribution is an
important ingredient for the predicted event rate associated
to different dark matter particles and the model proposed
here can be of some utility in this context. Another
possible application is in mass modeling methods such as
MAMPOSSt [53], in which the distribution of tracers in
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projected phase space is used to determine the total density
and anisotropy profiles, starting from the assumption of
some 3D velocity distribution.
We also considered the possibility of preventing cohabi-

tation in micro-cells keeping the same criterion for dis-
tinguishability as before, obtaining another distribution
function, differing from the first by a � sign. Both distri-
bution functions obtained here can be of some importance
for other phenomena far from equilibrium.
Finally, we showed how the association between the

mixing level and indistinguishability gives a physical
meaning for the assumption of symmetry of the N-particle
distribution function fðNÞ. This assumption is equivalent
to treat particles as indistinguishable, which is a stronger
assumption than treating them as identical and, according
to the criterion proposed here, it is equivalent to the
assumption that all particles have access to the same
regions of phase-space, i.e. that the system is completely
mixed. Since it is well known that such mixing is not
complete in self-gravitating systems during violent relax-
ation, this suggests that the symmetry hypothesis is not
adequate and thus the Vlasov equation is not necessarily
valid during this process.
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APPENDIX A: EINASTO DISTRIBUTION
FUNCTION

The Einasto density profile was proposed in the 1960’s
to describe the surface brightness of elliptical galaxies
and recently has been used to fit data of simulated [7,8] and
observed structures in the galactic and galaxy cluster
scales [11], giving results better than NFW in many cases.
In fact, it can mimic the cuspy density profile described
by NFW, despite being finite at the origin. The profile is
given by

~ρðxÞ ¼ expf−2nðx1=n − 1Þg: ðA1Þ

The associated potential is given by [54]:

φðxÞ ¼ −
ϕðxÞ
jϕð0Þj ¼

Γð3nÞ
Γð2nÞ

1

ð2nÞnx

×

�
1 −

Γð3n; 2nx1=nÞ
Γð3nÞ þ ð2nÞnxΓð2n; 2nx

1=nÞ
Γð3nÞ

�
;

ðA2Þ

where Γða; xÞ is the (upper) incomplete gamma function.
The distribution function FðεÞ can be obtained from
Eq. (20) through an Abel transform [see [2]]:

FðεÞ ¼ 1ffiffiffi
8

p
π2

�Z
ε

0

d2 ~ρ
dφ2

dφffiffiffiffiffiffiffiffiffiffi
ε−φ

p þ 1ffiffiffi
ε

p
�
d~ρ
dφ

�
φ¼0

�
; ðA3Þ

where the second term in the square bracket is zero for the
Einasto profile. Following [40], we use Eqs. (A1) and (A2)
and solve the integral above numerically. The results are
shown in Fig. 4 for two values of n.

APPENDIX B: THE GIBBS PARADOX

Since the beginning of the development of statistical
mechanics up to the present days, the Gibbs paradox has
brought many discussions and attempts of solution, definite
for ones and unsatisfactory for others. It can be described in
various forms, in particular as follows [55]: an enclosure
volume V is divided by a wall into two volumes V1 and V2

filled respectively with N1 and N2 molecules with mass m
of the same gas subject to the same conditions of pressure
and temperature. Assuming that the particles are distin-
guishable, the initial number of micro-states compatible
with the macro-state 1, the same being for 2, is

W1
I ¼

Z
d3 ~r1…

Z
d3 ~rN1

Z
d3 ~p1…

Z
d3 ~pN1

⇒ ðB1Þ

W1
I ¼ VN1

1 ·
ð2πmÞ3N1

2

Γð3N1

2
Þ E

3N1
2

1 : ðB2Þ

We calculate the entropy as S1I ¼ lnW1
I (the same for 2)

and the total entropy is SI ¼ S1I þ S2I . Setting f ¼ N1=N ¼
V1=V ¼ E1=E, and applying the thermodynamic limit
ðN → ∞Þ, the entropy per particle is

SI
N

¼ sI ¼ f ln f þ ð1 − fÞ lnð1 − fÞ

þ lnV þ 3

2
ln uþ 3

2
ln

�
4π

3
m

�
þ 3

2
; ðB3Þ

where u ¼ E=N is the energy per particle and it was used
the Stirling’s approximation, lnN! ≈ N lnN − N.
After removing the wall and considering the system as

whole, recalculation of the total number of micro-states
gives
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WF ¼ VN ·
ð2πmÞ3N2
Γð3N

2
Þ E

3N
2 ; ðB4Þ

and it follows that

sF ¼ lnV þ 3

2
ln uþ 3

2
ln

�
4π

3
m

�
þ 3

2
: ðB5Þ

Thus, the entropy before and after removing the division
differ by

Δs ¼ −½f ln f þ ð1 − fÞ lnð1 − fÞ�: ðB6Þ
In the particular case of equal volumes we have

Δs ¼ ln 2: ðB7Þ
Therefore, if we consider that the gas particles are dis-
tinguishable, as classically assumed, we conclude that there
was an increase in entropy, which does not agree with the
fact that there is no macroscopic change in the system.
Hence the paradox.
If on the other hand we assume that the particles are

indistinguishable, we have to divide the number of com-
plexions obtained previously by the number of permuta-
tions of the N1, N2 or N particles. Thus,

W1
I ¼

1

N1!

Z
d3 ~r1…

Z
d3 ~rN1

Z
d3 ~p1…

Z
d3 ~pN1

; ðB8Þ

the same for 2. Following the same steps as in the previous
case, we arrive at

sI ¼ ln vþ 3

2
ln uþ 3

2
ln

�
4π

3
m

�
þ 5

2
; ðB9Þ

where v ¼ V=N. Again, removing the wall, the phase space
and the entropy become

WF ¼ 1

N!

Z
d3 ~r1…

Z
d3 ~rN

Z
d3 ~p1…

Z
d3 ~pN ðB10Þ

and

sF ¼ ln vþ 3

2
ln uþ 3

2
ln

�
4π

3
m

�
þ 5

2
⇒ ðB11Þ

Δs ¼ 0: ðB12Þ

Thus, removal of the wall does not produce increase in
entropy (which is within our expectations), once we
consider that the particles are indistinguishable, the justi-
fication being traditionally associated with the quantum
behavior of the gas molecules.
On the other hand, according to this standard interpre-

tation, a system with particles almost identical (with
arbitrarily similar mass, for example) would still present
the same increase in entropy. This discontinuity, passing

from identical to arbitrarily similar particles, still cannot
be explained if the indistinguishability depends on the
particles being strictly identical.
Furthermore, appealing to quantum mechanics to solve

Gibbs paradox is deemed unsatisfactory to some authors
[34], because it should not be necessary to use quantum
arguments in a strictly classical conceptual problem. In
other terms, it is not an experimental evidence of need for
quantum physics, but a conceptual inconsistency internal to
classical physics, which should be solved in classical terms.

APPENDIX C: BBGKY HIERARCHY

Let a system with N-particles be described by the
Hamiltonian

H ¼
XN
a¼1

�
p2
a

2m
þ

XN
b¼aþ1

Uðjra − rbjÞ
�
; ðC1Þ

where Uðjra − rbjÞ is the potential energy. The evolution
of the N—particle distribution function fðNÞ is governed by
Liouville equation [Eq. (32)]. With the help of Hamilton
equations, it reads

∂fðNÞ

∂t þ
XN
a¼1

�∂fðNÞ

∂ra
pa

m
−
∂fðNÞ

∂pa

XN
b¼aþ1

∂Uab

∂ra
�
¼ 0; ðC2Þ

where Uab ¼ Uðjra − rbjÞ.
We want to derive the equation for the one-particle

distribution f. This function is not to be interpreted as
describing the evolution of some specific particle, but that of
a test particle randomly chosen. In this sense, it keeps statis-
tical information about the system as a whole, even-though
referring to coordinates of one particle. Also we normalize
the one-particle distribution f taking into account all the
permutations between the ðN − 1Þ remaining particles [43]:

f ¼ N!

ðN − 1Þ!
Z

fðNÞðΓ1;…;ΓNÞdΓ2…dΓN; ðC3Þ

where dΓi ¼ dridpi. Following standard steps we integrate
Eq. (C2) in dΓ2…dΓN , obtaining

ðN−1Þ!
N!

�∂f
∂t þ

∂f
∂r1

p1

m

�
¼ ∂
∂p1

XN
b¼2

Z
fðNÞ∂U1b

∂r1 dΓ2…dΓN:

ðC4Þ

The integral in the right-hand side represents the force
exerted on the test particle by each one of the other particles,
averaged over the phase space region occupied by each of
them. Now comes the first strong assumption: if we suppose
that the N-particles distribution fðNÞ is symmetric in the
particles coordinates Γ1…ΓN , the averaged contribution to
the total force exerted on the test particle is equal for eachone,
and we have
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XN
b¼2

Z
fðNÞ ∂U1b

∂r1 dΓ2…dΓN

¼ ðN − 1Þ
Z

fðNÞ ∂U12

∂r1 dΓ2…dΓN: ðC5Þ

Accordingly, we define the two-particles distribution
function as

fð2Þ ¼ N!

ðN − 2Þ!
Z

fðNÞðΓ1;…;ΓNÞdΓ3…dΓN; ðC6Þ

thus obtaining

∂f
∂t þ

∂f
∂r1

p1

m
¼

Z ∂U12

∂r1
∂fð2Þðt;Γ1;Γ2Þ

∂p1

dΓ2: ðC7Þ

Now comes the second strong assumption, that of molecu-
lar chaos, according to which

fð2Þðt;Γ1;Γ2Þ ¼ fðt;Γ1Þfðt;Γ2Þ; ðC8Þ

and we finally obtain the Vlasov equation:

∂f
∂t þ

∂f
∂r v −

∂ϕ
∂r

∂f
∂v ¼ 0; ðC9Þ

where we used p ¼ mv and the mean potential ϕðrÞ is
given by

ϕðr; tÞ ¼ 1

m

Z
Uðjr − r0jÞfðr0;p0; tÞdr0dp0: ðC10Þ
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