
Dynamical phase space from an SOðd;dÞ matrix model

Athanasios Chatzistavrakidis*

Institute for Theoretical Physics, Leibniz University Hannover, Appelstrasse 2, 30169 Hannover, Germany
(Received 13 August 2014; published 23 December 2014)

It is shown that a matrix model with SOðd; dÞ global symmetry is derived from a generalized Yang-Mills
theory on the standard Courant algebroid. This model keeps all the positive features of the well-studied
type IIB matrix model, and it has many additional welcome properties. We show that it not only captures
the dynamics of spacetime, but it should be associated with the dynamics of phase space. This is supported
by a large set of classical solutions of its equations of motion, which corresponds to phase spaces of
noncommutative curved manifolds and points to a new mechanism of emergent gravity. The model
possesses a symmetry that exchanges positions and momenta, in analogy to quantum mechanics. It is
argued that the emergence of phase space in the model is an essential feature for the investigation of the
precise relation of matrix models to string theory and quantum gravity.
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I. INTRODUCTION

The concept of spacetime at very short distance scales is
very different than in classical physics. Ultimately, classical
spacetime and the gravitational field of general relativity
are expected to be emergent concepts. The most prominent
physical framework where this is indeed the case is
perturbative string theory, where the starting point is an
extended degree of freedom described by a nonlinear sigma
model. The perturbative quantization of the theory indeed
reveals the presence of gravity. In a rather independent way,
matrix theories [1–3] should also have something to say
about quantum gravity, although the situation in this line of
research remains more unclear. The emergence of gravity in
matrix models is an interesting problem to address (see
Ref. [4] and its references for a review of some approaches),
especially since the models of Refs. [1–3] are conjectured
to be directly related to string theory and to capture its
nonperturbative dynamics.
On the other hand, when quantum-mechanical effects

become important, it can be argued that it is the structure
of full phase space and its dynamics that would provide a
complete understanding of quantum gravity. This was
emphasized recently from the point of view of string theory
in Refs. [5,6] and earlier from the point of view of
noncommutative geometry in Refs. [7–9]. Given the close
relation of string theory and noncommutative geometry
[10,11] and their common grounds with matrix models, it
is interesting to examine whether the dynamics of phase
space can be captured by a matrix model. In this paper we
suggest such a model. We show that starting with a
generalized connection on the standard Courant algebroid
we can define a Yang-Mills (YM) theory whose reduction to
a point yields a matrix model with additional degrees of
freedom and SOðd; dÞ global symmetry. The symmetries of
this matrix model dictate that the classical solutions of its

equations of motion (EOMs) are noncommutative phase
space algebras that include the gravitational field, such as
the ones described recently in Ref. [12]. This provides an
emergent picture for phase space, where dynamics can be
incorporated and quantization can in principle be performed.

II. REDUCTIONS TO A POINT

Let us recall that a useful way to think about matrix
models is as reductions of field theories to a single point,
namely to zero dimensions [13–15]. Consider the bosonic
sector of maximal supersymmetric YM theory in 10
(Euclidean) dimensions. Its action is

Z
d10x

1

4
TrF ∧ ⋆F; ð1Þ

where

F ¼ 1

2
ð∂MAN − ∂NAM þ i½AM; AN �ÞdxM ∧ dxN; ð2Þ

and the indexM takes values from 0 to 9. In order to perform
a trivial dimensional reduction from 10 to 0 dimensions, we
must assume that the gauge field in 10 dimensions does not
depend on any of them, i.e., ∂MAN ¼ 0. Then we directly
find the reduced classical bosonic action,

SB ¼ −
1

4
Tr½AM; AN �½AM0 ; AN0 �gMM0

gNN0
: ð3Þ

This is the starting point to define the partition function that
yields the IIB matrix model [2],

Z ¼
Z Y9

M¼0

dAMPfðAMÞe−SB ; ð4Þ

where the Pfaffian appears by integrating out the matter
fields after the model is supersymmetrized. Note that the*thanasis@itp.uni‑hannover.de
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components of the 1-form A ¼ AMdxM in 10D become
(Hermitian) matrices in the 0D theory, having no dependence
on any spacetime coordinates, which are anyway absent in 0
dimensions. Of course, AM are already Hermitian matrices in
10 dimensions, since the gauge field lives in the adjoint
representation of the gauge group. The integral in Eq. (4) is
over those matrices. It is remarkable that in certain cases this
partition function, as well as similarly defined correlation
functions, are convergent for the Euclidean model [16,17].
The EOMs for the action (3) are

gMM0 ½AM; ½AM0 ; AN �� ¼ 0: ð5Þ

Classes of classical solutions to these equations were
described in many works, such as the basic ones in
Ref. [2] and more in Refs. [18–20] and [21–23] (in the
Lorentzian model). The usual interpretation is that the
matrices AM are associated to coordinates and therefore
the solutions correspond to noncommutative spacetimes.
This is fine, although the origin of the matrices is in the
cotangent bundle and they naturally carry a lower index.
This remark implies that the matrices AM could also be
associated to momenta and generate the momentum space
instead of spacetime. A relevant discussion on this may be
found in Ref. [24]. However, there is no clear way to obtain
the full structure of phase space from the IIB model. On
the other hand, the momenta in matrix noncommutative
geometry are typically related to the coordinates, since they
correspond to inner derivations of the algebra A of coor-
dinate operators [7]. Moreover, they involve two copies of
A, say AL and AR, that correspond to the left and the right
action of the operators, respectively [12]. The momenta are
then related to the difference x̂L − x̂R of coordinate operators
in the two representations. All these suggest that there should
exist an extended model which is associated to the dynamics
of phase space. This is desirable for the reasons explained in
the introduction, primarily for a better understanding of the
gravitational field in the framework of matrix models.

III. YM THEORIES AND COURANT ALGEBROIDS

In order to construct the extended matrix model, we need
some elementary concepts from generalized complex geom-
etry [25,26] and the theory of Courant algebroids [27]. The
reader who is interested in the model itself may jump to the
next section. Consider the generalized tangent bundle of a
manifold M of dimension d,1 which is given by the sum
of the tangent and cotangent ones, T M ¼ TM⊕T⋆M. The
sections ΓðT MÞ of this bundle are generalized vectors X,
which can be written as the sum of an 1-vector and a 1-form,

X ¼ X þ η; X ∈ ΓðTMÞ; η ∈ ΓðT⋆MÞ:

The standard Courant algebroid is obtained by equipping
the above bundle with the Courant bracket [28],

½X;Y�C ¼ ½X; Y�L þ LXξ − LYη −
1

2
dðXðξÞ − YðηÞÞ;

a pairing,

hX;Yi ¼ 1

2
ðXðξÞ þ YðηÞÞ; ð6Þ

and a smooth map, ρ∶ T M → TM, the anchor. A notion
with particular interest for physics is that of Dirac structures
[28]. These are vector subbundles L ⊂ T M of the general-
ized tangent bundle such that

hXL;YLi ¼ 0; ½XL;YL� ∈ ΓðLÞ;
for anyXL;YL ∈ ΓðLÞ. The rank of these bundles is exactly
half of the rank of T M. Dirac structures are valuable for
physical problems because arbitrary elements of ∧• T M do
not generically transform as tensors, however elements of
∧• L do [29]. Moreover, the Courant bracket satisfies the
Jacobi identity when restricted on a Dirac structure, although
it does not satisfy it on the generalized tangent bundle.
On a vector bundle, a generalized notion of a connection

can be defined [29]. Here we consider just the simplest
possibility,

D ¼ dþ Aþ V ¼ dxM∂M þ AMdxM þ VM∂M; ð7Þ
on the vector bundle T M. The curvature of a generalized
connection is defined in a way that directly generalizes the
usual definition,

F ðX;YÞ ¼ ½DX; DY� − D½X;Y�: ð8Þ
For the connection (7) this field strength is

F ¼ 1

2
FMNdxM ∧ dxN þ ð∂MVN þ i½AM; VN �ÞdxM ∧ ∂N

þ i
2
½VM; VN �∂M ∧ ∂N; ð9Þ

where the bracket is just the Lie algebra commutator
associated to the gauge group.
Next we consider the volume form on the generalized

tangent bundle. This is given as

volT M ¼ �dx0 ∧ … ∧ dx9 ∧ ∂0 ∧ … ∧ ∂9; ð10Þ
where the choice of sign is a choice of orientation.We choose
the plus sign, which fixes the ordering of basis 1-forms and
1-vectors. Note that the metric does not enter, or rather the
individual metric factors from the tangent and the cotangent
bundle cancel each other. This becomes clear when the
generalized metric

H ¼
�
g − bg−1b bg−1

−g−1b g−1

�
ð11Þ1We often set d ¼ 10 in the following, although the discussion

is general and holds for any d.
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is considered, where g is a Riemannian metric on M and b
is a 2-form. This generalized metric transforms covariantly
under Oðd; dÞ transformations O,

H → OTHO: ð12Þ

Its inverse is

H−1 ¼
�

g−1 −g−1b
bg−1 g − bg−1b

�
; ð13Þ

and its determinant is detH ¼ 1, thus it drops out from any
relevant formula.
In order to construct a YM theory, we need a Hodge star

operator on the T M. This acts as

⋆T M∶ ∧p TM ∧q T⋆M →∧d−p TM ∧d−q T⋆M; ð14Þ

and we define it such that ⋆T M1 ¼ volT M. Applying this
operation to the generalized curvature F , we are able to
compute the product F ∧ ⋆T MF and we obtain

F ∧ ⋆T MF ¼ ðHMM0
HNN0

FMNFM0N0 ÞvolT M:

The reader should be cautious with the exhibited index
structure of the generalized metric, which is purely conven-
tional since its components have both upper and lower
indices. The expression in the parentheses can be identified
with an inner product ðF ;F Þ, so that

F ∧ ⋆T MF ¼ ðF ;F ÞvolT M: ð15Þ

The issue with this expression and the problem one faces
in the corresponding generalized YM theory, is that the
generalized curvature F does not transform as a tensor
at the level of the Courant algebroid [29]. This can be
overcome by defining the theory on Dirac structures, where

F transforms tensorially. This was done and examined in
Ref. [30]. Here we adopt a different point of view. We
overcome the above problem by projecting the theory to
zero dimensions, thus defining a matrix model, where
harmful derivatives are dropped and the welcome trans-
formation properties are restored.

IV. THE SO(10,10) MATRIX MODEL

Let us first examine how the matrix model with action (3)
is obtained in this formalism. This can be approached in
two ways. The first way is to trace the steps that led to the
type IIB matrix model. Considering the YM theory on the
Dirac structure L ¼ TM of the full Courant algebroid and
setting b ¼ 0, the corresponding generalized YM theory is
identical to the standard YM in 10D and the model follows
from its dimensional reduction, as previously. Alternatively,
one can consider instead the Dirac structure L ¼ T⋆M and
the generalized YM theory on it. In order to reach a 0D
theory, we use the technique of Refs. [31,32], also used in
Ref. [30], where a map to momentum space was introduced.
Integrating out the volume of this momentum space we
obtain the action

S0B ¼ −
1

4
TrgMM0gNN0 ½VM; VN �½VM0

; VN0 �: ð16Þ

This is equivalent to the action that appears in Eq. (3) upon
the identification AM ¼ gMM0VM0

, and it has the same
classical solutions. It is a dual model that describes the
same physics. However, the two actions were obtained from
two very special but different Dirac structures. Herewe show
that a more general model is obtained when we utilize the
full structure of T M.
Consider the full generalized YM theory described in the

previous section and its trivial reduction to a point. In the
present case the 2-form b is not dropped. The result is a
reduced model with bosonic action

S ¼ −
1

4
Trð~gMM0 ~gNN0 ½VM; VN �½VM0

; VN0 � þ gMM0
gNN0 ½AM; AN �½AM0 ; AN0 � þ 2gMM0

~gNN0 ½AM; VN �½AM0 ; VN0 �
− 2gMPgM

0QbQNbPN0 ½AM; VN �½AM0 ; VN0 � þ 2gMPgNQbPM0bQN0 ½AM; AN �½VM0
; VN0 �

þ 4gMM0
gNPbN0P½AM; AN �½AM0 ; VN0 � þ 4gMP ~gNN0bM0P½AM; VN �½VM0

; VN0 �Þ; ð17Þ

where we defined ~g ¼ g − bg−1b. It should be clear that the
dynamical degrees of freedom are the AM and VM, while g
and b are related to the geometry of the embedding space
and they are not dynamical. Note that due to the terms that
appear after the first two lines, the model is more than a
simple addition of the two dual actions for the IIB model.
Recalling the origin of the action (17), its terms can be
collected accordingly. First, noting the symmetric role of
AM and VM, it is useful to define the extended matrix

XM ¼
�
AM

VM

�
; ð18Þ

where once more the position of its index is conventional
and has nothing to do with its transformation properties.
Then, the action can be cast into the following simple form:

S ¼ −
1

4
TrHMM0

HNN0 ½XM; XN �½XM0 ; XN0 �: ð19Þ
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A subtle point is that the bracket in Eq. (19) is not precisely
a commutator, since the XM are not square matrices, unlike
AM and VM. Its actual definition is

½XM; XN �≔
� ½AM; AN � ½AM; VN �
½VM; AN � ½VM;VN �

�
: ð20Þ

The action (17), or equivalently (19), leads to two sets
of EOMs. Varying with respect to AM or VM independently,
these are

□AM ¼ 0; □VM ¼ 0; ð21Þ
where we defined the box operator

□· ¼ gMM0 ½AM; ½AM0 ; ·�� þ ~gMM0 ½VM; ½VM0
; ·��

þ gMPbM0Pð½AM; ½VM0
; ·�� þ ½VM0

; ½AM; ·��Þ:
Note that these equations already appear coupled when
one varies with respect to AM or VM alone. We are going to
discuss some benchmark classical solutions in the next
section.
The bosonic model with action (17) exhibits a number of

symmetries. First of all, it has the obvious translational
symmetries AM → AM þ cM1d and VM → VM þ cM1d,
with cM; cM ∈ R, which is an extension of the analogous
property of the IIB model. Moreover, it has the gauge
symmetry XM → UXMU−1, with U ∈ UðNÞ, N being the
size of the matrices (N → ∞, as usual for large-N models).
This is again the same as in the IIB model and it reflects the
fact that the extended set of degrees of freedom originate
from the same 10D generalized YM theory. Finally, there is a
global rotational symmetry. Recall that the Euclidean IIB
model has such a symmetry too, but it is SO(10). Here we
encounter the main difference, in that the model (17) exhibits
a SO(10,10) global symmetry. This can be directly verified
by performing SO(10,10) transformations in the action (17),
keeping in mind that aside AM and VM, g and b transform
too. Their transformation is determined via the correspond-
ing transformation of the generalized metric, given in
Eq. (12). The model also possesses a symmetry that is
not present in the IIBmodel, which exchangesAM and VM as

AM → VM and VM → −AM: ð22Þ
We will comment on this symmetry after we present some
basic classical solutions.

V. DYNAMICAL PHASE SPACE

One of the prime attractive features of the IIB matrix
model is that it addresses the issue of the emergence of
spacetime and its dynamics (see e.g., Ref. [33] and
Refs. [4,34] for reviews on some recent approaches).
The model that we defined in the previous section is
similarly the appropriate arena to study the emergence and

the dynamics of phase space, which is valuable for the
reasons explained in the introduction.
Let us search for solutions of the classical EOMs of

the model. In order to simplify our analysis, we consider
b ¼ 0.2 The general case of b ≠ 0 is very rich and
interesting and we are going to report on this is the future.
The EOMs simply become

gMM0 ½AM; ½AM0 ; AN �� þ gMM0 ½VM; ½VM0
; AN �� ¼ 0;

gMM0 ½VM; ½VM0
; VN �� þ gMM0 ½AM; ½AM0 ; VN �� ¼ 0:

Consider the following vacuum ansatz:

Aa ¼ p̂a; Va ¼ x̂a; a¼ 1;…;2m; 2m≤ d; ð23Þ

where x̂a and p̂a are to be identified with position and
momentum operators, and A2mþ1 ¼ … ¼ Ad ¼ V2mþ1 ¼
… ¼ Vd ¼ 0. They satisfy the canonical commutation
relations (CCR)

½x̂a; p̂b� ¼ iℏδab: ð24Þ
Then the EOMs are simplified to

½p̂a; ½p̂a; p̂b�� ¼ 0 and ½x̂a; ½x̂a; x̂b�� ¼ 0; ð25Þ
which look very simple but actually include rather rich
structures.
We split the rest of our analysis into two parts. The first

part refers to flat spacetimes and phase spaces and most
of its features are captured already by the IIB matrix model.
It simply includes the algebra

½x̂a; x̂b� ¼ iθab; ½p̂a; p̂b� ¼ iωab; ð26Þ
with θab and ωab constant parameters, plus the CCR. This
algebra is the one of noncommutative quantum mechanics
with a constant magnetic source [35,36].
The second and more interesting class of solutions

contains a subset of noncommutative phases spaces
recently described in Ref. [12]. These are phase spaces
of noncommutative manifolds, whose underlying commu-
tative counterparts are general symplectic manifolds which
are parallelizable, i.e., they admit a global section of their
tangent bundle, and they are not necessarily flat. It was
shown in Ref. [12] that in such cases it is necessary to
consider two copies of the noncommutative algebra A of
position operators, one acting from the left and denotedAL
with elements x̂aL and one acting from the right, denoted
as AR and generated by x̂aR. The two sets are commuting,
namely ½x̂aL; x̂bR� ¼ 0, and they are symplectic dual with
respect to the symplectic 2-vector θab, i.e., ½x̂aL; x̂bL� ¼
−½x̂aR; x̂bR� ¼ iθab. In relation to the vacuum ansatz (23)

2This has the effect of the global symmetry of the model being
just SOðdÞ × SOðdÞ.
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for the matrix model, Va are identified with x̂aL, while x̂aR
do not appear explicitly in the model but only indirectly as
we immediately explain. Recall that in the flat case, the
momentum operators act as

p̂a ¼ ℏωabðx̂bL − x̂bRÞ; ð27Þ
ωab being the symplectic 2-form, and they are inner
operators in the algebra A. However, when the manifold
is not flat these operators do not correspond to the trans-
lations generated by invariant vector fields. In that case the
correct momentum operators are

p̂i ¼ eiaðx̂RÞp̂a; ð28Þ
and this translates in the vacuum ansatz of Eq. (23) to
Aa ¼ eaip̂i. The important aspect in this formulation is that
the momenta contain the nonconstant frame eai, which
is associated to the gravitational field. In particular, the
general form of the algebra of the operators x̂a and p̂i turns
out to be

½x̂aL; x̂bL� ¼ −½x̂aR; x̂bR� ¼ iθab;

½x̂aL; p̂i� ¼ iℏeai;

½x̂aR; p̂i� ¼ iℏeai − ekbKba
i p̂k;

½p̂i; p̂j� ¼ Mij þ Nij
kp̂k þ Pkl

ij p̂kp̂l; ð29Þ

with exactly computable coefficients in terms of the frame
and the symplectic structure, such that all the Jacobi
identities are satisfied [12]. We observe that the gravita-
tional field is identified with the commutation relation
among the position and momentum operators, as in
Refs. [7–9]. When the geometric data are identified with
that of symplectic nilmanifolds in dimensions 4 and 6,
the set of relations (29), along with the identifications
Aa ¼ eaip̂i and Va ¼ x̂aL, provides many nontrivial solu-
tions to the Eqs. (25) of the model, which are not captured
by the IIB matrix model. A more direct way to see this, is to
consider the matrix model and its EOMs this time with a
noncoordinate index structure. This happens when the
starting point is a generalized connection of the form

D ¼ ðθI þ AIÞeI þ VIθI; ð30Þ

where eI and θI are the 1-forms and 1-vectors of the
noncoordinate basis respectively. The general form of the
matrix model and its EOMs remains the same in this basis,
but now they are written in terms of AI and VI . The Ansatz
for solutions now is

Ai ¼ p̂i; Vi ¼ δiax̂aL; i¼ 1;…;2m; 2m≤ d: ð31Þ

The EOMs in this basis become:

½p̂i; ½p̂i; p̂j�� þ ½x̂a; ½x̂a; p̂j�� ¼ 0; ð32Þ

½x̂a; ½x̂a; x̂b�� þ ½p̂i; ½p̂i; x̂b�� ¼ 0: ð33Þ

Assuming the phase space algebra (29) with constant
parameters θab, we immediately obtain

½x̂a; ½x̂a; p̂j�� ¼ ½x̂a; iℏeaj� ¼ 0;

½x̂a; ½x̂a; x̂b�� ¼ ½x̂a; θab� ¼ 0;

where in the first equation we used the commutativity of
AL and AR. Then, a direct computation shows that the
Eqs. (32) and (33) result in the conditions:

Nij
lMil þ ðNij

lNil
m þ 2Pij

lmMilÞp̂m

þ ðNij
lPij

mn þ 2Pij
lmNn

ilÞp̂mp̂n

þ 2Pij
lmPil

nrp̂np̂rp̂m ¼ 0; ð34Þ

½p̂i; eai� ¼ 0: ð35Þ

Now it is time to specify a class of particular cases with
their parameters. For step 2 nilmanifolds in 4 and 6
dimensions, it was shown in Ref. [12] that

Mij ¼ 0; Nk
ij ∝ fkij; Pkl

ij ∝ fk½icflj�dθcd; ð36Þ

while eai ¼ δai − 1
2
faibx̂bR; where fkij are the structure

constants of the nilpotent Lie algebra that is associated to
the nilmanifold. Then, simply using the defining relation
fkijfilm ¼ 0 (no summation) for step 2 nilmanifolds, the
conditions (34) and (35) are satisfied. A full classification
of solutions, including b ≠ 0 too, is an open issue which
should be addressed in detail.
We close this section by observing that the symmetry

(22) of the matrix model translates into

x̂a → p̂a and p̂a → −x̂a; ð38Þ
which is familiar in quantum-mechanical phase space,
and its role in matrix models was already emphasized in
Ref. [37].

VI. REMARKS ON QUANTIZATION

Quantization in matrix models is defined via matrix
integrals. For the SO(10,10) matrix model the partition
function is defined as

Z ¼
Z Y9

M¼0

dAM

Y9
N¼0

dVNe−S; ð39Þ

where S is given by Eq. (17). Correlation functions may be
defined similarly. A primary question is whether these
integrals are convergent under certain conditions. This is a
technical issue which presents an interesting challenge.
However, given that when VN vanish the corresponding
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integrals are convergent for certain number of dimensions
(including 10) and certain gauge groups [16,17], it is
reasonable to expect that a careful evaluation will reveal
such cases for the extended model too. This will be
addressed in future work.

VII. CONCLUSIONS

In the present work we argued that a better under-
standing of the dynamics of full phase space, rather than
just spacetime, can be relevant for physics at the Planck
scale and ultimately for quantum gravity. Similar ideas
were already emphasized before [6,7]. Here we con-
structed a theory that captures the dynamics of phase
space. It is given by a matrix model which extends in a
consistent way previous matrix models that proved to be
successful in the description of spacetime dynamics [1,2].
The model is derived from the trivial dimensional reduc-
tion of a generalized Yang-Mills theory on a Courant
algebroid to zero dimensions. This allows us to overcome
the problem of the nontensorial transformation of gener-
alized fields on the Courant algebroid. The symmetries of
the model include and extend the ones of the IIB model.

Notably there is a global SOðd; dÞ symmetry, as well as
a quantum-mechanical symmetry that is interpreted as
exchange of positions and momenta in phase space.
Certain noncommutative phase spaces that correspond
to curved manifolds are classical solutions of the EOMs.
The key feature is that the commutator of positions and
momenta can be associated to the gravitational field,
and therefore (semiclassical) gravity naturally emerges
on solutions of the model. Furthermore, quantization is in
principle possible, with the partition function and corre-
lation functions defined via matrix integrals. Whether
these integrals are convergent remains an open issue
which should be carefully addressed.
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