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We study the quark spectrum at nonzero temperature and density near the critical point (CP) of the chiral
phase transition incorporating effects of the scalar- and pseudoscalar-density fluctuations in a chiral
effective model with a nonzero current quark mass. It is known that the soft mode associated with the
second-order transition at the CP lies in the spacelike region of the scalar-density fluctuation. We find
that the soft mode influences the quark spectrum significantly near the CP, resulting in the shift of the
quasiquark peak. Effects of the composite stable pions on the quark spectrum near the CP are also
discussed.
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I. INTRODUCTION

The phases of quantum chromodynamics (QCD) at
nonzero temperature (T) and the quark-chemical potential
(μ) are of much interest both theoretically and experimen-
tally. It has been established in lattice QCD with the
physical quark masses that there does not exist a genuine
phase transition at nonzero temperature and zero baryon
density but only a rapid crossover from the hadronic state
to the quark-gluon plasma [1–4]. In the cold and dense
region μ ≳ T, in contrast, reliable lattice simulations are
still missing because of the notorious sign problem,
although various attempts have been made [5–9]. Low-
energy effective models of QCD [10–12] tell us that there
is a critical point (CP) at T > 0 and μ > 0 where the
critical line of the first-order phase transition in the low-
temperature region terminates and that becomes second
order [13]. We mention that there can be variants or
alternatives of the phase diagram with multiple or no critical
points when the vector interaction [14], color superconduc-
tivity with and without charge neutrality, and/or the anomaly
terms are incorporated [15–20], even apart from the pos-
sibility of inhomogeneous phases [21,22].
The global structure of the QCD phase diagram, including

the identification of the CP, can be investigated experimen-
tally using relativistic heavy ion collisions by comparing the
collision events with different collision energies. An exper-
imental program to perform such an investigation, called the
beam energy scan program, is now ongoing at the Relativistic
Heavy Ion Collider [23]. The existence of the CP may be
confirmed by the measurement of fluctuation observables in
this program [24]. Experiments at the planned facilities at
GSI, NICA, and J-PARC would also contribute to reveal
physical properties of the CP as well as its existence.
We emphasize here that the CP appears when the chiral

symmetry is explicitly broken, and the identifications of the

order parameter of the second-order transition and the
associated soft modes are not simple and involved [25,26].
In the chiral limit where the current u; d quarks are
massless, the order parameter is the chiral condensate,
and the critical line of the first-order transition in the low-
temperature region is connected at the tricritical point
(TCP) with the critical line of the second-order transition;
the associated soft modes to the phase transition are the
amplitude and phase fluctuations of the order parameter,
which are identified with the sigma and the pionic modes,
respectively [27]. We notice that there is no scalar-vector
coupling at the TCP due to the chiral symmetry.
When the chiral symmetry is explicitly broken with the

nonzero current quark masses, the second-order transition
in the high-temperature region turns to a crossover and the
sigma and pionic modes stay massive even at the CP:
Indeed, the sigma mode has a mass mσ ≃ 2m around the
CP with m being the dynamically generated constituent
quark mass. Moreover, in such a case with an explicit
chiral-symmetry breaking at μ ≠ 0, the scalar-vector cross-
correlation term h∶ðψ̄γ0ψÞðψ̄ψÞ∶i does not vanish, and,
hence, the scalar mode is coupled with the density-density
correlator h∶ðψ̄γ0ψÞ2∶i [14]; this is because charge con-
jugation symmetry is violated with nonzero μ, and the left-
and right-handed quarks are coupled owing to the breaking
of chiral symmetry. It has been shown [25,26] that the soft
mode, the mass of which vanishes at the CP, is a super-
position of the number-density fluctuation (phonon) and
the sigma mode, and the QCD CP belongs to the same
universality class as the liquid-gas phase transition, which
is called “model H” in the classification scheme by
Hohenberg and Halperin [28]: Precisely speaking, the soft
mode associated with the CP consists of not only the sigma
and the phonon mode but also the entropy fluctuations,
i.e., the hydrodynamic modes [25,26].
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In the present work, we investigate how the soft mode
associated with the CP affects in turn the quark spectrum
near the CP. We employ the simplest Nambu–Jona-Lasinio
(NJL) model [10–12,29] without the vector coupling to
describe the soft mode associated with the CP. In this
model, the collective mode in the scalar channel has a
support in the spectral function not only in the timelike
region but also in the spacelike region, the latter of which
is composed of particle-hole excitations and describes the
soft mode associated with the CP [25].
It is known that the quarks coupled with the bosonic

excitations at nonzero temperature show an unexpected
rich structure in the spectral function, even apart from
the formation of the celebrated plasmino excitations at
extremely high temperatures as given in the hard-thermal-
loop (HTL) approximation in gauge theories [30,31]. In
[32], the spectral properties of quarks coupled with the soft
modes at zero density were examined above but near the
critical temperature of the second-order chiral transition in
the chiral limit. It was found that a novel peak is formed
around the zero energy as well as the normal and the
antiplasmino ones, which then makes a three-peak structure
in the quark spectral function: The formation of the far-
low-lying peak is owed to the mixing between a quark
(antiquark) and an antiquark hole (quark hole) by a
resonant scattering of the quasiquarks with the soft modes
with small but nonzero masses [32–34]. Such a formation
of the three-peak structure in the spectral function of a
fermion coupled with a bosonic excitation at T ≠ 0 is
now confirmed beyond one loop [35–39]. Furthermore, a
similar third peak in the ultrasoft region has been shown
to exist in gauge theories at high temperature beyond the
HTL approximation on the basis of a novel resummation
technique [40]. It is also shown that the neutrino spectrum
shows similar three peaks containing an ultrasoft branch at
electroweak scale temperature [41].
It should be noted, however, that such a three-peak

structure in the fermion spectrum tends to be suppressed
as the fermion mass becomes large [42]. Thus, one might
naturally suspect that the quark spectrum near the CP,
which is realized when the chiral symmetry is explicitly
broken, would not have any anomalous structure like that
seen near the critical temperature in the chiral limit.
However, a recent paper [43] of the present authors shows
that it may not be the case: In fact, the quark spectral
function in this region can have an anomalously low-lying
peak due to the coupling with the stable pionic modes with
a nonhyperbolic dispersion relation around the pseudoc-
ritical temperature, which leads to a van Hove singularity of
the joint density of states in the imaginary part of the quark
self energy.
In the present paper, we shall show that the quark

spectrum around the CP shows yet another unexpected
behavior due to the coupling to the phononlike soft mode in
the spacelike region. The spectral properties of fermions at

nonzero μ have been studied in gauge theories in the hard
dense limit [31] and also the electron spectrum in high
density plasma [44]. The modification of the quark spec-
trum near the CP is different from both of these cases,
because the soft mode associated with the CP consists of
particle-hole states in the spacelike region. It will also be
shown that the effects of the van Hove singularity present
around the crossover region at μ ¼ 0 almost die out around
the CP.
The paper is organized as follows. In the next section,

we introduce the NJL model to investigate the phase
diagram of the chiral transition, and formulate the fluc-
tuation modes and the quark self energy. We then discuss
the properties of the fluctuation modes in Sec. III. The
numerical results are shown in Sec. IV. A summary and
concluding remarks are given in Sec. V.

II. FORMALISM

In this section, after introducing the model used in
this study we present the phase diagram obtained in this
model. We then give the expressions of the meson and
quark propagators in the random-phase approximation at
nonzero T and μ. The calculation procedures described in
Secs. II B–II C are basically the same as those in our
previous study [43], except for the introduction of nonzero
quark chemical potential μ.

A. Model and phase diagram

We employ the two-flavor NJL model [29]

L ¼ ψ̄ði∂ −m0Þψ þGS½ðψ̄ψÞ2 þ ðψ̄iγ5τψÞ2� ð1Þ
as an effective model of low-energy QCD [11], and study the
effect of fluctuation modes in the scalar ðσÞ and pseudoscalar
ðπÞ channels on the spectral properties of quarks near the
phase boundary, with τ being the flavor SU(2) Pauli
matrices. The coupling constant GS ¼ 5.5 GeV−2, the
current u; d-quark mass m0 ¼ 5.5 MeV, and the three-
dimensional cutoff Λ ¼ 631 MeV are determined so as to
reproduce the pion mass, the pion decay constant, and the
quark condensate in vacuum [11].
As mentioned in Sec. I, a complete description of the

effects of the specific collective modes on the quark
spectrum necessitates the inclusion of the couplings of
the number-density and the entropy fluctuations to the
quark field. There are some attempts to do it: A model
Lagrangian has been proposed to take into account the
phonon-quark coupling in the meson-quark model [45].
We also note that although in a quite different context,
Shen and Reddy [46] calculated the neutrino scattering
from hydrodynamic modes in hot and dense neutron matter
using a transport equation. However, an extension of the
model for such a complete description of the hydrodynamic
modes and their couplings to the quark is beyond the scope
of the present work.
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In Fig. 1, we show the phase diagram of the chiral
transition in the mean-field approximation (MFA). There
is a first-order transition at low temperature and large
chemical potential region shown by the solid line, which
terminates at the CP, denoted by CP in the figure, with
the critical temperature Tc and the chemical potential μc
given by

Tc ≃ 47 MeV; μc ≃ 329 MeV:

The phase transition is of second order at this point. The
transition becomes crossover for μ < μc. For a guide of
the phase boundary for μ < μc, the temperatures at which
the chiral susceptibility has the maximum at a fixed
chemical potential, i.e., the ridge of the chiral susceptibility,
are shown by the dashed line.

B. Fluctuation modes

Next, we construct the propagator of the scalar and
pseudoscalar fluctuations at nonzero T and μ. The soft
mode associated with the CP manifests itself in the scalar
fluctuations. The pions, which are described by the
pseudoscalar fluctuations, are still bound states near the
CP in this model as shown in Sec. III. The excitation
properties of these fluctuation modes are characterized
by the spectral functions for the quark-antiquark excitations
in the σ and π channels

ρσðπÞðp; p0Þ ¼ −
1

π
ImDR

σðπÞðp; p0Þ; ð2Þ

where DR
σ ðp; p0Þ and DR

π ðp; p0Þ are the retarded quark-
antiquark propagators in each channel. The corresponding
imaginary-time propagators in the random-phase approxi-
mation read

DσðπÞðp; νnÞ ¼ −
1

1=ð2GSÞ þQσðπÞðp; νnÞ
; ð3Þ

where Qσðp; νnÞ and Qπðp; νnÞ are the one-loop quark-
antiquark polarization functions

Qσðp; νnÞ ¼ T
X

m

Z
d3q
ð2πÞ3 Tr½G0ðq;ωmÞ

× G0ðpþ q; νn þ ωmÞ�; ð4Þ

Qπðp; νnÞ ¼
T
3

X

m

Z
d3q
ð2πÞ3 Tr½iγ5τG0ðq;ωmÞ

× iγ5τG0ðpþ q; νn þ ωmÞ�; ð5Þ

with G0ðp;ωnÞ ¼ ½ðiωn þ μÞγ0 − p · ~γ −m�−1 being the
quark propagator and νn ¼ 2nπT and ωn ¼ ð2nþ 1ÞπT
denoting the Matsubara frequencies for bosons and fer-
mions, respectively. m ¼ m0 þmD is the constituent
quark mass where mD is the dynamically generated mass
from spontaneous chiral-symmetry breaking evaluated
in the MFA. After the summation of the Matsubara
frequency and the analytic continuation with a replacement
iνn → p0 þ iη, we obtain the retarded functions
QR

σðπÞðp; p0Þ and DR
σðπÞðp; p0Þ. For the numerical calcula-

tion of QR
σðπÞðp; p0Þ, we first calculate the imaginary part

that is free from the ultraviolet divergence and then evaluate
the real part with the Kramers-Kronig relation

ReQR
σðπÞðp; p0Þ ¼ −

1

π
P
Z

Λ0

−Λ0
dp0

0

ImQR
σðπÞðp; p0

0Þ
p0 − p0

0

; ð6Þ

where P denotes the principal value and the energy cutoff
Λ0 ¼ 2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Λ2 þm2

p
is determined such that DR

σ ðp; p0Þ at
p ¼ 0 and p0 ¼ 0 in the spacelike region diverges at the CP
determined by the MFA. This is a softening condition
associated with the CP and is consistent with the intro-
duction of the cutoff Λ into the thermodynamic potential in
the MFA.
The imaginary parts of QR

σ ðp; p0Þ and QR
π ðp; p0Þ are

proportional to the difference between the decay and
creation rates of each mode and take nonzero values for
jp0j > EthrðpÞ and jp0j < p, with EthrðpÞ ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
p2 þ 4m2

p

and p ¼ jpj. The decay processes into a quark and an
antiquark take place for p0 > EthrðpÞ, where the threshold
energy EthrðpÞ is the lowest value of the sum of excitation
energy of a quark and an antiquark with a fixed total
momentum p. The decay process in the spacelike region,
jp0j < p, is the Landau damping, which is the scattering
processes of a quark or an antiquark with the fluc-
tuation modes.
The propagators DR

σðπÞðp; p0Þ may have poles on the
lower-half complex energy plane corresponding to
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FIG. 1 (color online). The phase diagram of the chiral tran-
sition. CP means the critical point. The solid line denotes the first-
order phase transition, the dashed line the maximum of the chiral
susceptibility at each μ. The dotted line denotes the pion zero-
binding temperatures where the binding energy of the stable
pionic modes vanishes.
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collective excitations. In vacuum, DR
π ðp; p0Þ has a bound-

state pole on the real axis corresponding to the pseudo–
Nambu-Goldstone pion [43]. The pole of DR

σ ðp; p0Þ, on
the other hand, has an imaginary part, which implies that
the sigma meson is a resonance state with a decay width.
When the poles ofDR

π ðp; p0Þ are located on the real axis,
the dispersion relation of the stable pionic modes, ωπðpÞ, is
obtained by solving the equation

½ReDR
π ðp;ωπðpÞÞ�−1 ¼ −

1

2GS
− ReQR

π ðp;ωπðpÞÞ ¼ 0:

ð7Þ

Because ImDR
π ðp; p0Þ vanishes for p < jp0j < EthrðpÞ,

Eq. (7) gives the correct dispersion relation only for
p < ωπðpÞ < EthrðpÞ. The residue ZπðpÞ of the bound
pole is given by

1

ZπðpÞ
¼ −

1

π

∂½DR
π ðp;ωπðp0ÞÞ�−1

∂p0

����
p0¼ωπðpÞ

¼ −
1

π

∂QR
π ðp;ωπðp0ÞÞ

∂p0

����
p0¼ωπðpÞ

: ð8Þ

When Eq. (7) has a solution in the range of p0 at which
ImDR

π ðp; p0Þ takes a nonzero value, we refer to the solution
as the quasipole.

C. Quark self energy

In this study, we consider the effect of the fluctuation
modes in the σ and π channels near the CP on spectral
properties of quarks. As a first step of such an analysis, we
use the random-phase approximation [43], where the
fluctuation modes are constructed by the undressed quarks
and antiquarks in a non–self-consistent way. In addition,
we limit our attention to the quark spectral function at zero
momentum, since the soft mode influences the quark
spectrum at vanishing momentum most strongly.
The quark self energy in the random-phase approxima-

tion for p ¼ 0 is given by

~Σðp¼ 0;ωnÞ≡ ~ΣðωnÞ

¼ −T
X

m

Z
d3q
ð2πÞ3 ½Dσðq;ωn −ωmÞG0ðq;ωmÞ

þ 3Dπðq;ωn −ωmÞiγ5G0ðq;ωmÞiγ5�; ð9Þ

where the factor 3 in front of Dπ comes from the isospin
degeneracy.
After the summation of the Matsubara frequency in

Eq. (9) and the analytic continuation, iωn → p0 þ iη, we
obtain the retarded quark self energy,

ΣRðp0Þ ¼ ΣR
σ ðp0Þ þ ΣR

π ðp0Þ; ð10Þ

with

ΣR
σ ðp0Þ ¼

Z
d4q
ð2πÞ4

ðγ0 þm=EqÞπρσðq; q0Þ
q0 − p0 þ Eq − μ − iη

× ½1þ nðq0Þ − f−ðEqÞ�

þ
Z

d4q
ð2πÞ4

ðγ0 −m=EqÞπρσðq; q0Þ
q0 − p0 − Eq − μ − iη

× ½nðq0Þ þ fþðEqÞ�; ð11Þ

and

ΣR
π ðp0Þ ¼

Z
d4q
ð2πÞ4

ðγ0 −m=EqÞ3πρπðq; q0Þ
q0 − p0 þ Eq − μ − iη

× ½1þ nðq0Þ − f−ðEqÞ�

þ
Z

d4q
ð2πÞ4

ðγ0 þm=EqÞ3πρπðq; q0Þ
q0 − p0 − Eq − μ − iη

× ½nðq0Þ þ fþðEqÞ�; ð12Þ

and Eq ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
q2 þm2

p
. The functions nðxÞ and f�ðxÞ are the

Bose-Einstein and the Fermi-Dirac distribution functions,
nðxÞ ¼ ½expðx=TÞ − 1�−1 and f�ðxÞ ¼ ½expððx� μÞ=
TÞ þ 1�−1, respectively. For the evaluation of these equa-
tions, we first compute the imaginary parts for which the q0
integral is performed analytically and q integral is carried
out with the cutoff Λ, and then evaluate the real parts with a
relation [32],

ReΣR
σðπÞðp0Þ ¼ −

1

π
P
Z

Λ

−Λ
dp0

0

ImΣR
σðπÞðp0

0Þ
p0 − p0

0

; ð13Þ

where the cutoff Λ is the same as that used in Sec. II B.
The retarded quark propagator for zero momentum reads

GRðp0Þ ¼
1

ðp0 þ iηþ μÞγ0 −m − ΣRðp0Þ
; ð14Þ

which is decomposed into

GRðp0Þ ¼ Gþðp0ÞΛþγ0 þ G−ðp0ÞΛ−γ
0 ð15Þ

using the projection operators Λ� ¼ ð1� γ0Þ=2. Here,
GþðG−Þ is the retarded quark (antiquark) propagator
defined as

G�ðp0Þ ¼
1

2
Tr½GRγ0Λ�� ¼

1

p0 ∓ mþ μ − Σ�ðp0Þ
; ð16Þ

with Σ�ðp0Þ ¼ Tr½ΣRΛ�γ0�=2. The quasiquark ðρþÞ and
quasiantiquark ðρ−Þ spectral functions are then expressed
with G� as
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ρ�ðp0Þ ¼ −
1

π
ImG�ðp0Þ: ð17Þ

It is noted that p0 ¼ 0 denotes the Fermi level at T ¼ 0,
while p0 þ μ ¼ 0 is the Dirac level in our notation.

III. SOFT MODE AND MESONIC MODES

In this section, we summarize the behavior of the
fluctuation modes at nonzero T and μ as the basic
ingredients for the analysis of the quark propagator.
Let us first focus on the scalar channel. Figure 2 shows

the spectral function ρσðp; p0Þ at T ¼ 48 MeV and
μ≃ 328 MeV, which is on the ridge of the chiral suscep-
tibility and very close to the CP. We see that there is not
only a peak in the timelike region corresponding to the
sigma mode [47] but also a sharp peak in the spacelike
region around p ≈ 0 and p0 ≈ 0, the latter of which is
precisely the soft mode associated with the CP. The small
width of the soft mode comes from the Landau damping
that is effective in the spacelike region. The propagator
DR

σ ðp; p0Þ in the scalar channel has a pole associated with
the soft mode: The pole moves toward and eventually
reaches the origin in the complex energy plane as the
system approaches the CP; i.e., both the mass and the width
of the soft mode vanish at the CP. The nature of the soft
mode is actually the collective particle-hole excitation
familiar in many-body physics, which is possible owing
to the presence of the density (or the Fermi sphere).
In contrast, the sigma mode in the timelike region has a

nonzero mass and the width even at the CP, the latter of
which gradually broadens as the momentum increases.
In Fig. 3, the peak position of the sigma mode, which is
approximately regarded as the mass of the sigma mode, is
plotted at the same T and μ as those in Fig. 2.
Next, we turn to the pseudoscalar channel. As T and/or μ

are raised, the constituent quark mass m becomes smaller
while the rest mass of the pionic mode ωπð0Þ becomes
larger. Then the pionic mode acquires a width since the
decay into a quark and an antiquark pair becomes possible.

We call the temperature at which the rest pionic mode
becomes unstable as the pion zero-binding temperature
TZB, which is determined by

½ReDR
π ð0; 2mÞ�−1T¼TZB

¼ 0; ð18Þ

for a given μ. In Fig. 1, TZB as a function of μ is plotted with
the dotted line. We see that TZB is always higher than the
dashed line representing the temperature at which the chiral
susceptibility has the maximum for a given μ. It is also
noted that the CP is located below TZB in our analysis,
which means that the pionic modes are stable at the CP. As
μ goes high, TZB decreases and eventually merges into the
critical line of the first-order transition at μ ≳ 340 MeV.
The decay of a pionic mode into a quark and an antiquark

pair is also possible when the dispersion relation ωπðpÞ
becomes larger than EthrðpÞ even for T < TZB, which
implies that the pionic modes with a large velocity relative
to the medium can be unstable owing to the medium effect.
In Fig. 3, the dispersion relation ωπðpÞ is also plotted;
one sees that ωπðpÞ becomes larger than EthrðpÞ at
p≃ 575 MeV. This is due to the fact that the dispersion
relation of the pionic modes is not the hyperbolic form,
ωπðpÞ ≠

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
p2 þ ω2

πð0Þ
p

. In a previous study [43], the
present authors showed that such an anomalous dispersion
relation leads to a divergence of the joint density of states of
the pionic modes and a quark, and gives rise to a van Hove
singularity in the quark self energy. Although this is also
the case near the CP, it will be found that the singularity is
negligibly weak.

IV. NUMERICAL RESULTS AND DISCUSSIONS

In this section, we present the numerical results for the
quark spectrum around the CP.
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FIG. 2 (color online). The spectral function ρσðp; p0Þ at
T ¼ 48 MeV and μ≃ 328 MeV.
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FIG. 3 (color online). The peak position of the sigma mode, the
dispersion relation of the stable pionic mode, ωπðpÞ, and the
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, at T ¼ 48 MeV and

μ≃ 328 MeV.
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A. Near the critical point

We first see the quark spectral function ρþðp0Þ in the
vicinity of the CP. The upper left panel of Fig. 4 shows
the quark spectral function ρþðp0Þ at T ¼ 48 MeV and
μ≃ 328 MeV, which is very close to the CP and on the
ridge of the chiral susceptibility. We note that the quark
spectral function in the MFA is given by ρþðp0Þ ¼ δðp0 þ
μ −mÞ with m≃ 184 MeV being the corresponding con-
stituent quark mass in the MFA. Figure 4 shows that the
quark spectrum is largely modified from the one in the
MFA; a peak given by the MFA at p0 ¼ m − μ is totally
absent. Moreover, one finds a prominent peak at an
unexpectedly smaller energy than m, i.e., at p0 þ μ≃
105 MeV; we note that the collective excitation corre-
sponding to the peak at a positive energy has a positive
quark number.
To figure out the origin of this anomalous peak, let us

make a detailed analysis of the corresponding quark self
energy. We show the real and imaginary parts of Σþðp0Þ in
the lower left panel of Fig. 4. We see that there is a broad
peak in ImΣþðp0Þ around p0 þ μ≃ 190 MeV, implying
that the single quark state with this energy decays into
other states. Our numerical result with the decomposition
Eqs. (10)–(12) shows that this peak of ImΣþðp0Þ comes
from the decay process of a quark into the soft mode shown
in the left panel of Fig. 5. Because the strength of the soft
mode is enhanced when both the energy and the momen-
tum are close to zero in the spacelike region, this process is
enhanced at q ≈ 0 and p0 þ μ − Eq ≈ 0. In addition, from
Eq. (11), one sees that the Bose-Einstein distribution
function in the q integral in ImΣþðp0Þ also acts to enhance
the strength of the decay process around p0 þ μ − Eq ¼ 0.

The existence of a large peak in ImΣþðp0Þ causes a steep
rise in ReΣþðp0Þ around it owing to the analytic property,
Eq. (13), which in turn gives rise to a zero in the real part of
the inverse propagator for the quark (antiquark),

p0 þ μ ∓ m − ReΣ�ðp0Þ ¼ 0: ð19Þ

When ImΣ�ðp0Þ is small at p0 satisfying Eq. (19), the
quark propagator has a peak there [32]. The solutions of
Eq. (19) are graphically determined by points of intersec-
tion between ReΣþðp0Þ and a line p0 þ μ −m that is
shown by a dashed green line in the lower left panel of
Fig. 4. One sees that ReΣþðp0Þ shows a peaklike structure
around the peak in ImΣþðp0Þ at p0 þ μ≃ 190 MeV.
Consequently, this bending behavior of ReΣþðp0Þ causes
the shift of the position of the quasipole from that of the
pole in the MFA. For 190≲ p0 þ μ≲ 300 MeV, there is no
clear peak but a bumplike structure in ρþðp0Þ, because
jImΣþðp0Þj keeps large values and there is no quasipole.
We remark that the arrows at p0 þ μ≃�80 MeV in the

upper left panel of Fig. 4 indicate two sharp peaks in
ρþðp0Þ with a vanishingly narrow width. The spectral
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FIG. 4 (color online). The upper left (right) panel is the quark (antiquark) spectral function ρþðp0Þðρ−ðp0ÞÞ for T ¼ 48 MeV and
μ≃ 328 MeV. Peaks with very small spectral weights (Z ≲ 10−2) are shown in the arrows. The lower panels represent the real and
imaginary parts of the corresponding quark self energies Σ�ðp0Þ. The dashed lines denotes p0 þ μ ∓ m with m being the constituent
quark mass.
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FIG. 5. The scattering processes that form the peaks in ImΣþ
at p0 þ μ≃ 190 MeV (left) and ImΣ− at p0 þ μ≃ −190 MeV
(right). The thick solid line represents the quasiquark with
ð0; p0 þ μÞ, the thin solid line the on-shell free quark, and the
wavy line the soft mode. The inverse processes are also possible.
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weights of these peaks, however, are negligibly small. In
fact, by defining the spectral weight of the peak by

Z ¼
Z

Δ
dp0ρ�ðp0Þ; ð20Þ

where Δ is a range of p0 that well covers the peak, one gets
Z ≲ 10−2 for these peaks, while the sum of the spectral
weight is

R
dp0ρþðp0Þ ¼ 1 in our definition. Despite the

sharpness of the peak structure, therefore, these peaks do
not have physical significance.
The emergence of these peaks is understood by the van

Hove singularity triggered by the nonhyperbolic dispersion
relation of the stable pionic modes ωπðpÞ [43]. As
discussed in Sec. III, ωπðpÞ has a nonhyperbolic form
near the CP owing to the violation of Lorentz symmetry in
medium. In Ref. [43], it is discussed that such a distorted
dispersion relation can give rise to zeros of the relative
velocity between the quark and the bound pion, and
hence the divergences of the joint density of states
½dfEq − ωπðqÞg=dq�−1 at some energies. Reflecting these
divergences, Σþðp0Þ and ρþðp0Þ also diverge at these
energies as the van Hove singularity.
In Ref. [43], we have shown that the van Hove

singularity can significantly alter the spectral properties
of quarks near the pseudocritical temperature at μ ¼ 0.
While the same singularity manifests itself even near the
CP, the strength of the singularity is weak. Therefore,
the singularity near the CP would easily be blurred by
the effects neglected in the present analysis, such as the
contribution of higher-order terms of the quark self
energy, in contrast to the case discussed in Ref. [43].
We thus do not discuss this structure in more detail in the
present study.

The spectral function for the antiquark sector ρ−ðp0Þ for
the same T and μ is shown in the upper right panel of Fig. 4.
One sees a peak at p0 þ μ≃ −145 MeV whose position
is shifted from that in the MFA, −m ¼ −184 MeV. To
identify the origin of the shift, we show ImΣ−ðp0Þ in the
lower right panel of Fig. 4. One finds a peak in ImΣ−ðp0Þ
at p0 þ μ≃ −190 MeV. Our numerical analysis shows
that this peak corresponds to a scattering process of an
antiquark and a quark into the soft mode as denoted in the
right panel of Fig. 5. Then, similarly to the previous
discussion on ρþðp0Þ, the peak distorts ReΣ−ðp0Þ and
gives rise to a new quasipole at p0 þ μ≃ −190 MeV. In
this way, the antiquark sector also receives considerable
modification from the soft mode near the CP. In ρ−ðp0Þ, we
also find peaks with vanishingly narrow widths as denoted
by arrows in the upper right panel. The spectral strengths
of these quasipoles are both negligible, Z ≲ 10−2.

B. The case away from the critical point

In this section, we examine how the spectral properties of
the quark are affected by the soft mode associated with the
CP when the system is away from the CP; we show ρþðp0Þ
for some combination of ðT; μÞ with T > Tc and μ < μc.
Although we only show ρþðp0Þ, the spectral properties
of the antiquark are qualitatively the same as those of
the quark.
We first see the quark spectrum by varying T and μ along

the ridge of the chiral susceptibility. The quark spectral
functions ρþðp0Þ and the self energies Σþðp0Þ on the ridge
are shown in Fig. 6 for T ¼ 60, 80, and 130 MeV; the
corresponding chemical potentials are μ≃ 320, 304, and
258 MeV, respectively. Behaviors of ρþðp0Þ and Σþðp0Þ
for T ¼ 60 MeV shown in the far-left panels are similar
to those plotted in Fig. 4, whereas clear peak structures in
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FIG. 6 (color online). The same as Fig. 4 but at T ¼ 60 MeV and μ≃ 320 MeV (left), T ¼ 80 MeV and μ≃ 304 MeV (middle), and
T ¼ 130 MeV and μ≃ 258 MeV (right). These are on the ridge of the chiral susceptibility.
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these functions, i.e., the peaks in ρþðp0Þ at p0 þ μ≃
105 MeV and ImΣþðp0Þ at p0 þ μ≃ 190 MeV, observed
near the CP are slightly obscured for this T. This result
shows that the soft mode associated with the CP can affect
the quark spectrum even apart from the CP on the ridge of
the chiral susceptibility. As T is raised further, the effect
of the soft mode gradually ceases to exist as shown in
the middle panels of Fig. 6. In the lower middle panel one
finds that the bump structure at p0 þ μ≃ 190 MeV almost
disappears for T ¼ 80 MeV. Accordingly, the energy shift
of the position of the quasiquark peak compared with
the MFA value becomes smaller as shown in the upper
middle panel. The lower right panel shows that the bump
structure in ImΣþðp0Þ disappears almost completely
for T ¼ 130 MeV.
In the upper right panel of Fig. 6, one finds that ρþðp0Þ

again forms a sharp peak at p0 þ μ significantly smaller
than the constituent quark mass m, although the effect of
the soft mode associated with the CP is suppressed. From
the behavior of Σþðp0Þ shown in the lower right panel,
one finds that this modification comes from the singular
behavior of Σþðp0Þ around p0 þ μ≃ 50 MeV. As dis-
cussed in Ref. [43], these singularities are the van Hove
singularity in the scattering process of quarks and pionic
modes induced by the nonhyperbolic dispersion relation of
the pionic modes. This result shows that the effect of the
pionic modes becomes more prominent as μ is lowered
instead of the soft mode associated with the CP.
Off the ridge of the chiral susceptibility, the strength of

the soft mode rapidly decreases as T and/or μ are away
from the CP. The strength of the peak in the quark spectrum
originated from the scattering of the soft mode accordingly
decreases rapidly. For example, when T is raised from the
CP with fixed μ ¼ μc, the distortion of the quark spectrum
due to the soft mode is insignificant already at T ≃ 1.05Tc.

V. BRIEF SUMMARY AND
CONCLUDING REMARKS

In this paper, we have investigated the quark spectrum at
nonzero temperature and density near the CP of the chiral
transition in an effective model. The soft mode associated
with the second-order transition at the CP is the scalar-
density fluctuation in the spacelike region [25]. In the

present study, we have investigated the effect of this soft
mode on the quark spectrum for the first time. We have
shown that the soft mode strongly couples to a quark and an
antiquark at vanishing momentum near the CP. As a result
of this coupling, a quasiquark peak is created at the energy
significantly lower than that in the mean-field approxima-
tion. It is also found that the strong modification of the
quark spectrum due to the soft mode is observed over a
wide range of T and μ on the ridge of the chiral
susceptibility. The effect of the soft mode, however, is
suppressed rapidly off the ridge. In our previous study [43],
we found that the quark spectrum near the pseudocritical
temperature at μ ¼ 0 is strongly modified by the van Hove
singularity [43]. Although such a singularity is observed
even for nonzero μ, the effect of the singularity is negligibly
weak near the CP.
In the present study, we have limited our attention to the

quark spectral function at zero momentum, since the soft
mode influences the quark spectrum at vanishing momen-
tum most strongly. On the other hand, excitation modes
near the Fermi momentum are relevant degrees of freedom
in high density but low-temperature systems. The study of
modes near the Fermi surface is left as a future work. As
mentioned in Sec. II B, a complete analysis of the quark
spectrum near the CP will require us to incorporate all the
hydrodynamic modes including the number-density fluc-
tuation (phonon) and entropy fluctuations. The coupling
to the density fluctuations may be taken into account by
the inclusion of the vector interaction [14] within this
model. There are some attempts to incorporate the fermion-
hydrodynamic modes coupling in the analysis of the phase
structure and transport properties of the many body systems
[45,46]. We hope that we can report on such an analysis that
extensively takes care of the coupling of the hydrodynamic
modes to the quark near the CP elsewhere.
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