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In the so-called “Yukawaon”model, the (effective) Yukawa coupling constants Yeff
f are given by vacuum

expectation values (VEVs) of scalars Yf (Yukawaons) with 3 × 3 components. In this brief article, we
change VEV forms hYfi in the previous paper into a unified form. Therefore, parameter fitting for quark
and lepton masses and mixings is revised. Especially, we obtain predicted values of neutrino mixing
sin22θ13 and a leptonic CP violating phase δlCP that are consistent with the observed curve in the
ðsin2 2θ13; δlCPÞ reported by the T2K group recently.
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I. INTRODUCTION

Nowmeasurement ofCP violating phase δlCP in the lepton
sector is within our reach because of the recent development
of neutrino physics [1]. The measurement is very important
to check quark and lepton mass matrix models currently
proposed. At the same time, for model builders, it is urgently
required to predict an explicit value of δlCP together with
mixing value sin2 2θ13 based on their models. So, we
estimate a value of δlCP based on the so-called Yukawaon
model [2,3], which is a unified mass matrix model of quarks
and leptons, and which is a kind of flavon model [4].
In the Yukawaon model, the (effective) Yukawa coupling

constants Yeff
f are given by vacuum expectation values

(VEVs) of scalars Yf (Yukawaons) with ð8þ 1Þ of U(3)
family symmetry:

ðYeff
f Þji ¼

yf
Λ
hYfiji ðf ¼ u; d; ν; eÞ; ð1Þ

where Λ is a scale of the effective theory. In understanding
flavor physics from the point of view of a non-Abelian
family symmetry, the conventional Yukawa interactions
explicitly break their family symmetry. It is only when the
conventional Yukawa coupling constants are supposed to
be given by Eq. (1) that we can build a model with an
unbroken family symmetry.
The characteristic point of the Yukawaon model is the

following point: The quark and lepton mass matrices are
described by using only the observed values of charged
lepton masses ðme;mμ; mτÞ as input parameters with
family-number dependent values; thereby, we investigate
whether we can describe all other observed mass spectra
(quark and neutrino mass spectra) and mixings [the
Cabibbo-Kobayashi-Maskawa [5] (CKM) mixing and the
Pontecorvo-Maki-Nakagawa-Sakata [6] (PMNS) mixing]
without using any other family number-dependent

parameters. Here, the terminology “family number-
independent parameters” means, for example, coefficients
of a unit matrix 1, a democratic matrix X3, and so on, where

1 ¼

0
B@

1 0 0

0 1 0

0 0 1

1
CA; X3 ¼

1

3

0
B@

1 1 1

1 1 1

1 1 1

1
CA: ð2Þ

In the previous paper, the form of hYdi in the down-quark
sector has been supposed to be unnaturally different from
those in other sectors. In this paper, we revise the form of
hYfi so that it takes a unified form for all sectors as given in
Eq. (3) in the next section. Accordingly, parameter fitting
for quark and lepton masses and mixings is also revised as
given in Secs. III and IV. Especially, it is shown in Sec. IV
that we obtain predicted values for neutrino mixing
sin2 2θ13 and a leptonic CP violating phase δlCP that are
consistent with the observed curve in the ðsin2 2θ13; δlCPÞ
plane reported by the T2K group [7] recently.

II. MODELS

Hereafter, for convenience, we use the notation Â, A, and
Ā for fields with 8þ 1, 6, and 6� of U(3), respectively.
Explicit forms of VEV relations among the Yukawaon in
this paper are given by

hŶfiji ¼ kf½hΦfiikhΦ̄fikj þ ξf1
j
i � ðf ¼ e; ν; d; uÞ; ð3Þ

hΦfiij¼ k0fhΦ0iiαhS̄fiαβhΦT
0 iβj;

hΦ̄fiij¼ k0fhΦ̄0iiαhSfiαβhΦ̄T
0 iβj; ðf¼ e;νÞ; ð4Þ

hĒuiikhΦuiklhĒuilj ¼ hΦ̄0iiαhSuiαβhΦ̄T
0 iβj;

hEuiikhΦ̄uiklhEuilj ¼ hΦ0iiαhS̄uiαβhΦT
0 iβj; ð5Þ

hP̄diikhΦdiklhP̄dilj ¼ hΦ̄0iiαhSdiαβhΦ̄T
0 iβj;

hPdiikhΦ̄diklhPdilj ¼ hΦ0iiαhS̄diαβhΦT
0 iβj; ð6Þ
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hSfiαβ ¼ ð1þ afX3Þαβ; hS̄fiαβ ¼ ð1þ afX3Þαβ; ð7Þ

where hEi ¼ 1, and indices α; β;… are of another family
symmetry Uð3Þ0. We consider that the form (7) is due to
a symmetry breaking Uð3Þ0 → S3 at μ ¼ Λ0. The ξf terms
in Eq. (3) will be discussed later. Here, the VEV matrices
Ŷe, Ŷν, Ŷu, and Ŷd correspond to charged lepton mass
matrix Me, neutrino Dirac mass matrix MDirac, up-quark
mass matrix Mu, and down-quark mass matrix Md,
respectively. Hereafter, we drop flavor-independent factors
in those VEV matrices, because we deal with only mass
ratios and mixings in this paper.
The VEV structures are essentially the same as in the

previous paper [3]. However, we have done the following
minor changes from the previous paper: (i) In the previous
paper, hŶdi and hΦdi were given by hŶdi ¼ hΦdihΦ̄di and
hΦdi ¼ hΦ0ihS̄dihΦ0i þ ξ0d1, respectively, differently from
other sectors. However, it is unnatural that such a term ξ0d1
appears only in the VEVofΦd. In this paper, we remove the
ξ0d1 term from the Φd and unify the appearance place of the
1 terms that appear in hŶfi common to all sectors as shown
in Eq. (3). (ii) Along with the changing of the VEV
structure in the down-quark sector, a phase matrix Pu in the
previous paper is moved to the down-quark sector as shown
in Eq. (6). For convenience, Ē in Eq. (5) and P̄d in Eq. (6)
were exchanged with P̄u and Ē in the previous paper,
respectively.
Neutrino mass matrix Mν is given by a seesaw type

ðMνÞij ¼ hŶT
ν iikhY−1

R iklhŶνijl ; ð8Þ

as in the previous paper [3], where

hYRiij ¼ hŶeiki hΦuikj þ hΦuiikhŶT
e ikj : ð9Þ

In general, we can choose either one in two cases,
(a) hĀi ¼ hAi� or (b) hĀi ¼ hAi, for VEV matrices hAi and
hĀi under theD-term condition. We assume the type (b) for
Φf and Sf, while we assume the type (a) for Pd:

hPdi ¼ vPdiagðeiϕ1 ; eiϕ2 ; 1Þ;
hP̄di ¼ vPdiagðe−iϕ1 ; e−iϕ2 ; 1Þ: ð10Þ

In order to distinguish each Yukawaon from the others,
we assume that Ŷf have different R charges from each other
together with considering R-charge conservation [a global
U(1) symmetry in N ¼ 1 supersymmetry (SUSY)]. The
R-charge assignments are essentially not changed from the
previous paper [3] except for Eu and Pd.
Since we consider that the charged lepton mass matrix is

the most fundamental one, we assume ae ¼ 0 and ξe ¼ 0.
Then, hΦ0i is expressed as follows:

hΦ0i ¼ hΦ̄0i≡ diagðx1; x2; x3Þ ∝ diagðm1=4
e ; m1=4

μ ; m1=4
τ Þ;
ð11Þ

from the D-term condition, where xi are real and those are
normalized as x21 þ x22 þ x23 ¼ 1.
Now let us give a brief review of the derivation of ξf

terms. We assume the following superpotential for Ŷf

(f ¼ ν; e; u; d), with introducing flavons Θ̂f,

WŶ ¼
X

f¼ν;e;u;d

½ðμfðŶfÞji þ λfðΦfÞikðΦ̄fÞkjÞðΘ̂fÞij

þ ðμ0fðŶfÞii þ λ0fðΦfÞikðΦ̄fÞkiÞðΘ̂fÞjj�: ð12Þ

(Here, we have assumed that only Θ̂f can be allowed to
appear as a form Tr½Θ̂� in the superpotential.) Then a SUSY
vacuum condition ∂WŶ=∂Θ̂f ¼ 0 leads to VEV relation

hŶfi ¼ hΦfihΦ̄fi þ ξf1; ð13Þ

where

ξf ¼ −
μ0f
μf

�
Tr½hŶfi� þ

λ0f
μ0f

Tr½hΦfihΦ̄fi�
�

¼ −
λf=μf − λ0f=μ

0
f

1 − 3μ0f=μf
Tr½hΦfihΦ̄fi�: ð14Þ

Here, we have assumed that all VEVs of flavons Θ̂ take
hΘ̂i ¼ 0, so that SUSY vacuum conditions for other
flavons do not bring any additional VEV relations. As
seen in Eq. (14), if hΦfi is complex, then the coefficient ξf
becomes complex, too. Although the derivation discussed
above was given in the previous work [3], we considered
that the effect of the phase of ξν is negligibly small, so that
we treated ξν as a real parameter approximately in the
previous work. However, in this paper, we found that the
phase of ξν affects not a little on our parameter fitting.

III. PARAMETER FITTING

General: We summarize our mass matrices Mf (hYfi) as
follows:

Ye ¼ΦeΦ̄eþ ξe1;

Φe ¼ Φ̄e ¼Φ0ð1þaeX3ÞΦ0; ðae ¼ 0;ξe ¼ 0Þ; ð15Þ

Yν¼ΦνΦ̄νþξνeiβν1; Φν¼ Φ̄ν¼Φ0ð1þaνeiανX3ÞΦ0;

ð16Þ

Yu ¼ΦuΦ̄u þ ξu1; Φu ¼ Φ̄u ¼Φ0ð1þ auX3ÞΦ0; ð17Þ

Yd ¼ ΦdΦ̄d þ ξdeiβd1; Φd ¼ P�
dΦ0ð1þ adeiαdX3ÞΦ0P�

d;

Φ̄d ¼ PdΦ0ð1þ adeiαdX3ÞΦ0Pd; ð18Þ
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Mν ¼ YνY−1
R Yν; YR ¼ YeΦu þ ΦuYe: ð19Þ

Here, for convenience, we have dropped the notations
“h”, “i” and “ ˆ”. Since we are interested only in the mass
ratios and mixings, we use dimensionless expressions
Φ0 ¼ diagðx1; x2; x3Þ (with x21 þ x22 þ x23 ¼ 1), Pd ¼
diagðeiϕ1 ; eiϕ2 ; 1Þ, and E ¼ 1 ¼ diagð1; 1; 1Þ. Therefore,
the parameters ae, aν;… are redefined by Eqs. (15)–(19).
Since the parameters af in Eq. (7) can be complex in

general, we denote af as afeiαf by real parameters ðaf; αfÞ.
The VEV structure of Yu in the present paper is practically
unchanged from the previous paper [3], so that we inherit
the numerical results in the up-quark sector in the previous
work by assuming αu ¼ 0. Since we choose αν and αd
as αν ≠ 0 and αd ≠ 0, we have βν ≠ 0 and βd ≠ 0 according
to Eq. (14). We have denoted ξν and ξd in Eq. (3) as ξνeiβν

and ξdeiβd , respectively, in Eqs. (16) and (18). Of course,
the parameters βf are fixed by the values ðaf; αfÞ, so that βf
are not free parameters.
The explicit values of the parameters ðx1; x2; x3Þ are

fixed by Eq. (11) as

ðx1; x2; x3Þ ¼ ð0.115144; 0.438873; 0.891141Þ; ð20Þ
where we have normalized xi as x21 þ x22 þ x23 ¼ 1.
Therefore, in the present model, except for the parameters
ðx1; x2; x3Þ, we have ten adjustable parameters, ðaν; αν; ξνÞ,
ðau; ξuÞ, ðad; αd; ξdÞ, and ðϕ1;ϕ2Þ for the 16 observable
quantities (six mass ratios in the up-quark, down-quark, and
neutrino sectors, four CKM mixing parameters, and 4þ 2
PMNS mixing parameters).
Quark mass ratios: First, we fix the parameter values

ðau; ξuÞ from the observed up-quark mass ratios [8]
ru12 ≡ ðmu=mcÞ1=2 ¼ 0.045þ0.013

−0.010 and ru23 ≡ ðmc=mtÞ1=2 ¼
0.060� 0.005 at μ ¼ mZ [8] as follows:

ðau; ξuÞ ¼ ð−1.4715;−0.001521Þ: ð21Þ
Of course, we obtain the same values as those in the
previous paper.
Next, we try to fix the parameters ðad; αd; ξdÞ in the

down-quark sector by using input parameters [8] rd12 ≡
md=ms ¼ 0.053þ0.005

−0.003 and rd23 ≡ms=mb ¼ 0.019� 0.006.
However, since we have three parameters for two input
values md=ms and ms=mb, we cannot fix our three
parameters. It is more embarrassing that there is no solution
of ms=mb ∼ 0.019 in the ðad; αd; ξdÞ parameter region.
Nevertheless, we found that the minimal value of ms=mb
isms=mb ∼ 0.03 at ðad; αd; ξdÞ ∼ ð−1.5; 16°; 0.004Þ, which
can give a reasonable value ofmd=ms at the same time, too.
Therefore, we take the following values:

ðad; αd; ξdÞ ¼ ð−1.4735; 15.7°; 0.00400Þ; ð22Þ

which leads to predictions rd12 ¼ 0.0597 and rd23 ¼ 0.0312.
Note that the value rd23 ¼ 0.0312 is considerably large

compared with rd23 ≃ 0.019 by Xing et al. [8], while the
value is consistent with rd23 ≃ 0.031 by Fusaoka and Koide
[9]. The values mdðμÞ and msðμÞ are estimated at a lower
energy scale, μ ∼ 1 GeV, so that we consider that the ratio
rd12 at μ ¼ MZ is reliable. On the other hand, the value
mbðμÞ is extracted at a different energy scale μ ∼ 4 GeV
from μ ∼ 1 GeV, so that the value mbðMZÞ is affected by
the prescription of threshold effects at μ ¼ mt, while the
value msðMZÞ is affected by those at μ ¼ mc, μ ¼ mb, and
μ ¼ mt. We consider that as for the ratio rd23 at μ ¼ MZ

the value is still controversial. Anyhow, we have fixed
three parameters ðad; αd; ξdÞ only from two values md=ms
and ms=mb.
CKM mixing: The purpose of the present paper is to

discuss PMNS parameters, especially CP violating phase
δlCP. However, since our model is to give unified descrip-
tion of quarks and leptons, for reference, we give results of
CKM parameter fitting, too.
Since the parameters ðau; ξuÞ and ðad; αd; ξdÞ have been

fixed by the observed quark mass ratios, the CKM mixing
matrix elements jVusj, jVcbj, jVubj, and jVtdj are functions
of the remaining two parameters ϕ1 and ϕ2 defined by
Eq. (10).We use the observed CKMmixingmatrix elements
[10] jVusj ¼ 0.2254� 0.0006, jVcbj ¼ 0.0414� 0.0012,
jVubj ¼ 0.00355� 0.00015, and jVtdj ¼ 0.00886þ0.00033

−0.00032 .
(Two of those are used as input values in the present
analysis, and the remaining two are our predictions as
references.) All the experimental CKM parameters are
satisfied by fine-tuning the parameters ϕ1 and ϕ2 as

ðϕ1;ϕ2Þ ¼ ð−42.0°;−15.1°Þ; ð23Þ

which leads to the numerical results as follows: jVusj ¼
0.2255, jVcbj ¼ 0.0429, jVubj ¼ 0.00359, and jVtdj ¼
0.00928 with δlCP ¼ 73.0°. In spite of our aim described
in Sec. I, we are forced to introduce family number-
dependent parameters ðϕ1;ϕ2Þ in the present model, too,
the same as in the previous model [3]. Model building
without using parameter ðϕ1;ϕ2Þ is left to our future task.

IV. PARAMETER FITTING IN THE PMNS MIXING
AND CP VIOLATING PHASE δlCP

We have already fixed our seven parameters as
Eqs. (21)–(23). The remaining free parameters are only
ðaν;αν; ξνÞ in the Dirac neutrino sector. We determine the
parameter values of ðaν; αν; ξνÞ as follows:

ðaν;αν; ξνÞ ¼ ð−3.54;−18.0°;−0.0238Þ; ð24Þ
which are obtained so as to reproduce the observed values
[10] of the following PMNS mixing angles and Rν:

sin22θ12 ¼ 0.846� 0.021;

sin22θ13 ¼ 0.093� 0.008; ð25Þ
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Rν ≡ Δm2
21

Δm2
32

¼ m2
ν2 −m2

ν1

m2
ν3 −m2

ν2

¼ ð7.53� 0.18Þ × 10−5 eV2

ð2.44� 0.06Þ × 10−3 eV2

¼ ð3.09� 0.15Þ × 10−2: ð26Þ

We show the aν and αν dependencies of the PMNS mixing
parameters sin2 2θ12, sin2 2θ23, sin2 2θ13, and Rν in
Figs. 1(a)–1(b), respectively. It is found that Rν is very
sensitive to aν.
As seen in Fig. 2, we obtain two solutions, which are

consistent with the neutrino data except for the data of δlCP.
However, as seen in the best fit curve on the ðsin2 2θ13; δlCPÞ
plane in Fig. 5 in the resent T2K article [7], the solution
with 0 < δlCP < π is obviously ruled out. Therefore, we
adopt the solution with −π < δlCP < 0 in our model. Then
we obtain the predictions of our model,

Rν¼0.0310; sin22θ12¼0.837; sin22θ23¼0.988;

sin22θ13¼0.0987; δlCP¼−125°: ð27Þ

We can predict neutrino masses, for the parameters given
by (21) and (24), as follows:

mν1≃0.00037 eV; mν2≃0.00868 eV; mν3≃0.0501 eV;

ð28Þ

by using the input value [10] Δm2
32 ≃ 0.00244 eV2. We

also predict the effective Majorana neutrino mass [11] hmi
in the neutrinoless double beta decay as

hmi ¼ jmν1ðUe1Þ2 þmν2ðUe2Þ2 þmν3ðUe3Þ2j
≃ 6.0 × 10−3 eV: ð29Þ

Our model predicts δlCP ¼ −125° for the Dirac CP
violating phase in the lepton sector, which indicates a
relatively large CP violating effect in the lepton sector.

V. CONCLUDING REMARKS

We have tried to describe quark and lepton mass
matrices by using only the observed values of charged
lepton masses ðme;mμ; mτÞ as input parameters with
family number-dependent values, except for Pd defined
by Eq. (10). Thereby, we have investigated whether we
can describe all other observed mass spectra (quark
and neutrino mass spectra) and mixings (CKM and
PMNS mixings) without using any other family number-
dependent parameters. In conclusion, we have obtained
reasonable results. We have predicted the CP violating
phase in the lepton sector as δlCP ≃ −125° and
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FIG. 1 (color online). Contour curves of the observed center, upper, and lower values of the lepton mixing parameters sin2 2θ12
(dashed), sin2 2θ13 (dot dashed), and the neutrino mass squared difference ratio Rν (solid). (a): We draw the curves in the (αν, aν) plane
by taking ξν ¼ −0.0238. (b): We draw the curves in the (αν, ξν) plane by taking aν ¼ −3.54.

FIG. 2 (color online). αν dependence of the lepton mixing
parameters sin2 2θ12, sin2 2θ23, sin2 2θ13, Rν, and the leptonic CP
violating phase δlCP. We draw the curves of those as functions of
αν for the case of ξν ¼ −0.0238 by taking aν ¼ −3.54 (solid).
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sin2 2θ13 ≃ 0.099 in Eq. (27), which are consistent with
the observed curve in the ðsin2 2θ13; δlCPÞ plane that has
been reported by the T2K group [7]. (The predicted value
of δlCP in the previous paper was δlCP ¼ −26°.)
The origin of the CP violation in the lepton sector is in

the phase factor αν in the Dirac neutrino mass matrix
(16). Note that we have taken αf ¼ 0 (f ¼ e; u) for
economy of the parameters. However, we have been

obliged to accept αν ≠ 0 in order to fit the observed value
of sin2 2θ13.
Although the present model is a minor improved version

of the previous paper [3], the predicted value of δlCP has
been changed into a more detectable value in near future
neutrino observations, and it is consistent with the recent
T2K result [7]. We expect that the value of δlCP will be
confirmed by near future observations.
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