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We present a study of three-mode parametric instability in large-scale gravitational-wave detectors.
Previous work used a linearized model to study the onset of instability. This paper presents a nonlinear
study of this phenomenon, which shows that the initial stage of an exponential rise of the amplitudes of a
higher-order optical mode and the mechanical internal mode of the mirror is followed by a saturation phase,
in which all three participating modes reach a new equilibrium state with constant oscillation amplitudes.
Results suggest that stable operation of interferometers may be possible in the presence of such instabilities,
thereby simplifying the task of suppression.
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I. INTRODUCTION

Three-mode parametric instability in large-scale, high-
optical-power gravitational-wave (GW) detectors was pre-
dicted by Braginsky et al. in 2001 [1]. All subsequent
analyses [2–5] relied on the model prediction, where
amplitudes of certain acoustic modes of the interferometer
mirrors would grow exponentially once an instability
threshold of input laser power is reached. It was generally
considered that the exponential growth would eventually
render the whole setup unstable and cause an interferometer
to lose lock.
This prognosis, however, relied on a linearized appro-

ximation of the three-mode optomechanical interaction
that is valid only for small amplitudes of acoustic and
Stokes modes. For larger values, it is intuitively obvious
that nonlinearity should ultimately modify this growth. If
the optical configuration can be maintained one would
expect that the acoustic and higher-order optical oscilla-
tions should saturate. Knowing the amplitudes of such
saturation effects as well as their time scale is of crucial
importance for the operation of the real detectors now being
implemented.
It is hard to overestimate the significance of rigorous

analysis of this phenomenon in large-scale gravitational-
wave interferometers. Second-generation detectors, such as
Advanced LIGO [6,7] are at the latest stages of construc-
tion and testing. These instruments are planned to have up
to ∼800 kW of circulating laser power in the arms. As
demonstrated in [3–5,8,9], the chance of three-mode para-
metric instability at such a high level of power is very high.
Similarly, other advanced detectors, Advanced Virgo [10],
KAGRA [11], and GEO-HF [12], might also be suscep-
tible to this effect, though with different probabilities (see
Ref. [2] for details).

Therefore, knowledge of the temporal dynamics and the
values of final amplitudes that the three participating modes
reach at the saturation stage allows us to design a feedback
control system to suppress this instability before it devel-
ops. Several methods of mitigating this phenomenon have
been developed that can benefit from this information:
(i) Varying the mirrors’ radii of curvature by heating
[13–15]; (ii) decreasing the Q factor of the acoustic modes
[14,16,17]; and (iii) introducing additional damping to
acoustic modes via electrostatic feedback [18].
In this paper, we present a full nonlinear treatment of this

problem for large-scale gravitational-wave interferometers.
A similar approach has been used by Polyakov and
Vyatchanin in [19] to study the precursors of parametric
instability (PI) in the regime of input powers close to the PI
threshold. In this paper, we expand and generalize their
treatment to arbitrary input power levels and investigate the
time evolution of the amplitudes of the Stokes and pump
optical modes as well as of the acoustic mode. It is
noteworthy that the set of dynamical equations in this
work is similar to those in [19], yet we prove that the
smallness requirement of the mechanical mode amplitude
(allegedly, it has to be smaller than the linewidth of the
optical modes) stated therein is not necessary, and this
model is valid for arbitrarily large acoustic amplitudes.
In addition, a similar effect has been observed and

analyzed in small-scale whispering-gallery-mode optical
resonators used to create stable-radio-frequency optome-
chanical oscillators [20,21]. Recently, the saturation of
unstable oscillations has been observed at the University of
Western Australia (UWA) and in the Laboratoire Kastler
Brossel in tabletop optomechanical experiments using a
high-finesse Fabry-Pérot cavity with a silicon nitride
membrane acting as the acoustic resonator test mass
[22]. In that paper, we derived a similar model to back
the experimental results. In this paper, we focus on a
different physical system that comprises massive freely*stefan.danilishin@ligo.org
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suspended Fabry-Pérot cavities that interact with a high-
power optical field circulating inside. We also analyze the
three-mode parametric instability phenomenon in more
detail and with greater generality.
The physics of three-mode parametric instability is

illustrated in Fig. 1. We consider a Fabry-Pérot interfer-
ometer pumped at a laser frequency ωp close to the
resonance frequency, ω0, of one of the fundamental modes
[23]. Ultrasonic vibrations of the mirrors with frequency
Ωm cause intracavity light to scatter into two motional
sidebands: A Stokes one, with frequency ωS ¼ ω0 −Ωm,
and an anti-Stokes one, with frequency ωAS ¼ ω0 þΩm.
As the fundamental mode linewidth κ0 is normally much
smaller than Ωm, the amplitude of motional sidebands is
normally not enhanced by the cavity. This is not so,
however, if the sideband frequency coincides with one
of the higher-order optical mode (HOM) frequencies. Such
modes exist in any Fabry-Peŕot cavity and densely populate
the free spectral range between the fundamental modes (see
Sec. 3.3 of [23]). If the transverse spatial profile of such a
HOM matches the profile of an acoustic vibration, the
photons scattered into this mode from the fundamental
mode build up, thereby channeling part of the optical power
circulating in the fundamental mode to the HOM.
The beat note of the fundamental mode and the HOM

creates a near-resonant radiation pressure force on the
mirror at the frequency of the acoustic mode, Ωm. Now

there are two possibilities to consider. If the HOM
frequency coincides (approximately) with the anti-Stokes
sideband frequency, ωAS, the radiation pressure force will
be applied out of phase with the acoustic vibrations,
thereby damping them [24]. This effect is analogous to
radiation pressure cooling [25–29], where the scattered
Stokes photon energy is a sum of the fundamental mode
energy and the acoustic mode phonon energy, i.e.,
ℏωAS ¼ ℏω0 þ ℏΩm.
The instability we are studying in this paper, on the

contrary, occurs when the HOM frequency matches the
Stokes sideband frequency ωS: ℏωS ¼ ℏω0 − ℏΩm. To
distinguish this HOM from others we will call it hereafter
a Stokes mode. In this case, the radiation pressure force of
the beat note is in phase with the acoustic oscillations,
leading to amplification. This, in turn, makes amplitude of
the Stokes sideband larger, thereby increasing the ampli-
tude of the radiation pressure force. Therefore, the loop
closes and the instability breaks out. An illuminating
description of this process in terms of feedback control
theory can be found in the work of Evans et al. [5].
The picture above gives no account for natural decay of

the Stokes mode and acoustic oscillations due to loss,
characterized by Stokes mode linewidth κS and acoustic
mode decay rate γm. These loss mechanisms counterbal-
ance the instability, and for circulating power below a
certain threshold (see below), there is no instability.

FIG. 1 (color online). Schematic of the three-mode interaction that gives rise to parametric instability in optomechanical systems:
(i) Acoustic modes of the mirror, excited by thermal fluctuations, create motional sidebands of the pump mode carrier frequency offset
by acoustic frequency Ωm; (ii) the lower-frequency Stokes sideband is enhanced by a higher-order optical cavity mode—a beat note
between this and the fundamental pump mode creates a radiation pressure force at the acoustic frequencyΩm; (iii) this leads to a growth
of the acoustic oscillation amplitude, which, in turn, increases the amplitude of the Stokes sideband, thereby raising radiation pressure
force amplitude and closing the instability feedback loop. The strength of the three-mode optomechanical interaction, and, therefore, the
chance of instability development, depends on the following three factors: (i) The extent to which the spatial distributions of all three
participating modes overlap, characterized by overlapping factor Λ0S, defined in Eq. (6); (ii) the accuracy of three-mode frequency
tuning—i.e., detuning must be smaller than the larger of optical modes bandwidth, Δm ¼ ω0 − ωS − Ωm ≪ max½κ0; κS�; and (iii) the
energy loss rates in all three modes, which need to be lower than the rate of power transfer between the modes, which itself is
characterized by the coupling strengthG0S. These three conditions yield the definition of parametric gain,R0, given in Eq. (10), and the
condition for PI given by Eq. (11).
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However, as soon as the power circulating in the funda-
mental mode reaches this threshold value, the three-mode
instability sets in. A very similar process happens in optical
parametric oscillators, where above a certain threshold of
pump power, in the presence of strong Kerr nonlinearity of
the medium, pump photons scatter into pairs of idler and
signal photons [30].
This process resembles a relief valve operation, when

above a certain pressure the valve opens and redirects the
excess fluid flow into a reserve pipe, keeping the main pipe
pressure constant. Similarly, above the instability threshold,
all the excess optical power is redirected from the funda-
mental mode to the Stokes mode and the acoustic mode
oscillations. New steady-state amplitudes of all three
participating modes are reached when the balance of power
is restored in the system, meaning that the amount of power
pumped into the system matches the sum power leaving it
through the three decay channels, characterized by the
decay rates of the two optical modes, κ0 and κS, and a
mechanical decay rate, γm.
In this paper, we present a nonlinear theory of the

three-mode parametric instability in large-scale gravita-
tional-wave interferometers with free suspended mirrors.
We derive and solve equations of motion for the ampli-
tudes of three participating modes and obtain their
temporal dynamics. To characterize the behavior of
unstable modes, we calculate values of new steady-state
amplitudes and give an estimate of the instability devel-
opment time scale.

II. MODEL

A. Hamiltonian of three-mode interaction

To represent parametric instability in large-scale GW
interferometers, we use a simple model of a Fabry-Pérot
cavity with resonance frequency ω0 pumped with a laser,
having frequency ωp and power Pin. Below, we choose to
adhere to a Hamiltonian description of the system under
study, in contrast with the original work of Braginsky
et al. [1] where a completely equivalent Lagrangian
approach has been used to derive equations of motion
of interacting modes. It is worth emphasizing that our
analysis below is purely classical and no quantum effects
are taken into account in this manuscript. Nevertheless,
the choice of a Hamiltonian classical description allows
for an easy expansion of this model to a quantum one.
As a matter of fact, it has been done recently in the work
that predicted a new source of quantum radiation pressure
noise in gravitational-wave interferometers originating
from the three-mode optomechanical interaction [31].
If we assume intracavity light to be linearly polarized and

to propagate along the cavity optical axis z, its electric and
magnetic field strain components can be represented, in
terms of expansion over cavity modes, as

Eðt; ~r⊥; zÞ ¼
X
J

ffiffiffiffiffiffiffiffi
ℏωJ

ϵ0V

s
fJð~r⊥Þ sinðωJz=cÞ

× ½aJðtÞ þ a†JðtÞ�; ð1aÞ

Hðt; ~r⊥; zÞ ¼ −i
X
J

ffiffiffiffiffiffiffiffi
ℏωJ

μ0V

s
fJð~r⊥Þ cosðωJz=cÞ

× ½aJðtÞ − a†JðtÞ�; ð1bÞ

where ℏ, c, ϵ0, and μ0 stand for Planck’s constant, the speed
of light, and vacuum permittivity and permeability, respec-
tively; V ¼ LA is the volume of the cavity of length L
occupied by a light beam with cross-section areaA; fJð~r⊥Þ
is the Jth mode spatial distributions in the direction
perpendicular to the propagation direction, and aJ denotes
dimensionless complex amplitudes of the mode with
frequency ωJ normalized so that nJ ¼ a†JaJ ¼ jaJj2 rep-
resents the number of photons in the corresponding mode.
The acoustic mode of the mirror can be described in terms
of surface deflection component along the z-axis:
ζð~r⊥; tÞ ¼ xz:puzð~r⊥Þ½bmðtÞ þ b†mðtÞ� with uzð~r⊥Þ being

the transverse mode spatial shape and xz:p: ¼ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ℏ=ð2mΩmÞ

p
is the amplitude of the ground state oscil-

lations for an oscillator with effective mass m and eigen-
frequency Ωm.
Since parametric instability occurs only for the modes

that satisfy a certain matching condition ω0 ¼ ωS þΩm þ
Δm (detuning should be smaller than the larger of the
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FIG. 2 (color online). Temporal behavior of three interacting
modes for different values of PI gain R0. Thin lines show
temporal dynamics in the detuned case with frequency mismatch
Δm ¼ 0.1κS. The amplitudes of optical modes are normalized by
the maximal value of optical power circulating in the fundamental
mode which corresponds to PI gain value of R0 ¼ 8. The
acoustic mode amplitude is scaled by a displacement amplitude
b0 necessary to shift the Stokes mode frequency by one-half
linewidth, as per definition in Eq. (7). The greyed-out area and
thin vertical line (indicating the maximum of the Stokes mode
curve for R0 ¼ 8) marks the time interval where inverse
scattering process, ℏωS þ ℏΩm → ℏω0, intensifies in the system
with PI gain larger than that defined by condition (20).
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Stokes or fundamental mode linewidth, Δm ≪
max½κS; κ0�), we can limit our consideration to those three
modes (with J ¼ 0, S). The Hamiltonian for this three-
mode interacting system reads

H ¼ Hm

−
1

2

Z
A
d~r⊥ðLþ ζÞ½ϵ0ðE0 þ ESÞ2 þ μ0ðH0 þHSÞ2�;

ð2Þ

with Hm ¼ ℏΩmb
†
mbm and the last term describing the

well-known optomechanical interaction when radiation
pressure force (∝ light intensity) acts on a mechanical
degree of freedom. After integration over transverse coor-
dinates, ~r⊥, one can rewrite it in a more familiar repre-
sentation,

H ¼ H0 þHS þHm þH0S þH00 þHSS þHdrive; ð3Þ

where free evolution Hamiltonians for optical modes can be
written as HJ ¼ ℏωJa

†
JaJ (J ¼ 0, S), Hm ¼ ℏΩmb

†
mbm,

and optomechanical interaction terms read

H0S ¼ −ℏG0Sðbm þ b†mÞða0 þ a†0ÞðaS þ a†SÞ; ð4aÞ

H00 ¼ −ℏG00ðbm þ b†mÞa†0a0; ð4bÞ

HSS ¼ −ℏGSSðbm þ b†mÞa†SaS ð4cÞ

with optomechanical coupling strengths defined as

GIJ ¼ xz:p:
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ΛIJωIωJ

p
=L; ð5Þ

where ΛIJ is an overlap factor of spatial profiles of three
participating modes, defined as

ΛIJ ¼
h
ðL=VÞ

Z
d~r⊥uzð~r⊥ÞfIð~r⊥ÞfJð~r⊥Þ

i
2
; ð6Þ

with I, J ¼ 0, S.
To complete the picture we need to add a term respon-

sible for coupling with the environment, Hext, that can be
expressed in terms of mode decay rates, κ0;S and γm, and
corresponding external input fields, αin0;S and βth: Hext ¼P

J¼0;Siℏ
ffiffiffiffiffi
κJ

p ½a†JainJ þ aJðainJ Þ�� þ iℏ
ffiffiffiffiffi
γm

p ½b†mbth þ bmb�th�.
Here ain0 ¼ ðAp þ δain0 Þe−iωpt includes external laser pump-
ing amplitude Ap ¼ ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

Pin=ðℏωpÞ
p

and zero-mean fluctua-
tions ain0 , while two other modes are driven by fluctuations
only. We assume optical mode fluctuations to be in a
vacuum state so that hain0;SðtÞðain0;Sðt0ÞÞ†i ¼ δðt − t0Þ, and the
mechanical damping noise, bth, corresponds to thermal
white noise with correlation function hbthðtÞb†thðt0Þi ¼
2γmNthδðt − t0Þ, where Nth ¼ ðeℏΩm=ðkBTÞ − 1Þ−1 is the

average number of thermal phonons in the mechanical
mode, with kB as Boltzmann’s constant and T as mode
temperature (usually, room temperature, T ¼ 300 K, is
assumed).

B. Natural scales and variable renormalization

In this study, we are interested in classical large-
amplitude dynamics of the system described by the above
Hamiltonian, which means high occupation numbers for
all participating modes. Therefore, we change from quan-
tum units to more physically sensible ones within the
frames of this problem. For optical modes, a steady-state
amplitude of light in the fixed-length Fabry-Pérot cavity,
Ac ¼ 2Ap=

ffiffiffiffiffi
κ0

p ¼ ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
4Pin=ðℏω0κ0Þ

p ≡ ffiffiffiffiffi
n̄c

p
, looks to be a

natural scale. The mechanical mode can be scaled by a
displacement amplitude b0 necessary to shift the Stokes
mode frequency by one-half linewidth, i.e., G0Sb0 ¼ κS=2.
The latter is a natural nonlinearity scale of an optomechan-
ical system that sets the applicability limit for the linearized
model thereof.
Hereafter we will operate with scaled amplitudes defined

as

α0;S ¼ a0;S=Ac; βm ¼ bm=b0 ¼ 2G0Sbm=κS: ð7Þ

A similar transformation has to be applied to noise terms.

III. TEMPORAL DYNAMICS OF
PARAMETRIC INSTABILITY

A. Equations of motion

One can now write Heisenberg-Langevin equations
for the system described by Hamiltonian (3) in the
frame that rotates with each mode frequency. This means
doing substitutions a0;SðtÞ → a0;SðtÞe−iω0;St and bmðtÞ →
bmðtÞe−iðΩmþΔmÞt (here we define frequency mismatch as
Δm ¼ ω0 − ωS −Ωm); then, dropping all the terms oscil-
lating with frequency Ωm and faster, one obtains

_a0 ¼ −
κ0
2
a0 þ iG0SaSbm þ ffiffiffiffiffi

κ0
p ðAp þ ain0 Þ; ð8aÞ

_aS ¼ −
�
κS
2
þ iΔm

�
aS þ iG0Sa0b

†
m þ ffiffiffiffiffi

κS
p

ainS ; ð8bÞ

_bm ¼ −
γm
2
bm þ iG0Sa0a

†
S þ

ffiffiffiffiffi
γm

p
bth: ð8cÞ

These equations can be rewritten in terms of dimensionless
scaled amplitudes introduced in (7),

_α0 ¼ −
κ0
2
α0 þ i

κS
2
αSβm þ κ0

2
þ ffiffiffiffiffi

κ0
p

αin0 ; ð9aÞ

_αS ¼ −
�
κS
2
þ iΔm

�
αS þ i

κS
2
α0β

†
m þ ffiffiffiffiffi

κS
p

αinS ; ð9bÞ
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_βm ¼ −
γm
2
βm þ i

γm
2
R0α0α

†
S þ

ffiffiffiffiffi
γm

p
βth: ð9cÞ

Here we introduced an important quantity, a PI gain
R0 ¼ 4G2

0Sn̄c=ðγmκSÞ, the significance of which will be
revealed below. Note that amplitude βm introduced by
Eq. (7) practically coincides with dimensionless mechani-
cal amplitude Z of [19].
As we are mostly interested in the strong signal dynam-

ics of the three-mode system, the noise terms in the above
equations may be safely omitted. However, a small initial
nonzero amplitude of mechanical oscillations is necessary
for a nontrivial solution. Brownian thermal vibrations of the
mirror provide this initial amplitude of bm, which is equal
to

ffiffiffiffiffiffiffi
Nth

p ≃ ðkBT=ðℏΩmÞÞ1=2. Solving this system of equa-
tions numerically gives the characteristic result shown
in Fig. 2.

B. Parametric instability criterion

For parametric instability to develop, a certain threshold
of input pumping power has to be reached. Braginsky et al.
[1] used the above-introduced PI gain, R0, as a figure of
merit for PI in the resonance case of Δm ¼ 0 and defined
it as

R0 ¼
4G2

0Sn̄c
γmκS

¼ 8Λ0SωSPin

mΩmL2γmκSκ0
≡ Pin

Pthres
in

; ð10Þ

where

Pthres
in ¼ 16G2

0S

ℏω0κ0κSγm
¼ mΩmL2γmκSκ0

8Λ0SωS

is the threshold input power value for resonant pumping.
If R0 ≥ 1, the system becomes unstable; otherwise, no

excitation of the mechanical and Stokes modes occurs. In a
more general detuned case this criterion is only slightly
modified,

R0 ≥ 1þ
�

2Δm

γm þ κS

�
2

: ð11Þ

This condition as well as an instability onset time can be
obtained using a simple linearized model based on Eqs. (9).
To start, we assume the amplitude of a fundamental optical
mode to be constant and equal to 1 in the normalization we
choose. Then from Eqs. (9) we obtain the following set of
linear equations for the Stokes and mechanical modes:

_α†S ¼ −
�
κS
2
− iΔm

�
α†S − i

κS
2
βm; ð12aÞ

_βm ¼ −
γm
2
βm þ i

γm
2
R0α

†
S: ð12bÞ

Looking for general solution in the form fα†S; βmg ∝
eðΓþiνÞt, the PI condition, Γ ≥ 0, is obtainable from the
characteristic equation for the above linear system,

ðΓþ iνþ κS=2 − iΔmÞðΓþ iνþ γm=2Þ − γmκSR0=4 ¼ 0;

with the solution

Γ ¼ 1

4

� ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
X þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
X2 þ Y2

pq
− ðκS þ γmÞ

�
; ð13aÞ

ν ¼ Δm

2
−
1

4

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
X2 þ Y2

p
− X

q
; ð13bÞ

where

X ≡ 2γmκSR0 − 2Δ2
m þ 1

2
ðκS − γmÞ2;

Y ≡ 2ΔmðκS − γmÞ:

Requirement Γ > 0 yields the sought-for relations (10)
and (11).

IV. ADIABATIC ELIMINATION OF
CAVITY MODES

In gravitational-wave interferometers, as well as in
small-scale, tabletop optomechanical experiments [22],
the mechanical decay rate, γm, is much smaller than the
decay rates of the optical degrees of freedom, κ0;S ≫ γm.
Therefore one can safely assume that optical modes follow
any changes in the mechanical mode almost instantane-
ously, without delay. Hence we can adiabatically eliminate
optical modes by setting time derivatives in Eqs. (9a) and
(9b) to zero and by expressing the two optical modes as
functions of mechanical amplitude βmðtÞ as

α0ðtÞ ¼
1þ iδm

1þ iδm þ κS
κ0
jβmðtÞj2

; ð14Þ

αSðtÞ ¼
iβ†mðtÞ

1þ iδm þ κS
κ0
jβmðtÞj2

; ð15Þ

where we defined dimensionless detuning δm ¼ 2Δm=κS.
Substituting these expressions into Eq. (9c), one arrives at a
single nonlinear differential equation for the mechanical
amplitude βm,

_βm þ γm
2

�
1 −

R0ð1þ iδmÞ
ð1þ κS

κ0
jβmj2Þ2 þ δ2m

�
βm ¼ 0: ð16Þ

This equation displays the mechanism of saturation clearly.
Indeed, the system becomes unstable when the real part of
the expression in brackets turns negative, meaning a
negative mechanical decay rate. However, the rise of
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amplitude, βm, entering the denominator renders the
negative term smaller and smaller, eventually reaching
the critical point when the bracket turns 0. From this
ensues a new nonlinear parametric instability condition of
the form

RNL ¼ R0

ð1þ κS
κ0
jβmj2Þ2 þ ð2Δm

κS
Þ2 ≥ 1; ð17Þ

where the nonlinear gain, RNL, gradually wanes as ampli-
tude, βm, waxes, reaching a limit cycle.
The value of the critical amplitude is identical to the

steady-state amplitude, as βmðtÞ is a monotonic function of
time and equals to

β̄m ¼
�
κ0
κS

� ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
R0 − δ2m

q
− 1

��
1=2

: ð18Þ

Steady-state amplitudes for optical modes immediately
ensue from Eqs. (15) and (14),

ᾱ0 ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ δ2m
R0

s
; ᾱS ¼

�
κ0
κS

1

R0

� ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
R0 − δ2m

q
− 1

��
1=2

:

ð19Þ

An adiabatic limit can also help us to understand the
small hump one can notice on the plot of the Stokes mode
power in Fig. 2 for PI gain R0 ¼ 8, which is absent on the
other curves with lower gain. The existence of this hump
stems from the dependence of the Stokes mode amplitude,
αS, on the mechanical amplitude, βm, given by Eq. (15). If
we consider the Stokes mode normalized power jαSj2 and
equate its time derivative to zero we get

∂tðjβmj2Þ ·
1þ δ2m − κ2S

κ2
0

jβmj2
ð1þ κS

κ0
jβmj2Þ2 þ δ2m

¼ 0;

which is a necessary condition for jαSj2 to reach its
extremum. As we know from the numerical solution,
βmðtÞ is monotonic, and ∂tðjβmj2Þ ¼ 0 means that the
mechanical amplitude has reached its maximal steady-state
value β̄m. Therefore, the condition for the hump would be
that the second term in the product above becomes equal to
zero for βm < β̄m, which, accounting for the monotonic
character of βmðtÞ, means that the numerator of the second
term is smaller than zero at β̄m. From this immediately
ensues a condition on parametric gain value above which
one shall observe this hump in temporal behavior of the
Stokes mode,

R0 >

�
κ0
κS

ð2þ δ2mÞ
�
2

þ δ2m �!
δm¼0;κ0¼κS

4: ð20Þ

Remarkably, in the resonance case ðΩm ¼ 0Þ, the value of
PI gain aboveR0 ¼ 4 that is the critical value for the hump
development, corresponds to the situation when the power
circulating in the Stokes mode becomes equal to the
threshold value, i.e., to the power circulating in the
fundamental optical mode. The hump represents the tran-
sient process of the initial excess growth of the Stokes mode
occupation number above the threshold value, before the
acoustic mode could reach its steady-state occupation
number (recall that κS ≫ γm) and further release this level
through inverse scattering to the carrier mode. The latter
process invokes recombination of the excess ωS photons
with acoustic phonons at Ωm, yielding the generation of ω0

photons. As shown by the greyed-out region in Fig. 2, when
R0 ¼ 8, the decrease of the fundamental mode power and the
growth of the acousticmode amplitude near the timewhen the
Stokes mode maximum is reached becomes slower, which is
indicative of the intensification of inverse scattering.

A. Approximate solution

By representing a complex function βmðtÞ as
jβmðtÞjeiϕmðtÞ one can easily obtain the equations they
satisfy from (16),

j _βmj ¼ −
γm
2
jβmj

�
1 −

R0

ð1þ κS
κ0
jβmj2Þ2 þ δ2m

�
; ð21aÞ

_ϕm ¼ −
γm
2

δmR0

ð1þ κS
κ0
jβmj2Þ2 þ δ2m

: ð21bÞ

One can solve this system of first-order differential equa-
tions explicitly, but the result will be an implicit transcen-
dental equation on βm that cannot be resolved analytically.
Nevertheless, a pretty good approximation thereof gives the
solution of a simplified equation for βm, obtainable by
expanding the bracket in the r.h.s. of Eq. (21a) in jβmj
around the β̄m of Eq. (18). This results in a Bernoulli
equation [32] of the shape

j _βmj ¼Djβmj
�
1−

jβmj
β̄m

�
; D¼ 2γmκSβ̄

2
m

κ0R0

�
1þ κS

κ0
β̄2m

�
;

that, accounting for initial condition jβmð0Þj, resolves in

jβmðtÞj ¼
jβmð0Þjβ̄meDt

β̄m þ jβmð0ÞjðeDt − 1Þ : ð22Þ

V. POWER RELATIONS IN THE
THREE-MODE SYSTEM

It is obvious that in the adiabatic limit (Ωm ≪ ω0;S), a
sum of optical powers leaving the interferometer in the
fundamental and the Stokes modes, i.e., Pout

0 þ Pout
S , must
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be equal to the power Pin entering it. Power scattered in the
acoustic mode is negligible compared to that of the optical
modes due to a huge frequency difference. In order to see
that it is indeed the case for our treatment one needs to write
down standard input-output relations connecting light
amplitudes outside the interferometer (of incident and
reflected beams) with the intracavity ones derived in
expressions (14) and (15),

ain0 þ aout0 ¼ ffiffiffiffiffi
κ0

p
a0 ⇒ Ap þ Aout

0 ¼ ffiffiffiffiffi
κ0

p
A0; ð23Þ

ainS þ aoutS ¼ ffiffiffiffiffi
κS

p
aS ⇒ Aout

S ¼ ffiffiffiffiffi
κS

p
AS; ð24Þ

where capital letters identify classical components of the
light fields we concerned with in this work. Powers in the
corresponding beams are related to these amplitudes as
PJ ¼ ℏωJjAJj2 (J stands for p, 0, S). Assuming steady
state, i.e., setting βmðtÞ → β̄m in expressions (14) and (15),
and normalization relations (7), one obtains expressions for
the reflected light powers as follows:

Pout
0 ¼ Pin

ð1 − κS
κ0
jβ̄mj2Þ2 þ δ2m

ð1þ κS
κ0
jβ̄mj2Þ2 þ δ2m

;

Pout
S ¼ Pin

4 κS
κ0
jβ̄mj2

ð1þ κS
κ0
jβ̄mj2Þ2 þ δ2m

:

There is no problem to see now that Pout
0 þ Pout

S ¼ Pin and
that the power balance is observed for any value of the
acoustic mode amplitude β̄m. Substituting Eq. (18) in these
equations, one gets the nonlinear input-output relations for
the three-mode system above the PI threshold,

Pout
0 ¼ Pin

�
1–4

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
R0 − δ2m

p
− 1

R0

�
; ð25Þ

Pout
0 ¼ 4Pin

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
R0 − δ2m

p
− 1

R0

; R0 ¼
Pin

Pthr
in

: ð26Þ

The dependence of outgoing power for each mode on PI
gain and, therefore, on input power is drawn in Fig. 4.
The interesting feature of these relations is their apparent

nonlinearity, which is quite opposite to a naive assumption
one might be tempted to make that intracavity circulating
power in both optical modes is linearly proportional to the
outgoing power. Note, also, the existence of a critical value
of input power corresponding to a PI gain ofR0 ¼ 4 (in the
resonance case) when the reflected power in the carrier
mode vanishes and the Stokes mode output reaches its
maximum. The physics of this process is straightforward,
for it is this level of power when the loss of carrier photons,
due to three-mode scattering (into the Stokes and acoustic
modes), reaches the level of the cavity bare loss, summa-
rized in κ0. This is a well-known phenomenon of critical

coupling. This, in particular, has profound observational
consequences, as measuring the PI by recording the beat
note of the reflected lights at the carrier and Stokes mode
frequencies may result in zero signal for the range of PI
gains around the critical one, i.e., around R0 ≃ 4.
Returning to intracavity fields and recalling the defini-

tion of normalized modes (7), one can rewrite expressions
(18) and (19) in more physical terms as

P0

ω0

¼ Pthr
0

ω0

�
1þ 4Δ2

m

κ2S

�
; ð27Þ

PS

ωS
¼ Pthr

0

ω0

� ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Pin

Pthr
in

−
4Δ2

m

κ2S

s
− 1

�
; ð28Þ

Pm

Ωm
¼ Pthr

0

ω0

� ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Pin

Pthr
in

−
4Δ2

m

κ2S

s
− 1

�
; ð29Þ

where

Pthr
0 ¼ ℏω0

γmκ0κS
4G2

0S
¼ mΩmL2γmκ0κS

2Λ0SωS
ð30Þ

is the power circulating in the fundamental mode at
resonance frequency ω0 when the PI threshold is reached.
The plots of these expressions are shown in Fig. 3.
Here mechanical amplitude is inferred from the acoustic
power, using its relation to acoustic amplitude, Pm ¼
γmH̄m ¼ γmmΩ2

mx2m, yielding

x2m ¼ L2κ0κS
2Λ0Sω0ωS

� ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Pin

Pthr
in

−
4Δ2

m

κ2S

s
− 1

�
: ð31Þ

Equations (28) and (29) have another interesting impli-
cation; namely, the equality

PS

ωS
¼ Pm

Ωm
ð32Þ

represents the well-known Manley-Rowe relations for
nonlinear interacting systems [33–35]. In our case, this
equality means that the number of Stokes photons produced
from the ω0 photons matches exactly the number of
acoustic phonons generated in this process.
One might wonder if there is an inverse process going on

in the system, i.e., the generation of ω0 photons from the
pairs of ωS photons and Ωm phonons, and if this process
would prevent the power circulating in the Stokes mode to
exceed that in the fundamental mode. Indeed, such inverse
scattering may happen and, were it not for constant
pumping of laser photons into the system at frequency
ω0, there would be equal probability for direct and inverse
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scattering processes, leading to equilibrium between the
occupation numbers of the modes. One has to remember
about losses that constantly drain photons and phonons
from the corresponding modes; it is these losses to which
the PI threshold (10) owes its existence.
The threshold of PI represents the level of intracavity

power at which no more ω0 photons can be born by the
fundamental mode. Let the power in the Stokes mode reach
a level slightly higher than the threshold power, as
represented by the crossing of blue and red lines in the
upper panel of Fig. 3. This means that input power is more
than 4 times higher than Pthr

in . The inverse scattering process
creates then a photon at ω0, thereby making the funda-
mental mode have one photon more than the threshold
allows. This photon cannot decay away using the funda-
mental mode loss channel, as it is saturated at the 4-times-
lower input power level of Pthr

in . The only way for it to
escape is through scattering again to the Stokes photon and
the acoustic phonon. The probability of this scattering is
higher than that of escaping the cavity because the
optoacoustic photon-phonon exchange rate G0Sn̄

1=2
c is

faster than the cavity decay rate κ0, which is the prerequisite
for parametric instability to start in the first place.

VI. TIME SCALE OF INSTABILITY: ONSET TIME

Using expression (13a) for Γ, one can derive a time
scale for the instability onset, which is a time scale at
which the linearized model breaks down and exponential
ring-up gives place to a saturation and, eventually, to a
new equilibrium state reached by a system. It can be
estimated as a moment when the exponentially growing
mechanical amplitude, βmðtÞ≃ βmð0ÞeΓt, with βmð0Þ ¼ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
4G2

0SNth=κ2S
p

, reaches the above-calculated steady-state
level, β̄m of Eq. (18), i.e.,

FIG. 4 (color online). Dependence of reflected light power at
the carrier frequency ω0 (red dash-dotted line) and at the HOM
frequency (blue line) as a function of parametric gain R0 and,
therefore, of input power. Note the nonlinear and nonmonotonic
relation between the input and reflected powers. The critical PI
gain value ofR0 ¼ 4 corresponds to the case of critical coupling,
i.e., when the nonlinear loss of carrier photons to the Stokes mode
and the acoustic mode reaches the level of bare loss of the
interferometer defined by the reflectivities of the mirrors.
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FIG. 3 (color online). Upper panel: Dependence of power
circulating in the fundamental mode (red solid line) and in the
higher-order Stokes mode (blue dashed line) on input power,
calculated from Eqs. (27)–(29), using parameters from Table I.
Inset plot compares the behavior of circulating power with (thick
red line) and without (thin red line) PI. Lower panel: Dependence
of acoustic mode amplitude on input laser power for parameters
listed in Table I.
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jβmð0ÞjeΓτPI ¼ β̄m⇒

τPI ¼
1

2Γ
log

κ0κSð
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
R0−δ2m

p
−1Þ

4G2
0SNth

¼ 1

2Γ
log

mΩ2
mL2κ0κSð

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
R0− ð2Δm=κSÞ2

p
−1Þ

2Λ0Sω0ωSkBT
:

ð33Þ

This expression can be simplified if we recall that in real
interferometers γm ≪ κS and condition Δm ≪ κS should be
satisfied for PI to arise. Expanding Eq. (13a) in a Taylor
series in γ=κ and Δm=κS, one obtains

Γ≃ γmR0

2
½1 −R−1

0 − δ2m�:

Thus one can get the following approximate expression for
PI onset time:

τPI ≃ 1 −R−1
0 þ δ2m

γmR0

log
n̄cκ0
N̄thγm

ð
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
R0 − δ2m

p
− 1Þ

R0

¼ 1 −R−1
0 þ δ2m

γmR0

log
4PinΩm

kBTω0γm

ð
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
R0 − δ2m

p
− 1Þ

R0

: ð34Þ

The dependence of PI onset time versus pump laser
power Pin (and PI gain) is plotted in Fig. 5 for parameters
characteristic of the Advanced LIGO detector, which are
given in Table I.

VII. DUAL-RECYCLING INTERFEROMETER

The above results are obtained for a single Fabry-Pérot
cavity. However, they are easily generalized to the case of a
power- and signal-recycled interferometer like the one of
Advanced LIGO. Such an interferometer, if perfectly
symmetric, is equivalent to two effective Fabry-Pérot
interferometers with effective linewidths, κ0�, and detun-
ings, δ�, defined in terms of arm cavity parameters and
power- and signal-recycling mirror (PRM and SRM)
reflectivity and phase shift. Graphically, this fact is illus-
trated in Fig. 6. This result is well known as the “scaling

law” and was devised by Buonanno and Chen in their
seminal article [36].
The effective Fabry-Pérot cavities represent so-called

symmetric and antisymmetric optical modes, which are
coupled to corresponding common and differential acoustic
modes of the mirrors (see related definitions in Sec. 5.3
of [37]). As shown in [9], the above consideration of
three-mode parametric instability in Fabry-Pérot applies to
each of these modes with the following substitutions of
parameters:

M → M; ð35Þ

Pc → 2Parm
c ; ð36Þ

κ0 → κ0� ¼ κ0ℜ

�
1 − ρp;se2iϕ

0
p;s

1þ ρp;se2iϕ
0
p;s

�
; ð37Þ

κS → κS� ¼ κSℜ

�
1 − ρp;se2iϕ

S
p;s

1þ ρSp;se2iϕp;s

�
; ð38Þ

Δm → Δm þ δ� ¼ Δm þ κ0ℑ

�
1 − ρp;se2iϕp;s

1þ ρp;se2iϕp;s

�
; ð39Þ

where ρp;s ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − Tp;s

p
are (amplitude) reflectivities of

power- and signal-recycling mirrors, respectively, with Tp;s

being the more habitual power transmissivities thereof, and
ϕ0;S
p;s ¼ ω0;Slp;s=c are propagation phase shifts that light of

TABLE I. Parameters used for simulation.

Parameter Notation Value

Effective mass, kg m 40
Arm length, km L 4
Overlap factor Λ 1.0
Fundamental mode finesse F 0 450
Stokes mode finesse F S 450
Acoustic frequency, kHz Ωm=2π 20
Acoustic mode Q Qm 107

Temperature, K T 300
PI gain R0 0.05ð Pin

1 WÞ

FIG. 6 (color online). Scaling law for dual-recycled Advanced
LIGO interferometers: Common and differential modes of a
balanced interferometer, representing the sum and difference of
the optical fields in the arm cavities, can be modeled as two
independent effective Fabry-Pérot cavities coupled to common
and differential acoustic modes of the arm cavity mirrors.
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frequency ω0;S acquires propagating the distance lp;s from
arm cavity input test masses to the PRM and SRM,
respectively. Here “þ” sign stands for values that refer
to a symmetric mode, and “−” sign indicates those of an
antisymmetric one.
One cannotice that the new linewidth ratio κ0�=κS�maybe

different from the one for the simple Fabry-Pérot, as phase
shiftsϕ0

p;r deviate fromϕS
p;r; i.e., the fact that the fundamental

mode is resonant in the power-recycled (PR) or signal-
recycled (SR) cavity does not mean that the same is true
for the Stokes mode. The difference is Δϕ ¼ ϕ0

p;r − ϕS
p;r≃

Ωmlp;r=c, which might be significant for the ∼25-m-long
PR/SR cavities planned for Advanced LIGO.
Asymmetry in interferometer arms does not change the

general conclusion of this section, for the dual-recycled
interferometer can still be represented as two independent
Fabry-Pérot interferometers, as shown in [14,38]. In this
case, however, normal modes of the asymmetric system are
not pure symmetric and antisymmetric combinations of
fields in the arm cavities, but a general linear combination
thereof (cf. Section 2.6 of [38]).

VIII. CONCLUSION

In this work, we analyzed, using full nonlinear treatment,
the dynamics of three-mode optomechanical instability in
large-scale gravitational-wave interferometers with freely
suspended optics. It turns out that intrinsic nonlinearity of
the three-mode interaction does not allow excited unstable
optical and acoustic mode amplitudes to grow unbounded;
rather, it makes them saturate to the new steady-state values.
These values are governed by three dimensionless parame-
ters: Parametric gain, R0, normalized frequency mismatch
(detuning), δm ¼ 2ðω0 − ωS −ΩmÞ=κS, and the ratio of
optical linewidths κ0=κS. Therefore, our theory can be equally
applied to simple Fabry-Pérot interferometers and to complex
dual-recycled interferometers of the second-generation
gravitational-wave detectors, such as Advanced LIGO
[6,7],AdvancedVirgo [10],KAGRA[11], andGEO-HF [12].
Our analysis shows that the process of instability

development is quite slow for large-scale detectors, lasting
for many relaxation times of the acoustic modes, which,
due to very high Q factors of these modes, amounts to
hundreds to thousands of seconds. Such a long onset time

allows for efficient control and mitigation of this type of
instability. Moreover, for reasonable values of PI gain,
R0 ∼ 10, consistent with recent parametric instability
modeling for Advanced LIGO interferometers [4,5], acous-
tic mode amplitudes should not exceed nanometer level.
Based on this point, as well as on the fact that the small-
scale membrane-in-the-middle interferometer in UWA
(where PI was observed experimentally in the nonlinear
regime [22]) did not lose lock, one can presume that the
same would be the case for a large-scale GW detector.
However, there remains a high level of uncertainty pertain-
ing to a greater complexity of an electronic control of a
large interferometer. The response of the electronic control
system to a slump of circulating power in the arms when PI
starts to develop deserves a separate study.
It should be also noted that our theory assumes fixed,

time-independent values of mode frequencies and opto-
mechanical coupling. In real interferometers with sus-
pended optics, mirrors tend to move around slowly and
a laser beam spot does not rest at a fixed position on a
mirror surface. This results in slow (compared to acoustic
frequencies) modulation of the frequencies of the Stokes
modes and therefore of the mismatch parameter, ΔmðtÞ, the
PI gainR0ðtÞ, and the modes’ overlap factorΛ; this leads to
reduced chance of instability. The effect of such modulation
will be reported elsewhere [39].
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