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We classify effective actions for Nambu-Goldstone (NG) bosons assuming the absence of anomalies.
Special attention is paid to Lagrangians that are invariant only up to a surface term, which are shown to be
in a one-to-one correspondence with Chern-Simons (CS) theories for unbroken symmetry. Without making
specific assumptions on the spacetime symmetry, we give explicit expressions for these Lagrangians,
generalizing the Berry and Hopf terms in ferromagnets. Globally well-defined matrix expressions are
derived for symmetric coset spaces of broken symmetry. The CS Lagrangians exhibit special properties, on
both the perturbative and the global topological levels. The order-one CS term is responsible for the
noninvariance of the canonical momentum density under internal symmetry, known as the linear
momentum problem. The order-three CS term gives rise to a novel type of interaction among NG
bosons. All the CS terms are robust against local variations of microscopic physics.

DOI: 10.1103/PhysRevD.90.121701 PACS numbers: 11.30.Qc, 11.30.Fs

I. INTRODUCTION

The low-energy physics of many-body systems is
dominated by collective modes of their elementary con-
stituents, such as sound waves in solids and fluids, spin
waves in (anti)ferromagnets, or Bogoliubov modes in
superfluids. As a rule, these can be viewed as Nambu-
Goldstone (NG) bosons of spontaneously broken continu-
ous symmetries of the system. The broken symmetries are
most conveniently encoded in a local effective field theory
(EFT) for the NG modes [1].
Terms of topological origin are ubiquitous in quantum

field theories for a vast range of physical systems. In high-
energy physics, a Wess-Zumino (WZ) term is responsible
for anomalous interactions of pions [2]. In condensed
matter physics, topological actions play a decisive role
for the quantum Hall effect, the dynamics of spin chains,
superconductors, topological insulators and other in-
triguing phenomena [3,4].
Here and in the companion paper [5], we give a

systematic construction of EFTs for NG bosons in the
gradient expansion, based on the strategy outlined in
Ref. [6]. In the present paper, we focus on quasi-invariant
Lagrangians, that is, those which are invariant up to a
surface term. Despite intensive research of NG bosons in
quantum many-body systems [7–10], explicit expressions
for quasi-invariant Lagrangians have only been known for a
few particular cases of interest. One of our main results here
is a complete classification, and an explicit derivation, of
such terms. The explicit solution for the leading-order (LO)

Lagrangian [8,11], which took two decades to solve after its
original formulation [12], follows as a simple special case.
For internal symmetries characterized by a compact Lie

group, quasi-invariant Lagrangians are in a one-to-one
correspondence with generators of de Rham cohomology
groups of the coset space of broken symmetry [13]. In four-
dimensional Lorentz-invariant systems, they invariably sig-
nal anomalous microscopic dynamics, and can in principle
be constructed using differential-geometric methods [14].
We show that in some many-body systems, the presence of
quasi-invariant Lagrangians does not require the broken
symmetry to be anomalous. Assuming the absence of
anomalies, we construct all quasi-invariant Lagrangians
using only elementary field theory, without any assumptions
on the spacetime geometry. These Lagrangians can be
mapped to Chern-Simons (CS) theories for unbroken sym-
metry. Their topological nature is manifested by a robustness
against local variations of microscopic physics, and a tension
between manifest locality and gauge invariance.

II. GAUGE-INVARIANT ACTIONS

Consider a system with a continuous internal symmetry
group G, spontaneously broken to H ⊂ G. Its low-energy
physics can be probed by coupling the conserved currents of
G to a set of background gauge fields, Ai

μðxÞ. It is captured
by an EFT, defined by the action Sefffπ; Ag, where πaðxÞ is a
set of NG fields, one for each broken generator Ta [15]. In
the absence of anomalies and upon a suitable choice of the
variables πa, Sefffπ; Ag becomes invariant under a simulta-
neous gauge transformation of the NG and background
fields [6]. The latter reads T gAμ ≡ gAμg−1 þ ig∂μg−1,
where g ∈ G and Aμ ≡ Ai

μTi. The action of symmetry on
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the NG fields is defined by treating them as coordinates on
the coset space G=H [16]. They are encoded in a matrix
UðπÞ in some faithful representation of G, and their trans-
formation rule reads

Uðπ0ðπ; gÞÞ ¼ gUðπÞhðπ; gÞ−1; ð1Þ
where h ∈ H. With the choice g ¼ UðπÞ−1, one obtains
Sefffπ; Ag ¼ Sefff0; T UðπÞ−1Ag, which ensures that the
fields πa; Ai

μ only appear in a specific combination,

T UðπÞ−1Aμ ¼ UðπÞ−1ðAμ þ i∂μÞUðπÞ
≡ ϕa

μðπÞTa þ Bα
μðπÞTα ¼ ϕμðπÞ þ BμðπÞ: ð2Þ

The broken and unbroken components transform in turn as

Tgϕμ ¼ hϕμh−1; TgBμ ¼ hBμh−1 þ ih∂μh−1; ð3Þ

where h is given by Eq. (1). The effective Lagrangian can be
split into two parts, Leff ½ϕ; B� ¼ Linv½ϕ; B� þ LCS½B� [6].
The part Linv is strictly invariant under the unbroken gauge
transformation (3) and can therefore be constructed out of
covariant constituents ϕμ, Gμν ≡ ∂μBν − ∂νBμ − i½Bμ; Bν�,
and their covariant derivatives; see Ref. [5] for more details.
The part LCS depends solely on the gauge field Bα

μ and is
quasi-invariant; this is the advertised CS Lagrangian.
The spectrum of NG bosons as well as their dominant

interactions at low energy are determined by the leading-
order Lagrangian with up to two derivatives, which we find
to be

LLO
eff ¼ eμαBα

μ þ eμaϕa
μ þ

1

2
gμνabϕ

a
μϕ

b
ν

¼ −eμiωi
a∂μπ

a þ eμjν
j
iA

i
μ þ

1

2
gμνabω

a
cω

b
dDμπ

cDνπ
d: ð4Þ

The couplings eμi and gμνab are invariant tensors of H (and
likewise of the spacetime symmetry), that is, eμi f

i
αj ¼ 0 and

gμνcbf
c
αa þ gμνacfcαb ¼ 0; fijk are the structure constants of G.

The functions ωi
aðπÞ and νjiðπÞ in Eq. (4) are given byUðπÞ,

ωi
aTi ≡ −iU−1ð∂U=∂πaÞ; νjiTj ≡U−1TiU: ð5Þ

Finally, Dμπ
a ≡ ∂μπ

a − Ai
μhai ðπÞ is the covariant derivative

of the NG field, where hai ðπÞ defines an infinitesimal shift of
the NG field under the transformation g ¼ eiϵ

iTi in Eq. (1).
Assuming rotational invariance, eμi ¼ eiδμ0 [8,11]. More-

over, gμνabϕ
a
μϕ

b
ν ¼ ḡabϕa

0ϕ
b
0 − gabϕa

rϕ
b
r where r is a spatial

vector index [17]. With the particular choice UðπÞ ¼ eiπ
aTa ,

one then finds by a power expansion in πa that

LLO
eff ¼ 1

2
eifiab∂0π

aπb þ eiAi
0 þ

1

2
gμνabDμπ

aDνπ
b þ � � � :

ð6Þ

Every pair Ta; Tb such that 1V h0j½T̂a; T̂b�j0i ¼ ifiabei ≠ 0 (V
being spatial volume) gives rise to a canonically conjugate
pair of variables, and hence one type-B NG boson [7] with,
as a rule, a quadratic dispersion relation. The remaining πas
excite one type-A NG boson each, with a typically linear
dispersion.

III. CHERN-SIMONS TERMS

Equation (4) features the simplest example of a CS
term: eμαBα

μ. We will now show how to construct such
terms systematically. The gauge current, defined by
Jμα½B�≡ δSCSfBg=δBα

μ, satisfies the current conservation,

∂μJ
μ
α þ fγαβJ

μ
γB

β
μ ¼ 0, and transforms under h ∈ H with

infinitesimal parameters ϵα as δJμα ¼ −fγαβJ
μ
γ ϵβ. Due to the

latter, the current can be built solely out of covariant
constituents: Gα

μν and its covariant derivatives. The
Lagrangian is in turn reconstructed using

LCS½B� ¼
Z

1

0

dtBα
μJ

μ
α½tB�: ð7Þ

It is easy to solve the covariance and conservation con-
straints on Jμα at the lowest orders in the gradient expansion.
Up to order three, the only solutions are a constant, eμα, and
cμνλαβ G

β
νλ. The integration indicated in Eq. (7) then leads to

Lð1Þ
CS ¼ eμαBα

μ; where eμγf
γ
αβ ¼ 0;

Lð3Þ
CS ¼ cμνλαβ B

α
μ

�
∂νB

β
λ þ

1

3
fβγδB

γ
νBδ

λ

�
;

where cμνλγβ fγδα þ cμνλαγ f
γ
δβ ¼ 0; ð8Þ

cμνλαβ is antisymmetric in μ; ν; λ and symmetric in α; β. These
are all CS terms up to order four in derivatives [18]. Lorentz

invariance only allows Lð3Þ
CS in three spacetime dimensions,

where cμνλαβ ¼ ϵμνλcαβ [6]. Without Lorentz invariance, Lð1Þ
CS

is allowed, too, as well as another option in four spacetime
dimensions, cμνλαβ ¼ ϵκμνλcκ;αβ. From now on wewill assume
that only e0α ≡ eα and c0;αβ ≡ cαβ are nonzero.
The expression (8) for the CS terms is valid for an

arbitrary, albeit local, parametrization πa ofG=H around its
origin. This is sufficient for the physics of NG bosons, yet a
globally valid parametrization may be needed even at low
energy. For instance, even a weak field Ai

μ may sweep the
ground state through the whole coset space, giving rise to a
Berry phase, corresponding to Lð1Þ

CS [11]. A globally valid
matrix expression for the CS terms can be achieved for
symmetric coset spaces, that is, such G andH that admit an
automorphism R under which RðTαÞ ¼ Tα and
RðTaÞ ¼ −Ta, and thus fabc ¼ 0. Setting UðπÞ ¼ eiπ

aTa ,
there is a field variable that transforms linearly under the
whole group G [16],
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ΣðπÞ≡ UðπÞ2; Σðπ0ðπ; gÞÞ ¼ gΣðπÞRðgÞ−1: ð9Þ

Next, we use the fact that for semisimple Lie algebras the
Killing form is nondegenerate to define the dual vector eα

by eα ¼ eβTrðTαTβÞ. The densities eα can then be encoded
in the matrix variable QðπÞ≡UðπÞðeαTαÞUðπÞ−1 ¼
eανiαðπÞTi. Since eαTα commutes with all generators of
H, this likewise transforms linearly under the whole
G: Qðπ0Þ ¼ gQðπÞg−1.
In order to express Lð1Þ

CS in terms of these linearly
transforming variables, we have to extend the domain on
which the fields πa are defined [19]. With a suitable
boundary condition on πa, the time manifold can be
compactified to a circle, S1. Provided that G=H is simply
connected, there is an interpolation ~πaðτ; xÞ for τ ∈ ½0; 1�
such that ~πað0; xÞ ¼ 0 and ~πað1; xÞ ¼ πaðxÞ. The coordi-
nates τ; t then define a unit disk, D2, and the action

associated with Lð1Þ
CS becomes

Sð1ÞCS ¼ i
4

Z
ddx

Z
D2

ϵmnTrðQ∂mΣ∂nΣ−1Þ

þ
Z

dtddxTrðQA0Þ: ð10Þ

Here m; n label coordinates on D2 and are ordered so that

ϵτt ¼ 1. This matrix form of Sð1ÞCS, suitable for practical
applications, generalizes expressions found before for
various specific systems such as ferromagnets [20],
SUðNÞ ferromagnets [21], superfluid helium [22], or
SOð5Þ spin chains [23].
Similar reasoning applies to the order-three CS term. We

use the factorization cμνλαβ ¼ ϵμνλcαβ valid in three spacetime
dimensions [24] and represent the invariant coupling cαβ by
a matrix Ξ0 so that cαβ ¼ TrðΞ0TαTβÞ. Such Ξ0 certainly
exists when H is semisimple; see also the discussion of a
concrete example in Sec. IV B. The variable ΞðπÞ≡
UðπÞΞ0UðπÞ−1 now transforms linearly just like QðπÞ
and allows us to rewrite the part of Sð3ÞCS, independent of
the external gauge field, in the simple matrix form

Sð3ÞCS jA¼0 ¼ −
1

16

Z
D4

ϵklmnTrðΞ∂kΣ∂lΣ−1∂mΣ∂nΣ−1Þ:
ð11Þ

Here we have assumed that the spacetime can be compac-
tified to S3 and that π3ðG=HÞ ¼ 0 so that the NG fields
can be smoothly extended to ~πaðτ; xÞ, defined on the
four-disk, D4. The coordinates on D4 are ordered so
that ϵτ123 ¼ 1.
A derivation of Eqs. (10) and (11) together with their

generalization to arbitrary (not necessarily symmetric)
coset spaces is provided in the Supplemental Material [25].

A. Topological nature of Chern-Simons terms

The CS terms are singled out by our construction, but
what makes them special physics wise? First, some of the
CS couplings may be quantized, depending on the topology
of spacetime and of the coset space G=H [19,25]. Due to
the extra spatial integral in Eq. (10), eα can only be
quantized in a finite space volume V. Likewise, cαβ is
quantized in three spacetime dimensions, or possibly in
four dimensions provided the time volume is finite. In any
case, the topological nature of the CS terms is expected to
manifest in the nonrenormalization of their couplings under
quantum corrections.
The order-one CS term has another notable consequence:

its contribution to the canonical momentum density,
Pr ¼ eαBα

r , is not invariant under the internal symmetry
group G. This is known in ferromagnets as the linear
momentum problem [26], which is also related to the
topology of the coset space [27]. In some systems such as
ferromagnetic metals [20] or superfluid helium [22], the
resolution of this paradox is through the presence of gapless
fermionic degrees of freedom, which makes the EFT for the
NG modes alone incomplete, or even ill defined by
inducing nonlocal terms in the action [28]. Our EFT
framework makes it clear that the phenomenon is general,
suggesting that type-B NG modes associated with unbro-
ken charge in the ground state are always accompanied by
other (NG or non-NG) gapless modes.
Another outstanding feature of all CS terms is their

insensitivity to local deformations of the system. Consider a
medium whose microscopic properties vary in space. Such
a variation can be taken into account in Linv without
violating G invariance by making the couplings coordinate
dependent. This is in general not possible for the quasi-
invariant terms though, as an arbitrary coordinate depend-

ence of, say, eα would spoil the G invariance of Sð1ÞCS, and
likewise for the other CS terms. The most general form of
the order-one CS term compatible with the internal sym-
metry is eμαBα

μ, where eμα is now a function of coordinates
that is invariant under H and satisfies the conservation
condition ∂μe

μ
α ¼ 0.

B. Discrete symmetries

Both the ea and the (CS) eα term in Eq. (4) explicitly
break a certain discrete symmetry (not to be confused with
time reversal [11,29]). To that end, note that the generators
can be chosen so that all those with a nonzero vacuum
expectation value are diagonal [30]. Now set UðπÞ ¼ eiπ

aTa

and define a “charge conjugation” C by

CUðπÞ≡UðπÞ� ¼ UðπÞ−1T: ð12Þ

One easily finds that Cω ¼ −ωT ; gauge covariance is thus
preserved by defining CAμ ¼ −AT

μ . As a rule, the two-
derivative Lagrangian in Eq. (4) preserves C; when the NG
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fields are irreducible under H, this follows from
gabϕa

μϕ
b
ν ∝ TrðϕμϕνÞ. On the other hand, eαBα

0 ¼
TrðeαTαB0Þ changes sign under C since eαTα is by
assumption diagonal. The same argument applies to the
invariant term eaϕa

0 .
C is an accidental symmetry of the two-derivative terms,

similar to the intrinsic parity in the chiral perturbation
theory, defined as πa → −πa [31]. Its breaking may lead to
certain “anomalous” processes such as magnon decay into
photons in two-dimensional (anti)ferromagnets [32]. The
intrinsic parity itself is preserved, at least for symmetric
coset spaces, by the CS terms since it leaves their building
block, Bα

μ, invariant.

C. Chern-Simons interactions
of Nambu-Goldstone bosons

The physical importance of the order-one terms in the
Lagrangian (4) is clear; they determine the dispersion
relations of NG bosons as well as their leading interactions.

On the contrary, the implications of Lð3Þ
CS for the NG bosons

are subtle. Suppose first that there is a G-invariant tensor
coupling Cij such that Cαβ ¼ cαβ. Any G-invariant Cij

satisfies the identity (using the notation ωi
μ ≡ ωi

a∂μπ
a)

ϵμνλCαβBα
μ

�
∂νB

β
λ þ

1

3
fβγδB

γ
νBδ

λ

�

¼ ϵμνλCijAi
μ

�
∂νA

j
λ þ

1

3
fjklA

k
νAl

λ

�
þ 1

6
ϵμνλCijf

j
klω

i
μω

k
νω

l
λ

− ϵμνλ
�
Caαϕ

a
μGα

νλ þCabϕ
a
μDνϕ

b
λ þ

1

3
Caifibcϕ

a
μϕ

b
νϕ

c
λ

�

ð13Þ

up to a surface term. This allows us to rewrite Lð3Þ
CS as a sum

of (i) a CS term for Ai
μ alone plus a θ-term [second line of

Eq. (13)], and (ii) invariant terms from Linv (last line).

Therefore, Lð3Þ
CS does not induce any interactions among the

NG bosons. In ferromagnets Lð3Þ
CS is known as the Hopf

term [33].
When H is simple, cαβ is proportional to TrðTαTβÞ by

Schur’s lemma; we can then define Cij by TrðTiTjÞ. A
necessary condition for Lð3Þ

CS to trigger interactions among
NG bosons is therefore that H is not simple. Expanding in
powers of πa then yields

Lð3Þ
CS jA¼0 ¼

1

4
ϵμνλcαβfαabf

β
cdπ

a∂μπ
b∂νπ

c∂λπ
d þ � � � : ð14Þ

While formally reminiscent of the WZ term in the chiral
perturbation theory, this interaction, hitherto unnoticed,
does not arise from anomalous microscopic dynamics. For
example, consider the class of symmetry-breaking patterns
G1 ×G2 → H1 ×H2, where Hi ⊂ Gi. The fields ϕa

μ; Bα
μ

then split into separate contributions from each Gi=Hi.
Provided there is no singlet of H among the broken
generators, the two sets of NG fields enter separately both
the leading-order Lagrangian (4) and the order-three in-
variant one [34]. If, in addition, both Hi contain a Uð1Þ
factor, a coupling cαβ mixing the two is compatible with H
invariance. Equation (14) then provides the leading inter-
action among NG bosons from the two coset spacesGi=Hi.
A symmetry-breaking pattern of the above type occurs for
instance in the A-phase of liquid helium. However, the
broken symmetry in this case includes spatial rotations;
these are not covered in the present paper, which is
concerned exclusively with internal symmetries.

IV. EXAMPLES

A. Ferromagnets

Let us illustrate the general arguments through examples,
starting with the simplest case of a spin-1

2
ferromagnet. As

pointed out in Ref. [35], the nonrelativistic Pauli equation
in the presence of an electromagnetic field features an
G ¼ SUð2Þs × Uð1Þem gauge invariance. Here the SUð2Þs
factor represents electromagnetic interactions of spin and
the associated gauge potentials ~Aμ are given by the electric
and magnetic field intensities. The Uð1Þem factor, on the
other hand, describes the coupling of electric charge to the
electromagnetic gauge potential Aem

μ . Spontaneous mag-
netization in the ground state of a ferromagnet (chosen
without loss of generality to point in the z direction) breaks
the symmetry to H ¼ Uð1Þs × Uð1Þem.
It is common to describe the magnetization by a unit

vector ~n, related to our general notation by ~σ · ~n ¼
Σσ3 ¼ Uσ3U−1, where ~σ is the vector of Pauli matrices.
The order-one CS term (10) then takes the usual form [20]

Sð1ÞCS ¼ M0

Z
ddx

Z
D2

~n · ð∂t~n × ∂τ~nÞ þM0

Z
dtddx~n · ~A0;

ð15Þ

where M0 is the spin density in the ground state. The first
term is responsible for the Larmor precession of spin as
described by the Landau-Lifshitz equation [12]. The second
term gives the Zeeman coupling of the magnetization to the
magnetic field ~B ¼ ~A0=μ, μ being the magnetic moment.
Let us inspect possible order-three CS terms, restricting

from now on to d ¼ 2. Since the unbroken subgroup H
has two Uð1Þ factors, there are three different terms,
corresponding to the independent entries of the (symmetric)
matrix cαβ. First, the Uð1Þs term B3 ∧ dB3 can be [by

Eq. (13)] absorbed into a CS term for ~Aμ alone. It does not
affect the perturbative dynamics of NG bosons, as is clear
from Eq. (14). It is relevant for topologically nontrivial spin
configurations though: the θ term on the second line of
Eq. (13) is the Hopf term. Second, the Uð1Þem term
Aem ∧ dAem is independent of the NG fields, as the
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Abelian gauge field Aem
μ is unaffected by the field redefi-

nition (2); it describes the Hall effect.
The most interesting is the mixed CS term Aem ∧ dB3.

By Eq. (8), this connects Aem
μ to magnons through the

current ϵμνλ∂νB3
λ ¼ 1

2
ϵμνλG3

νλ [25,36]. This is a topological

current whose integral charge is, for vanishing ~Aμ, propor-
tional to the topological winding number,
1
8π

R
d2xϵrs~n · ð∂r~n × ∂s~nÞ. The associated effective cou-

pling can therefore be interpreted as the electric charge of
a topological soliton, called the baby skyrmion. In ferro-
magnets, the C conjugation (12) acts as a reflection in the
tangent plane toG=H ≃ S2 at π ¼ 0, and is equivalent to the
inversion ~n → −~n up to a finite SUð2Þs rotation. Hence both
the order-one CS term and the mixed order-three CS term are
C-odd. The latter gives the leading contribution to the
magnon decay into a pair of photons [32].

B. Quantum Hall ferromagnets

An intriguing generalization of the above simple exam-
ple is provided by quantum Hall ferromagnets, whether
realized by multilayered ferromagnets [37] or by Landau-
level degeneracy in graphene [38]. Assuming first for
simplicity exact degeneracy we have G ¼ SUðNÞ, where
N is the total number of levels. The ferromagnetic order
parameter can be viewed as a Hermitian matrix Φ trans-
forming as Φ → gΦg−1 under G. In the ground state, Φ
reduces to hΦi ¼ diagðλ1;…; λ1; λ2;…; λ2Þ; breaking the
symmetry down to H ¼ S½UðMÞ × UðN −MÞ�, where M
is the filling factor, which is supposed to be an integer. The
coset space G=H is symmetric, the automorphism R being
given by a matrix R≡ diagðþ1;…;þ1;−1;…;−1Þ. This
allows us to define a unitary Hermitian matrix variable
N ≡ ΣR ¼ URU−1 [39]; this generalizes the matrix var-
iable ~σ · ~n, used above for spin-1

2
ferromagnets, which

correspond to N ¼ 2 and M ¼ 1.
The coset space G=H—the Grassmannian—has dimen-

sion 2MðN −MÞ, and hence the ferromagnetic ground
state supports MðN −MÞ type-B magnon excitations.
Their dynamics is driven by the order-one CS
term. This is specified by a single effective coupling,
corresponding to the sole Uð1Þ generator ofH, proportional
to − N

2
Rþ ðM − N

2
Þ1. According to Eq. (10), the order-one

CS term therefore reads

Sð1ÞCS jA¼0 ¼
iM0

4

Z
d2x

Z
D2

ϵmnTrðN ∂mN ∂nN Þ; ð16Þ

where the parameter M0 again stands for the size of the
magnetization in the ground state.
For 2 ≤ M ≤ N − 2, the coupling cαβ encodes three

parameters, one of which can be eliminated via Eq. (13).
The remaining two parametrize the matrix Ξ0, whose most
general form that is compatible with the unbroken

symmetry is Ξ0 ¼ cRþ d1. It is now straightforward,
albeit a bit tedious, to evaluate the CS term (11) in terms
of N ,

Sð3ÞCS jA¼0 ¼ −
c
16

Z
D4

ϵklmnTrðN ∂kN ∂lN ∂mN ∂nN Þ:
ð17Þ

This form was derived in the special case M ¼ 1 in
Ref. [32]. Since the matrix R is real and diagonal, the C
conjugation (12) amounts to N → N T . It immediately

follows that Sð1ÞCS and Sð3ÞCS are C-odd and C-even, respectively.
Consider now a quantum Hall ferromagnet in graphene,

where approximate spin and valley symmetries combine
intoG ¼ SUð4Þ. At zero doping, the lowest Landau level is
half filled, that is,M ¼ 2. The SUð2Þs;v factors of H can be
identified with spin and valley (pseudospin) rotations. The
interactions of the associated NG bosons are described by
Eq. (17). In reality, the SUð4Þ symmetry is only approxi-
mate. In the quantum Hall regime of graphene, the most
dominant explicit symmetry-breaking effects are the
Zeeman splitting and the Kekulé-type lattice distortion
[40]. While the former breaks SUð2Þs and spin-polarizes
the system, the latter breaks SUð2Þv. Provided that the
Zeeman splitting is negligible, the symmetry-breaking
pattern reduces to SUð2Þs → Uð1Þs, which is just the
well-known case of a spin ferromagnet. Thus the coupling
of the graphene quantum Hall ferromagnet to electromag-
netism in this particular regime is identical with the case of
a spin ferromagnet already discussed above.

V. CONCLUSIONS

In this paper, we have provided a general classification of
quasi-invariant Lagrangians for NG bosons in many-body
systems, without assuming a specific spacetime symmetry.
In addition to the practically useful explicit expressions (8),
(10) and (11) for the ensuing CS terms, we would like to
stress the simplicity of the approach advocated here, as
compared to existing literature [14]. Using the ideas of
general coordinate invariance (either relativistic or not
[41]), we expect it to readily generalize to broken spacetime
symmetries. In combination with the formalism proposed
recently in Ref. [42], the method could therefore offer a
novel EFT approach to systems such as solids [43],
supersolids [44], or exotic superfluids [45]. This generali-
zation would also allow one to discuss the mixing of sound
with other NG modes. We plan to address these points in
our future work.
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