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To identify what replaces the key notion of black hole horizon when working with theories which break
Lorentz invariance at high energy, we study the modes responsible for the Hawking effect in the presence of
high frequency dispersion. We show that they are regularized across the horizon over a short length which
only depends on the scale of dispersion and the surface gravity. Moreover, outside this width, short and
long wavelength modes no longer mix. These results can be used to show that the spectrum is hardly
modified by dispersion as long as the background geometry does not vary significantly over this length. For
relevant frequencies, the regularization differs from the usual WKB resolution of wave singularity near a
turning point.
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I. INTRODUCTION

The invariance under the Lorentz symmetry group is
central to our current description of high energy processes
[1]. Yet, being noncompact, we do not know if this group is
an exact symmetry of nature [2]. This inherent incom-
pleteness of observational data is reinforced by our lack of
knowledge about the ultraviolet (UV) structure of quantum
gravity. It is therefore of value to develop alternative
approaches where the Lorentz group is violated in the
UV, and examine what are the consequences. As we shall
see, Hawking radiation can play a crucial role in revealing
them. At present, the laws of black hole thermodynamics
are poorly understood [3–5] in Lorentz violating theories
(LVT), as Einstein-Aether [6] or Hořava-Lifshitz gravity
[7]. In fact the Hawking process itself is not yet understood
[8]. Moreover, modern discussions about black hole
evaporation, such as the “firewall” proposal [9], also
heavily rely on assumptions concerning the UV behavior
of the theory. The present paper aims at revealing the
properties of the modes in the vicinity of the horizon that
are specific to LVT. Interestingly, these properties share
some similarities with those of attempts to take into account
gravitational effects neglected in the semiclassical scenario
[10–12]. Moreover they also apply to condensed matter
systems in the context of analog gravity [13–15], where
fluid flows are used to mimic black hole geometries, and to
test the Hawking process in the presence of UV dispersion,
see e.g., [16,17].
In addition to the space-time metric, LVT are endowed

with a dynamical vector field uμ that introduces a preferred

frame, which is used to covariantly implement the physical
processes breaking the Lorentz symmetry [6,18]. In this
paper, for simplicity, the vector field shall be taken geodesic
(freely falling), and only high energy dispersion shall be
considered. First deviations with respect to relativity can be
described by

Ω2 ¼ F2ðpÞ ¼ p2ð1 − p2=Λ2Þ; ð1Þ

where Ω ¼ −uμPμ is the frequency measured in the
preferred frame, Pμ the four-momentum of the particle,
and p2 the squared norm of its spatial momentum
perpendicular to uμ [19]. The minus sign in Eq. (1) means
that the dispersion is subluminal. (The superluminal case
can be treated in a similar way, see Sec. III E in [20]). Λ
defines the UV cutoff above which Lorentz invariance
ceases to be valid.1

We now recall why the Hawking process acts as a
microscope probing ultrahigh energy physics. For relativ-
istic fields, the stationary modes ϕω responsible for the
Hawking effect are singular on the horizon: for jxj → 0, one
finds

ϕω ∝ jxjiω=κ; ð2Þ

where ω=κ is the ratio of their Killing frequency over the
surface gravity, and where x is the proper distance from
the horizon measured in the preferred frame. Importantly,
the singular behavior of Eq. (2) unambiguously fixes the
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1In the firewall debates, a (local) characterization of the
validity domain of the effective (Lorentz invariant) field theory,
which is “set by some UV cutoff” [21], requires to adopt a
preferred frame.
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temperature of the emitted radiation [22]. Indeed, the
regularity of the state across the horizon fixes the ratio
of the coefficients weighing ϕω on either side of x ¼ 0, and
this in turn fixes the temperature to be the Hawking one:
TH ¼ κ=2π in units where c ¼ ℏ ¼ kB ¼ 1. From Eq. (2),
one can see that Ω ∼ p ∼ ω=κx increases without bound as
x → 0. This blueshift connects the low energy physics
Ω ∼ κ, to the UV physics where the standard description
based on free relativistic fields propagating in classical
background might break down. This raises the trans-
Planckian question [23,24], namely, to what extent the
predictions derived from Eq. (2) actually depends on the
(unknown) UV behavior of the theory. This question played
a crucial role in the development of LVT. It is now clear that
in the vicinity of the horizon, the field propagation is highly
sensitive to a modification such as that of Eq. (1).
Since [25], attention has been mainly given to the

modifications of the asymptotic spectrum due to high
momentum dispersion [20,26–31]. In this paper instead,
we consider the near horizon properties of the modes.
Interestingly, we shall see that, first, the dispersive modes
involve a single, composite, and ω-independent short
length scale, and second, they display two very distinct
behaviors depending on the value of ω=κ.

II. SETTINGS

As Eq. (2) is found irrespectively of the mass and the
orbital momentum, we shall work with massless 1þ 1
dimensional fields. The stationary geometry shall be
described by the line element

ds2 ¼ dt2 − ðdx − vðxÞdtÞ2; ð3Þ
where v < 0 and where dt ¼ uμdxμ is the freely falling
proper time. The event horizon is located at v2 ¼ 1, and the
interior of the black hole, jvj > 1, is here x < 0. We work
with a massless field propagating in Eq. (3) and obeying
Eq. (1). At fixed ω, the mode ϕω obeys [25,26]

½ðωþ i∂xvÞðωþ iv∂xÞ − F2ð−i∂xÞ�ϕω ¼ 0: ð4Þ
Close to the horizon, one has v ∼ −1þ κx. This approxi-
mation is valid only for a finite range of x, that we call xlin.
In usual black hole geometries, xlin ≲ 1=κ.
The first manifestations of dispersion show up in the

characteristics of Eq. (4). When considered backwards in
time, instead of focusing on the horizon as in the relativistic
case, they are swept away at short wavelengths, see Fig. 1.
Then, if Ω ¼ ω − vp < 0, the trajectory crosses the hori-
zon and falls into the hole, but ifΩ > 0, it bounces back at a
finite distance of the horizon. The turning point occurs at
ptp ¼ ω1=3Λ2=3 in momentum space, and is localized at

xtpðωÞ ¼
3ω

2κptp
¼ 3

2κ

�
ω

Λ

�
2=3

: ð5Þ

This expression is valid if xtp lies within the near horizon
region, i.e., xtp ≪ xlin. Equation (5) gives the first
composite length of the problem.
When considering the wave equation (4), its resolution

turns out to be simpler in p space. In fact, using v̂ ¼
−1þ iκ∂p, the solution of Eq. (4) neatly factorizes2 as
~ϕωðpÞ ¼ p−iωκ−1 × χðpÞe−ipκ [26,32]. The first factor is the
relativistic mode, since the Fourier transform
of Eq. (2) gives jpj−iω=κ−1. The function χ obeys
−κ2p2∂2

pχ ¼ F2ðpÞχ, which is ω independent. To solve
this equation, we use theWKB approximation in p space. As
explained in [14,20], this amounts to neglecting the mixing
of Hawking modes with left movers. This is valid when
κ=Λ ≪ 1, which we assume to be satisfied. We also consider
ω=Λ ≪ 1 because it allows us to work in aweakly dispersive
regime, where F ∼ p − p3=ð2Λ2Þ in the phase of ~ϕω, and
F ∼ p in its slowly varying amplitude (see [20] for more
details about this). We thus obtain

~ϕωðpÞ ¼
p−iωκ−1ffiffiffiffiffiffi

2π
p exp

�
−i

p3

6Λ2κ

�
: ð6Þ

From the exponential factor, we see that the stationary modes
involve a second composite length,

dbr ¼
1

ð2κÞ1=3Λ2=3 : ð7Þ

FIG. 1. Space-time structure of characteristics in the near
horizon region. The straight line is the characteristic of the
spectator mode which plays no role in the Hawking effect. The
curved characteristics correspond to the modes for ω > 0 with
positive (right side) and negative (left) freely falling frequency Ω.
For a detailed description, we refer to Sec. I D of [20].

2This comes from the fact that v ¼ −1þ κx considered
globally corresponds to de Sitter space, which possesses an
extra symmetry compatible with uμ, see [4] for details.
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As we shall see below, dbr plays a prevalent role with respect
to the ω-dependent length of Eq. (5).

III. NEAR HORIZON MODES

To get the spatial properties of the mode, we inverse
Fourier transform Eq. (6):

ϕC
ωðxÞ ¼

Z
C
exp

�
i
�
q

x
dbr

−
ω

κ
lnðqÞ − 1

3
q3
��

dq
2πq

: ð8Þ

We introduced the adimensionalyzed wave vector
q≐ pdbr. The various solutions of Eq. (4) are recovered
by adopting different contours C in the complex p plane
[20,26–28,33]. Irrespectively of the contour C and the value
of ω, we see that ϕC

ω only depends on z≐x=dbr. As we shall
now see, the integral representation of Eq. (8) contains all
the relevant information, i.e., both the mode profiles in the
near horizon region,3 and the Bogoliubov coefficients
encoding the Hawking effect.
In the following, we analyze the mode that decays inside

the horizon. It is proportional to the outgoing mode ϕout
ω .

(A similar analysis, leading to the same conclusions, can be
done for the partner mode, orthogonal to ϕout

ω .) To obtain it,
the branch cut of the lnðqÞ should be put on iRþ. The large
z expansion of Eq. (8) then gives [20]

ϕC
ωðxÞ ∼ e−i

π
4
ei

2
3
z3=2e−i

ω
2κ ln zffiffiffiffiffiffiffiffiffiffiffiffiffi

4πz3=2
p

−
βω
αω

ei
π
4
e−i

2
3
z3=2e−i

ω
2κ ln zffiffiffiffiffiffiffiffiffiffiffiffiffi

4πz3=2
p þ 1

αω
zi

ω
κ

ffiffiffiffiffiffiffiffiffi
κ

2πω

r
: ð9Þ

This equation means that ϕC
ω reduces to a sum of WKB

waves that no longer mix. When the latter have unit norms
[20], the coefficients governing their respective weight
define the near horizon scattering coefficients.4 Taking into

account that the last term of Eq. 9 describes the low
momentum outgoing mode, αω and βω can be shown to be
the Bogoliubov coefficients encoding the Hawking effect
[20]. Their ratio here obeys

βω ¼ e−
πω
κ αω; ð10Þ

as in the relativistic case. Thus, the temperature is still given
by the standard expression TH ¼ κ=2π. On the other side of
the horizon (z < 0), the mode decays as ∼e−2

3
jzj3=2 .

We now study the validity range of these results. A
careful computation [20] shows that the corrections are
negligible when

jzj ≫ 1; ð11aÞ

jzj ≫ ω=κ: ð11bÞ

However, they also require dbrjzj≲ xlin, since v ∼ −1þ κx
has been used. When Λ=κ is large enough, the spatial range
satisfying these three inequalities is quite large. In the
frequency range relevant for the Hawking effect, i.e., for
ω≲ κ, Eq. (11a) implies Eq. (11b). Instead, for ω ≫ κ, the
Hawking process is then exponentially suppressed.
Therefore, (11a) is the most relevant condition to obtain
Eq. (9). This shows that the mode mixing responsible for
the Hawking effect occurs in a region around the horizon of
size dbr. Additionally, the modes can only resolve the
precise location of the turning point from the horizon when
xtp ≫ dbr, which corresponds to ω ≫ κ and the suppression
of the Hawking effect. This shows that the relevant length
scale that characterizes the Hawking process is dbr, and not
xtp. Because of Eq. (11), Eq. (9) says nothing about the
mode behavior in a close vicinity of the horizon. In
what follows, to characterize this behavior, we separately
analyze Eq. (8) for low and high frequency.

A. Small frequency regime ω≲ TH

With the branch cut of lnðqÞ on iRþ, the ω → 0 limit of
Eq. (8) is proportional to the primitive integral of the Airy
function Aið−zÞ that vanishes for z → −∞, see [34].
Calling it PAið−zÞ, we have

ϕC
0ðxÞ ¼ iPAið−zÞ: ð12Þ

This result is consistent with Eq. (9), as one sees by
comparing it to the asymptotics of PAi. In white hole flows,
this mode gives the spatial profile of the undulation studied
in [37,38], and observed in [16].
For 0 < ω≲ TH, Eq. (9) predicts a modulation of (12) by

expðiω ln z=2κÞ for z≳ 1. The location of the first node is
given by xzero=dbr ∼ e4πκ=ω. For ω ∼ TH, we thus have
xzero=dbr ∼ e8π

2

. Hence, this modulation possesses a wave-
length much larger than dbr, possibly even larger than the
near horizon size xlin. It is thus a subdominant effect, barely

3Note that ϕC
ω of Eq. (8) solves

∂3
zϕω þ z∂zϕω − i

ω

κ
ϕω ¼ 0;

and is thus a linear combination of hypergeometric functions 1F2
[34], as noticed in [33]. From the three independent solutions, only
two are physical, since the third combination grows without bound
on the left side of the horizon. Because the identification of the
physical modes is very cumbersome, the mode analysis in the near
horizon cannot be done in a transparent manner in terms of 1F2.

4This mode mixing will be in general completed by some extra
scattering taking place further away from the horizon [35]. For
lower values of p, on the outside region, this gives rise to
greybody factors [36]. In LVT, some extra scattering could also
occur at higher values of p. As a result, the incoming modes
could not arrive in their ground state, thereby stimulating the
Hawking process. For a subluminal dispersion, this possibility is
suppressed by the adiabatic propagation from infinity to the
horizon. For a superluminal dispersion, as in Hořava-Lifshitz
gravity [8], the mode scattering on the universal horizon may
instead significantly affect the resulting spectrum.
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visible as long as ω≲ TH. As a result, the first significant
effect comes from βω=αω ¼ e−πω=κ ≠ 1. To establish this,
we decompose the mode as

ϕC
ωðxÞ ¼ i

1þ e−
πω
κ

2
φωðzÞ þ

1 − e−
πω
κ

2
ψωðzÞ; ð13Þ

where φω and ψω are real functions. Once having factor-
ized the two prefactors which arise from βω and αω, the
residual dependence in ω of φω and ψω is minimized, and
no longer significant. As a result, φω can be replaced by ϕC

0

of Eq. (12). Similarly, ψω is also essentially independent of
ω. This is neatly confirmed in Fig. 2.
In conclusion, Eqs. (12) and (13) and Fig. 2 explicitly

give the near horizon properties of the dispersive mode ϕout
ω

for several dbr lengths, and for frequencies 0 ≤ ω≲ 3TH,
which is the most relevant domain for the Hawking effect.
This is our principal result.

B. Large frequency regime ω ≫ TH

When ω is larger than TH, the βω term in Eq. (9) is
exponentially small. Hence, one is left with a total
reflection. To obtain the mode near the turning point, we
now follow the standard procedure. It consists in expanding
the phase of the integrand of Eq. (8), i.e., Wðz; qÞ ¼
zq − ω

κ lnðqÞ − 1
3
q3, to third order in Δq ¼ q − qtp, where

qtpðωÞ ¼ dbrptp. Performing the q integration, by construc-
tion, one obtains an Airy function:

ϕC
ωðxÞ ¼

eiθtp

31=3qtp
× eizqtp × Ai

�
−
z − ztp
31=3

�
; ð14Þ

where ztp ¼ xtp=dbr, see Eq. (5), and where θtp ¼
−ω=ð3κÞ lnðω=2κÞ − ω=ð6κÞ. Equation (14) is valid when

���� κω
����
1=3

≪ 1; ð15Þ

and when jx − xtpj ≪ xtp. These conditions are supported
by Fig. 3. Hence, we see that the usual WKB resolution
becomes valid at high frequencies, precisely when
Hawking radiation fades away.

IV. SMOOTHING OUT SHORT-DISTANCE
DETAILS

When computing the Hawking spectrum in the presence
of dispersion, it is a priori tempting to take into account
the ω dependence of Eq. (5), and to use the value of the
gradient κðxÞ ¼ ∂xv evaluated at xtpðωÞ in the place of the
surface gravity κ. Yet, no such dependence was found in
numerical analysis of the spectrum [29,30,39].
To clarify these observations, as in [30], we consider

background profiles of the form v ¼ v0ðxÞ þ δvðxÞ, where
v0 is smooth enough so that the above analysis applies, and
where δv is a small perturbation. If δv ≪ 1, adapting the
distorted wave Born approximation [40] to mode ampli-
fication, the induced correction of the β Bogoliubov
coefficient is

δβω ¼ 2iπ
Z

½ϕout
−ω∂xðδvπinωÞ þ πout−ωδv∂xϕ

in
ω �dx; ð16Þ

where πðxÞ ¼ ð∂t þ v∂xÞϕ is the momentum conjugated to
ϕ, and where ϕin

ω (ϕout
ω ) is the incoming (outgoing) positive

norm mode propagating in the unperturbed flow. From this
expression, we clearly see that if the scale of variation of δv
is much shorter than dbr, the integration washes out δv, and

 = 0.1TH
 = TH

 = 3TH

2 2 4 6 8 10

2

1

1

2

3

4

5

FIG. 2. Plot of −∂zψωðzÞ of Eq. (13) as a function of z ¼ x=dbr,
and three values of ω. For numerical reasons, we plotted the
derivative instead of ψω itself. Only the curve for ω ¼ 3TH
(dashed line) can be distinguished from the others. This estab-
lishes that Eq. (13) offers an accurate description of the near
horizon profile for several dbr lengths, and for 0 ≤ ω≲ 3TH.
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FIG. 3. Plot of e−izqtp × ϕC
ωðxtp þ zdbrÞ as a function of z,

various values of ω, and also compared with the Airy function
Aið−z=31=3Þ. The different curves are normalized to 1 at the
turning point ztpðωÞ, which is here set at z ¼ 0. By numerically
comparing the values at the first peak, we found that the error
decreases as ∼ðκ=ωÞγ with the exponent 1=3.25≲ γ ≲ 1=3.15, in
agreement with Eq. (15) to a good accuracy. Since qtp ≫ 1,
Eq. (14) is valid for many short wavelength oscillations due
to eizqtp .
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δβω essentially vanishes. This establishes that the finite
resolution of the modes erases the details of the background
on scales smaller than dbr. Therefore, instead of κðxtpÞ, the
effective surface gravity should be obtained by averaging
∂xv over a broadening length, as discussed in [30].

V. CONCLUSIONS

Our results show that, in LVT with quartic dispersion,
Hawking radiation can be understood by interpreting the
horizon as broadened over a length dbr ¼ ð2κΛ2Þ−1=3. First,
the mode mixing responsible for the Hawking effect now
occurs within a region of size dbr across the horizon.
Second, when dbr ≪ xlin, i.e., when the local surface
gravity does not change over dbr, the standard Hawking

spectrum is recovered. Third, since the modes are regulated
over dbr, details of the near horizon geometry much smaller
than dbr are washed out. For a black hole of mass M, dbr ∝
M1=3 in Planck units. Interestingly, the same scaling was
found by studying horizon fluctuations in [11]. These
results could also be tested in future analogue gravity
experiments based, e.g., on surface waves in flumes
[16,41]. We believe they should also play a key role in
the (not yet understood) black hole thermodynamics
in LVT.
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