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The existence of a Uð2ÞA ×Uð2ÞV-symmetric fixed point in the chiral linear sigma model is confirmed
using the functional renormalization group. Its stability properties and the implications for the order of the
chiral phase transition of two-flavor QCD are discussed. Furthermore, several technical conclusions are
drawn from the comparison with the results of resummed loop expansions.
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I. INTRODUCTION

Apart from other methods, our current understanding of
QCD in the nonperturbative regime is strongly based on
lattice gauge theory and effective models [1,2]. Despite all
efforts the order of the chiral phase transition of QCD with
two massless flavors has not been rigorously determined
yet, and the interest in a reliable prediction remains strong.
The cases of two massless or light flavors at vanishing
baryonic chemical potential are of particular interest for
lattice studies due to the comprehensive predictions of
effective models [3–5]. The possible existence of a second-
order chiral phase transition, as well as the corresponding
universality class, can be investigated from the effective
theory for the chiral condensate [6–18]. We can take into
account the scalar mesons (σ and ~a0) as well as the
pseudoscalar mesons (η and ~π) by writing down the most
general Lagrangian invariant under chiral symmetry.
For the full symmetry,Uð2ÞA ×Uð2ÞV ≃Uð1ÞA ×Uð1ÞV×
½SUð2Þ=Zð2Þ�L × ½SUð2Þ=Zð2Þ�R, this Lagrangian is
given by [6,7,19–21] L ¼ 1

2
Trð∂μΦ†Þð∂μΦÞ þ Uðρ; ξÞ,

where Φ ¼ ðσ þ iηÞt0 þ ~t · ð~a0 þ i~πÞ, with ta denoting the
generators of Uð2Þ normalized such that TrðtatbÞ≡ 1 [13].
Furthermore,

TrΦ†Φ¼
X
i

ϕ2
i ≡2ρ; ϕi≡ σ; ~π;η; ~a0;

1

2
TrðΦ†ΦÞ2− ρ2 ¼ ðσ2þ ~π2Þðη2þ ~a20Þ− ðση− ~π · ~a0Þ2≡ ξ:

We omit derivative couplings since we will only discuss
the local-potential approximation (LPA, Z ¼ 1) and, its
minimal extension allowing for a field-independent wave-
function renormalization factor Z (LPA’). We allow for a
condensate only for the σ-field, so that we can use the
truncation [12]

Uðρ; ξÞ≡ VðρÞ þWðρÞξ: ð1Þ
In this paper we focus on the case where the axial Uð1ÞA
symmetry has already been restored at the critical tem-
perature Tc. Therefore, we do not take account of

Uð1ÞA-breaking terms. For studies concerning the opposite
scenario in which the anomaly remains present at Tc, we
refer to Refs. [13–16,22–25]. The longstanding question of
which of the two scenarios is actually realized is subject
to an ongoing debate. The latest lattice results are quite
controversial: whereas the case of restored anomaly is
advocated by Refs. [3,26], the opposite scenario is favored
by Refs. [4,27]. The predictions of effective theories for the
chiral condensate are summarized in the following.
The existence of an IR-stable fixed point in the renorm-

alization group (RG) flow of the effective theory for the
order parameter is a necessary condition for a second-order
phase transition to occur. If this scenario is realized or not
depends on the initial values for the parameters in the UV
limit determined by the underlying microscopic theory.
Therefore, the RG analysis serves to either rule out the
existence of a second-order phase transition or to confirm
its possible existence.
If the anomaly strength exceeds the cutoff scale, a phase

transition of second order in the Oð4Þ universality class is
predicted [6,13,28]. The case of small anomaly strength is
subtle. The anomaly yields two independent quadratic
mass terms. At mean-field level, it is evident that such a
situation corresponds to a multicritical point with at least
two relevant scaling variables. This is used as an argument
in Ref. [14] to rule out a second-order phase transition
with temperature being the only relevant scaling variable.
However, in consistence with Refs. [13,20], we argue
that the inclusion of fluctuations can, in principle, lead
to an IR-stable fixed point corresponding to exactly such a
scenario. Although associated with unphysical masses
in the approximation considered, there in fact exists an
(unphysical) SUð2ÞA ×Uð2ÞV-symmetric, IR-stable fixed
point exemplifying our consideration. This observation
extends the critical reinvestigation of the standard criteria
used for ruling out continuous transitions presented in
Ref. [29]. The latter particularly points out that the
irreducibility of a representation is not strictly ruling out
a second-order phase transition associated with a single
relevant scaling variable. In the absence of the anomaly,
there is strong evidence from Refs. [14,17] for the existence
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of a second-order phase transition belonging to the
Uð2ÞV × Uð2ÞA universality class. The existence and prop-
erties of the corresponding fixed point will be discussed in
the remainder of this paper.
Reference [14] uses a resummed loop expansion at

fixed spatial dimension, D ¼ 3, based on the minimal
subtraction scheme (MS) and the massive zero-momentum
scheme (MZM) scheme, respectively. The discovered IR-
stable, Uð2ÞV ×Uð2ÞA-symmetric fixed point corresponds
to an anomalous dimension of η ∼ 0.12. Previous studies in
the framework of the ϵ-expansion failed to find the fixed
point [6,10]. A plausible explanation is given in Ref. [14]:
the fixed point only exists near D ¼ 3. One might wonder,
however, if the resummation scheme and the loop order also
play a role.With our functional renormalizationgroup (FRG)
investigation presented in Sec. II, we demonstrate that the
existence not only depends on the fixed spatial dimension but
also on the way nonperturbative corrections are included.

II. FRG FIXED-POINT STUDY

Assuming a homogeneous condensate, and using the
Litim regulator, the Wetterich equation for the potential (1)
reads

∂Uk

∂k ¼ 2πD=2kDþ1Zk

DΓðD=2Þð2πÞD
�
1 −

η

2þD

�X
i

1

Zkk2 þM2
i
; ð2Þ

where Lk ¼ 1
2
ZkTrð∂μΦ†Þð∂μΦÞ þUk, with Lk¼Λ ¼ L

defining the bare Lagrangian in the UV limit. M2
i denote

the eigenvalues of the mass matrix

Mij ≡ ∂2Uk

∂ϕi∂ϕj
; i; j ¼ 1;…; 8: ð3Þ

The anomalous dimension, η, is determined from the
relation

ηk ¼ −Z−1
k k

∂Zk

∂k ; lim
k→0

ηk ¼ η: ð4Þ

The flow equation for Zk is derived from the second
derivative of the effective action with respect to the fields
and evaluated at the global minimum of the potential [30].
Using the Litim regulator and setting D ¼ 3, in agreement
with Ref. [31], we obtain

ηk ¼
2

3π2½1þ V̄ 0
kðρ̄0;kÞ�2

�
4ρ̄0;kW̄kðρ̄0;kÞ2

½1þ 4W̄kðρ̄0;kÞρ̄0;k þ V̄ 0
kðρ̄0;kÞ�2

þ ρ̄0;kV̄ 00
kðρ̄0;kÞ2

½1þ V̄ 0ðρ̄0;kÞ þ 2ρ̄0;kV̄ 00
kðρ̄0;kÞ�2

�
; ð5Þ

where we introduced rescaled variables (labeled by a bar),

Ū ¼ k−DU; ρ̄ ¼ Zk2−Dρ; ξ̄ ¼ Z2k4−2Dξ;

V̄ ¼ k−DV; W̄ ¼ Z−2kD−4W;

and denoted the global minimum of Uk by ρ0 (assuming
ξ0 ¼ 0). We note that the rhs of Eq. (5) does not contain η
due to our choice for the regulator.
In the following, we expand V̄ðρ̄Þ and W̄ðρ̄Þ in powers of

ρ̄ denoting the expansion coefficients by p̄j. We truncate
the series at polynomial order n ≤ 24 in the fields ϕ̄i [i.e., V̄
up to Oðρ̄12Þ, W̄ up to Oðρ̄10Þ] and refer to the LPA (LPA’)

in D spatial dimensions at truncation order n as LPAðnÞ
D

(LPA0ðnÞ
D ).

The flow equations for the p̄j are derived similarly to
Refs. [12,13], not listed explicitly here. To determine the
stability properties of the fixed points, we analyze the flow
in their neighborhood where it is governed by the linearized
system. For this purpose we calculate the eigenvalues of the
stability matrix

ðSijÞ≡
�

∂βi∂p̄j

�����
p̄¼p̄�

; ð6Þ

where the fixed-point coordinates are denoted by fp̄�
i g, and

the beta functions are given by βiðp̄Þ≡ k∂kp̄i. In general
one obtains ns eigenvalues with positive real part, nu with
negative real part, and nm with vanishing real part. The
corresponding eigenvectors give rise to invariant subspaces
of the parameter space inside which the flow stays if one
starts within them [32]. In case of distinct eigenvalues, there
is an ns-dimensional critical manifold inside which the
flow is attracted toward the fixed point in the infrared
limit k ¼ 0. Respectively, there exists an nu-dimensional
unstable manifold inside which the flow is repelled, and a
nm-dimensional marginal manifold inside which the flow
has no direction at all. Here we note that complex valued
eigenvalues (characteristic for a so-called spiral fixed point)
always appear as conjugate pairs. Referring to the real and
imaginary parts of the associated complex eigenvectors
as eigenvectors, too, the critical manifold is spanned by ns
eigenvectors, the unstable manifold is spanned by nu
eigenvectors, and the marginal manifold is spanned by
nm eigenvectors. Therefore, if nm ¼ 0, one can reach the
critical manifold by tuning nu parameters starting anywhere
in parameter space. Hence, a second-order phase transition
with respect to a single scaling variable (temperature) can
only exist if we have exactly nu ¼ 1. In this case we speak
of an IR-stable fixed point.
In the LPAð6Þ

D¼3 we find an unstable Oð8Þ-symmetric
fixed point with stability-matrix eigenvalues f12.925;
8.125; 1.509;−1.380;−0.503g; two IR-stable, Uð2ÞA×
Uð2ÞV-symmetric spiral fixed points, Að6Þ and ~Að6Þ, respec-
tively, with eigenvalues f15.660; 0.625þ 3.534 i; 0.625 −
3.534 i; 1.631;−1.374g and f13.222; 1.188þ 2.148 i;
1.188 − 2.148 i;−1.511; 1.373g, respectively; and the
Gaussian fixed point with eigenvalues f−2;−1;−1; 0; 0g.
Að6Þ is associated with physical (i.e., non-negative) mass-
matrix eigenvalues, whereas ~Að6Þ is not. Their existence is
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highly nontrivial since they do not exist at quartic truncation
order, neither in the LPA [12,18] nor in the LPA’ [31].
The Oð8Þ-symmetric fixed point remains IR unstable

for all Dð≠ 4Þ and becomes marginal at D ¼ 4. As
expected, the Gaussian fixed point becomes IR stable for
D > 4. At D ¼ 0 the eigenvalues for Að6Þ are given by
ð70.229;2.407þ16.070 i;2.407−16.070 i;10.398;−2Þ. The
fixed point remains IR stable below the critical dimension
Dc ∼ 3.69 at which the real part of the complex eigenvalues
changes sign, ð4.402;−1.767;−0.002þ 0.955 i;−0.002−
0.955 i; 0.399Þ, and it remains unstable above. Similarly,
Dc ∼ 3.65 for ~Að6Þ. The relatively large ϵ ¼ 4 −Dc ∼ 0.3
provides further evidence that the ϵ-expansion is not
capable of finding an Uð2ÞA ×Uð2ÞV-symmetric fixed
point [14].
All fixed points are also present in the LPA0ð6Þ

D with
slightly different coordinates and eigenvalues. The
Uð2ÞA ×Uð2ÞV-symmetric fixed points now become IR
unstable. One at D ∼ 3.65 and the other one at D ∼ 3.62.
The occurrence of the marginal eigenvalues for the

Gaussian fixed point can be explained as follows. In
general the beta functions for a rescaled mass parameter
m̄2, a rescaled quartic coupling λ̄4, and a rescaled sextic
coupling λ̄6, respectively, are given by

βm2 ¼ ð−2þ ηÞm̄2 þ f2ðp̄Þ;
β4 ¼ ðD − 4þ 2ηÞλ̄4 þ f4ðp̄Þ;
β6 ¼ ð2D − 6þ 3ηÞλ̄6 þ f6ðp̄Þ; ð7Þ

where the fiðp̄Þ denote nonlinear functions of the rescaled
parameters. Since these functions as well as the anomalous
dimension, η, vanish at the Gaussian fixed point, we can
conclude that (forD ¼ 3) m̄2 and λ̄4 are relevant parameters
with respect to this fixed point. They yield stability matrix
eigenvalues −2 and −1, respectively. Similarly, the sextic
coupling contributes a vanishing eigenvalue at the Gaussian
fixed point, and higher-order couplings yield positive
eigenvalues.
For n ≥ 8 several Uð2ÞA ×Uð2ÞV-symmetric fixed

points exist. In Fig. 1 we only show those which are
relevant for the discussion of the IR-stable ones. We were
able to distinguish the individual fixed points unambigu-
ously from each other since their coordinates and eigen-
values change little when proceeding to the next higher
order. We also plot the values for the critical exponent ν
reported in Ref. [14] (ν ∼ 0.71 for the MZM scheme, ν ∼
0.76 for the MS scheme). The critical exponent associated
with Að6Þ (ν ∼ 1=1.374 ∼ 0.728 for the LPA, ν ∼ 1=1.361 ∼
0.735 for the LPA’) is in unexpectedly good agreement.
The value for the anomalous dimension in the LPA’ is
significantly smaller compared to the result of Ref. [14]
(η ∼ 0.0334 compared to η ∼ 0.12). The IR-stable Aðn>6Þ
only exists in the LPA’ but disappears for n > 14. Another
Uð2ÞA ×Uð2ÞV-symmetric, IR-unstable fixed point (with

three relevant eigenvalues), BðnÞ, shows oscillatory behav-
ior around ν ∼ 0.73 for n ≥ 12 in the LPA. The Bðn<18Þ are
nonspiral, and Bð18Þ contains one irrelevant eigenvalue with
a small imaginary part which continuously grows for n >
18. BðnÞ also exists in the LPA’ between 8 ≤ n ≤ 14. Its
successor at n ¼ 16 is another Uð2ÞA ×Uð2ÞV-symmetric,
IR-unstable spiral fixed point, Cð16Þ, with coordinates close
to those of Bð14Þ.
In the remainder of this section, we will argue why the

LPA’ remains inconclusive, pointing out general differences
between the FRG and other RG approaches first. For a
more fundamental comparison between both approaches,
we refer to Refs. [33,34].
In the framework of the ϵ-expansion or other loop

expansions at fixed spatial dimensionD, one usually argues
that also in case of non-Gaussian fixed points the canonical
scaling dimension determines if a coupling can affect
stability [35]. Accordingly, depending on the sign of their
canonical scaling dimension, one speaks of relevant,
marginal, and irrelevant parameters. Obviously, especially
marginal eigenvalues are sensitive to the loop order.
Therefore, one has to consider the possibility that
higher-order loop corrections change the marginal eigen-
value into a nonvanishing one. It is important to note that
if a marginal eigenvalue for a certain fixed point turns
nonzero at higher order this can also change the stability
properties of the other fixed points. This is for example the
case in theOðN ¼ 4Þmodel with di-icosahedral anisotropy
[36]. In the presence of an anisotropy, the Oð4Þ-symmetric
fixed point acquires a marginal eigenvalue at one-loop
order in the ϵ-expansion, whereas the anisotropic fixed
point is IR unstable. At two-loop order, however, the
anisotropic fixed point can become the IR-stable one.
We reinvestigated the situation using the FRG in LPA
and found that the anisotropic fixed point also becomes IR
stable when going beyond the quartic truncation order [20].

6 loop MZM

5 loop MS

A n LPA'

A 6 LPA
B n LPA

B n LPA'

C n LPA'

10 15 20

0.7

0.8

0.9

1.0

1.1

n

FIG. 1. Critical exponent ν for several Uð2ÞA × Uð2ÞV -
symmetric fixed points at different polynomial truncation order
n. D ¼ 3.
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However, a change of stability can occur even in the
absence of any marginal eigenvalues. A famous example is
the OðNÞ model with cubic anisotropy for D ¼ 3 [37,38].
The model exhibits an OðNÞ-symmetric (isotropic) fixed
point as well as a cubic fixed point. For N > Nc the cubic
fixed point is the IR-stable one, the isotropic fixed point
being IR unstable, and vice versa for N < Nc. The value for
Nc depends on the loop order as well as on the resumma-
tion scheme and is still under debate.
In comparison to loop expansions, the stability matrix

eigenvalues are much more sensitive to the polynomial
truncation order in the FRG formalism. Using the FRG,
the accuracy of the critical exponents heavily depends on
irrelevant couplings [39]. This is explained by the fact that
fluctuations are taken into account differently in both
approaches. Irrelevant couplings can be safely ignored in
the loop expansion, and nonperturbative effects are cap-
tured by using resummation. In contrast, if we were able to
solve the FRG equation without truncating the effective
action, we would obtain exact results. In the LPA at quartic
truncation order, however, one generically reproduces
the one-loop ϵ-expansion results when setting the mass
parameter to zero [12,30].
Apart from the stability properties, also the existence of

fixed points can depend on the truncation, as demonstrated
above for the Nf ¼ 2 linear sigma model. This was also
observed applying the Wegner–Houghton equation to the
Uð3ÞA ×Uð3ÞV-symmetric model [40].
Our conclusions are as follows. One cannot trust an

approximation scheme only because no marginal eigen-
values appear for the non-Gaussian fixed points. It is
important to investigate the convergence of the results
with respect to the truncation order (polynomial, derivative-
expansion, and loop order, respectively). The persistent
occurrence of Uð2ÞA ×Uð2ÞV-symmetric fixed points at
high truncation order in the LPA as well as in LPA’,
together with the comparison of our results for ν with those
of resummed loop expansions, provides further evidence
for their physical relevance. To decide on the stability,
however, one needs to study the convergence of results
beyond the LPA’ taking into account derivative couplings.

III. CONCLUSIONS

We further investigated the possibility that the two-flavor
chiral phase transition can be of second order in the absence
of the axial anomaly, using the FRG method with the Litim
regulator in the LPA as well as in the LPA’.

We found two IR-stable, Uð2ÞA ×Uð2ÞV-symmetric
fixed points at polynomial truncation order n ¼ 6,
one of them associated with unphysical masses. The value
for the critical exponent, ν ∼ 0.73, calculated for the
one associated with physical masses, Að6Þ, is in unexpect-
edly good agreement with the result of Ref. [14]. At least
for 12 ≤ n ≤ 24 in the LPA, another (IR-unstable)
Uð2ÞA ×Uð2ÞV-symmetric fixed point, BðnÞ, shows oscil-
latory behavior around ν ∼ 0.73.
The fact that an Uð2ÞA ×Uð2ÞV-symmetric fixed point

appears by simply including sextic invariants demonstrates
that its existence not only depends on the spatial dimension
but also on the way nonperturbative corrections are taken
into account. In the framework of a resummed perturbative
expansion, this concerns the resummation scheme and the
perturbative order.
Our main conclusion is that the stability of the

Uð2ÞA ×Uð2ÞV-symmetric fixed point of the linear sigma
model remains unclear since the fixed-point structure
changes significantly when going from the LPA to the
LPA’. Also the dependence on the regulator should be
carefully investigated. Since the fixed-point structure of the
dimensionally reduced theory controls the behavior near Tc
[41], previous finite-temperature studies [18,20,31] remain
inconclusive, too. Based on the observation that the fixed
points Aðn≤10Þ and Bðn>10Þ yield a value for ν close to 0.73,
we speculate that both fixed points merge at higher order in
the derivative expansion.
Finally, the simultaneous occurrence of two IR-

stable fixed points (although one of them is unphysical)
is interesting regarding the universality hypothesis. The
example illustrates that, in principle, it is possible that two
systems sharing (a) the same spatial dimension, (b) the same
number of order parameter components, and (c) the same
symmetry properties can be attracted to different IR-stable
fixed points (here Að6Þ and ~Að6Þ, respectively). However, we
state clearly that the given example has to be regarded as an
artifact of the utilized truncation. A similar situation,
although to our knowledge not strictly ruled out, is
commonly not believed to appear in a physical setting.
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