
Relativistic, model-independent, three-particle quantization condition

Maxwell T. Hansen* and Stephen R. Sharpe†

Physics Department, University of Washington, Seattle, Washington 98195-1560, USA
(Received 12 September 2014; published 15 December 2014)

We present a generalization of Lüscher’s relation between the finite-volume spectrum and scattering
amplitudes to the case of three particles. We consider a relativistic scalar field theory in which the couplings
are arbitrary aside from aZ2 symmetry that removes vertices with an odd number of particles. The theory is
assumed to have two-particle phase shifts that are bounded by π=2 in the regime of elastic scattering. We
determine the spectrum of the finite-volume theory from the poles in the odd-particle-number finite-volume
correlator, which we analyze to all orders in perturbation theory. We show that it depends on the infinite-
volume two-to-two K-matrix as well as a nonstandard infinite-volume three-to-three K-matrix. A key
feature of our result is the need to subtract physical singularities in the three-to-three amplitude and thus
deal with a divergence-free quantity. This allows our initial, formal result to be truncated to a finite
dimensional determinant equation. At present, the relation of the three-to-three K-matrix to the
corresponding scattering amplitude is not known, although previous results in the nonrelativistic limit
suggest that such a relation exists.
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I. INTRODUCTION

In the last few years, lattice QCD calculations of the
properties of resonances have become widespread.1 Most
use a method first proposed by Lüscher in Refs. [4–6], in
which the finite-volume spectrum (obtained using lattice
simulations) can be related to infinite-volume scattering
amplitudes. This method initially applied to two-particle
systems below the inelastic threshold, but has since been
extended to systems with multiple two-particle channels
[7–11]. A striking example of the practical implementation
of this multichannel formalism is the recent lattice study of
the properties of kaon resonances [12].
Lattice calculations can now determine many spectral

levels for a given set of total quantum numbers, and can
do so for quark masses approaching physical values. This
means that channels involving three or more particles are
opening up and must be incorporated into the formalism.
Examples include ω → 3π, K� → Kππ, and N� → Nππ.
Indeed, the study of Ref. [12], although using an unphysi-
cally heavy pion mass of 390 MeV, was limited by the
opening of the Kππ channel. Thus there is strong motiva-
tion to extend the finite-volume formalism to include three
(or more) particles.
First steps in this direction have been taken in Refs. [13]

and [14]. The former work considers the problem in a
nonrelativistic context, and shows that the finite-volume
spectrum is determined (via integral equations) by infinite-
volume scattering amplitudes. The latter work reaches the
same conclusion in the case in which pairs of particles

interact only in the s-wave. Related problems have also
been considered in Refs. [15] and [16]. We attempt here to
go beyond these works by considering a relativistic theory
in which we make no approximation concerning the nature
of the two-particle interactions.
Our approach is a generalization of the diagrammatic,

field-theoretic method introduced for two particles in
Ref. [17]. The finite-volume spectrum is determined by
the poles in an appropriate finite-volume correlation
function. The method consists of rewriting this correlation
function, diagram by diagram, in terms of infinite-volume
contributions and kinematic functions that depend on the
volume. Summing all diagrams then leads to the desired
quantization condition. This approach is straightforward
in the two-particle case, but several complications arise
with three particles. In the end, however, we are able to
obtain a simple-looking quantization condition [Eq. (18)],
which succeeds in separating finite-volume dependence
into kinematical functions.
As in the two-particle quantization conditions, our result

is formal in that it involves a determinant over an infinite-
dimensional space. Practical applications require truncation
of this space. It turns out that such a truncation can be
justified for three particles by a simple extension of the
arguments used for two particles.
The main drawback of our result is that it depends on a

nonstandard infinite-volume three-to-three scattering quan-
tity, a modified three-particle K-matrix. The relation of this
quantity to physical scattering amplitudes is as yet unclear.
Nevertheless, given the results of Refs. [13,14] in the
nonrelativistic context, we think it very likely that such a
relation exists.
The remainder of this article is organized as follows.

We begin, in Sec. II, by presenting our main result. This in
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itself requires a fairly lengthy introduction and explanation
of notation. Next, in Sec. III, we describe briefly how the
result might be used in practice. The core of the paper is
Sec. IV, in which we derive our main result. We conclude
and discuss the future outlook in Sec. V.
Three appendixes discuss technical details. Appendix A

derives the key sum-integral difference identity used
throughout the derivation. Appendix B describes the
properties of the modified principal-value (PV) pole pre-
scription that we use. Finally, Appendix C discusses in
detail an example of using our quantization condition in the
isotropic approximation.
A sketch of the result has been given previously in

Ref. [18], although some of the technical remarks in that
work are incorrect and have been corrected here.

II. QUANTIZATION CONDITION

In this section we present the three-particle quantization
condition. To explain the result requires some preliminary
discussion, particularly about the three-particle scattering
amplitude. It also requires the introduction of some rather
involved notation. We have attempted to make this section
self contained so that the reader can skip the subsequent
lengthy derivation if desired.
Lattice calculations can determine the spectrum of QCD

in finite spatial volumes. We assume here a cubic spatial
volume of extent L with fields satisfying periodic boundary
conditions. We take L large enough to allow neglect of
exponentially suppressed corrections of the form e−mL,
where m is the particle mass. We also assume that discre-
tization errors are small and can be ignored, and so work
throughout with continuum field theory (zero lattice
spacing).
We work in general in a “moving frame.” That is, we

consider states with nonzero total three momentum ~P. This
three momentum is constrained by the boundary conditions
to satisfy ~P ¼ 2π~nP=L, with ~nP being a vector of integers.
The total moving-frame energy is denoted E, while E� is
the energy in the center-of-mass (CM) frame: E�2 ¼
E2 − ~P2. (The superscript � is used throughout this work
to indicate a quantity boosted to an appropriate CM frame.)
The goal of this section is, at fixed fL; ~Pg, to determine the
spectrum of the finite-volume system in terms of infinite-
volume scattering quantities.
We choose a simple theory for this study: a single real

scalar field ϕ describing particles of physical mass m.
Thus all results in this work hold for identical particles. For
simplicity, we assume the Lagrangian has a Z2 symmetry
that prevents vertices having an odd number of particles.
(For pions in QCD this is G-parity.) We otherwise include
all vertices, with any even number of fields, and make no
assumptions about relative coupling strengths.
Given the Z2 symmetry, the Hilbert space splits into

even- and odd-particle states. We are interested here in the

latter, which are those created from the vacuum by the field
ϕ (or by ϕ3, ϕ5, etc.). The spectrum in this sector consists of
an isolated single-particle state with E� ¼ m, followed by a
tower of states that lies close (for large L) to the energies of
three free particles in the finite volume. Such states begin at
E� ≈ 3m, and it is these that we focus on. Their energies
typically are shifted from those of three free particles by a
difference ΔE which scales as an inverse power of L.
Once E� reaches 5m, one also has states which lie close to
the energies of five free finite-volume particles. Our
derivation breaks down at this point. Thus we focus on
the range m < E� < 5m, within which it turns out that the
only infinite-volume observables that enter are quantities
related to two-to-two and three-to-three scattering.2

An additional technical requirement is that the two-
particle K-matrix remain finite in the kinematical range of
interest. This range runs from 0 < E�

2 < 4m, where E�
2 is

the two-particle CM energy. This requirement means that
the phase shifts must satisfy jδlj < π=2 below the four-
particle threshold for all l. In other words, two-particle
interactions can be neither attractive enough to produce a
resonance nor overly repulsive.
We begin by establishing our notation for three-particle

kinematics, considering first the case where all particles are
on shell. If the momenta of two of these particles are ~k and
~a, then that of the third is fixed to be ~bka ≡ ~P − ~k − ~a by
momentum conservation. The corresponding energies are
denoted

ωk ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
~k2 þm2

q
; ωa ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
~a2 þm2

p
; and

ωka ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ð~P − ~k − ~aÞ2 þm2

q
; respectively: ð1Þ

The momenta ~k and ~a cannot be chosen freely: on shell and
total energy constraints require

E ¼ ωk þ ωa þ ωka: ð2Þ

It is convenient to separate the three particles into a

“spectator,” which we take to be that with momentum ~k,
and the remaining two-particle pair, with four momentum

P2 ¼ ðE − ωk; ~P − ~kÞ. The energy of this pair in its CM
frame (which we stress is different, in general, from the CM
frame of all three particles) is labeled E�

2;k, where

E�2
2;k ¼ ðP2Þ2 ¼ ðE − ωkÞ2 − ð~P − ~kÞ2: ð3Þ

For Eq. (2) to hold, we must have that E�
2;k ≥ 2m. For fixed

total energy momentum, this condition holds only for a

finite region of ~k.

2Were we to remove the Z2 symmetry, we would also need to
include two-to-three amplitudes, as has been done in Ref. [13].
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We now boost to the two-particle CM frame, which
requires a boost velocity of

~βk ≡ −
~P − ~k
E − ωk

: ð4Þ

We denote by ðω�
a; ~a�Þ and ðω�

ka; ~b
�
kaÞ the four vectors

reached by boosting ðωa; ~aÞ and ðωka; ~bkaÞ, respectively.
If Eq. (2) holds, then we have

ω�
a ¼ ω�

ka ¼
E�
2;k

2
and ~a� ¼ −~b�ka; ð5Þ

while the magnitudes of the momenta in the two-particle
CM frame satisfy

a� ¼ b�ka ¼ q�k ≡
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
E�2
2;k=4 −m2

q
: ð6Þ

Thus, once ðE; ~PÞ and ~k are fixed, the remaining degrees of
freedom for three on shell particles can be labeled by a
single unit vector, â�. This is simply the direction of motion
for one of the two nonspectator particles in their two-
particle CM frame. We will often parametrize the depend-
ence on this direction in terms of spherical harmonics.
We can also interchange the roles of ~k and ~a, treating the

latter as the spectator. In this case the CM energy of the
nonspectator pair is E�

2;a where

E�2
2;a ≡ ðE − ωaÞ2 − ð~P − ~aÞ2; ð7Þ

while the required boost has velocity

~βa ¼ −
~P − ~a
E − ωa

: ð8Þ

This boost leads to ðωk; ~kÞ → ðω�
k; ~k

�Þ, and the on shell
condition implies

k� ¼ q�a ≡
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
E�2
2;a=4 −m2

q
; ð9Þ

so that the three on shell particles [with fixed ðE; ~PÞ] are
parametrized by ~a; k̂�. This discussion exemplifies the
notation that we will use repeatedly below, wherein the
subscripts denote which momentum is that of the spectator,
and it is clear from the context in which two-particle CM
frame starred quantities are defined.
Also relevant are situations in which two of the particles,

say those with momenta ~k and ~a, are on shell, while the
third is not. The energy momentum of the third particle is

then ðE − ωk − ωa; ~bkaÞ. As long as E�2
2;k > 0, we can still

boost to the two-particle CM frame (with boost velocity
~βk), leading to

ðωa; ~aÞ → ðω�
a; ~a�Þ; and

ðE − ωk − ωa; ~bkaÞ → ðE�
2;k − ω�

a;−~a�Þ: ð10Þ

In this case, however, a� ≠ q�k, so the degrees of freedom

are now parametrized by ~k and the vector ~a�. As in the on

shell case, also here we can exchange the roles of ~k and ~a.

As long as E�2
2;a > 0, we can boost ðωk; ~kÞ by ~βa to define

ðω�
k; ~k

�Þ, with k� now unconstrained.
We use these coordinates to express the momentum

dependence of the on shell quantities appearing in the final
result. We start with two-to-two scattering, which occurs
as a subprocess within the larger three-to-three process. We
denote the two-to-two scattering amplitude by M2 and the
corresponding K-matrix3 byK2. Assuming the particle with

momentum ~k is the unscattered spectator, an appropriate

functional dependence isM2ð~k; â0�; â�Þ andK2ð~k; â0�; â�Þ.
In each quantity, the role of the first argument is to specify
the energy momentum of the two scattering particles.

Knowing the spectator momentum ~k, as well as the total
energy momentum, one can determine the lab-frame total

momentum of the scattering pair [ðE − ωk; ~P − ~kÞ] as well
as the boost velocity ~βk needed to move to the scattering
CM frame. In the latter frame, â� and â0� are, respectively,
the initial and final directions of one of the scattered
particles. Decomposing the dependence on these directions
into spherical harmonics, we write4

K2ð~k; â0�; â�Þ ¼ 4πY�
l0;m0 ðâ0�ÞK2;l0;m0;l;mð~kÞYl;mðâ�Þ; ð11Þ

and similarly forM2. Here and in the following there is an
implicit sum over repeated indices. The factor of 4π is
conventional [17]. Rotational invariance implies that

K2;l0;m0;l;mð~kÞ ∝ δl0;lδm0;m, and that for each l there is
only one independent physical quantity, the scattering
phase shift in the given partial wave.
Now we turn to three-to-three scattering. Although

our final quantization condition contains a three-particle
K-matrix, we first discuss the standard three-to-three
scattering amplitude, M3. This allows us to describe a
new issue that arises with three particles in a more familiar
context. As usual,M3 is the sum of all connected six-point
diagrams with external legs amputated and on shell. We

write its functional dependence asM3ð~k0; â0�; ~k; â�Þ, where
now the spectator momentum changes from the initial (~k) to

the final (~k0) state. The two direction vectors â� and â0� are

3Our K-matrix K2 is standard above threshold, while below
threshold it is defined by analytic continuation. This is discussed
further below [see Eqs. (32), (97), and (98)].

4This is the only exception to our notation involving super-
script �. The � on Y�

lm indicates complex conjugation.
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defined in the corresponding two-particle CM frames,
which are different for the initial and final states. We stress
thatM3 is symmetric under particle interchange separately
in the initial and final states, so that the choice of spectator
is arbitrary. We use asymmetric coordinates because of
the presence of two-to-two scatterings.
We would like to decompose M3 into spherical har-

monics, as in Eq. (11). Although we can do this formally,
we do not expect the sum over angular momenta to
converge uniformly. This is because of a complication
not present in the two-to-two case: the three-to-three
scattering amplitude has physical singularities above
threshold.5 These singularities have nothing to do with
bound states, but are instead due to the possibility of two
particles scattering and then traveling arbitrarily far before
one of them scatters off the third particle (see Fig. 1). The
three-particle interaction can thus become arbitrarily non-
local. This means that, even at low energies, a truncation of
the angular momentum sum is not justified, since a
truncated expansion will give a function that is everywhere
finite. Because truncation is crucial for practical applica-
tions of the quantization condition, we must find a way
around this problem.
Our solution is to introduce an intermediate quantity that

has the same singularities as the three-to-three scattering
amplitude but depends only on the on shell two-to-two
amplitude M2. This is possible because divergences in the
three-to-three scattering amplitude are always due to
diagrams with only pairwise scatterings, with all inter-
mediate states on shell.6 Labeling this intermediate quantity
Msing;3, we define the divergence-free amplitude by

Mdf;3ð~k0; â0�; ~k; â�Þ≡M3ð~k0; â0�; ~k; â�Þ
−Msing;3ð~k0; â0�; ~k; â�Þ: ð12Þ

This is shown diagrammatically in Fig. 2. By construction,
Mdf;3 is a smooth function, and therefore has a uniformly
convergent partial-wave expansion:

Mdf;3ð~k0; â0�; ~k; â�Þ ¼ 4πY�
l0;m0 ðâ0�Þ

×Mdf;3;l0;m0;l;mð~k0; ~kÞYl;mðâ�Þ:
ð13Þ

The singular part, Msing;3, must be included without
partial-wave decomposition. A diagrammatic definition
of Msing;3 is sketched in Fig. 2; it can be defined formally
as the solution to an integral equation. Since we do not need
this quantity in this work we do not go into the details here.
As already noted above, our quantization condition

depends not on Mdf;3 but rather on a closely related
K-matrix–like quantity Kdf;3. Roughly speaking, this is
built up of the same Feynman diagrams as Mdf;3, and has
the above-threshold divergence removed in a similar way.
However, to define Kdf;3, a modified PV pole prescription
is used instead of the iϵ prescription, and there are some
additional subtleties. Thus we delay a full definition until
we present the derivation of the quantization condition.
What matters here is that Kdf;3 is a nonsingular, infinite-
volume quantity, closely related to the scattering amplitude.
It is also separately symmetric under initial and final
particle interchange. Its functional dependence and har-
monic decomposition is as for Mdf;3:

Kdf;3ð~k0; â0�; ~k; â�Þ ¼ 4πY�
l0;m0 ðâ0�ÞKdf;3;l0;m0;l;mð~k0; ~kÞ

× Yl;mðâ�Þ: ð14Þ

We stress that Kdf;3;l0;m0;l;mð~k0; ~kÞ is not diagonal in l or m,
since two-particle angular momentum is not a good
quantum number in three-to-three scattering. It is also
noteworthy that our derivation of the quantization condition
automatically leads to removal of the divergent part from
Kdf;3. Thus not only is the subtraction reasonable from the
perspective of defining useful infinite-volume observables
(i.e. allowing a convergent partial-wave expansion); it also
arises naturally in our investigation of the finite-volume
theory.
We are now in a position to present the quantization

condition, i.e. a relation between K2, Kdf;3, and the finite-
volume spectrum. This relation involves three-particle
phase space restricted by the constraint of finite volume.

In particular, we needK2;l0;m0;l;mð~kÞ andKdf;3;l0;m0;l;mð~k0; kÞ
only for ~k; ~k0 ∈ ð2π=LÞZ3. We therefore define the finite-
volume restrictions of these amplitudes,

FIG. 1. Example of singular contribution to the on shell three-
to-three scattering amplitude. Dashed lines are on shell, ampu-
tated, external propagators, while the solid line is a fully dressed
propagator, which can in general be off shell. Filled circles
represent two-to-two scattering amplitudes. The internal (solid)
line can become on shell for physical external momenta,
corresponding to two isolated two-to-two scattering events.

5The properties and physical consequences of these singular-
ities are discussed, for example, in Refs. [19–22].

6Indeed, a diagram with n two-to-two scatterings is divergent if
and only if it is kinematically possible to have n classical pairwise
scatterings (not counting events with zero momentum transfer).
For degenerate particles only three scatterings are possible so
there are two divergent diagrams. For nondegenerate particles
further scatterings are possible. This is explained in Ref. [19].
As we will find, our derivation requires that we subtract all the
diagrams that are needed to render the nondegenerate Mdf;3
finite, even though all but two of these are finite for the
degenerate case we study.
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K2;k0;l0;m0;k;l;m ≡ δk0;kK2;l0;m0;l;mð~kÞ for ~k ∈ ð2π=LÞZ3;

ð15Þ

Kdf;3;k0;l0;m0;k;l;m≡Kdf;3;l0;m0;l;mð~k0; ~kÞ for ~k0; ~k∈ ð2π=LÞZ3:

ð16Þ
The left-hand sides of these equations are to be viewed as
matrices in an extended space with indices7

½finite volume momentum ~k ∈ ð2π=LÞZ3�
× ½two particle angular momentum�: ð17Þ

All other quantities entering our final result will also be
matrices acting on this space.
The finite-volume spectrum is determined by

det½1þ F3Kdf;3� ¼ 0; ð18Þ

where the determinant is over the direct product space just
introduced. The matrix F3 is

F3 ≡ F
2ωL3

�
−
2

3
þ 1

1þ ½1þK2G�−1K2F

�
; ð19Þ

where �
1

2ωL3

�
k0;l0;m0;k;l;m

≡ δk0;kδl0;lδm0;m
1

2ωkL3
; ð20Þ

Gp;l0;m0;k;l;m ≡
�
k�

q�p

�
l0 4πYl0;m0 ðk̂�ÞHð~pÞHð~kÞY�

l;mðp̂�Þ
2ωkpðE − ωk − ωp − ωkpÞ

×

�
p�

q�k

�
l 1

2ωkL3
; ð21Þ

Fk0;l0;m0;k;l;m ≡ δk0;kFl0;m0;l;mð~kÞ; ð22Þ

Fl0;m0;l;mð~kÞ ¼ Fiϵ
l0;m0;l;mð~kÞ þ ρl0;m0;l;mð~kÞ; ð23Þ

Fiϵ
l0;m0;l;mð~kÞ ¼

1

2

�
1

L3

X
~a

−
Z
~a

�

×
4πYl0;m0 ðâ�ÞY�

l;mðâ�ÞHð~kÞHð~aÞHð~bkaÞ
2ωa2ωkaðE − ωk − ωa − ωka þ iϵÞ

×

�
a�

q�k

�
lþl0

; ð24Þ

with
R
~a ≡

R
d3a=ð2πÞ3 and where the sum over ~a in Fiϵ

runs over all finite-volume momenta. Here ρ is a phase-
space factor defined by

ρl0;m0;l;mð~kÞ≡ δl0;lδm0;mHð~kÞ~ρðP2Þ; ð25Þ

~ρðP2Þ≡ 1

16π
ffiffiffiffiffiffi
P2
2

p
8<
:−i

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
P2
2=4 −m2

p
ð2mÞ2 < P2

2;

j
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
P2
2=4 −m2

p
j 0 < P2

2 ≤ ð2mÞ2;
ð26Þ

where we recall that P2 is the four momentum of the
nonspectator pair, so that P2

2 ¼ E�2
2;k. Finally, H is a smooth

cutoff function to be defined shortly.
The quantization condition Eq. (18) is our main result,

and will be derived in Sec. IV. Here we work our way
through the definitions, explaining the origin and meaning
of each contribution. As noted above, Kdf;3 is closely
related to the divergence-free part of the full three-to-three
scattering amplitude. The singular parts of this amplitude
end up in the quantity F3, where they lead to chains of the
form …K2GK2GK2… which are obtained by expanding
out ½1þK2G�−1K2. These chains arise from subtraction
terms like those in Fig. 2, with the filled circles now
representing on shell K-matrices K2 (rather than M2). The
singular cuts between K-matrices give rise to the kinemati-
cal factors G.

FIG. 2. Diagrammatic definition of the divergence-free three-to-three amplitude,Mdf;3. In the subtracted term, filled circles represent
on shell two-to-two scattering amplitudes M2. Dashed cuts stand for simple kinematic factors that appear between adjacent M2.
These factors have the requisite poles so that the subtracted terms cancel the singularities in M3. The S outside the square brackets
indicates that the subtracted terms are symmetrized.

7Our notation for the momentum indices, k and k0, is somewhat
imprecise. These each are stand-ins for three-dimensional integer
vectors labeling the allowed finite-volume momenta. In other
words, whenever a spectator momentum occurs as an index, it
indicates implicitly that the corresponding three-vector momen-
tum is one of those allowed in finite volume.
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In the definition of G, Eq. (21), we are using the notation
described in Eqs. (1)–(10), with ~p in place of ~a. Observe in
particular that G makes use of the off shell phase space
described in the paragraph containing Eq. (10). Since both
~k and ~p can equal any finite-volume three momentum,

ðE − ωk − ωp; ~bpkÞ will generally not be on shell. For this

reason the magnitude of ~k� (defined via a boost with

velocity ~βp) and that of ~p� (boost velocity ~βk) are uncon-
strained. These magnitudes appear in the factors ðk�=q�pÞl0
and ðp�=q�kÞl, which remove singularities due to the
spherical harmonics and so ensure that G is nonsingular

for ~k� or ~p� equal to zero. [A similar factor ða�=q�kÞlþl0

appears in F for the same reason.]
The final ingredient in G is the function H (which

appears also in F). The role of H is to provide a smooth
ultraviolet cutoff on the sum over spectator momentum.

There are two cutoff functions, Hð~pÞ and Hð~kÞ, because G
has different spectator momenta in its left- and right-hand

indices (~p and ~k, respectively). To understand the need for

the cutoff we note that, for fixed ðE; ~PÞ, as the spectator

momentum (say ~k) increases in magnitude, the energy
momentum of the other two particles falls below threshold,
E�
2;k < 2m. Now, in the quantization condition (18), the

determinant runs over all values of spectator momentum,
which leads to values of E�2

2;k arbitrarily far below threshold.
Once E�2

2;k ≤ 0, however, the boost needed to define p�

becomes unphysical (jβkj ≥ 1). The cutoff function Hð~kÞ
resolves this issue. It has the properties

Hð~kÞ ¼
�
0; E�2

2;k ≤ 0;

1; ð2mÞ2 < E�2
2;k;

ð27Þ

where the first condition removes unphysical boosts and
the second ensures that the cutoff does not change the
contributions from on shell intermediate states. In the

intermediate region, 0 < E�2
2;k < ð2mÞ2, Hð~kÞ interpolates

between 0 and 1. For reasons that will become clear in the
derivation below, this interpolation must be smooth. An
example of a function which does the job is

Hð~kÞ≡ JðE�2
2;k=½4m2�Þ; ð28Þ

with

JðxÞ≡

8>><
>>:

0; x ≤ 0;

exp

�
− 1

x exp

�
− 1

1−x

��
; 0 < x ≤ 1;

1; 1 < x:

ð29Þ

This function is plotted in Fig. 3.
It would also be consistent with the requirements stated

so far to have H remain smooth but transition more rapidly

from 0 to 1. In that case, however, the difference between a
sum and an integral over H will be enhanced,�

1

L3

X
~k

−
Z
~k

�
Hð~kÞ ¼ Oðe−ΔLÞ; ð30Þ

with Δ being the width of the dropoff region. Since these
corrections are neglected, an enhancement from using too
small a width would invalidate our final result. We must
thus additionally require�

1

L3

X
~k

−
Z
~k

�
Hð~kÞ ¼ Oðe−mLÞ: ð31Þ

In other words we must ensure thatm is the smallest energy
scale in the problem, and thus take Δ ≈m. The form
sketched in Fig. 3 satisfies this requirement.
The appearance of subthreshold momenta is a general

feature of the three-particle quantization condition, as first
pointed out in Ref. [13]. Indeed, for spectator momenta
such that 0 < E�2

2;k < ð2mÞ2, the two-particle K-matrices in
F3 are evaluated below threshold. Our modified PV
prescription [denoted fPV and defined in Eqs. (59) and
(64) below] ensures that this is achieved by analytic
continuation.8 The cutoff functions in G (and in F) ensure
that these subthreshold contributions are absent for
E�2
2;k ≤ 0. The three-particle amplitude Kdf;3 must also be

FIG. 3 (color online). The smooth cutoff function Hð~kÞ≡ JðxÞ
with x ¼ E�2

2;k=½4m2�. The function varies from 0 to 1 as E�2
2;k ≡

ðE − ωkÞ2 − ð~P − ~kÞ2 varies from 0 to 4m2. Using this range of
variation ensures that the function has width Δ ≈m in the space

of spectator momentum ~k.

8This is in distinction to the standard PV prescription, which
leads to a cusp in K2 at threshold. Our definition is the same as
that used in studies of bound-state energies using Lüscher’s
two-particle quantization condition (see, e.g., Refs. [23,24]).
In particular, the quantity ða�Þ2lþ1 cot δlða�Þ has a Taylor
expansion in ða�Þ2 that can be analytically continued to
ða�Þ2 < 0.
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evaluated for subthreshold momenta, which is achieved by
analytic continuation.
The final matrix that enters the quantization condition is

F. This is the kinematic factor that brings in finite-volume
effects. Its definition uses the notation introduced in
Eqs. (1)–(10). As shown in Eq. (22), it is diagonal in
spectator momentum, and is thus a two-particle quantity.
Indeed, the matrix Fiϵð~kÞ defined in Eq. (24) is essentially
the same as the kinematic quantity of the same name
introduced in Ref. [17] in the formulation of the two-
particle quantization condition in a moving frame. The
precise relation, given in Eq. (A10) in Appendix A, allows
Fiϵ to be written in terms of generalizations of the zeta-
functions introduced in Refs. [4,5]. The only difference
between our Fiϵ and that of Ref. [17] is that we use a
different ultraviolet cutoff—our cutoff is provided by
the product of H functions. This change in cutoff leads,
however, to differences proportional to e−mL, which are
exponentially suppressed as L → ∞.
The kinematic factor which enters the quantization

condition is F rather than Fiϵ. The difference between
these two quantities, given by Eq. (23), is the phase-space
factor ρ, a quantity that appears repeatedly in the derivation
of Sec. IVand which is diagonal in angular momentum. For
example, the relation between the two-particle scattering
amplitude and K-matrix is [see Eq. (98)]

M−1
2 ¼ K−1

2 þ ρ: ð32Þ

The ρ term in F arises because of our use of a modified
PV pole prescription. As can be seen from Eq. (24), Fiϵ

is the difference between a sum and integral of three-
particle cut, with the integral defined using the iϵ
prescription. The ρ term in Eq. (23) is exactly what is
needed so that F itself is the sum-integral difference with
the integral defined by the fPV prescription. This means
that F is real. In addition, as we move below threshold
[E�2

2;k < ð2mÞ2], while Fiϵ drops to zero rapidly, since the
summand/integrand is no longer singular, ρ (and thus F)
grows since jq�kj is increasing. Eventually, however, as
E�2
2;k approaches zero, this growth is overcome by the

decrease in the cutoff function H, such that ρ vanishes
for E�2

2;k ≤ 0.
The quantization condition (18) is similar in form to

that for two particles [see Eq. (96) below, as well as
Refs. [10,11,17,25]]. In principle, they are both to be used
in the same way: if one knows the scattering quantities K2

and Kdf;3 then, for a given choice of fL; n~Pg, the quan-
tization conditions predict the finite-volume energy levels.
Of course, what we are really interested in is inverting this
prediction, i.e. using numerically determined energy levels
to extract information about infinite-volume scattering
amplitudes. This more challenging task is discussed in
the following section.

III. TRUNCATING THE QUANTIZATION
CONDITION

In this section we discuss how one might use the three-
particle quantization condition, Eq. (18), in practice.
Specifically, we assume that, using lattice simulations,
one has determined some number of three-particle energy
levels for a set of choices of fL; ~Pg. From this information,
we want to learn as much as possible about Kdf;3.
The first step is to assume that, using Lüscher’s two-

particle quantization condition and its generalizations, the
two-particle K-matrix K2;l0;m0;l;mð~kÞ has been determined.
To do so in practice one must assume that K2 is negligible
for large enough angular momenta, which is a generally a
good approximation for any fixed two-particle energy.
Specifically, we assume K2 ¼ 0 for l > lmax;2. In this
case the two-particle quantization condition is truncated
to a solvable finite matrix condition. In addition, since
lattice results only determine values ofK2 (or, equivalently,
the phase shifts) for a discrete set of kinematical points, we
assume that these have been suitably interpolated and/or
extrapolated to obtain continuous functions.
In the three-particle case, we are dealing with a larger

index space, containing the additional label for finite-
volume spectator momenta. However, the regulator func-
tion H provides an automatic truncation of this space.
This occurs because, for fixed ðE; ~PÞ, there is a finite
number of values of ~k for which Hð~kÞ is nonvanishing. We
call this number of values N. This automatically truncates
G and F [which contain Hð~kÞ] to be N × N matrices in
spectator-momentum space, with all other entries vanish-
ing. Since K2 always sits between factors of F and G
[as can be seen by expanding out the nested geometric
series in Eq. (19)], K2 is also effectively truncated (in the
sense that the terms in K2 lying outside the N × N block
do not contribute). Since F3 always has an F at both ends
(again after expanding out), it also is truncated. Finally,
expanding out the determinant (e.g. using detZ ¼
expTr lnZ) one sees that Kdf;3 always has an F3 on both
sides and so it also is effectively truncated.9

Next we consider the spherical harmonic indices.
As already noted, we assume K2 is truncated in these
indices at lmax;2. To reduce the determinant condition to a
finite-dimensional space, we must further assume thatKdf;3
is truncated, in both l and l0, at lmax;3. This is reasonable
because Kdf;3 is a smooth function, as is made clear in the
course of defining it, in Sec. IV below. Defining lmax as the
larger of lmax;2 and lmax;3, we find that all factors of F and
G appearing in the quantization condition are projected

9The fact that the sum over ~k is truncated makes sense in the
limit of weak interactions. If all interactions vanish, then, for
given ~P, there will only be a finite number of free three-particle
states with energies below, or in the vicinity of, any given choice
for E. It is primarily these states which are mixed by interactions
to form the finite-volume eigenstates with Ei < E.
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onto a ð2lmax þ 1Þ × ð2lmax þ 1Þ subspace of the angular-
momentum space. This follows from the argument already
given above: expanding in F and G, one finds that every
factor of these two kinematic matrices sits between (and is
thus truncated by) factors of either K2 or Kdf;3. The net
result is that the quantization condition collapses to that for
truncated matrices of size ð2lmax þ 1ÞN × ð2lmax þ 1ÞN.
In this way the formal result has been turned into something
more practical.10

The final step is to assume a parametrization of the ~k0 and
~k dependence of the nonzero angular-momentum compo-
nents of Kdf;3. We stress again that Kdf;3 is not diagonal in
its angular-momentum indices (unlikeK2) so that there will
be a larger number of components to parametrize.
Nonetheless, given knowledge of K2 (including analytic
continuation below threshold), each of the measured three-
particle energy levels gives a relation between the param-
eters characterizing Kdf;3. Thus, given enough energy
levels, one can solve for any finite set of parameters.
Although this sounds complicated, we note that the recent
kaon resonance study of Ref. [12] was able to deal with
multiple (two-particle) channels using a suitable paramet-
rization and many energy levels.
We close this section by working out the simplest

possible case of the above-described program. We assume
that both K2 and Kdf;3 are s-wave dominated (i.e.
lmax;2 ¼ lmax;3 ¼ 0), and that Kdf;3 is a function only of
the total three-particle CM energy. These assumptions are
summarized by

K2ð~k; â0�; â�Þ ¼ Ks
2ðE�

2;kÞ and

Kdf;3ð~k0; â0�; ~k; â�Þ ¼ Kiso
df;3ðE�Þ: ð33Þ

All matrices entering the quantization condition thus
collapse to N × N matrices in spectator-momentum space,
and have the explicit forms

Ks
2;k0;k ≡ δk0;kKs

2ðE�
2;kÞ; ð34Þ

Ks
df;3;k0;k ≡Kiso

df;3ðE�Þ; ð35Þ

Gs
p;k ≡ Hð~pÞHð~kÞ

2ωkpðE − ωk − ωp − ωkpÞ
1

2ωkL3
; ð36Þ

Fs
k0;k ≡ δk0;k

1

2

�
1

L3

X
~a

−
Z
~a

�

×
Hð~kÞHð~aÞHð~bkaÞ

2ωa2ωkaðE − ωk − ωa − ωka þ iϵÞ
þ δk0;kHð~kÞ~ρðP2Þ: ð37Þ

Since E� is fixed, all N2 entries of the matrix Ks
df;3;k0;k have

the same value. It therefore has only one nonzero eigen-
value, NKiso

df;3ðE�Þ. If we work in the basis in which Ks
df;3 is

diagonal, then, irrespective of the form of F3, the quan-
tization condition (18) reduces to the single equation:

1þ Fiso
3 Kiso

df;3ðE�Þ ¼ 0: ð38Þ

Here

Fiso
3 ≡X

~k;~p

1

2ωkL3

�
Fs

�
−
2

3
þ 1

1þ ½1þKs
2G

s�−1Ks
2F

s

��
k;p

ð39Þ

is (up to a factor of 1=N) the projection of Fs
3 into the

subspace spanned by the eigenvector of Ks
df;3 with nonzero

eigenvalue. We stress that the sums over ~k and ~p are both
truncated to N contributions by the factors of H contained
in Fs.11

The result (38) is strikingly simple. If we know Ks
2 for

two-particle CM energies in the range 0 < E�
2;k < E� −m,

then we can evaluate F3;s, a real function depending only
on E and L. Evaluating this function at a value of Li for
which Ei is known to be in the finite-volume spectrum then
gives, using Eq. (38), Kiso

df;3ðE�
i Þ ¼ −1=Fiso

3 ðEi; LiÞ. This is
conceptually very similar to the application of the
two-particle quantization condition, which, in the single-
channel limit, can be written as 1þ FK2 ¼ 0 [see Eq. (96)
in the following section]. The difference is that the quantity
F3 contains information about two-particle scattering,
while F is simply a kinematic function. This difference
reflects the fact that, in the three-particle case, particles can
interact pairwise as well as all together.
One concern one might have about the isotropic approxi-

mation and the result (38) is that one apparently only obtains
a single energy level whereas N free three-particle levels

10We suspect that it is inconsistent to choose lmax;3 < lmax;2,
because three-particle scattering involves two-to-two subpro-
cesses. Indeed the latter are the leading cause of complications
in the derivation presented below. The most natural choice
appears to us to be lmax;3 ¼ lmax;2, although we do not know
how to demonstrate that this is a rigorous requirement.

11The truncations that enter through the H functions can also

be relaxed in the isotropic limit if desired. Recall that Hð~kÞ was
required to vanish for E�2

2;k < 0; see Eq. (29). This is necessary
because otherwise the various starred quantities that enter F and
G become ill defined. However, as is clear from Eqs. (36)–(37),
all of these starred quantities are absent in the isotropic limit.
Thus Hð~kÞ may have support for E�2

2;k < 0, as long as Ks
2ðE�

2;kÞ is
a well-defined smooth function which is known over the energy
range included.
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enter the analysis. It thus seems that some finite-volume
states have been lost. In fact, all but one of the free states are
present once one takes into account that the equality of allN2

elements of the truncated Kdf;3 will not be exact. This is
shown in a particular example in Appendix C.12

IV. DERIVATION

In this section we present a derivation of the quantization
condition described in the previous section. Following
Ref. [17], we obtain the spectrum from the poles in the
finite-volume Minkowski-space correlator13

CLðE; ~PÞ≡
Z
L
d4xeiðEx0−~P·~xÞh0jTσðxÞσ†ð0Þj0i: ð40Þ

Here T indicates time-ordering and σðxÞ is an interpolating
field coupling to states with an odd number of particles.
The Fourier transform, implemented via an integral over
the finite spatial volume, restricts the states to have total
energy E and momentum ~P ¼ 2π~nP=L.
The simplest choice for σðxÞ is a one-particle interpolat-

ing field, ϕðxÞ, since in the interacting theory this will
couple to states with any odd number of particles. In a
simulation, however, it is advantageous to use a choice
with larger overlap to the three-particle states of interest.
An example is

σðxÞ ¼
Z
L
d4yd4zfðy; zÞϕðxÞϕðxþ yÞϕðxþ zÞ; ð41Þ

with f being a smooth function with period L in all
directions.
At fixed fL; ~nPg,14 the spectrum of our theory is the set

of CM frame energies E�
j , j ¼ 1; 2; � � � for which CLðEj; ~PÞ

has a pole, with Ej ¼ ðE�2
j þ ~P2Þ1=2. Our goal is thus to

include all contributions to CL which fall at most like a
power of 1=L, and determine the pole structure. In the
previous section we summarized the main result of this
work, but made no reference to the correlator in doing so.
The connection is given by the following identity, the
demonstration of which is the task of this section:

CLðE; ~PÞ ¼ C∞ðE; ~PÞ þ iA0 1

1þ F3Kdf;3
F3A: ð42Þ

This result is valid up to terms exponentially suppressed in
the volume, terms which we will discard implicitly through-
out this section. The quantities A0 ≡ A0

k0;l0;m0 and A≡ Ak;l;m

are, respectively, row and column vectors in ½finite-
volume momentum� × ½two-particle angular momentum�
space. Since A and A0 do not enter the quantization
condition, we have not given their definitions above.
Indeed, we think it most useful to introduce their definitions
as they emerge in our all-orders summation. We have also
introduced C∞, which is an infinite-volume correlator
whose definition we will also build up over the following
subsections.
A key technical issue in the derivation is the need to use a

nonstandard pole prescription when defining momentum
integrals in infinite-volume Feynman diagrams. This is at
the root of the complications in defining A0, A, and C∞.
Despite these complications, these are infinite-volume
quantities that we do not expect to lead to poles in
CL.

15 It follows that, at fixed fL; ~nPg, CL diverges at all
energies for which the matrix between A and A0 has a
divergent eigenvalue. In addition, as long as Kdf;3 is
nonzero, diverging eigenvalues of F3 leave the finite-
volume correlator finite. The spectrum is therefore given
by energies for which ½1þ F3Kdf;3� has a vanishing
eigenvalue, which is the quantization condition quoted
above.
The demonstration of Eq. (42) proceeds by an all-orders

analysis of the Feynman diagrams building up the corre-
lator. As we accommodate any scalar field theory (assum-
ing only a Z2 symmetry), Feynman diagrams consist of any
number of even-legged vertices, as well as one each of the
interpolating fields σ and σ†, connected by propagators.
The finite-volume condition enters here only through the
prescription of summing (rather than integrating) the spatial
components of all loop momenta, i.e.

1

L3

X
~q¼2π~n=L

Z
dq0

2π
over all ~n ∈ Z3: ð43Þ

We now introduce the crucial observation that makes
our derivation possible: Power-law finite-volume effects
only enter through on shell intermediate states. This
motivates a reorganization of the sum of diagrams into a
skeleton expansion that keeps all on shell intermediate
states explicit, while grouping off shell states into Bethe-
Salpeter kernels. Heuristically, the importance of on shell
intermediate states can be understood by noting that on
shell particles can travel arbitrarily far, and are thus

12A similar issue arises with the two-particle quantization
condition when one truncates the angular-momentum expansion.
The lost states involving higher angular momenta are recovered
if one reintroduces the higher partial-wave amplitudes but with
infinitesimal strength. The quantization condition then has
solutions corresponding to free two-particle states projected onto
states in appropriate irreps (irreducible representations) of the
finite-volume symmetry group.

13Minkowski time turns out to be convenient for our analysis,
even though numerical lattice determinations of the spectrum
work in Euclidean time. The point is that the finite-volume
spectrum is the same, however it is determined.

14It is more natural to think in terms of fL; ~nPg rather than
fL; ~Pg, since ~nP is quantized whereas ~P varies with L.

15We discuss this point, following the derivation, at the end of
this section.
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maximally affected by the periodic boundary conditions.
By contrast, off shell states are localized so that the effect
of finite volume is smaller (and, indeed, exponentially
suppressed in general).
The technical justification for this description begins by

noting that the difference between a sum and an integral
acting on a smooth (i.e. infinitely differentiable) function
fð~qÞ falls off faster than any power of 1=L [5].16 As noted
above, we treat terms with this highly suppressed scaling in
L as negligible, and thus set�

1

L3

X
~q

−
Z
~q

�
fð~qÞ ¼ 0: ð44Þ

By contrast, if a function dð~qÞ is not continuous but instead
diverges for some real ~q, or if some derivative diverges, then
the sum-integral difference receives power-law corrections�

1

L3

X
~q

−
Z
~q

�
dð~qÞ ¼ OðL−nÞ; ð45Þ

for some positive integer n. We keep all such contributions.
A convenient tool to determine when the summands of

Feynman diagrams are singular is time-ordered perturba-
tion theory (TOPT).17 In this method one first does all k0

integrals, leaving only the sums over spatial components of
loop momenta. (In a continuum application these would, of
course, be replaced by integrals.) Each Feynman diagram
then becomes a sum of terms corresponding to the different
time orderings of the vertices. Within a given time ordering,
each pair of neighboring vertices leads to an energy
denominator,

1

Ecut −
P

y∈cutωy
: ð46Þ

Here Ecut is total energy flowing through the propagators in
the cut, which is the vertical line between adjacent vertices.
The propagators have momenta ~py and on shell energies
ωy. For our correlator Ecut can be E, 0, or −E, depending on
the time ordering. All other factors in the summand are
nonsingular: they arise from momentum dependence in the
vertices or from 1=ω factors.
Given the assumed Z2 symmetry and our choices of σ

and σ†, the cuts in the diagrams contributing to CL can only
involve an odd number of particles. Furthermore, given the
restriction m < E� < 5m, the only energy denominators
which can vanish must involve three particles in the cut, i.e.

1

E − ωk − ωa − ωka
: ð47Þ

Thus it is only when a three-particle state goes on shell that
replacing the sum over spatial momenta with an integral
can lead to power-law corrections.
The only subtlety in the application of this result to our

analysis is that m (which appears in ω2
k ¼ ~k2 þm2 and in

the condition on E�) should be the physical and not the bare
mass. Technically this arises because the usual geometric
sum of irreducible two-point correlation functions shifts the
pole position in the dressed propagator to the physical
mass. This sum should be done before applying the TOPT
analysis.18

We can now describe the skeleton expansion we use for
CL, which is displayed in Fig. 4. Since only three-particle
intermediate states can go on shell, we display them
explicitly, and use a notation indicating that their momenta
are summed. Intermediate states with five or more particles
cannot go on shell for our range of E�, and so sums over the
momenta of such intermediate states can be replaced by
integrals.19 These contributions can be grouped into infinite-
volume Bethe-Salpeter kernels, which are defined below.
Each diagram in the expansion contains “end caps” ~σ†

and ~σ on the far left and far right, respectively. These are
each functions of the off shell momenta of three attached
propagators, subject to the constraint that they total ðE; ~PÞ.
Thus they can be written ~σ ¼ ~σðq; pÞ and ~σ† ¼ ~σ†ðq; pÞ.
For the example of the σ operator given in Eq. (41),

~σðq; pÞ ¼ ~fðq; pÞ þ ~fðp; P − p − qÞ
þ ~fðP − p − q; qÞ þ ~fðp; qÞ
þ ~fðP − p − q; pÞ þ ~fðq; P − p − qÞ; ð48Þ

where

~fðq; pÞ ¼
Z
L
d4xd4yeipxþiqyfðx; yÞ: ð49Þ

Note here that we use the mostly minus metric, px ¼
p0x0 − ~p · ~x. The exact forms of ~σ and ~σ† are not important
to the final answer. We only require that they are analytic in

16This is what we refer to as exponentially suppressed,
although strictly it is not equivalent.

17For a clear discussion of this method see Chapter 9 of
Ref. [26].

18Doing things in this order makes the application of TOPT
more complicated, because the dressed propagator itself now has
multiple-particle poles. This subtlety does not affect our analysis
because all we are taking from TOPT is the conclusion that
divergences occur when a time integral extends, undamped, over
an infinite range. Thus it is the long-time dependence of the
dressed propagator that matters, and this has the same form as that
of a free propagator but with the physical mass. We stress that we
use TOPT only to identify diagrams that can lead to power-law
corrections. We do not use TOPT to do the calculation, but rather
use standard relativistic Feynman rules.

19Here we are using the language of TOPT although we are
calculating using relativistic propagators in which multiple time
orderings are contained within a single diagram. If we focus on a
particular cut, however, then there is only one time ordering in
which all particles can go on shell.
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the complex q0 and p0 planes and fall off fast enough at
infinity to justify the contour integrals we perform below.
Between the end caps, each diagram contains some

number of two-to-two and three-to-three Bethe-Salpeter
kernels. The two-to-two Bethe-Salpeter kernel iB2 was
introduced in Ref. [5]. It is the sum of all four-point
diagrams (with external propagators amputated) that are
two-particle irreducible in the s channel; see Fig. 5(a). Thus
this kernel is the sum of all diagrams which have no on
shell intermediate states when the total CM energy being
fed into the kernel is below 4m. Because iB2 contains no on
shell intermediate states, the summands of all contributing
terms are smooth functions of summed momenta. It follows
that finite-volume corrections are exponentially suppressed
and for our purposes negligible. We thus work from now on
with the infinite-volume version of the kernel.
Similarly, iB3 contains no diagram in which three

propagators carry the total energy and momentum ðE; ~PÞ.
Diagrams with one propagator carrying the total energy and
momentum as well as any odd number greater than three

are allowed; see Fig. 5(b). The technical definition of
this quantity is slightly more complicated because of the
possibility of having single-particle intermediate states. To
give the definition, we first introduce three intermediate
quantities i ~B3→3, i ~B1→3, i ~B3→1. In each case i ~Bn→m is the
sum of all amputated diagrams, with n incoming and m
outgoing external lines, which are three-particle irreducible
in the s channel. Next we introduce a modified, fully
dressed propagator ~ΔðqÞ. This differs from the standard
propagator, defined in Eq. (51) below, only in that its self-
energy graphs are three-particle irreducible (as opposed to
the usual one-particle irreducible). In terms of these
ingredients, our three-to-three kernel is

iB3 ≡ i ~B3→3 þ i ~B3→1
~Δi ~B1→3: ð50Þ

In direct analogy to the two-to-two case, iB3 is the sum of
all diagrams with no on shell intermediate states when
the CM energy is between m and 5m. Again we drop
exponentially suppressed corrections and work with the
infinite-volume version of the kernel.
We stress that the need for two kinds of kernels follows

directly from requiring that both iB2 and iB3 contain only
connected diagrams. For example, one might think that
only the top line of Fig. 4 is needed, as long as one chooses
an alternative iB3 which accommodates pairwise scatter-
ings. This is attractive since the top line closely resembles
the two-particle skeleton expansion of Ref. [17], in which
the correlator is written as a ladder series of two-particle
loops. However, in the three-particle sector this approach
results in iB3 containing Dirac delta functions, which is a
problem because we rely on smoothness of the kernel in

FIG. 4. Skeleton expansion defining the finite-volume correlator. The rightmost blob in all diagrams represents a function of momentum
~σ†, whose specific form is determined by the interpolating fields defining the correlator. The leftmost blob represents an analogous
function, ~σ. Any insertion between these with four legs represents a two-to-two Bethe-Salpeter kernel iB2. Any insertion with six legs
represents an analogous three-to-three kernel iB3. All lines connecting kernels and ~σ-functions represent fully dressed propagators.
The dashed rectangles indicate that all loop momenta are summed rather than integrated, due to the finite-volume condition. The regions
bounded by these rectangles also emphasize chains of loops that have common coordinates which prevent the diagram from factorizing.
This is one of the central complications faced in this work. (For example the top line, with only three-to-three insertions, does factorize and
is therefore a straightforward generalization of the two-particle case.)

FIG. 5. Examples of Feynman diagrams contributing to (a) iB2,
the two-to-two Bethe-Salpeter kernel and (b) iB3, the analogous
three-to-three kernel.
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our derivation. For this reason the three-particle case is
fundamentally different. After much investigation, we
found it most convenient to require that iB3 only contain
connected diagrams and thus display all pairwise scatter-
ings explicitly.
Finally, in our skeleton expansion all kernels and

interpolating functions are connected by fully dressed
propagators,

ΔðqÞ≡
Z

d4xeiq·xh0jTϕðxÞϕð0Þj0i: ð51Þ

Here ϕðxÞ is a one-particle interpolating field defined with
on shell renormalization such that

lim
q0→ωq

ΔðqÞ½ðq2 −m2Þ=i� ¼ 1: ð52Þ

Since we are working with fully dressed propagators, we do
not include self-energy contributions explicitly in our
skeleton expansion. We use infinite-volume fully dressed
propagators throughout, which is justified because the self-
energy graphs do not contain on shell intermediate states.
In summary, the skeleton expansion of Fig. 4 displays

explicitly all the intermediate states that can go on shell and
give rise to power-law corrections. All intermediate states
which cannot go on shell are included in the infinite-
volume two-to-two and three-to-three Bethe-Salpeter
kernels.
In the remaining subsections, we work through the

different classes of diagrams appearing in this expansion.
First, in Sec. IVA, we sum diagrams containing only iB2

kernels on the same pair of propagators (second line of
Fig. 4). Then, in Secs. IV B and IV C, we sum diagrams
with, respectively, one or two changes in the pair that is
being scattered (third and fourth lines of Fig. 4). At this
stage, we can extend the pattern and sum all diagrams built
from iB2 kernels with any number of changes in the
scattered pair. This is done in Sec. IV D. Incorporating
three-to-three insertions at this point is relatively easy, and
is done in Sec. IV E, leading to the final result for CL given
in Eq. (42).
As we proceed we identify the diagrams contributing to

K2 and Kdf;3, as well as A; A0 and C∞. The precise
definitions of these infinite-volume quantities will thus
emerge step by step.

A. Two-to-two insertions: no switches

In this section we sum the diagrams of Figs. 6–7. Each
diagram contains only B2 insertions, all of which scatter
the same pair of propagators. We separate the diagram

with no B2 insertions, labeled Cð0Þ
L (Fig. 6), from the sum of

diagrams with one or more insertions, denoted Cð1Þ
L (Fig. 7).

We refer to these diagrams as having no switches, meaning
that the pair that is scattered does not change. This desig-
nation anticipates subsequent sections in which we sum
diagrams with one or more switches in the scattered pair.
An important check on the calculation of this subsection

is obtained by noting that the no-switch diagrams are the
complete set appearing in a theory of two different particle
types, with one of the types noninteracting. This is the case
provided that the correlator is constructed with fields that
interpolate one free particle and two interacting particles.
Thus the result for Cð0Þ

L þ Cð1Þ
L must be that for the full

finite-volume correlator in the two-plus-spectator theory.
This check is discussed below.
We begin our detailed calculation by determining the

finite-volume residue of the no-insertion diagram of
Fig. 6. This diagram represents the expression20

Cð0Þ
L ≡ 1

6

1

L6

X
~k;~a

Z
a0

Z
k0
σðk; aÞΔðkÞΔðaÞ

× ΔðP − k − aÞσ†ðk; aÞ; ð53Þ

where
R
k0 ≡

R
dk0=ð2πÞ, etc., and the 1=6 is the symmetry

factor. We stress that the Δs are fully dressed propagators,
with the normalization given in Eq. (52).
We first evaluate the a0 and k0 integrals using contour

integration, wrapping both contours in the lower half of the
respective complex planes. Each contour encircles a one-
particle pole (a0 ¼ ωa − iϵ and k0 ¼ ωk − iϵ) as well as
three-particle (and higher) poles from excited-state con-
tributions to the propagators. The result of integration may
thus be written

Cð0Þ
L ¼ 1

6

1

L6

X
~k;~a

�
σð½ωk; ~k�; ½ωa; ~a�ÞΔðP − k − aÞσ†ð½ωk; ~k�; ½ωa; ~a�Þ

2ωk2ωa
þRð~k; ~aÞ

�
; ð54Þ

FIG. 6. Finite-volume correlator diagram with no kernel
insertions.

20In the remainder of this article we drop tildes on the Fourier-transformed interpolating operators, ~σðk; aÞ and ~σ†ðk; aÞ, since we no
longer use the position-space forms.
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where Rð~k; ~aÞ is the contribution from excited-state poles.
Here k and a appearing in ΔðP − k − aÞ are now under-
stood as on shell four vectors, a fact that we have made
explicit in the arguments of σ and σ†. We next note that
ΔðP − k − aÞ can be split into its one-particle pole plus a
remainder:

ΔðP − k − aÞ ¼ i
2ωkaðE − ωk − ωa − ωkaÞ

þ rð~k; ~aÞ:

ð55Þ

Substituting Eq. (55) into Eq. (54) gives

Cð0Þ
L ¼ 1

6

1

L6

X
~k;~a

�
iσð½ωk; ~k�; ½ωa; ~a�Þσ†ð½ωk; ~k�; ½ωa; ~a�Þ
2ωk2ωa2ωkaðE − ωk − ωa − ωkaÞ

þR0ð~k; ~aÞ
�
; ð56Þ

where R0 is the sum of R and the term containing r. This

grouping is convenient because R0ð~k; ~aÞ is a smooth

function of ~k and ~a for our range of E, since we have
explicitly pulled out the three-particle singularity. Indeed,
we are free to further adjust the separation between first and
second terms, as long as the latter remains smooth. For the
following development we need to include the damping

function Hð~kÞ in the singular term. We recall that Hð~kÞ,
defined in Eqs. (27)–(28), is a smooth function which
equals unity when the other two particles (those with
momenta a and P − k − a) are kinematically allowed to

be on shell (for the given values of E, ~P, and ~k). In

particular, if we multiply the singular term by 1 ¼ Hð~kÞþ
½1 −Hð~kÞ�, then the 1 −Hð~kÞ term cancels the singularity,
leading to a smooth function that can be added to R0 to
obtain a new residue R00:

Cð0Þ
L ¼ 1

6

1

L6

X
~k;~a

�
iσð½ωk; ~k�; ½ωa; ~a�Þσ†ð½ωk; ~k�; ½ωa; ~a�ÞHð~kÞ

2ωk2ωa2ωkaðE − ωk − ωa − ωkaÞ

þR00ð~k; ~aÞ
�
: ð57Þ

At this stage we want to rewrite Cð0Þ
L as an infinite-

volume (L-independent) quantity plus a remainder.
Infinite-volume quantities differ only in that loop momenta
are integrated rather than summed. We can thus pull out the
infinite-volume object by replacing each sum with an

integral plus a sum-integral difference. We stress that
integrals, unlike sums, require a pole prescription. We
are free to use any prescription we like, and it turns out to
be most convenient to make a nonstandard choice which
we call the fPV prescription. This is defined in the present
context as follows21:

1

2
fPV Z

~a

iσð½ωk; ~k�; ½ωa; ~a�Þσ†ð½ωk; ~k�; ½ωa; ~a�ÞHð~kÞ
2ωa2ωkaðE − ωk − ωa − ωkaÞ

≡ 1

2

Z
~a

iσð½ωk; ~k�; ½ωa; ~a�Þσ†ð½ωk; ~k�; ½ωa; ~a�ÞHð~kÞ
2ωa2ωkaðE − ωk − ωa − ωka þ iϵÞ

− σ�l0;m0 ð~kÞiρl0;m0;l;mð~kÞσ†�l;mð~kÞ; ð59Þ

where ρ was introduced in Eq. (25) above.
To complete the definition we need to explain the

meanings of the on shell quantities σ�l0;m0 ð~kÞ and σ†�l;mð~kÞ.
Similar quantities will appear many times below so we
give here a detailed description. First recall that ðω�

a; ~a�Þ is
the four vector obtained by boosting ðωa; ~aÞ with velocity
~βk ¼ −ð~P − ~kÞ=ðE − ωkÞ. This boost is only physical if
E�
2;k > 0, a constraint which is guaranteed to be satisfied by

the presence of Hð~kÞ in Eq. (59). We now change variables
from ~a to ~a� and define

σ�ð~k; ~a�Þ≡ σð½ωk; ~k�; ½ωa; ~a�Þ; ð60Þ

and similarly for σ†. The left-hand side exemplifies our
general notation that, if the momentum argument is a three

vector, e.g. ~k, then the momentum is on shell, e.g. k0 ¼ ωk.
If the argument is a four momentum, e.g. k, then it is, in
general, off shell. Here we include a superscript � on σ to
indicate that it is strictly a different function from that
appearing in say Eq. (57), since it depends on different
coordinates (in particular on momenta defined in different
frames). Next we decompose σ� and σ†� into spherical
harmonics in the CM frame

FIG. 7. Finite-volume correlator diagrams containing only two-to-two insertions with no change in the scattered pair.

21In the definition of fPV we are using σ and σ† which are
continuous functions of ~a and ~k. Since these were originally
defined only for discrete finite-volume momenta, this requires a
continuation of the original functions. We require only that the
continuation is smooth and slowly varying. More precisely we
demand

�
1

L3

X
~a

−
Z
~a

�
σð½ωk; ~k�; ½ωa; ~a�Þ ¼ Oðe−mLÞ: ð58Þ
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σ�ð~k; ~a�Þ≡ ffiffiffiffiffiffi
4π

p
Yl;mðâ�Þσ�l;mð~k; a�Þ ð61Þ

σ†�ð~k; ~a�Þ≡ ffiffiffiffiffiffi
4π

p
Y�
l;mðâ�Þσ†�l;mð~k; a�Þ; ð62Þ

where there is an implicit sum over l and m. Our
convention, used throughout, is that the quantities to the
left of the three-particle cut are decomposed using Yl;ms
while those to the right use the complex conjugate
harmonics. Finally, with the starred quantities in hand
we can define on shell restrictions. As explained in the
introduction, P − k − a is only on shell if a� ¼ q�k, so we
define

σ�l;mð~kÞ≡ σ�l;mð~k; q�kÞ; σ†�l;mð~kÞ≡ σ†�l;mð~k; q�kÞ: ð63Þ

These are the quantities appearing in the ρ term in Eq. (59).

If E�
2;k < 2m, then the ~a; ~bka pair is below threshold, and

σ�l;m and σ†�l;m must be obtained by analytic continuation
from above threshold.
The reason for using this rather elaborate pole prescrip-

tion is that we want the integral over ~a to produce a smooth

function of ~k. This allows the sum over ~k to be replaced by
an integral. If we were to instead use the iϵ prescription,

then the resulting function of ~kwould have a unitary cusp at
E�
2;k ¼ 2m. This observation leads us to consider a princi-

pal-value pole prescription instead. We note that ρ is
defined so that, for E�

2;k > 2m, Eq. (59) simply gives the
standard principal-value prescription. It turns out that this

choice gives a smooth function of ~k, provided that one
uses analytic continuation to extend from E�

2;k > 2m to
E�
2;k < 2m. This is accomplished by our subthreshold

definition of ρ, which is then smoothly turned off by the

function Hð~kÞ. A derivation of the smoothness property is
given in Appendix B. We stress that the fPV prescription is

always defined relative to a spectator momentum, here ~k.
A slightly more general form of the fPV prescription is

instructive and will be useful below. For any two-particle
four momentum P2 for which the only kinematically
allowed cut involves two particles, we can write

fPV Z
a
AðP2; aÞBðP2; aÞΔðaÞΔðP2 − aÞ

¼
Z
a
AðP2; aÞBðP2; aÞΔðaÞΔðP2 − aÞ

− 2iJðP2
2=½4m2�Þ~ρðP2Þ

×

�Z
â�
A�ðP2; ~a�ÞB�ðP2; ~a�Þ

�����
a�¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
P2
2
=4−m2

p : ð64Þ

Here A and B are smooth, nonsingular functions of their
arguments. The quantities A� and B� are defined in a similar
way to σ� above, e.g. A�ðP2; ~a�Þ ¼ AðP2; ½ωa; ~a�Þ, where
the boost to the two-particle CM has velocity −~P2=P0

2.
The function J, defined in Eq. (29), ensures that this boost is
well defined.22 Finally, the angular integral is normalized
such that

R
â� 1 ¼ 1. The form (64) makes clear that the

prescription can be defined for four-momentum integrals
(and not just three-momentum integrals) and that its depend-
ence on external momenta enters entirely through P2.
We have also used the angular independence of ρ to rewrite
the subtraction term as an angular average in the CM frame.
The two functions A and B could be combined into one, but
are left separate since in our applications we always have
separate functions to the left and right of the cut.
Returning to the main argument, we now substitute

1

L3

X
~a

¼ fPV Z
~a
þ
�
1

L3

X
~a

− fPV Z
~a

�
ð65Þ

into Eq. (57) to reach

Cð0Þ
L ¼ 1

6

1

L3

X
~k

fPV Z
~a

�
iσð½ωk; ~k�; ½ωa; ~a�Þσ†ð½ωk; ~k�; ½ωa; ~a�ÞHð~kÞ

2ωk2ωa2ωkaðE − ωk − ωa − ωkaÞ
þR00ð~k; ~aÞ

�

þ 1

6

1

L3

X
~k

�
1

L3

X
~a

− fPVZ
~a

�
iσð½ωk; ~k�; ½ωa; ~a�Þσ†ð½ωk; ~k�; ½ωa; ~a�ÞHð~kÞ

2ωk2ωa2ωkaðE − ωk − ωa − ωkaÞ
: ð66Þ

Note that the sum-integral-difference operator annihilatesR00ð~k; ~aÞ up to exponentially suppressed terms. As already noted,

we can replace the sum over ~k with an integral in the first term, resulting in the infinite-volume quantity

Cð0Þ
∞ ≡ 1

6

Z
~k

fPV Z
~a

�
iσð½ωk; ~k�; ½ωa; ~a�Þσ†ð½ωk; ~k�; ½ωa; ~a�ÞHð~kÞ

2ωk2ωa2ωkaðE − ωk − ωa − ωkaÞ
þR00ð~k; ~aÞ

�
: ð67Þ

Note that no pole prescription is required for the ~k integral.

22Here J is playing the role of Hð~kÞ ¼ JðP2
2=½4m2�Þ in Eq. (59).
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The second term in Eq. (66) is then the finite-volume
residue. First we note that we can multiply the summand/

integrand by Hð~aÞHð~bkaÞ, since the remainder cancels the
pole and thus has vanishing sum-integral difference. Next
we use the identity for sum-integral differences presented in
Eq. (A1) of Appendix A. This is based on an extension of
the work of Ref. [17] to include the effects of subthreshold
momenta and the fPV prescription. The essence of the
identity is that the sum-integral difference picks out the on
shell residue of the singularity multiplied by a kinematic
function. In more detail the identity makes use of the

analytic properties of σ�l;mð~k; a�Þ and σ†�l;mð~k; a�Þ, the
functions defined in Eqs. (60)–(62) above. The result is that

Cð0Þ
L ¼ Cð0Þ

∞ þ 1

L3

X
~k

1

6ωk
σ�l0;m0 ð~kÞiFl0;m0;l;mð~kÞσ†�l;mð~kÞ;

ð68Þ

¼ Cð0Þ
∞ þ σ�k0;l0;m0

1

6ωkL3
iFk0;l0;m0;k;l;mσ

†�
k;l;m; ð69Þ

where the finite-volume kinematical function F is defined
in Eqs. (22)–(24), and

σ�k;l;m ≡ σ�l;mð~kÞ; σ†�k;l;m ≡ σ†�l;mð~kÞ for ~k ∈ ð2π=LÞZ3

ð70Þ

are the restrictions of the on shell functions to finite-volume
momenta. All indices in Eq. (69) are understood to be
summed, including k and k0 which are summed over the
allowed values of finite-volume momenta. This index
structure appears repeatedly in our derivation, and from
now on we leave indices implicit. Indeed, using the matrix
notation introduced in Sec. II, we can write the final result
compactly as

Cð0Þ
L ¼ Cð0Þ

∞ þ σ�
iF

6ωL3
σ†�: ð71Þ

This is the main result of this subsection.
Our treatment of the three-particle cut will be reused

repeatedly in the following, except that σ and σ† will be
replaced by other smooth functions of the momenta. Since
no properties of σ and σ† other than smoothness were used
in the derivation of Eq. (71), the result generalizes
immediately. It is useful to have a diagrammatic version,
and this is given in Fig. 8. The key feature of the result is
that the finite-volume residue depends only on on shell
restrictions of the quantities appearing on either side of the
cut (analytically continued below threshold as needed).
Before considering diagrams containing two-to-two

insertions, we take stock of the impact of using the

nonstandard fPV pole prescription. First we relate Cð0Þ
∞

[defined in Eq. (67)] to the conventional infinite-volume
form which uses the iϵ prescription. The latter is

Cð0Þ;iϵ
∞ ≡ 1

6

Z
~k;~a

�
iσð½ωk; ~k�; ½ωa; ~a�Þσ†ð½ωk; ~k�; ½ωa; ~a�ÞHð~kÞ
2ωk2ωa2ωkaðE − ωk − ωa − ωka þ iϵÞ

þR00ð~k; ~aÞ
�
; ð72Þ

¼ 1

6

Z
k;a

σðk; aÞΔðkÞΔðaÞΔðP − k − aÞσ†ðk; aÞ;

ð73Þ
where

R
k ≡

R
d4k=ð2πÞ4, etc., indicate integrals over four-

momenta. To obtain the second line, which is the standard
expression for the Feynman diagram, we have reversed the
steps leading from Eq. (53) to (57). It then follows from the
definition of the fPV prescription, Eq. (59), that

Cð0Þ
∞ ¼ Cð0Þ;iϵ

∞ −
Z
~k
σ�ð~kÞ iρð

~kÞ
6ωk

σ†�ð~kÞ: ð74Þ

This relation is similar in form to Eq. (71), with the “F cut”
being replaced by a “ρ cut.” The key point for present
purposes is that the ρ-cut term in Eq. (74) does not
introduce poles as a function of E. This follows from

noting that ρ is a finite function of ðE; ~PÞ and ~k, which has a
finite range of support in the latter.
We can also determine the form of the finite-volume

correction if we use the iϵ prescription throughout, includ-
ing in F [see Eq. (24) above]. This connects our result to
earlier work on two-particle quantization conditions, e.g.
Ref. [17], where Fiϵ was used. Defining

Fiϵ
k0;l0;m0;k;l;m ≡ δk0;kFiϵ

l0;m0;l;mð~kÞ; ð75Þ

it follows from Eq. (22) that

Fk0;l0;m0;k;l;m ¼ Fiϵ
k0;l0;m0;k;l;m þ δk0;kρl0;m0;l;mð~kÞ: ð76Þ

Combining the results above we then find

Cð0Þ
L ¼ Cð0Þ;iϵ

∞ þ σ
iFiϵ

6ωL3
σ†

þ
�
1

L3

X
~k

−
Z
~k

�
σ�ð~kÞ iρð

~kÞ
6ωk

σ†�ð~kÞ: ð77Þ

off-shell

= +

F

on-shell

FIG. 8. Diagrammatic representation of Eq. (71).
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Thus we see that, were we to use quantities defined using
the iϵ prescription, we would need to account for the
additional finite-volume correction coming from the last
term, which arises due to the cusp at threshold.23 This extra
term greatly complicates the all-orders summation of
diagrams. We have found it is more convenient to approach
the analysis of finite-volume diagrams in two steps: first
relate finite-volume quantities to fPV quantities (for exam-

ple relating Cð0Þ
L to Cð0Þ

∞ ), and then relate fPV quantities to

those defined with the standard iϵ prescription (Cð0Þ
∞ to

Cð0Þ;iϵ
∞ ). We concentrate on the first step in this article.
We now turn to diagrams of Fig. 7. We recall that only

three-particle on shell intermediate states lead to power-law
finite-volume dependence. To isolate such terms we first do

the k0 integral and keep only the pole at k0 ¼ ωk. Other
poles will be collected into infinite-volume quantities, as

for Cð0Þ
L . This means that we can replace ΔðkÞwith 1=ð2ωkÞ

and set k0 ¼ ωk in all finite-volume terms. Furthermore we
can pull out the sum

1

L3

X
~k

1

2ωk
ð78Þ

and consider the summand at fixed values of ~k. The result
of these steps is shown in Fig. 9(a).
At each fixed value, we are left precisely with all

scattering diagrams for two particles with energy-

momentum ðE − ωk; ~P − ~kÞ. We can thus follow the
approach of Ref. [17] to obtain the answer for this set
of diagrams. In particular, we can repeatedly use the sum-
integral difference identity of Eq. (71) and Fig. 8 to replace
sums over the two-particle loop momenta with integrals
plus factors of F. As already noted, the identity holds if

FIG. 9. (a) Diagrams contributing power-law finite-volume contributions to Cð1Þ
L . The dashed line for the bottom propagator

indicates that the k0 integration has been done and only the one-particle pole kept, giving rise to the factor of 1=2ωk. The inset shows

the effect of substituting the identity of Fig. 8. (b) Result for Cð1Þ
L after grouping terms according to the number of F insertions.

Diagrams with no insertions combine with the terms neglected in (a) to give Cð1Þ
∞ . In diagrams with at least one insertion of F the

factors to the left and right are σ� þ A0ð1;uÞ and σ†� þ Að1;uÞ, respectively. The factors between F insertions (denoted by black circles)
are two-to-two K-matrices. The final term in the curly braces must be subtracted since it is included in the first term but is not part of

the definition of Cð1Þ
L . (c) Definition of A0ð1;uÞ. The superscript u indicates that the unscattered particle is also the particle whose

momentum is singled out by the coordinate system. Dashed lines for external momenta indicate both that they are on shell and that
they are amputated.

23This term is absent in the two-particle analysis, where there is
only a single value of ~k (the total momentum flowing through the
two-particle system).
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either σ or σ† (or both) are replaced by B2. This substitution
is also indicated in Fig. 9(a).
Our next step is to sum all diagrams into a convenient

form by regrouping terms according to the number of F
insertions. This is depicted in Fig. 9(b). We first consider
terms with no F insertions. These are conveniently com-
bined with the smooth terms arising when the k0 contour
encircles higher-particle poles, yielding

Cð1Þ
∞ ¼

Z
~k

fPVZ
a

fPVZ
a0

Z
k0
σðk; aÞΔðaÞΔðP − k − aÞ

× ΔðkÞiK2;offða; P − k − a;−a0ÞΔða0Þ
× ΔðP − k − a0Þσ†ðk; a0Þ: ð79Þ

Here we are using the definition of fPV given in Eq. (64),
while the off shell K-matrix is

iK2;offða; b;−a0Þ ¼ iB2ða; b;−a0Þ þ
1

2
fPVZ

a1

iB2ða; b;−a1ÞΔða1ÞΔðb1ÞiB2ða1; b1;−a0Þ

þ
�
1

2

�
2fPVZ

a2

fPV Z
a1

iB2ða; b;−a1ÞΔða1ÞΔðb1ÞiB2ða1; b1;−a2ÞΔða2ÞΔðb2ÞiB2ða2; b2;−a0Þ þ � � � ;

ð80Þ

or equivalently

iK2;offða; b;−a0Þ ¼ iB2ða; b;−a0Þ

þ 1

2
fPVZ

a1

iB2ða; b;−a1ÞΔða1Þ

× Δðb1ÞiK2;offða1; b1;−a0Þ: ð81Þ
For both K2;off and B2 we display only three of the
(inflowing) momentum arguments, the fourth being given
by momentum conservation: aþ b ¼ a1 þ b1 ¼ a2 þ b2.
If all external momenta are on shell, K2;off becomes the
usual physical two-particle K-matrix K2, which is real and
smooth (in our kinematic range) because the ~PV prescrip-
tion is identical to the PV prescription in this regime.

Within Cð1Þ
∞ , the K-matrix is needed also below threshold,

and our use of the fPV prescription ensures that K2;off is
smooth (cusp free) in this regime as well. These results

allow the overall sum over ~k to be replaced with an integral
(for which no pole prescription is needed).
We stress that in Eq. (79) the integral over k0 must be

done before the other loop integrals. This either puts the
lower line on shell (leading to the cuts which are dealt with
by the fPV prescription) or leads to intermediate states
without a singularity (for which no pole prescription is
needed). The need to keep track of the ordering of integrals
is an unpleasant feature of the fPV prescription.
We next sum all terms with exactly one F insertion,

obtaining

Cð1Þ
L;1F ¼ σ�

iF
2ωL3

Að1;uÞ þ A0ð1;uÞ iF
2ωL3

σ†�

þ A0ð1;uÞ iF
2ωL3

Að1;uÞ; ð82Þ

¼ ðσ� þ A0ð1;uÞÞ iF
2ωL3

ðσ†� þ Að1;uÞÞ − σ�
iF

2ωL3
σ†�:

ð83Þ

Here σ� and A0ð1;uÞ (σ†� and Að1;uÞ) are understood as row
(column) vectors in the k;l; m space introduced above.
The vectors σ� and σ†� have been defined in Eq. (70), while
A0ð1;uÞ and Að1;uÞ are new. To define these, we begin with the
functions

A0ð1;uÞð~k; aÞ≡ 1

2
fPV Z

a0
σða0; kÞΔða0ÞΔðP − k − a0Þ

× iK2;offða0; P − k − a0;−aÞ; ð84Þ

Að1;uÞð~k; aÞ≡ 1

2
fPV Z

a0
iK2;offða; P − k − a;−a0Þ

× Δða0ÞΔðP − k − a0Þσ†ða0; kÞ; ð85Þ

in which k ¼ ½ωk; ~k� is on shell while a is not. The
superscripts u indicate that the first momentum argument
(here ~k) is also the momentum of the particle that is
unscattered by the two-to-two K-matrix. We next set
the momentum a on shell, convert to CM coordinates
for the scattered particles, and decompose in spherical
harmonics:24

A0ð1;uÞ
l0;m0 ð~k; a�Þ

ffiffiffiffiffiffi
4π

p
Yl0;m0 ðâ�Þ≡ A0ð1;uÞð~k; ½ωa; ~a�Þ; ð86Þ

ffiffiffiffiffiffi
4π

p
Y�
l;mðâ�ÞAð1;uÞ

l;m ð~k; a�Þ≡ Að1;uÞð~k; ½ωa; ~a�Þ: ð87Þ

Finally we project on shell and restrict to finite-volume
momenta

24Note that here we do not add a superscript � to A and A0 when
one of the momenta is in the CM frame. This would make the
notation too heavy. The presence of the harmonic subscripts l; m
serves as an alternative indicator that we are using a CM
momentum.
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A0ð1;uÞ
k;l0;m0 ≡ A0ð1;uÞ

l0;m0 ð~k; q�kÞ and Að1;uÞ
k;l;m ≡ Að1;uÞ

l;m ð~k; q�kÞ;
with ~k; ~k0 ∈ ð2π=LÞZ3: ð88Þ

This gives the vectors appearing in Eq. (82). The defi-
nition of A0ð1;uÞ is shown diagrammatically in Fig. 9(c).
To see that Eq. (82) is valid, first observe that terms with

a single F insertion fall into three classes: (1) those with no
B2 kernels to the left of the F insertion but one or more to
the right; (2) those with no kernels to the right but one or
more to the left; (3) those with one or more B2 kernels on
both sides of the single F insertion. These give rise,
respectively, to the three terms in Eq. (82), after performing
the sums over insertions of B2 to obtain the factors of K2;off
contained in A0ð1;uÞ and Að1;uÞ. Finally, observe that coor-
dinates that are common with the single F insertion are
projected onto the on shell, finite-volume phase space,
leading to the now-familiar matrix structure.
At this stage we can easily generalize to terms with

n > 1 F insertions between B2 kernels. We find

Cð1Þ
L;nF ¼ ðσ� þ A0ð1;uÞÞ iF

2ωL3
½iK2iF�n−1ðσ†� þ Að1;uÞÞ: ð89Þ

Here we are using the matrix definition of K2 given in
Eq. (15). In words, this says that, between insertions of F,
one can have any number of B2s connected by fPV integrals,
and these sum to give K2. Summing over n, including the
n ¼ 0 result Cð1Þ

∞ , we obtain

Cð1Þ
L ¼ Cð1Þ

∞ þðσ� þ A0ð1;uÞÞ½A�ðσ†� þ Að1;uÞÞ − σ�
iF

2ωL3
σ†�;

ð90Þ

where

A≡ iF
2ωL3

1

1þK2F
¼ 1

1þ FK2

iF
2ωL3

: ð91Þ

Combining with our earlier expression (71) for Cð0Þ
L gives

the main result of this subsection,

Cð0Þ
L þ Cð1Þ

L ¼ Cð0Þ
∞ þ Cð1Þ

∞ þ ðσ� þ A0ð1;uÞÞ

×½A�ðσ†� þ Að1;uÞÞ − ð2=3Þσ� iF
2ωL3

σ†�: ð92Þ

We have succeeded in separating the correlator into factors
of F, which depend on the volume, and infinite-volume
quantities.
The calculation just described follows very closely the

derivation of the two-particle quantization condition in a
moving frame given in Ref. [17]. This is because, for the
diagrams of Fig. 7, the third particle is a spectator whose
main impact is to take momentum away from the other
two particles. One difference in the present calculation,

however, is that the symmetry factor of 1=6 for the no-
insertion diagram, Fig. 6, does not match with those in the
geometric sum leading to the factor of ½A� in the second
term in Eq. (92). This is the reason for the appearance of the
last term in our result.
We can make the connection to the result of Ref. [17]

more precise by considering instead the theory in which the
spectator is of a different type from the other two particles
and does not interact. For such a theory the symmetry factor
for Fig. 6 is 1=2, and the last term in Eq. (92) is absent.
Indeed, for this theory we have already calculated all
possible diagrams, with the final result

C2þspec
L − C2þspec

∞ ¼ ðσ� þ A0ð1;uÞÞ½A�ðσ†� þ Að1;uÞÞ: ð93Þ

The spectrum is given by the poles of CL. Since infinite-
volume quantities do not lead to poles, CL diverges if and
only if ½A� has a divergent eigenvalue. This gives the
quantization condition

det½K−1
2 þ F� ¼ 0; ð94Þ

where the determinant is over our ½finite-volume
momentum� × ½angular momentum� space. Because both
iK2;k0;l0;m0;k;l;m and iFk0;l0;m0;k;l;m are diagonal in k; k0 space,
this condition may be rewritten asY

~k

Dð~kÞ ¼ 0; ð95Þ

where

Dð~kÞ≡ det
ang mom

½K2ð~kÞ−1 þ Fð~kÞ�: ð96Þ

The quantities appearing in this equation are defined in
Eqs. (11) and (70), and have only angular-momentum
indices, since ~k is fixed.
This result is exactly what we expect given the two-

particle quantization condition of Ref. [17]. To see this, we
note that, using Eqs. (59) and (25) to convert the fPV into the

iϵ prescription,M2;l0;m0;l;mð~kÞ is related toK2;l0;m0;l;mð~kÞ by

iM2 ¼ iK2 þ iK2ðiρÞiK2 þ � � � ¼ iK2

1

1þ ρK2

: ð97Þ

Here all arguments and indices are implicit. It follows that

M−1
2 ð~kÞ −K−1

2 ð~kÞ ¼ ρð~kÞ ¼ Fð~kÞ − Fiϵð~kÞ; ð98Þ

where the last equality follows from Eq. (23). Thus we can
rewrite the quantity appearing in the “2þ spec” quantization
condition as

Dð~kÞ≡ det
ang mom

½M2ð~kÞ−1 þ Fiϵð~kÞ�: ð99Þ
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If this vanishes for one of the finite-volume choices of ~k, then
there is a finite-volume state in the 2þ spec theory.
The connection to the result of Ref. [17] can now be

made. If the spectator, which is necessarily on shell since

it is noninteracting, has momentum ½ωk; ~k�, then the total
momentum of the other two particles is P2 ¼ ½E − ωk;
~P − ~k�. For the full 2þ spec theory to have a finite-volume
state, the two interacting particles with momentum P2 must
have a finite-volume state. The condition for this, as given

in Ref. [17], is exactly Dð~kÞ ¼ 0. This agreement provides
a useful check on our formalism.25

B. Two-to-two insertions: one switch

In this section we sum the diagrams of Fig. 10. Each
diagram has at least one B2 insertion on exactly two
different pairs of particles. In other words, the diagrams
have one switch in the pair that is scattered. We denote the
sum of all such diagrams by Cð2Þ

L . Throughout this section
we call the momentum of the incoming spectator particle k
and that of the outgoing spectator p, as shown in the figure.
We refer to the three propagators which appear at the
location where the scattered pair changes as the “switch
state.” The presence of a switch leads to the first appearance
of a three-particle scattering quantity in our analysis.
To determine the volume-dependent contribution of

these diagrams we first evaluate the p0 and k0 integrals.
Since we know from earlier considerations that intermedi-
ate states with three on shell particles are needed to obtain
power-law volume dependence, at least one of the two
poles at p0 ¼ ωp and k0 ¼ ωk must be encircled. For
concreteness we enumerate the four types of terms: (a) each
contour encircles its one-particle pole; (b) the p0 contour
encircles its pole but the k0 contour encircles all other
contributions; (c) as in (b) but with k0 and p0 exchanged;
and (d) both contours encircle everything but the one-
particle poles. We now consider the loop sums/integrals
that remain when holding ~p and ~k fixed; these are all two-
particle loops involving either the upper two particles (to
the left of the switch state) or the lower two (to the right).

For type (d) terms the summands have no singularities and
thus all sums can be replaced with integrals. Similarly, in
type (b) and (c) terms, the two-particle loops on one side of
the switch state cannot go on shell and may thus be
replaced by integrals. For all remaining two-particle loops
in terms of types (a), (b), and (c), the summand is singular.
Here we substitute the identity of Eq. (71), thereby
separating each loop into an infinite-volume contribution
and an F-factor residue.
There are thus two disjoint regions where insertions of F

appear: to the left of the switch state and to the right. It is
useful to break our analysis into four classes, defined by
whether or not each side of the switch state has at least one
insertion. We label these as

ð1Þ F;F; ð2Þ −;F; ð3Þ F;−; ð4Þ −;−; ð100Þ

so that class (1) contains all terms with at least one F
insertion both to the left and right of the switch state, class
(2) contains terms with no such insertions to the left but at
least one to the right, etc. Observe that type (a) terms appear
in all four classes, while types (b) and (c) only appear in
classes (2þ 4) and (3þ 4) respectively.
We now analyze the four classes in turn, starting with (1).

Because all terms in this class have both k0 and p0 one-
particle poles, the chains of Fs, B2s, and fPV-integrated
loops to the left and right of the switch state can each be
independently summed exactly as in the previous subsec-
tion. This leads to

ðσ� þ A0ð1;uÞÞ½A�iKð2;u;uÞ
3 ½A�ðσ†� þ Að1;uÞÞ: ð101Þ

The new feature here is the quantityKð2;u;uÞ
3 ≡Kð2;u;uÞ

3;p;l;m;k;l0;m0

which arises from the switch state, and is a contribution to
the three-to-three scattering amplitude. It is shown diagram-
matically in Fig. 11(a), to which we refer for the momentum
labels. To define it we proceed in the by-now familiar steps,
beginning with the partially off shell quantity

iKð2;u;uÞ
3 ð~p; ~a; ~k; ~a0Þ≡ iK2;offða; P − p − a;−kÞ

× ΔðP − p − kÞ
× iK2;offðP − p − k; p;−a0Þ: ð102Þ

At this stage p, k, a, and a0 are on shell, while P − p − k,
P − p − a, and P − k − a0 are not. We have parametrized

iKð2;u;uÞ
3 with incoming and outgoing spectator momenta, ~k

and ~p, as well as incoming and outgoing momenta of one of
the scatterers, ~a0 and ~a. In the second step we boost ~a0 and ~a
to the appropriate CM frames and then decompose in
spherical harmonics:

25Note that Fiϵ (and not F) is the kinematic factor derived in
Ref. [17]–see Eq. (A10) for the exact relation. We note that there
is a potential confusion regarding the definitions in earlier papers
of Fiϵ below two-particle threshold. In particular, in in Eqs. (24)
and (25) of Ref. [10], the above-threshold definition of Fiϵ is
split into real and imaginary parts, with the principal-value
pole prescription used to define the latter. In contrast to thefPV prescription of the present article, the principal value in [10] is
replaced with a simple prescription-free integral below threshold.
In addition, the imaginary part of Fiϵ, the term that we call ρ
here, is set to zero below threshold in Ref. [10]. The upshot is that
the difference between fPV used here and principal value in [10]
exactly cancels the difference between ρ defined here and the
analog in [10], so that the definition of Fiϵ is consistent in the
two papers.
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Kð2;u;uÞ
3 ð~p; ~a; ~k; ~a0Þ≡ 4πY�

l;mðâ�ÞKð2;u;uÞ
3;l;m;l0;m0 ð~p; a�; ~k; a0�Þ

× Yl;mðâ0�Þ; ð103Þ

where ~a� is defined by boosting ðωa; ~aÞ → ðω�
a; ~a�Þ with

velocity ~βp, and ~a0� is defined by boosting the corresponding

primed vector with ~βk. Next we recall that all incoming and
outgoing particles are on shell if and only if a0� ¼ q�k and

a� ¼ q�p. Thus we define the on shell version of Kð2;u;uÞ
3 as

Kð2;u;uÞ
3;l;m;l0;m0 ð~p; ~kÞ≡Kð2;u;uÞ

3;l;m;l0;m0 ð~p; q�p; ~k; q�kÞ: ð104Þ

The final step is to restrict to finite-volume momenta

Kð2;u;uÞ
3;p;l;m;k;l0;m0 ≡Kð2;u;uÞ

3;l;m;l0;m0 ð~p; ~kÞ for ~k; ~p ∈ ð2π=LÞZ3:

ð105Þ

This gives the matrix contained in the result Eq. (101).

Several further explanations are in order. First, Kð2;u;uÞ
3 in

Eq. (101) is on shell on both sides because it is sandwiched
between factors of F. This is because ½A�, defined in
Eq. (91), has an F on both ends. Second, the boosts to
CM momenta ~a� and ~a0� are always well defined because F
contains factors of Hð~pÞ (on the left) and Hð~kÞ (on the
right). Third, subthreshold momenta occur in both left and

right CM frames as ~p and ~k are varied, requiring analytic

continuation of the Kð2;u;uÞ
3 . Fourth, all factors from external

propagators are contained in the ½A�s, so Kð2;u;uÞ
3 is a

contribution to the amputated three-to-three scattering ampli-
tude. Fifth, the superscript ð2; u; uÞ indicates that this
contribution involves two factors of K2;off , and that, on
both sides, the particles singled out by the label (~p on the

left, ~k on the right) are unscattered. And, finally, although the
result (101) has a symmetric form, it is important to note that

Kð2;u;uÞ
3 switches the spectator momentum index from p to k.
We now turn our attention to class (2) contributions, i.e.

those with no F insertions to the left of the switch state but
at least one such insertion on the right. As noted above,
these contributions come from terms of types (a) and (b).
In the former, the p0 and k0 integrals both encircle one-
particle poles, but all two-particle loops with p as the
spectator are integrated using the fPV prescription. In the
latter, only the k0 integral encircles the one-particle pole, so
all two-particle loop sums to the left of the switch state can
be replaced by integrals. Combining these contributions,
we find

A0ð2;uÞ
L ½A�ðσ†� þ Að1;uÞÞ; ð106Þ

where the new quantity A0ð2;uÞ
L is shown diagrammatically

in Fig. 11(b). It is a contribution to the left end cap
involving one switch. It is given by

A0ð2;uÞ
L;k;l0;m0 ≡ A0ð2;uÞ

L;l0;m0 ð~k; q�kÞ ½with ~k ∈ ð2π=LÞZ3�; ð107Þ

where

A0ð2;uÞ
L;l0;m0 ð~k; a0�Þ

ffiffiffiffiffiffi
4π

p
Yl0;m0 ðâ0�Þ≡ A0ð2;uÞ

L ð~k; ½ωa0 ; ~a0�Þ; ð108Þ

and

A0ð2;uÞ
L ð~k; a0Þ≡ 1

2

1

L3

X
~p

fPV Z
a

Z
p0

σðp; aÞΔðaÞ

× ΔðP − p − aÞiK2;offða; P − p − a;−kÞ
× ΔðpÞΔðP − p − kÞ
× iK2;offðp; P − p − k;−a0Þ; ð109Þ

is the end cap amplitude with k on shell but a0 not. The
subscript L is a reminder that this quantity contains
important finite-volume effects. These arise from the
sum over ~p with a singular summand (from the switch
state). The superscript ð2; uÞ refers to the presence of two
factors of K2;off and the fact that the particle carrying the

FIG. 10. Finite-volume correlator diagrams containing only two-to-two insertions, with one switch in the scattered pair.

FIG. 11. Diagrammatic definitions of (a) iKð2;u;uÞ
3→3 , (b) A0ð2;uÞ

L ,
and (c) Cð2Þ

L;0F. In (b) and (c) the dotted box encloses momenta that
are summed rather than integrated. The solid circle represents the
two-particle K-matrix. Other notation is as above.
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momentum that is singled out by the coordinate system
(here ~k) is unscattered.
Class (3) contributions mirror those from class (2), with

the roles of the parts of the diagrams to the left and right of
the switch state interchanged. The total result is

ðσ� þ A0ð1;uÞÞ½A�Að2;uÞ
L ; ð110Þ

where

Að2;uÞ
L;p;l;m ≡ Að2;uÞ

L;l;mð~p; q�pÞ ½with ~p ∈ ð2π=LÞZ3�; ð111Þ

with

Að2;uÞ
L;l;mð~p; a�Þ

ffiffiffiffiffiffi
4π

p
Yl0;m0 ðâ�Þ≡ Að2;uÞ

L ð~p; ½ωa; ~a�Þ ð112Þ

and

Að2;uÞ
L ð~p;aÞ≡ 1

2

1

L3

X
~k

fPVZ
a0

Z
k0
iK2;offða;P−p− a;−kÞ

×ΔðkÞΔðP−p− kÞiK2;offðp;P−p− k;−a0Þ
×Δða0ÞΔðP− k− a0Þσ†ðk;a0Þ: ð113Þ

Finally, we turn to class (4) contributions, which have no
F insertions on either side of the switch state. Combining
contributions from types (a)–(d), we find [see Fig. 11(c)]

Cð2Þ
L;0F ¼ 1

4

1

L6

X
~p;~k

fPV Z
a;a0

Z
p0

Z
k0
σðp; aÞΔðaÞ

× ΔðP − p − aÞΔðpÞiK2;offða; P − p − a;−kÞ
× ΔðP − p − kÞiK2;offðP − p − k; p;−a0Þ
× Δða0ÞΔðP − k − a0ÞΔðkÞσ†ðk; a0Þ: ð114Þ

Adding this to the results from the other classes, we obtain

Cð2Þ
L ¼ ðσ� þ A0ð1;uÞÞ½A�iKð2;u;uÞ

3 ½A�ðσ†� þ Að1;uÞÞ
þ A0ð2;uÞ

L ½A�ðσ†� þ Að1;uÞÞ þ ðσ� þ A0ð1;uÞÞ
× ½A�Að2;uÞ

L þ Cð2Þ
L;0F: ð115Þ

At this stage we have achieved only a partial separation

of finite-volume effects, because A0ð2;uÞ
L , Að2;uÞ

L , and Cð2Þ
L;0F

still contain momentum sums that cannot be replaced by

integrals. In addition, Kð2;u;uÞ
3 suffers from the problem,

discussed in the introduction, of diverging for certain
physical momenta. In the remainder of this section we
derive identities for these four quantities that allow a

complete separation of finite-volume effects and avoid
divergences in the 3 → 3 scattering amplitude.

We begin with Kð2;u;uÞ
3 , and separate it into two terms,

one which is singular but only depends on the on shell K2,
and another which is regular. We do this separation in a way
that allows generalization to diagrams with more switches.
In particular, we analyze the partially off shell quantity

Kð2;u;uÞ
3 ð~p; ~a; ~k; ~a0Þ, defined in Eq. (102), although for this

subsection we only need the on shell version of this
quantity [as in Eq. (104)].
Our first step is to write the intermediate propagator as

ΔðP − p − kÞ ¼ iHð~pÞHð~kÞ
2ωpkðE − ωp − ωk − ωkpÞ

þRað~p; ~kÞ:

ð116Þ

The first term contains the on shell singularity, while the
second is smooth. We focus for now on the singular term

in (116) and substitute this into Kð2;u;uÞ
3 , Eq. (102). The

presence of the H factors means that we can boost to the
CM frames for the fk; P − p − kg and the fP − p − k; pg
pairs, and decompose the dependence on ~k� and ~p� into
spherical harmonics. The result is that the singular con-
tribution becomes

iKð2;u;uÞ
3 ð~p; ~a; ~k; ~a0Þ ⊃ iK2‖off‖offlmð~p; ~a‖k�Þ

× iGa
l;m;l0;m0 ð~p; ~kÞ

× iK2‖offl0m0‖offð~k;p�‖~a0Þ; ð117Þ

where

iGa
l;m;l0;m0 ð~p; ~kÞ≡ i4πYl;mðk̂�ÞHð~pÞHð~kÞY�

l0;m0 ðp̂�Þ
2ωpkðE − ωp − ωk − ωpkÞ

;

ð118Þ

and ffiffiffiffiffiffi
4π

p
K2‖off‖offlmð~p; ~a‖k�ÞYl;mðk̂�Þ

≡K2;offða; P − p − a;−kÞ ð119Þ
ffiffiffiffiffiffi
4π

p
Y�
l0;m0 ðp̂�ÞK2‖offl0m0‖offð~k;p�‖~a0Þ

≡K2;offðP − p − k; p;−a0Þ: ð120Þ

In the latter two definitions, the two subscripts “off” are a
reminder that both incoming and outgoing scattering pairs
have one particle off shell. If the off is followed by angular-
momentum indices, this indicates that the scattered pair has
been boosted to its CM frame and the angular dependence
decomposed into spherical harmonics. The arguments of
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K2‖off‖off list respectively the spectator momentum, the
momentum of one of the incoming scattered pairs, and the
momentum of one of the outgoing pairs. If a CM-frame
boost has been done, the argument is the magnitude of the
CM-frame momentum. This hybrid notation is needed to
maintain generality.
The next step is to write the singular part of (117) in

terms of on shell K-matrices. This is straightforward as we
can expand the boosted momenta k� and p� about their on
shell values, q�p and q�k respectively. At the same time, we
want the remaining nonsingular term to be a smooth

function of ~p and ~k, since this is required below. The
spherical harmonics Yl;mðk̂�Þ and Y�

l0;m0 ðp̂�Þ are not,

however, smooth at ~k� ¼ 0 (for l > 0) and ~p� ¼ 0 (for
l0 > 0), respectively. To resolve this problem, and pull out
an appropriate singular term, we introduce the finite
difference operator δ. This can act to the right or left on
K2, with its action being

δK2‖onl0m0‖offð~k; ~a0Þ≡K2‖offl0m0‖offð~k;p�‖~a0Þ
− ðp�=q�kÞl

0
K2‖onl0m0‖offð~k; ~a0Þ;

ð121Þ

K2‖off‖onlmð~p; ~aÞδ≡K2‖off‖offlmð~p; ~a‖k�Þ
−K2‖off‖onlmð~p; ~aÞðk�=q�pÞl: ð122Þ

Here we have defined the “on-off” and “off-on”
K-matrices as

K2‖onl0m0‖offð~k; ~a0Þ≡K2‖offl0m0‖offð~k; q�k‖~a0Þ and

K2‖off‖onlmð~p; ~aÞ≡K2‖off‖offlmð~p; ~a‖q�pÞ: ð123Þ

Note that if a scattering pair is on shell then it does not have
a corresponding momentum argument (since the latter is
fixed by kinematics).
Inserting Eqs. (121) and (122) into Eq. (117) we obtain

iKð2;u;uÞ
3 ð~p; ~a; ~k; ~a0Þ ⊃ iK2‖off‖onlmð~p; ~aÞ

× ½iGb
l;m;l0;m0 ð~p; ~kÞ þRb

l;m;l0;m0 ð~p; ~kÞ�
× iK2‖onl0m0‖offð~k; ~a0Þ; ð124Þ

with

iGb
l;m;l0;m0 ð~p; ~kÞ

≡
�
k�

q�p

�
l i4πYl;mðk̂�ÞHð~pÞHð~kÞY�

l0;m0 ðp̂�Þ
2ωpkðE − ωp − ωk − ωpkÞ

�
p�

q�k

�
l0

;

ð125Þ
and

Rb
l;m;l0;m0 ð~p; ~kÞ≡ δiGa

l;m;l0;m0 ð~p; ~kÞðp�=q�kÞl
0

þ ðk�=q�pÞliGa
l;m;l0;m0 ð~p; ~kÞδ

þ δiGa
l;m;l0;m0 ð~p; ~kÞδ: ð126Þ

The result (124) has achieved our goals. Only theGb term is
singular, because the factors of δ in Rb [which act on the
K-matrices appearing in Eq. (124)] give differences which
vanish when P − p − k goes on shell and thus cancel the
singularity in Ga. More precisely the analyticity of K2 near
the onshell point is required to demonstrate the cancella-
tion. For example, the difference defined in Eq. (121) scales
as p� − q�k, the same scaling as the denominator of Gb, so
that the product is a finite smooth function. This is
discussed in detail in Appendix A. Furthermore, the extra

powers of k� and p� ensure thatGb is smooth when ~k� or ~p�

vanish. Finally, the Gb term multiplies K-matrices in which
k� (to the left) and p� (to the right) are on shell.
The end result of this analysis is that

Kð2;u;uÞ
3 ð~p; ~a; ~k; ~a0Þ ¼ Dð2;u;uÞð~p; ~a; ~k; ~a0Þ

þKð2;u;uÞ
df;3 ð~p; ~a; ~k; ~a0Þ ð127Þ

where the singular part is

iDð2;u;uÞð~p; ~a; ~k; ~a0Þ ¼ iK2‖off‖onlmð~p; ~aÞiGb
l;m;l0;m0 ð~p; ~kÞ

× iK2‖onl0m0‖offð~k; ~a0Þ ð128Þ

and the divergence-free part of the amplitude is

iKð2;u;uÞ
df;3 ð~p; ~a; ~k; ~a0Þ≡ iK2;offða;P− p− a;−kÞ

×Rað~p; ~kÞiK2;offðP− p− k;p;−a0Þ
þ iK2‖off‖onlmð~p; ~aÞRb

l;m;l0;m0 ð~p; ~kÞ
× iK2‖onl0m0‖offð~k; ~a0Þ: ð129Þ

The relation (127) is shown diagrammatically in Fig. 12.

The key property of Kð2;u;uÞ
df;3 is that it is a smooth, non-

singular function of its arguments. It is smooth when ~k� or
~p� vanish because Kð2;u;uÞ

3 is smooth at these values and, as
just discussed, this is also true of the Gb term.
The quantity Gb is closely related to the matrix G

introduced in Eq. (21). In particular,

Gb
l;m;l0;m0 ð~p; ~kÞ ¼ Gp;l;m;k1;l1;m1

½2ωL3�k1;l1;m1;k;l0;m0

for ~p; ~k ∈ ð2π=LÞZ3; ð130Þ

where
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½2ωL3�k1;l1;m1;k;l0;m0 ≡ δk1;kδl1;l0δm1;m02ωkL3: ð131Þ

Finally, with this groundwork laid, we can return to
the quantity relevant for the one-switch analysis, namely

Kð2;u;uÞ
3 with external momenta on shell and taking finite-

volume values. In this case we can decompose the external
CM-frame momenta in spherical harmonics, and connect
back to our matrix notation:

K2‖off‖onlmð~p; ~aÞja�¼q�p;~p∈ð2π=LÞZ3

¼
ffiffiffiffiffiffi
4π

p
Y�
l0;m0 ðâ�ÞK2;p;l0;m0;p;l;m; ð132Þ

K2‖onlm‖offð~k; ~a0Þja0�¼q�k;~k∈ð2π=LÞZ3

¼ K2;k;l;m;k;l0;m0
ffiffiffiffiffiffi
4π

p
Yl0;m0 ðâ0�Þ: ð133Þ

This allows us to write the decomposition into singular
and smooth parts in matrix form

iKð2;u;uÞ
3;p;l;m;k;l0;m0 ≡ iK2iG½2ωL3�iK2 þ iKð2;u;uÞ

df;3;p;l;m;k;l0;m0 ;

ð134Þ

where

4πY�
l;mðâ�ÞKð2;u;uÞ

df;3;p;l;m;k;l0;m0Yl0;m0 ðâ0�Þ
¼ Kð2;u;uÞ

df;3 ð~p; ~a; ~k; ~a0Þja�¼q�p;a0�¼q�k;f~p;~kg∈ð2π=LÞZ3 ; ð135Þ

with repeated indices summed as usual.

We next derive an identity for A0ð2;uÞ
L , which is defined in

Eqs. (107)–(109). The basic approach is our standard move
of replacing the sum over ~p with a fPV integral and a sum-
integral difference, the latter giving rise to a factor of F.
However, the presence of the switch state introduces new
features compared to previous applications, so we work
through the steps in some detail.

We first introduce the fully integrated counterpart to

A0ð2;uÞ
L , which we call A0ð2;uÞ. It is defined exactly as for

A0ð2;uÞ
L [Eqs. (107)–(109) and Fig. 11(b)] except that the

sum over ~p is replaced by a fPV integral. This is the first
example of an infinite-volume quantity with multiple fPV
integrals. As we have already mentioned, a consequence of
our nonstandard regulator is that the order of integration is
important. In the definition of A0ð2;uÞ, the integral over ~p is
done last. The difference between the two quantities can be
written as

A0ð2;uÞ
L ð~k; a0Þ − A0ð2;uÞð~k; a0Þ

¼
�
1

L3

X
~p

− fPV Z
~p

�
A0ð1;uÞð~p; kÞ

×
Hð~kÞΔðP − p − kÞ

2ωp

× iK2;offðk; P − p − k; a0Þ; ð136Þ

where k ¼ ½ωk; ~k�. To obtain this form we have used the
fact that A0ð1;uÞð~p; kÞ [defined in Eq. (84)] is a smooth
function of ~p, so that the only singularity in p comes from
the switch state. Also, we have done the p0 integral and
kept only the particle pole, since other poles give non-
singular contributions which have vanishing sum-integral
differences. Finally, we have added in the cutoff function

Hð~kÞ, which is allowed since it does not change the
singularity.
To use the sum-integral identity, we need to expand

A0ð1;uÞð~p; kÞ in spherical harmonics with respect to ~p�,
i.e. treat k as the spectator and boost to the CM frame of
the other two particles [with boost velocity −ð~P − ~kÞ=
ðE − ωkÞ]. This is different from the expansion used earlier,
in Eq. (86), where p was treated as the spectator. Thus we
define [see Fig. 13(a)]

A0ð1;sÞ
l;m ð~k; p�Þ

ffiffiffiffiffiffi
4π

p
Yl;mðp̂�Þ≡ A0ð1;uÞð~p; ½ωk; ~k�Þ; ð137Þ

where the superscript “s” indicates that the particle carrying
the momentum singled out by the coordinate system, here
~k, is one of those scattered by the K2 inside A0ð1;uÞ. We

stress that A0ð1;sÞ
l;m and A0ð1;uÞ

l;m are different expansions of the
same underlying function—we are just using different
coordinate systems. We also note that the boost defining

~p� is well defined because of the presence of Hð~kÞ.
As a final step, we must also decompose the off shell

two-particle K-matrix into spherical harmonics:

4πY�
l;mðp̂�ÞK2;off;l;m;l0;m0 ð~k; p�; a0�ÞYl0;m0 ðâ0�Þ
≡K2;offð½ωp; ~p�; P − p − k;−½ωa0 ; ~a0�Þ: ð138Þ

=

+

p

a

k

p

a

p

a

k

aa

k

a

FIG. 12. Diagrammatic version of the decomposition of

Kð2;u;uÞ
3 ð~p; ~a; ~k; ~a0Þ given in Eq. (127). External dashed lines

indicate on shell momenta, whereas momenta flowing along the
solid external lines are, in general, off shell. All external
propagators are amputated. The first term on the right-hand side
is the singular term Dð2;u;uÞ, with the double dashed lines
representing Gb. The two K2 are evaluated on shell for all
momenta that flow along dashed propagators. The second term

represents the divergence-free amplitude Kð2;u;uÞ
df;3 .
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This allows us to write

A0ð2;uÞ
L;k;l0;m0 − A0ð2;uÞ

k;l0;m0

¼
�
1

L3

X
~p

− fPV Z
~p

�
A0ð1;sÞ
l1;m1

ð~k; p�Þ

×
i4πYl1;m1

ðp̂�ÞHð~kÞY�
l2;m2

ðp̂�Þ
2ωp2ωP−p−kðE − ωk − ωp − ωpkÞ

× iK2;off;l2;m2;l0;m0 ð~k; p�; q�kÞ; ð139Þ

where we have explicitly pulled out the particle pole in the
P − p − k propagator, since the remainder is nonsingular.
This has the form for which we can apply the sum-integral
identity, from which we deduce

A0ð2;uÞ
L ¼ A0ð2;uÞ þ 2A0ð1;sÞiFiK2; ð140Þ

where the on shell matrix form of A0ð1;sÞ is

A0ð1;sÞ
p;l;m ¼ A0ð1;sÞ

l;m ð~p; q�pÞ with ~p ∈ ð2π=LÞZ3: ð141Þ

The factor of two in (140) appears because F contains a
symmetry factor of 1=2 which is absent in the switch-state
contribution.
The new quantity 2A0ð1;sÞ will later be combined with

A0ð1;uÞ in order to form an object which, aside from one
subtlety, is symmetric under particle interchange. To
understand this point, first observe that there are three
independent ways that the external momenta can be

assigned to the diagram: (i) ~p is the spectator with ~k being
one of the scattered pair [giving A0ð1;uÞ], (ii) ~p is one of the

scattered pair with ~k being the spectator [giving A0ð1;sÞ], and
(iii) ~p and ~k form the scattered pair. This is illustrated in
Fig. 13(b). For the symmetry to hold we must sum these
three with equal weights: ðiÞ þ ðiiÞ þ ðiiiÞ.26 This differs

from the combination that arises naturally in our derivation,
ðiÞ þ 2ðiiÞ. It turns out, however, that we can replace 2 (ii)
with ðiiÞ þ ðiiiÞ, and thus obtain a truly symmetric combi-
nation. We do this repeatedly below, and thus explain here
the justification for this change.
Momentum assignment (iii) leads to a quantity we call

A0ð1;~sÞ that is related to A0ð1;sÞ as follows:

A0ð1;~sÞ
p;l;m ¼ ð−1ÞlA0ð1;sÞ

p;l;m: ð142Þ
This is because the assignments (iii) and (ii) differ simply
by the interchange of the two particles that have been
boosted to their CM frame. (These are the particles with
momenta k and P − p − k.) This interchange is the same as
a parity transform in the CM frame, leading to the result

(142). We also note that A0ð1;uÞ
p;l;m is only nonvanishing for

even l given the symmetry of K2. Thus the desired
combination

A0ð1Þ
p;l;m ≡ A0ð1;uÞ

p;l;m þ A0ð1;sÞ
p;l;m þ A0ð1;~sÞ

p;l;m ð143Þ

satisfies

A0ð1Þ
p;l;m ¼

�
A0ð1;uÞ
p;l;m þ 2A0ð1;sÞ

p;l;m l even;

0 l odd:
ð144Þ

This means that we can make the replacements

2A0ð1;sÞ
p;l;m → A0ð1;sÞ

p;l;m þ A0ð1;~sÞ
p;l;m and

A0ð1;uÞ
p;l;m þ 2A0ð1;sÞ

p;l;m → A0ð1Þ
p;l;m ð145Þ

as long as only even values of l contribute.
To see that only even values of l contribute, first recall

from Eq. (140) that A0ð1;sÞ is connected by an F to a factor
ofK2. Next, note that the symmetry ofK2 implies that only
even angular momenta appear in its expansion. Finally, use
the result Eq. (A11) in Appendix A that Fp;l;m;kl0;m0

vanishes if lþ l0 is odd. Together these imply that, since
l0 is even, l is also.
It turns out that, throughout the derivation, ðsÞ quantities

always appear opposite those with a ðuÞ superscript. The
latter always have the requisite symmetry so that only even
angular momenta contribute. Consequently, by the argu-
ment just given, we can always replace 2ðsÞwith ðsÞ þ ð~sÞ.
For the sake of brevity, we do not do this explicitly, but
keep in mind that this replacement is allowed. At the end of
the derivation, once we have summed contributions from
any number of switches, we make the replacement explicit
so as to allow symmetrization.

The identity for Að2;uÞ
L is derived in exactly the same way

as that for A0ð2;uÞ
L and we simply state the result:

Að2;uÞ
L ¼ Að2;uÞ þ iK2iF2Að1;sÞ: ð146Þ

FIG. 13. (a) Definition of A0ð1;sÞ, in which the momentum
singled out by the coordinate system (here ~k) is that of a particle
that scatters. (b) Definition of the symmetrized quantity A0ð1Þ.

26We stress that here we are discussing on shell quantities; the
symmetry cannot hold if one of the particles is off shell.
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Here Að2;uÞ
p;l0;m0 and Að1;sÞ are the left-right “reflections” of the

corresponding A0 quantities.
Finally we consider Cð2Þ

L;0F, defined in Eq. (114) and
Fig. 11(c). Our aim is to determine the finite-volume residue
that results when we convert the two momentum sums into
integrals. The two-particle loops are both rendered non-
singular by the fPV integrals over a and a0, so the only
singularity is that in ΔðP − p − kÞ. To isolate this, both p0

and k0 integrals must circle the particle poles. (If other poles
are encircled in either integral, the remaining summand is
nonsingular and both sums can be immediately changed to
integrals.) We then have to choose which sum to evaluate
first. Our convention, here and below, is to work from left to
right. Thus we first convert the sum over ~p into an integral

plus an F term. The detailed steps are exactly as for A0ð2;uÞ
L ,

except that here we have Að1;uÞ on the right rather than K2.
For the contribution in which ~p is integrated, there are no

more singularities, so the sum over ~k can be converted
directly into an integral. For the F term, however, the sum

over ~k must remain. The result of this analysis is that

Cð2Þ
L;0F ¼ Cð2Þ

∞ þ 2A0ð1;sÞ iF
2ωL3

Að1;uÞ; ð147Þ

where Cð2Þ
∞ is the infinite-volume version of the single-

switch correlator:

Cð2Þ
∞ ¼ 1

4
fPVZ

~k

fPVZ
~p

fPVZ
a;a0

Z
p0

Z
k0
σðp; aÞ

× ΔðaÞΔðP − p − aÞΔðpÞ
× iK2;offða; P − p − a;−kÞΔðP − p − kÞ
× iK2;offðP − p − k; p;−a0ÞΔða0ÞΔðP − k − a0Þ
× ΔðkÞσ†ðk; a0Þ: ð148Þ

The factor of 1=ð2ωL3Þ in the last term in Eq. (147)
arises because F is defined to contain the contributions
from only two of the three propagators in the switch state.
The overall factor of 2 in this term arises becauseF contains
a symmetry factor of 1=2 that is absent in the switch state.

Concerning Cð2Þ
∞ , we stress again that the order of fPV

integration matters in the definition of this infinite-volume
quantity.
Our left-to-right convention has given an asymmetric

result, with A0ð1;sÞ to the left of Að1;uÞ and no uFs term. This
lack of symmetry can, however, be corrected a posteriori,
as will be explained when we consider the result from any
number of switches.
Inserting the identities (134), (140), (146), and

(147) into Eq. (115) we find the final result of this
section,

Cð2Þ
L − Cð2Þ

∞ ¼ ðσ� þ A0ð1;uÞÞ½A�½iK2iG2ωL3iK2 þ iKdf;3
ð2;u;uÞ�½A�ðσ†� þ Að1;uÞÞ

þ A0ð2;uÞ½A�ðσ†� þ Að1;uÞÞ þ ðσ� þ A0ð1;uÞÞ½A�Að2;uÞ

þ ½2A0ð1;sÞ�iFiK2½A�ðσ†� þ Að1;uÞÞ þ ðσ� þ A0ð1;uÞÞ½A�iK2iF½2Að1;sÞ�

þ 2A0ð1;sÞ iF
2ωL3

Að1;uÞ: ð149Þ

This is the main result of this subsection. The right-hand
side is the finite-volume residue of all one-switch diagrams.

C. Two-to-two insertions: two switches

In this section we sum the diagrams of Fig. 14. These are

all diagrams that have two switches in the pair that is

scattered. We denote the sum of all such diagrams by Cð3Þ
L .

Throughout this section we refer to leftmost (rightmost)

triplet of propagators, at the point where the scattering pair

changes, as the left (right) switch state. We label the three

different spectator momenta p, r, and k, as shown in the
figure.
We provide a detailed analysis of two-switch diagrams

before analyzing diagrams with any number of switches
for two reasons. First, a new type of intermediate quantity
with finite-volume dependence arises at this order. This is

Kð3;u;uÞ
3;L , a contribution to three-to-three scattering. Second, a

number of new complications enter at this stage with the
derivation of identities relating the intermediate quantities
(with L subscripts) to infinite-volume quantities. We think it
clearer to analyze these in isolation before generalizing to all
orders.

FIG. 14. Finite-volume correlator diagrams containing only two-to-two insertions and with two switches in the scattered pair.
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As in the previous sections we evaluate p0, r0, and k0

integrals and then substitute the identity of Eq. (71) for all
two-particle loops for which the spectator is on shell. There
are three locations where insertions of F can appear: to the
left of the left switch state, between switch states, and to the
right of the right switch state. We define eight different
classes of terms, based on whether or not at least one F
insertion appears in each of the three locations:

ð1ÞF;F; F ð2Þ−; F; F; ð3Þ−;−; F;
ð4ÞF;F;−; ð5ÞF;−;− ð6Þ−; F;−;
ð7ÞF;−; F ð8Þ−;−;−: ð150Þ

For example in class (2) there is at least one insertion to the
right of the right switch state and between the switches, but
no insertion to the left of the left switch state.

Using the methods of the previous subsections, it is straightforward to obtain the results from these classes:

Cð3Þ
L ¼ ðσ� þ A0ð1;uÞÞ½A�iKð2;u;uÞ

3 ½A�iKð2;u;uÞ
3 ½A�ðσ†� þ Að1;uÞÞ

þ A0ð2;uÞ
L ½A�iKð2;u;uÞ

3 ½A�ðσ†� þ Að1;uÞÞ þ A0ð3;uÞ
L ½A�ðσ†� þ Að1;uÞÞ

þ ðσ� þ A0ð1;uÞÞ½A�iKð2;u;uÞ
3 ½A�Að2;uÞ

L þ ðσ� þ A0ð1;uÞÞ½A�Að3;uÞ
L

þ A0ð2;uÞ
L ½A�Að2;uÞ

L þ ðσ� þ A0ð1;uÞÞ½A�iKð3;u;uÞ
3;L ½A�ðσ†� þ Að1;uÞÞ þ Cð3Þ

L;0F: ð151Þ

Here the eight terms are the results, in turn, from the eight
classes of contribution identified above. The four new

quantities appearing in Eq. (151) are A0ð3;uÞ
L , Að3;uÞ

L , Cð3Þ
L;0F,

and Kð3;u;uÞ
3;L . These are defined as (see also Fig. 15)

A0ð3;uÞ
L;p;l0;m0 ≡ A0ð3;uÞ

L;l0;m0 ð~p; q�pÞ with ~p ∈ ð2π=LÞZ3;

ð152Þ
where

A0ð3;uÞ
L;l0;m0 ð~p; a�Þ

ffiffiffiffiffiffi
4π

p
Yl0;m0 ðâ�Þ

≡ 1

2

1

L6

X
~k;~p

fPVZ
a0

Z
k0

Z
r0
σðk; a0ÞΔða0ÞΔðP − k − a0Þ

× iK2;offða0; P − k − a0;−rÞΔðkÞΔðP − r − kÞ
× iK2;offðk; P − k − r;−pÞΔðrÞΔðP − p − rÞ
× iK2;offðr; P − p − r;−aÞ; ð153Þ

with Að3;uÞ
L;k;l;m defined analogously,

Cð3Þ
L;0F≡1

4

1

L9

X
~k;~p;~r

fPVZ
a0
fPVZ

a

Z
k0

Z
p0

Z
r0
σðk;a0Þ

×Δða0ÞΔðP−k−a0ÞiK2;offða0;P−k−a0;−rÞ
×ΔðkÞΔðP−k− rÞiK2;offðk;P− r−k;−pÞ
×ΔðrÞΔðP−p− rÞiK2;offðk;P−p− r;−aÞΔðpÞ
×ΔðP−p−aÞΔðaÞσ†ðp;aÞ; ð154Þ

and finally

Kð3;u;uÞ
3;L;k;l0;m0;p;l;m ≡Kð3;u;uÞ

3;L;l0;m0;l;mð~k; q�k; ~p; q�pÞ
with ~p; ~k ∈ ð2π=LÞZ3; ð155Þ

with

4πY�
l0;m0 ðâ0�ÞiKð3;u;uÞ

3;L;l0;m0;l;mð~k; a0�; ~p; a�ÞYl;mðâ�Þ

≡ 1

L3

X
~r

Z
r0
iK2;offða0; P − k − a0;−rÞ

× ΔðP − k − rÞΔðrÞiK2;offðk; P − k − r;−pÞ
× ΔðP − p − rÞiK2;offðr; P − p − r;−aÞ: ð156Þ

To obtain these results we have summed B2 kernels into
two-particle K-matrices, and used the fact that ½A� ampu-
tates and puts on shell both factors adjacent to it.

We now derive identities relating the quantities A0ð3;uÞ
L ,

Að3;uÞ
L , Cð3Þ

L;0F, and Kð3;u;uÞ
3;L to infinite-volume observables.

r

k

a
} *

p
aA

′(3,u)
L ≡

r

pk

aa
C

(3)
L,0F ≡

* r a}
p

a {
k

*
iK(3,u,u)

3,L ≡

FIG. 15. (a) Definition of A0ð3;uÞ
L . The dotted rectangle contains

momenta which are summed; thus only the leftmost two-particle

loop is integrated. (b) Definition of Cð3Þ
L;0F, which has two

integrated and three summed loop momenta. (c) Definition of

Kð3;u;uÞ
3;L , which has a single summed momentum.
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We begin with A0ð3;uÞ
L [see Fig. 15(a)], and work from left to

right converting sums into integrals. The ~k sum leaves a
finite-volume residue because of the singular propagator
ΔðP − k − rÞ, while the ~r sum leaves a residue because of
ΔðP − p − rÞ. The infinite-volume quantity that results,
which we call A0ð3;uÞ, is thus given by the same expressions
as Eqs. (152)–(153) except that

P
~k;~p is replaced byfPV R

~k
fPV R

~p in Eq. (153). The finite-volume residues can

be obtained using the same argumentation as for A0ð2;uÞ
L in

the previous subsection. The result is

A0ð3;uÞ
L ¼ A0ð3;uÞ þ 2A0ð1;sÞ iF

2ωL3
iKð2;u;uÞ

3

þ 2A0ð2;sÞ iF
2ωL3

iK2: ð157Þ

Note the superscripts s on the ALs and the factors of
2 due to the missing symmetry factor at the switch states.
The new quantity A0ð2;sÞ is simply A0ð2;uÞ expressed in the
alternative coordinate system, just as in the definition of
A0ð1;sÞ, Eq. (170). We can now use the result from the

previous subsection for Kð2;u;uÞ
3 , Eq. (134), to obtain the

desired identity

A0ð3;uÞ
L ¼ A0ð3;uÞ þ 2A0ð2;sÞiFiK2

þ 2A0ð1;sÞ iF
2ωL3

iK2iG2ωL3iK2

þ 2A0ð1;sÞ iF
2ωL3

iKð2;u;uÞ
df;3 : ð158Þ

This derivation naturally lends itself to a recursive exten-
sion to higher order, as we explain in the next subsection.

The result for Að3;uÞ
L is given simply by reversing the

order of factors in each term:

Að3;uÞ
L ¼ Að3;uÞ þ iK2iF2Að2;sÞ þ iK2iGiK2iF2Að1;sÞ

þ iKð2;u;uÞ
df;3

iF
2ωL3

2Að1;sÞ: ð159Þ

We next consider Cð3Þ
L;0F [see Fig. 15(b)]. Working from

left to right we obtain the infinite-volume quantity plus one

finite-volume residue from the ~k sum and another from the
~r sum. Following our by now standard manipulations, this
leads to

Cð3Þ
L;0F ¼ Cð3Þ

∞ þ 2A0ð1;sÞ iF
2ωL3

Að2;uÞ
L þ 2A0ð2;sÞ iF

2ωL3
Að1;uÞ:

ð160Þ

Here Cð3Þ
∞ is defined as in Eq. (154) except that the

momentum sums are replaced by the ordered integrals

fPV R
~p
fPV R

~r
fPV R

~k. Note that A
ð2;uÞ
L still contains a momen-

tum sum, but we can obtain a complete decomposition
using Eq. (146) from the previous subsection. This leads to

Cð3Þ
L;0F − Cð3Þ

∞ ¼ 2A0ð1;sÞ iF
2ωL3

iK2iF2Að1;sÞ

þ 2A0ð1;sÞ iF
2ωL3

Að2;uÞ

þ 2A0ð2;sÞ iF
2ωL3

Að1;uÞ: ð161Þ

We are thus left with Kð3;u;uÞ
3;L [Eqs. (155)–(156) and

Fig. 15(c)]. As always, our method is to replace sums with
integrals while keeping track of finite-volume remainders.
The analysis is shown diagrammatically in Fig. 16. The first
step is to do the r0 integral. Singular terms occur only if the
contour circles the r0 ¼ ωr pole; for the remainder we can
replace the sum over ~r with an integral [giving the last term
on the right-hand side in Fig. 16(a)]. Thus to study the
singular terms we can replace ΔðrÞ with 1=ð2ωrÞ and set
r ¼ ½ωr; ~r� (indicated by the dashed top line in the figure).
The sum over ~r runs over two potential singularities, one in
ΔðP − k − rÞ and the other in ΔðP − p − rÞ. To use the
sum-minus-integral identity, we must pull out the double
singularity [the first term on the right-hand side in
Fig. 16(a)], leaving a remainder with at most single
singularities. To do so we follow the analysis of the
previous subsection [see Eqs. (116)–(134)], applied sepa-
rately to the two propagators, both of which are sandwiched
between factors of K2. This analysis can be applied
independently to the contributions associated with each
propagator, with each separated into into an on shell
singular part and a divergence-free quantity. This leads
to the decomposition

iKð3;u;uÞ
3;L ¼ iK2iGiK2iG½2ωL3�iK2 þ iK2iGiK

ð2;u;uÞ
df;3

þ iKð2;u;uÞ
df;3 ½1=ð2ωL3Þ�iG½2ωL3�iK2 þR;

ð162Þ

where the first three terms correspond to the first three
terms on the right-hand side of Fig. 16(a),27 while R is the
sum of the last two diagrams in the figure. The only
properties of R that we will need are that it is an infinite-
volume quantity (since the sum over ~r which it contains can
be replaced by an integral) and that it is a smooth function
of its arguments. An explicit form for R is not needed—
Eq. (162) serves as sufficient definition since all terms other
than R are known.

27The appearance of ½2ωL3� and its inverse in the third but not
the second term is due to the facts that ½1=ð2ωL3Þ� appears on the
right in the definition of G, Eq. (21), and that ½2ωL3� does not
commute with G.
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As noted above, we can use the sum-minus-integral identity on the two terms in Eq. (162) containing a single factor ofG.
Unpacking our abbreviated notation, the first such term can be written

½iK2iGiK
ð2;u;uÞ
df;3 �p;l;m;k;l0;m0 ¼ fPVZ

~r

1

2ωr
iK2;l;m;l1;m1

ð~pÞiGb
l1;m1;l2;m2

ð~p; ~rÞ

× iKð2;u;uÞ
df;3;l2;m2;l0m0 ð~r; q�r ; ~k; q�kÞ þ

�
1

L3

X
~r

− fPV Z
~r

�

× iK2;l;m;l1;m1
ð~pÞ

�
r�

q�p

�
l1 i4πYl1;m1

ðr̂�ÞHð~pÞHð~rÞY�
l2;m2

ðp̂�Þ
2ωr2ωprðE − ωp − ωr − ωprÞ

×

�
p�

q�r

�
l2
iKð2;u;uÞ

df;3;r;l2;m2;k;l0m0 : ð163Þ

The integral [the last term in Fig. 16(b)] is combined with
the corresponding integral from the third term in Eq. (162)

[the last term in Fig. 16(c)], and with R, to define Kð3;u;uÞ
df;3 .

This is the two-switch contribution to the continuum
divergence-free amplitude. The sum-integral difference
requires some adjustments to allow the use of our identity.
First we make the substitutionffiffiffiffiffiffi
4π

p
Y�
l2;m2

ðp̂�Þðp�=q�rÞl2Kð2;u;uÞ
df;3;r;l2;m2;k;l0;m0

¼
ffiffiffiffiffiffi
4π

p
Y�
l2;m2

ðp̂�Þðp�=q�rÞl2Kð2;u;uÞ
df;3;l2;m2;l0;m0 ð~r; q�r ; ~k; q�kÞ

⟶
ffiffiffiffiffiffi
4π

p
Y�
l2;m2

ðp̂�ÞKð2;u;uÞ
df;3;l2;m2;l0;m0 ð~r; p�; ~k; q�kÞ

≡Kð2;u;uÞ
df;3;;l0;m0 ð~r; ~p; ~k; q�kÞ: ð164Þ

Here we are changing q�r → p�, which is allowed because
the difference between the old and new forms is

proportional to p�2−q�2r , which cancels the singularity.
We explain in Appendix A why the difference has this
particular scaling. After this change, the sum over l2 and

m2 can be done, leading to a version of K
ð2;u;uÞ
df;3 which is off

shell on the left.28 At this stage we can drop theHð~rÞ factor
from the summand of the sum-minus-integral term in
Eq. (163), since it is not needed to define the boosts,
and the difference 1−Hð~rÞ cancels the singularity. These
manipulations bring the sum minus integral into a form
where we can apply our standard identity. In this way we
find that the sum minus integral in Eq. (163) can be written

FIG. 16. Decomposition ofKð3;u;uÞ
3;L . See Fig. 15(c) for momentum labels. Double solid lines indicate nonsingular terms. On the top line

these come from the r0 contour circling poles other than the single-particle pole, while for the diagonal lines in the switch state the
notation is as in Fig. 12. Double dashed lines represent the singular quantity Gb sandwiched between on shell amplitudes, as in Fig. 12.
The single dashed line within the loop (top propagator) indicates the on shell propagator factor 1=ð2ωrÞ. (a) Initial decomposition. Loop
momenta inside dotted boxes are summed, while those not in a box are integrated. (b) and (c): Use of the sum-minus-integral identity, as
indicated by the vertical bars and factors of F, leaving a remainder which is integrated. The vertical bar crosses the two propagators

whose momenta are projected on shell by F, so that the uncrossed propagator is the spectator. Kð3;u;uÞ
df;3 is given by the sum of the four

terms containing loop integrals [two in (a) and one each in (b) and (c)].

28Our notation for this quantity, Kð2;u;uÞ
df;3; ;l0;m0 ð~r; ~p; ~k; q�kÞ, indi-

cates through the absence of a subscript between the two
semicolons that no angular decomposition of the outgoing
coordinates is being done.
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iK2iF2iK
ð2;s;uÞ
df;3 ; ð165Þ

where Kð2;s;uÞ
df;3 is defined by re-expanding Kð2;u;uÞ

df;3 in
spherical harmonics in ~r. This is shown by the first diagram
on the right-hand side in Fig. 16(b). Specifically, the off

shell form of Kð2;u;uÞ
df;3 is expanded in harmonicsffiffiffiffiffiffi

4π
p

Y�
l1;m1

ðr̂�ÞKð2;s;uÞ
df;3;l1;m1;l0;m0 ð~p; r�; ~k; q�kÞ

≡Kð2;u;uÞ
df;3; ;l0;m0 ð~r; ~p; ~k; q�kÞ; ð166Þ

and then put on shell and restricted to finite-volume
momenta,

Kð2;s;uÞ
df;3;p;l1;m1;k;l0;m0 ≡Kð2;s;uÞ

df;3;l1;m1;l0;m0 ð~p; q�p; ~k; q�kÞ
× ½~p; ~k ∈ ð2π=LÞZ3�: ð167Þ

The superscript s once again indicates that the momentum
singled out by the coordinate system on the left, here ~p, is
one of the scattered outgoing particles.
We stress that the validity of Eq. (165) requires two

properties of Kð2;u;uÞ
df;3 . First, it must be a smooth function of

its arguments, for otherwise there would be additional
contributions to the sum-integral difference. As discussed
in the previous subsection, smoothness requires that G be
defined including the factors of ðp�Þl1þl2 . Second, it must
be divergence free, and thus local in position space, so that
the expansion in spherical harmonics of r̂� is convergent.
This is one of the ways that our analysis forces us to use
divergence-free quantities, as announced in the introduction.
The other term in Eq. (162) containing a single factor of

G can be analyzed in a similar fashion, leading to an

integral plus the finite-volume residue 2iKð2;u;sÞ
df;3 iFiK2.

This is shown in Fig. 16(c). Here Kð2;u;sÞ
df;3 is defined in

an analogous way to Kð2;s;uÞ
df;3 , but with the re-expansion in

new coordinates occurring for the incoming momenta.
As already noted, the integral is part of the nonsingular

remainder which builds up Kð3;u;uÞ
df;3 . Combining all ele-

ments, we finally reach

iKð3;u;uÞ
3;L ¼ iK2iGiK2iG½2ωL3�iK2 þ iK2iF2iK

ð2;s;uÞ
df;3

þ 2iKð2;u;sÞ
df;3 iFiK2 þ iKð3;u;uÞ

df;3 : ð168Þ

This has the desired form in which each term is a product of
on shell, infinite-volume quantities and kinematic factors.
The result (168) and the similar decompositions in

Eqs. (158)–(159) and (161) can now be substituted in
Eq. (151) to obtain our final result for the two-switch
correlator Cð3Þ

L . The result is lengthy and, at this stage,
unilluminating. We hold off on making such substitutions
until we are working to all orders, in the next subsection,
for then the result simplifies.

D. Two-to-two insertions: any number of switches

In this section we sum all remaining contributions to the
finite-volume correlator containing only B2 kernels,
allowing any number of switches in scattered pair.
The first step, as before, is to replace sums on two-

particle loops with integrals plus factors of F. This leads to

the appearance of CðnÞ
L;0F, A

0ðn;uÞ
L , Aðn;uÞ

L , and Kðn;u;uÞ
3;L , with

n ≥ 3, which are generalizations of the quantities found
earlier. Their definitions, sketched in Fig. 17, are

CðnÞ
L;0F ≡ 1

4

�Yn
m¼1

1

L3

X
~qm

�fPV Z
a

fPV Z
a0

�Yn
m¼1

Z
q0m

�
σðq1; aÞΔðaÞΔðP − q1 − aÞiK2;offða; P − q1 − a;−q2Þ

× Δðq1ÞΔðP − q1 − q2ÞiK2;offðq1; P − q1 − q2;−q3Þ × � � � × Δðqn−1ÞΔðP − qn − qn−1Þ
× iK2;offðqn−1; P − qn − qn−1;−a0ÞΔðqnÞΔðP − qn − a0ÞΔða0Þσ†ðqn; a0Þ; ð169Þ

A0ðn;uÞ
L;l0;m0 ð~k; a0�Þ

ffiffiffiffiffiffi
4π

p
Yl0;m0 ðâ0�Þ

≡ 1

2

�Yn−1
m¼1

1

L3

X
~qm

�fPV Z
a

�Yn−1
m¼1

Z
q0m

�
σðq1; aÞΔðaÞΔðP − q1 − aÞ

× iK2;offða; P − q1 − a;−q2ÞΔðq1ÞΔðP − q1 − q2ÞiK2;offðq1; P − q1 − q2;−q3ÞΔðq2ÞΔðP − q3 − q2Þ
× � � � × iK2;offðqn−2; P − qn−2 − qn−1;−pÞΔðqn−1ÞΔðP − p − qn−1ÞiK2;offðqn−1; P − p − qn−1;−a0Þ; ð170Þ

with Aðn;uÞ
L defined analogously by reflection, and
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4πY�
l0;m0 ðâ�ÞiKðn;u;uÞ

3;L;l0;m0;l;mð~p; a�; ~k; a0�ÞYl;mðâ0�Þ

≡
�Yn−2
m¼1

1

L3

X
~qm

��Yn−2
m¼1

Z
q0m

�
iK2;offða; P − p − a;−q1ÞΔðP − p − q1ÞiK2;offðp; P − p − q1;−q2ÞΔðq2ÞΔðP − q1 − q2Þ

× � � � × Δðqn−2ÞΔðP − k − qn−2ÞiK2;offðqn−2; P − p − qn−2;−a0Þ: ð171Þ

The above definitions give partially off shell versions of

A0ðn;uÞ
L and Kðn;u;uÞ

3;L . The on shell versions are defined as
usual by

A0ðn;uÞ
L;k;l0;m0 ≡ A0ðn;uÞ

L;l0;m0 ð~k; q�kÞ and

Kðn;u;uÞ
3;L;p;l0;m0;k;l;m ≡Kðn;u;uÞ

3;L;l0;m0;l;mð~p; q�p; ~k; q�kÞ with

~p; ~k ∈ ð2π=LÞZ3; ð172Þ

with an analogous definition for Aðn;uÞ
L .

It is simpler to write down the all-orders form of

C½B2�
L ¼

X∞
n¼0

CðnÞ
L ð173Þ

than it is to write down CðnÞ
L itself. The superscript ½B2�

here is a reminder that no B3 kernels have yet been
included. We find

C½B2�
L ¼

X∞
n¼0

CðnÞ
L;0F − ð2=3Þσ� iF

2ωL3
σ†�

þ
�X∞
i¼0

A0ði;uÞ
L

�
½A�

�X∞
n¼0

ðiKðu;uÞ
3;L ½A�Þn

	

×

�X∞
k¼0

Aðk;uÞ
L

�
: ð174Þ

Here we have made the definitions

Að0;uÞ
L ≡ σ�†; Að1;uÞ

L ≡ Að1;uÞ;

A0ð0;uÞ
L ≡ σ�; A0ð1;uÞ

L ≡ A0ð1;uÞ;
ð175Þ

iKð2;u;uÞ
3;L ≡ iKð2;u;uÞ

3 ; Cð0Þ
L;0F ≡ Cð0Þ

∞ ; Cð1Þ
L;0F ≡ Cð1Þ

∞ ;

ð176Þ
in which infinite-volume quantities are relabeled as though
they have volume dependence, in order to simplify the form
of the result. We have also introduced

Kðu;uÞ
3;L ≡X∞

n¼2

Kðn;u;uÞ
3;L : ð177Þ

The way in which (174) arises should be clear by general-

izing the discussion leading to the results for Cð0Þ
L þ Cð1Þ

L

[Eq. (92)], Cð2Þ
L [Eq. (115)], and Cð3Þ

L [Eq. (151)] above. In
words, one has end caps, involving any number of
switches, connected to any number of finite-volume
three-particle scattering amplitudes with intermediate fac-
tors of ½A�. Recall that ½A�, defined in Eq. (91), is closely
related to the two-particle finite-volume propagator.
To bring Eq. (174) into a useful form we need identities

relating all quantities with L subscripts to infinite-volume
quantities and finite-volume remainders.

We first consider A0ðn;uÞ
L , and for now seek only to rewrite

this in terms ofKðj;u;uÞ
3;L as well as infinite-volume quantities.

Our basic strategy is to move from left to right, replacing
sums with integrals plus sum-integral differences. Then
each sum has a summand with only one singular factor,
which we know how to handle. All double singularities are
removed, because each sum is adjacent to an integral which
removes the singularities in one of the two switch states
containing the summed coordinate.
We describe in some detail how the process works for q1

and then state the final result. The sum over ~q1 has a
potentially singular summand in the propagator ΔðP −
q1 − q2Þ [the singularity in ΔðP − q1 − aÞ being removed
by the fPV integral]. For this singularity to be present, both
q1 and q2 must be on shell, so we must first do the q01 and q

0
2

integrals and pick out the particle poles. In this singular
term we can replace the sum over ~q1 with an integral plus
the sum-integral difference. Generalizing the analysis given
earlier, we find that the sum-integral difference gives

FIG. 17. Diagrammatic definitions of (a) A0ðn;uÞ
L , (b) CðnÞ

L;0F, and

(c) iKðn;u;uÞ
3;L .
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2A0ð1;sÞ iF
2ωL3

iKðn−1;u;uÞ
3;L : ð178Þ

What remains are terms involving the fPV integral over ~q1,
and these can be repackaged into a quantity with exactly the

form of A0ðn;uÞ
L [Eq. (170)] except that the sum-integral

1=L3
P

~q1
fPV R

q0
1
is replaced by the four-momentum inte-

gral fPV R
q1
. In this way the finite-volume residue from the

sum over ~q1 has been determined.
We now repeat this analysis for q2, finding that the sum-

integral difference gives

2A0ð2;sÞ iF
2ωL3

iKðn−2;u;uÞ
3;L ; ð179Þ

while the remainder has the form of A0ðn;uÞ
L with sum

integrals over both q1 and q2 replaced by integrals.
Continuing in this way, we deduce

A0ðn;uÞ
L ¼

Xn−2
i¼1

2A0ði;sÞ iF
2ωL3

iKðn−i;u;uÞ
3;L

þ 2A0ðn−1;sÞiFiK2 þ A0ðn;uÞ: ð180Þ

This result holds for n > 2, and agrees with Eq. (157) for
n ¼ 3. The infinite-volume quantity A0ðn;uÞ is given by the

same expression as A0ðn;uÞ
L [Eq. (170)] except that all sums

are replaced with fPV integrals, with the order being

fPV Z
qn

� � � fPV Z
q1

fPV Z
a
: ð181Þ

The quantities A0ðn;sÞ are defined in terms of A0ðn;uÞ by
changing variables exactly as for A0ð1;sÞ [see Eq. (137)].

The analysis for Aðn;uÞ
L is the mirror image of that for

A0ðn;uÞ
L , so that the sums are now dealt with moving from

right to left. The result is

Aðn;uÞ
L ¼

Xn−2
i¼1

iKðn−i;u;uÞ
3;L

iF
2ωL3

2Aði;sÞ

þ iK2iF2Aðn−1;sÞ þ Aðn;uÞ: ð182Þ

We treat CðnÞ
L;0F in a similar fashion. Here we can choose

to work from left to right or vice versa—both choices lead
to single singularities for each loop sum. As above, our
convention is to work from left to right. Since the analysis

follows that for A0ðn;uÞ
L very closely, we simply quote the

result,

CðnÞ
L;0F ¼

Xn−2
i¼1

2A0ði;sÞ iF
2ωL3

Aðn−i;uÞ
L

þ 2A0ðn−1;sÞ iF
2ωL3

Að1;uÞ þ CðnÞ
∞ ; ð183Þ

¼
Xn−1
i¼1

2A0ði;sÞ iF
2ωL3

Aðn−i;uÞ
L þ CðnÞ

∞ : ð184Þ

To obtain the second form we have used Að1;uÞ
L ≡ Að1;uÞ.

The quantity CðnÞ
∞ takes the same form as CðnÞ

L;0F [Eq. (169)]
except that all sums are replaced by integrals, ordered as

fPV Z
qn

� � � fPV Z
q1

fPVZ
a

fPVZ
a0
: ð185Þ

The result (184) is valid for n > 1, and agrees with
Eqs. (147) and (160) for n ¼ 2 and 3, respectively.
The next step towards simplifying the result for C½B2�

L ,
Eq. (174), is to perform the sums over the number of
switches. In particular, from Eq. (180) we find

A0ðuÞ
L ≡X∞

n¼1

A0ðn;uÞ
L ¼ A0ðuÞ þ 2A0ðsÞ

�
iFiK2 þ

iF
2ωL3

iKðu;uÞ
3;L

�
;

ð186Þ

where

A0ðuÞ ≡X∞
n¼1

A0ðn;uÞ and A0ðsÞ ≡X∞
n¼1

A0ðn;sÞ: ð187Þ

Similar definitions will be used for AðuÞ and AðsÞ, and also
for the amplitudes corresponding to the third choice of
momentum assignments, A0ð~sÞ and Að~sÞ. The latter were
introduced in Eq. (142).
An analogous result to Eq. (186) holds for the other

end cap

AðuÞ
L ≡X∞

n¼1

Aðn;uÞ
L ¼ AðuÞ þ

�
iK2iF þ iKðu;uÞ

3;L
iF

2ωL3
2AðsÞ

�
;

ð188Þ

while for the correlator sum we obtain

X∞
n¼0

CðnÞ
L;0F ¼ C½B2�

∞ þ 2A0ðsÞ iF
2ωL3

AðuÞ
L ; ð189Þ

where
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C½B2�
∞ ¼

X∞
n¼0

CðnÞ
∞ : ð190Þ

We can now express C½B2�
L in terms of infinite-volume

quantities together with Kðu;uÞ
3;L . This requires substituting

Eqs. (186), (188), and (189) into Eq. (174) and using the
following identities:

�
iFiK2 þ

iF
2ωL3

iKðu;uÞ
3;L

�
½A�

X∞
n¼0

ðiKðu;uÞ
3;L ½A�Þn

¼ ½A�
X∞
n¼0

ðiKðu;uÞ
3;L ½A�Þn − iF

2ωL3
ð191Þ

¼ ½A�
X∞
n¼0

ðiKðu;uÞ
3;L ½A�Þn

�
iK2iF þ iKðu;uÞ

3;L
iF

2ωL3

�
: ð192Þ

After some algebra, we obtain a relatively simple form,

C½B2�
L ¼ C½B2�

∞ þ δC½B2�
∞

þ A0½B2�
�
−
2

3

iF
2ωL3

þ ½A�
X∞
n¼0

ðiKðu;uÞ
3;L ½A�Þn

�
A½B2�;

ð193Þ

where

A0½B2� ¼ σ� þ A0ðuÞ þ A0ðsÞ þ A0ð~sÞ;

A0½B2� ¼ σ†� þ AðuÞ þ AðsÞ þ Að~sÞ; ð194Þ

and

δC½B2�
∞ ¼ 2

3
A0½B2� iF

2ωL3
ðAðuÞ − AðsÞÞ

þ 2

3
ðA0ðuÞ − A0ðsÞÞ iF

2ωL3
σ†�: ð195Þ

Several comments are in order. First, we observe that
summing over all switches has led to a dramatic simpli-
fication in the expression for the correlator. This can be
seen, for example, by comparing even the one-switch
expression (149) to Eq. (193). Second, to obtain
Eq. (193) we have made use of the fact, explained after
Eq. (145), that, within our derivation thus far, superscripts
ðsÞ and ð~sÞ are interchangeable. This allows us to write the
result in terms of end caps, A0½B2� and A½B2�, which are
symmetric under particle interchange. We stress that this
symmetrization occurs only when working to all orders in
the number of switches, since it requires combining terms
with different numbers of switches. Our third comment also
concerns symmetrization, or rather its absence in Eq. (195).
Recall that particle-interchange symmetry was violated

when we chose to analyze the loops in CðnÞ
L;0F moving from

left to right, since this led to ðsÞ quantities always being to
the left of those with superscripts ðuÞ. Forcing the end caps
into symmetric form leads to the remainder δC½B2�

∞ . Note that
in the terms involving a ðuÞ − ðsÞ difference, we can freely
interchange ðsÞ and ð~sÞ, and we have used this freedom to
choose both terms to involve ðsÞ. Although δC∞ appears to
be a finite-volume term (since it contains factors of F), in
fact, as we show below, it can be rewritten as an infinite-

volume quantity. This means that δC½B2�
∞ can be absorbed

into an alternative infinite-volume quantity, used in place of

C½B2�
∞ . Since other contributions of this type arise in the

analysis that follows, we delay our definition of the
replacement until Eq. (238) below. We note that our job
is not done, because the result (193) still contains the
asymmetric three-particle finite-volume scattering ampli-

tudeKðu;uÞ
3;L . We return shortly to the task of rewriting this in

terms of infinite-volume quantities.

First, however, we rewrite δC½B2�
∞ in a manifestly infinite-

volume form. We show how this works for the first term in
(195) from which the generalization to the second term is
immediate. The steps are as follows:

2

3
A0½B2� iF

2ωL3
ðAðuÞ − AðsÞÞ

¼ 1

3

1

L3

X
~k

�
1

L3

X
~a

− fPVZ
~a

�
A0½B2�ð~k; ~aÞ

×
iHð~kÞHð~aÞHð~bkaÞ

2ωk2ωa2ωkaðE − ωk − ωa − ωkaÞ
× ½AðuÞð~k; ~aÞ − AðuÞð~a; ~kÞ� ð196Þ

¼ −
1

3

Z
~k

fPV Z
~a
A0½B2�ð~k; ~aÞ

×
iHð~kÞHð~aÞHð~bkaÞ

2ωk2ωa2ωkaðE − ωk − ωa − ωkaÞ
× ½AðuÞð~k; ~aÞ − AðuÞð~a; ~kÞ� ð197Þ

¼
Z
~k
A0½B2�ð~kÞ iρð

~kÞ
3ωk

½AðuÞð~kÞ − AðsÞð~kÞ�

≡ A0½B2� iρ
3ω

½AðuÞ − AðsÞ�; ð198Þ

where in an abuse of notation, in the last line we have

introduced the shorthand that integration over ~k is implicit
for a product involving ρ.
In the first step, we use the sum-minus-integral identity

in reverse, as well as the definition of AðsÞ [see Eq. (137)].
The momenta ~k and ~a are on shell, but, in general, the third
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four momentum, bka ¼ P − k − a, is now off shell. Thus
amplitudes are not invariant under the full particle-

interchange symmetry. Nevertheless, A0½B2�ð~k; ~aÞ remains

symmetric under the interchange ~k↔~a, while theAðuÞ − AðsÞ
becomes a term which is manifestly antisymmetric under
this interchange. Since the remaining terms are symmetric,
the entire summand/integrand is antisymmetric. This obser-
vation allows us to drop the double sum, since a symmetric
sum over an antisymmetric summand clearly vanishes. The

sum over ~k can now be replaced by an integral, since the fPV
integral over ~a leads to a smooth function of ~k. At this stage
we obtain the second form of the right-hand side, Eq. (197).
The final step is to notice that, if an iϵ pole prescription were
used, then the double integration would also vanish by
symmetry. Thus it is only the ρ term in the definition of fPV
integration, Eq. (59), that survives.
Applying a similar analysis to the second term in

Eq. (195), we find, in total,

δC½B2�
∞ ¼ A0½B2� iρ

3ω
½AðuÞ − AðsÞ� þ ½A0ðuÞ − A0ðsÞ� iρ

3ω
σ†�;

ð199Þ

where, as above, integration over ~k is implicit. This is a
manifestly infinite-volume quantity depending only on on
shell (but not symmetric) amplitudes.

The final identity we require is that for Kðn;u;uÞ
3;L . The

identities for n ¼ 2 and 3 are given, respectively, by
Eqs. (134) and (168). To understand how the pattern
generalizes to arbitrary n it is useful to first work out
explicitly the result for n ¼ 4, since new effects occur at

this order. The decomposition of Kð4;u;uÞ
3;L is shown dia-

grammatically in Fig. 18. Here we are using a stripped-
down diagrammatic notation in which external lines and
momentum labels are implicit. The basic method, however,
is exactly as used earlier for n ¼ 2 and 3: (i) do the time-
component integrals over the loop momenta, and separate
the result into on shell particle contributions and the
remainders; (ii) separate each of the remaining diagonal
propagators and their attached factors of K2 into a singular
part (containing Gb) and the nonsingular remainder;
(iii) pull out the most singular term; (iv) analyze the
remainder by converting sums into integrals where pos-
sible, which in some cases leads to residues containing
factors of F. The key point is that after the most singular
term has been subtracted, there is always at least one choice
of ordering of momentum sums which allows the use of the
sum-minus-integral identity at each stage. For most terms
in the decomposition there is either a single such choice or
the order is unimportant. However, at n ¼ 4 we first
encounter a case where there is a significant choice of
ordering to be made. As n increases there are more such
cases and we need a convention for how to deal with them.

We now work through the different contributions to

Kð4;u;uÞ
3;L in some detail, starting from the most singular and

working to the least. We recall the notation [from Eq. (171)
and Fig. 17(c)] that q1 is the leftmost loop momentum and
q2 the rightmost. The most singular term is that shown in
Fig. 18(b), and gives the contribution

ðbÞ ¼ iK2iGiK2iGiK2iG½2ωL3�iK2: ð200Þ

This term must be left as a sum (which is implicit in our
matrix notation).
Contributions with two singular propagators are those of

Fig. 18(c), its reflection (not shown) in which the rightmost
diagonal propagator is nonsingular, and Fig. 18(d).
The decomposition of the first of these is also shown in
Fig. 18(c). We must begin with q1 since the q2 sum runs over
two singular propagators. We first convert the q1 sum into an
F insertion plus an integral. For theF term this is as far as we
can go, since the q2 sum runs over singularities in bothF and
the propagator. For the integral over q1 we can repeat the F
plus integral decomposition for q2. Note that in the resulting
double integral the order of integration is important. The net
result is that there are three terms, each with different levels
of singularity. The doubly singular term gives

ðcÞ ½doubly singular� ¼ 2iKð2;u;sÞ
df;3

iF
2ωL3

iK2iG½2ωL3�iK2;

ð201Þ
while the term with one singularity contributes as

ðcÞ ½singly singular� ⊂ 2iKð3;u;sÞ
df;3 iFiK2; ð202Þ

and the nonsingular term contributes as

ðcÞ ½nonsingular� ⊂ iKð4;u;uÞ
df;3 : ð203Þ

The reflected diagram is decomposed similarly.
The decomposition of the remaining term with two

singular propagators is shown in Fig. 18(d). Here, since
the singular propagators are separated, the sum-integral
identity can be applied to each independently. Thus there
are four terms in the decomposition. The doubly singular
one is

ðdÞ ½doubly singular� ¼ iK2iF4iK
ð2;s;sÞ
df;3 iFiK2: ð204Þ

Note that here both ðuÞs have been switched to ðsÞs. Each
switch comes with a factor of 2, leading to the overall factor

of 4. The singly singular terms contribute to 2iKð3;u;sÞ
df;3 iFiK2

and iK2iF2iK
ð3;s;uÞ
df;3 , while the nonsingular terms contribute

to iKð4;u;uÞ
df;3 .

There are three diagrams containing one singular propa-
gator: Fig. 18(e), its reflection, and Fig. 18(f). In the first,
the sum over q2 can be immediately converted to an
integral, since the summand is nonsingular. For q1 we
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obtain the usual F term plus integral. The former gives rise

to another contribution to iK2iF2iK
ð3;s;uÞ
df;3 , while the latter

contributes to iKð4;u;uÞ
df;3 . Analogous results hold for the

reflection of Fig. 18(e).
The diagram of Fig. 18(f) leads to a new effect. Here we

can use the sum-integral identity either on ~q1 or ~q2.
Our convention (as above) is to work from left to right
when there is such a choice. This gives the singly singular
term

ðfÞ ½singly singular� ¼ 2iKð2;u;sÞ
df;3

iF
2ωL3

iKð2;u;uÞ
df;3 ; ð205Þ

where our convention has led to the ðsÞ being on the left
side of the F, rather than on the right. The nonsingular term

contributes to iKð4;u;uÞ
df;3 . Here our convention leads to a

definite (left to right) ordering of the fPV integrals.
Another new feature of the n ¼ 4 analysis is the

appearance of singular contributions in which one of the

FIG. 18. Decomposition ofKð4;u;uÞ
3;L . All external propagators are dropped, and the notation of Figs. 12 and 16 is used. (a) Kð4;u;uÞ

3;L itself
[see Eq. (171)]; (b) the most singular term (with three singular propagators); (c) and (d): terms with two singular propagators and their
decompositions; (e), (f), and (g): terms with one singular propagator and their decompositions; (h), (i), and (j): nonsingular terms. Terms
in the decompositions are always ordered from most to least singular. The treatment of loop momenta is indicated explicitly: they are
either summed (dashed box), integrated (integral sign) or the sum-minus-integral identity is used (factor of F). Where the order of
integrals matters it is shown explicitly.
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q0j integrals does not circle the particle pole. The corre-
sponding diagrams are Fig. 18(g) and its reflection. The
decomposition exactly follows that of Fig. 18(e).
Finally, we reach the completely nonsingular contribu-

tions, where sums can be immediately converted to

integrals. There are four such diagrams, Fig. 18(h), its
reflection, Fig. 18(i), and Fig. 18(j). These all contribute

to iKð4;u;uÞ
df;3 .

Adding all contributions we find the total result

iKð4;u;uÞ
3;L ¼ iK2iGiK2iGiK2½iG2ωL3�iK2 þ iK2iG½2ωL3�iK2

iF
2ωL3

2iKð2;s;uÞ
df;3 þ 2iKð2;u;sÞ

df;3
iF

2ωL3
iK2iG½2ωL3�iK2

þ iK2iF4iK
ð2;s;sÞ
df;3 iFiK2 þ 2iKð3;u;sÞ

df;3 iFiK2 þ iK2iF2iK
ð3;s;uÞ
df;3 þ 2iKð2;u;sÞ

df;3
iF

2ωL3
iKð2;u;uÞ

df;3 þ iKð4;u;uÞ
df;3 ; ð206Þ

where we have ordered terms in decreasing strength of
divergence. The only aspect of this result not explained
above is that contributions combine properly to give the

quantities Kð3;u;sÞ
df;3 and Kð3;s;uÞ

df;3 in the fifth and sixth terms,

respectively. For example, the Kð3;u;sÞ
df;3 term receives the

required four contributions (see Fig. 16) from diagrams
(c), (d), and the reflections of (e) and (g). One can
demonstrate that the correct contributions occur in all
cases by observing that (i) the result (206) provides a
complete classification of possible divergence structures
and (ii) that expanding out each term in (206) leads to a
unique set of contributions each of which is necessarily

present in the decomposition of Kð4;u;uÞ
3;L . Finally, we note

that the nonsingular term in Eq. (206), Kð4;u;uÞ
df;3 , is simply

defined as the sum of contributions from all the diagrams
in Fig. 18 (plus appropriate reflections) that contain only
loop integrals.
We are now ready to explain the result for general

iKðn;u;uÞ
3;L . What arises are sequences alternating between

one of the Ks,

iK2; iK
ðj;u;uÞ
df;3 ; 2iKðj;s;uÞ

df;3 ; 2iKðj;u;sÞ
df;3 and 4iKðj;s;sÞ

df;3 ;

ð207Þ

and one of

iF
2ωL3

and iG: ð208Þ

All possible combinations should be included, subject to
the following rules:

(i) The number of switches must add up to n. This
number is given by the total number of Fs and Gs
plus the number of switches in the Kdf;3s.

(ii) There must be a K2 or Kdf;3 on both ends.
(iii) Each Kdf;3 must have F on both sides unless

external. This is because the loop momenta next
to a Kdf;3 have only one singular propagator in
their summands and so the sum-integral identity
can be used. This implies, given the rules above,

that each G must have a K2 (and not a Kdf;3) on
both sides.

(iv) Fs must have a Kdf;3 on at least one side, or,
equivalently, Fs always appear on one side or other
of a Kdf;3. This is because one cannot use the sum-
integral identity in the middle of a sequence of
singular propagators, since each loop sum runs over
two singularities. The identity can only be used at
the end of the sequence, and only then if it
terminates with the nonsingular part of a propagator.
An example of this rule is that Fig. 18(b) cannot be
decomposed using the sum-integral identity,
whereas Fig. 18(c) can at the left-hand end. A con-
sequence of this rule is that the only long sequences
involving K2 have the form …iK2iGiK2iGiK2….
These correspond to diagrams with sequences of
singular propagators.

(v) In a sequence of the form …iK2iGiK2iGiK2…
the rightmost G is multiplied on the right by
½2ωL3�. This arises from keeping track of on shell
propagators.

(vi) The right-hand superscript of eachKdf;3 is ðsÞ unless
it is external, when it is a ðuÞ. Examples are the third,
fifth, and seventh terms in the expression (206)

for Kð4;u;uÞ
3;L .

(vii) The middle superscript of each Kdf;3 is ðsÞ unless it
is either external or it appears to the right of
another Kdf;3, separated by a single F, in which
cases it is a ðuÞ. The difference from the previous
rule arises due to our left-to-right convention of
dealing with loop momenta. An example of the
new exception is given by the penultimate term in
Eq. (206).

A simple consequence of these rules is that the most

divergent contribution to iKðn;u;uÞ
3;L is

iK2ðiGiK2Þn−2iG½2ωL3�iK2: ð209Þ

Similarly, sequences having this form (but with smaller
values of n) can appear both connecting the ends to factors
of Kdf;3, or between such factors.
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It is simpler to display the full result for the summed

quantity Kðu;uÞ
3;L ¼ P∞

n¼2K
ðn;u;uÞ
3;L than for Kðn;u;uÞ

3;L . This
removes the constraint of the first rule, so that the
sequences are now composed of the quantities

Kðu;uÞ
df;3 ≡X∞

n¼2

Kðn;u;uÞ
df;3 ; Kðu;sÞ

df;3 ≡X∞
n¼2

Kðn;u;sÞ
df;3 ;

Kðs;uÞ
df;3 ≡X∞

n¼2

Kðn;s;uÞ
df;3 and Kðs;sÞ

df;3 ≡X∞
n¼2

Kðn;s;sÞ
df;3 : ð210Þ

In addition, the sequences of divergent terms of the form
(209) can be summed, leading to

X∞
n¼2

iK2ðiGiK2Þn−2iG½2ωL3�iK2

¼ iTiG½2ωL3�iK2 ¼ iK2iGiT½2ωL3�; ð211Þ

where

iT ≡ 1

1 − iK2iG
iK2 ¼ iK2

1

1 − iGiK2

: ð212Þ

We have used here the result that K2 commutes with
½2ωL3�, since both are diagonal.
To show the result in a compact form we collect theKdf;3

into a two-by-two matrix. Now is a good point to recall that,
using the arguments following Eq. (145), we can freely
interchange in our formulas the superscripts ðsÞ and ð~sÞ.
This is allowed because the rules always lead to quantities
with ðsÞ superscripts being adjacent to those with ðuÞ
superscripts (with an intervening factor of F). This allows

us, for example, to replace 2Kðs;uÞ
df;3 with Kðs;uÞ

df;3 þKð~s;uÞ
df;3 .

The point of such changes is to move towards a physical
quantity which contains the symmetric combination ðuÞ þ
ðsÞ þ ð~sÞ for all superscripts. With this in mind, we
introduce the matrix of matrices

ðiKdf;3Þ≡
0
B@ iKðu;uÞ

df;3 iKðu;sÞ
df;3 þ iKðu;~sÞ

df;3

iKðs;uÞ
df;3 þ iKð~s;uÞ

df;3 iKðs;sÞ
df;3 þ iKðs;~sÞ

df;3 þ iKð~s;sÞ
df;3 þ iKð~s;~sÞ

df;3

1
CA: ð213Þ

The quantity symmetric under particle exchange is then

iK½B2�
df;3 ≡ ð 1 1 ÞðiKdf;3Þ

�
1

1

�
: ð214Þ

Using this matrix notation, and implementing the rules
described above, we find

iKðu;uÞ
3;L ¼ iTiG½2ωL3�iK2 þ ð 1 iTiF ÞðiKdf;3Þ

×
X∞
j¼0

��
0

1

�
iF

2ωL3
ð 1 iTiF ÞðiKdf;3Þ

	j

×

�
1

iF
2ωL3 iT2ωL3

�
: ð215Þ

We have succeeded in pulling out explicit finite-volume
factors, with the infinite-volume quantities being K2 and
the two-by-two matrix ðKdf;3Þ. The latter, however, does
not appear in the symmetric form (214). In particular, our
left-to-right convention leads to the presence of an asym-
metric matrix between factors of ðKdf;3Þ.
The final step is to insert the result (215) into our

expression for C½B2�
L , Eq. (193), and simplify. We begin by

keeping only the first term in (215), i.e. that which arises

from summing the most divergent contributions to Kðu;uÞ
3;L .

We find

C½B2�
L − C½B2�

∞ − δC½B2�
∞

¼ A0½B2�
�
−
2

3

iF
2ωL3

þ ½A�
X∞
n¼0

ðiKðu;uÞ
3;L ½A�Þn

�
A½B2� ð216Þ

¼ A0½B2�iF3A½B2� þOðKdf;3Þ; ð217Þ

where the first line is a restatement of Eq. (193), and the
second contains the new quantity

iF3 ¼
iF

2ωL3

�
−
2

3
þ 1

1 − iTiF

�
: ð218Þ

To obtain this form for F3 we have used

½A�
X∞
n¼0

ðiTiG½2ωL3�iK2½A�Þn ¼ iF
2ωL3

1

1 − iTiF
: ð219Þ

Here the two sides are different ways of writing the sum of
sequences in which Fs or Gs alternate with K2s in all
possible orders, with the constraint that sequences must
have Fs at both ends. On the left one sums first over the
number of intermediate Fs and then sums overGs, while on
the right the roles of F and G are interchanged. In the
following we will also need two further ways of writing this
quantity:
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iF
2ωL3

1

1 − iTiF
¼

�X∞
n¼0

ð½A�iTiG½2ωL3�iK2Þn
	
½A�

¼ 1

1 − iF
2ωL3 iT½2ωL3�

iF
2ωL3

: ð220Þ

Next we consider terms proportional to Kdf;3. These are

obtained by replacing one of the factors of Kðu;uÞ
3;L in the sum

over n in Eq. (216) with the term linear in Kdf;3 from

Eq. (215), with all other Kðu;uÞ
3;L s replaced by the most

divergent term from Eq. (215). This leads to the contribution

C½B2�
L − C½B2�

∞ − δC½B2�
∞

⊃ A0½B2� iF
2ωL3

1

1 − iTiF

× ð 1 iTiF ÞðiKdf;3Þ
�

1
iF

2ωL3 iT2ωL3

�

×
1

1 − iF
2ωL3 iT½2ωL3�

iF
2ωL3

A½B2�: ð221Þ

We next use the identities

iF
2ωL3

1

1 − iTiF
ð 1 iTiF Þ

¼ iF3ð 1 1 Þ þ iF
2ωL3

ð 2
3

− 1
3
Þ ð222Þ

�
1

iF
2ωL3 iT2ωL3

�
1

1 − iF
2ωL3 iT½2ωL3�

iF
2ωL3

¼
�
1

1

�
iF3 þ

�
2=3

−1=3

�
iF

2ωL3
ð223Þ

to rewrite the right-hand side of Eq. (221) as

A0½B2�
�
iF3ð 1 1 Þ þ iF

2ωL3
ð 2
3

− 1
3
Þ
	

× ðiKdf;3Þ
��

1

1

�
iF3 þ

�
2=3

−1=3

�
iF

2ωL3

	
A½B2�: ð224Þ

Here we have separated out the symmetric part of ðKdf;3Þ,
which is multiplied on both sides by F3, from the asym-
metric parts. The latter can be analyzed in the same way as

δC½B2�
∞ [see Eq. (198) and subsequent text]. This is because

the vector ð2;−1Þ projects, both from the left and right, onto
a ðuÞ − ðsÞ combination [if we use the freedom to inter-
change ð~sÞ and ðsÞ when separated from asymmetric
quantity such as A0½B2� by an F]. For example, using this
freedom one finds

A0½B2� iF
2ωL3

ð 2
3

− 1
3
ÞðiKdf;3Þ

�
1

1

�

¼ A0½B2� iF
2ωL3

2

3
fiKðu;uÞ

df;3 − iKðs;uÞ
df;3

þ iKðu;sÞ
df;3 − iKðs;sÞ

df;3 þ iKðu;~sÞ
df;3 − iKðs;~sÞ

df;3 g: ð225Þ

This means that, just as in Eq. (198), F=L3 can be replaced
by ρ with the (implicit) sum over the spectator momentum
replaced by an integral. The same holds for the F on the right
of ðKdf;3Þ. We can therefore rewrite Eq. (224) as

A0½B2�
�
iF3ð 1 1 Þ þ iρ

2ω
ð 2
3

− 1
3
Þ
	

× ðiKdf;3Þ
��

1

1

�
iF3 þ

�
2=3

−1=3

�
iρ
2ω

	
A½B2�; ð226Þ

again using the notation with implicit integration for ρ
factors that was introduced in Eq. (198). The contribution
linear in Kdf;3 can thus be broken up into four parts: (i) a
finite-volume term involving symmetric quantities

A0½B2�iF3iK
½B2�
df;3iF3A½B2�; ð227Þ

(ii) a partially asymmetric term with ρ on the left

A0½B2�iF3

iρ
2ω

ð 2
3

− 1
3
ÞðiKdf;3Þ

�
1

1

�
iF3A½B2�; ð228Þ

which can be interpreted as δðA0½B2�ÞiF3A½B2�, where
δðA0½B2�Þ absorbs the infinite-volume integral involving ρ;
(iii) the reflection of (ii) which gives rise to A0½B2�iF3δðA½B2�Þ;
and (iv) the infinite-volume quantity

A0½B2� iρ
2ω

ð 2
3

− 1
3
ÞðiKdf;3Þ

�
2=3

−1=3

�
iρ
2ω

A½B2�; ð229Þ

which is absorbed by replacing C½B2�
∞ with the alternative

infinite-volume quantity defined in Eq. (238) below.
To see the general pattern we next consider terms

contributing to C½B2�
L that are quadratic in Kdf;3. These arise

from either a single Kðu;uÞ
3;L term having two factors of Kdf;3

or twoKðu;uÞ
3;L terms each containing one such factor. Adding

these, using the identities (222)–(223), and replacing F
with ρ where allowed, we find
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A0½B2�
�
iF3ð 1 1 Þ þ iρ

2ω
ð 2
3

− 1
3
Þ
	
ðiKdf;3Þ

×

�
1

1

��
iF3ð 1 1 Þ þ iρ

2ω
ð 2
3

− 1
3
Þ
	
ðiKdf;3Þ

×

��
1

1

�
iF3 þ

�
2=3

−1=3

�
iρ
2ω

	
A½B2�: ð230Þ

Extending this analysis, we find that terms of higher order
in Kdf;3 are obtained by inserting additional factors of the
matrix�

1

1

��
iF3ð 1 1 Þ þ iρ

2ω
ð 2
3

− 1
3
Þ
	
ðiKdf;3Þ ð231Þ

after the final ðKdf;3Þ in Eq. (230).
Our final task is to reorganize the series one last time into

infinite-volume kernels separated by finite-volume quan-
tities. This is done by generalizing the analysis described
following Eq. (224).
The following asymmetric quantities are needed:

iKx
df;3 ¼ ð 2

3
− 1

3
ÞðiKdf;3Þ

�
1

1

�
;

iKy
df;3 ¼ ð 1 1 ÞðiKdf;3Þ

�
2=3

−1=3

�
; ð232Þ

iKxy
df;3 ¼ ð 2

3
− 1

3
ÞðiKdf;3Þ

�
2=3
−1=3

�
: ð233Þ

We find a simple geometric series

C½B2�
L ¼ C½B2;ρ�

∞ þ
X∞
n¼0

A0½B2;ρ�½iF3iK
½B2;ρ�
df;3 �niF3A½B2;ρ�; ð234Þ

where the redefined infinite-volume quantities are

iK½B2;ρ�
df;3 ≡X∞

n¼0

iK½B2�
df;3

�
iρ
2ω

iKx
df;3

�
n
; ð235Þ

A0½B2;ρ� ≡X∞
n¼0

A0½B2�
�
iρ
2ω

iKx
df;3

�
n
; ð236Þ

A½B2;ρ� ≡
�
1þ iKy

df;3
iρ
2ω

þ iK½B2;ρ�
df;3

iρ
2ω

iKxy
df;3

iρ
2ω

	
A½B2�

ð237Þ

C½B2;ρ�
∞ ≡ C½B2�

∞ þ δC½B2�
∞ þ A0½B2;ρ� iρ

2ω
iKxy

df;3
iρ
2ω

A½B2�: ð238Þ

Our notation here is rather compact, with implicit integrals
wherever there is a factor of ρ, but we stress that it is
straightforward to rewrite these definitions as integral

equations. We also note that iK½B2;ρ�
df;3 , A0½B2;ρ�, and A½B2;ρ�

are all symmetric under external particle interchange. This
is because they have the vector (1,1), or its transpose, at all
ends involving external particles.
We can bring the result of Eq. (234) into familiar form by

summing the geometric series, leading to

C½B2�
L ¼ C½B2;ρ�

∞ þ A0½B2;ρ� 1

1 − iF3iK
½B2;ρ�
df;3

iF3A½B2;ρ�: ð239Þ

This completes the most complicated part of the analysis.

E. Including three-to-three insertions

In this section we add in all diagrams containing three-
to-three (B3) kernels, and so complete the derivation.
The new diagrams we are considering are those exemplified
by the first and last lines of Fig. 4. If there were only B3

kernels, with no B2s, the analysis would be a simple
generalization of that for two particles. The complications
come from the need to add all possible B2 kernels between
two B3s (or between σ and a B3, or a B3 and σ†). A key
point here is that the properties of B3 are the same as those
of σ and σ†, namely that it is symmetric in external
momenta (separately on both sides) and is a smooth
function of these momenta (within the range of E that
we are considering). This means that we can piggyback on
the previous analysis in which we added all possible B2s
between σ and σ†.
In particular, a formula analogous to Eq. (239) holds for

each segment of a diagram between two B3s (and for that
between σ and a B3, and that between a B3 and σ†). In
words, Eq. (239) tells us that the finite-volume correlator
can be written as the sum of an infinite-volume part and a
part containing the finite-volume function F3. The infinite-
volume part is obtained in two stages: first, for each
diagram replace all loop sums with fPV integrals ordered
in an appropriate way; second, add in additional terms
involving ρ, namely those of Eqs. (195) and (238). In the
second term in Eq. (239), the end caps A0½B2;ρ� and A½B2;ρ� are
built up by decorating σ and σ†, respectively, with all
possible B2 insertions, converting sums to fPV integrals, and
then adding in the ρ terms of Eqs. (236)–(237).
Exactly the same analysis holds for segments of dia-

grams in which B3s are playing the role of end caps. The
B3s are decorated on both sides with B2s, and can connect
to an adjacent B3 (or σ=σ†) either through infinite-volume
loops or through a factor of

Z ¼ 1

1 − iF3iK
½B2;ρ�
df;3

iF3; ð240Þ

following decoration analogous to that in A0½B2;ρ� and A½B2;ρ�.
To present the result, we first introduce “decoration

operators” D½B2;ρ�
C , D½B2;ρ�

A0 and D½B2;ρ�
A , given by
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C½B2;ρ�
∞ ≡ σD½B2;ρ�

C σ†;

A0½B2;ρ� ≡ σD½B2;ρ�
A0 ; and

A½B2;ρ� ≡D½B2;ρ�
A σ†: ð241Þ

These are infinite-volume integral operators defined implic-
itly by the work of previous subsections. This allows us to
write Eq. (239) as

C½B2�
L ¼ σfD½B2;ρ�

C þD½B2;ρ�
A0 ZD½B2;ρ�

A gσ†: ð242Þ

The reason for using this notation is that it works also for
segments of diagrams involving B3s at the ends. Thus, for
example, a segment of the finite-volume correlator between
two B3s can be written

…B3fD½B2;ρ�
C þD½B2;ρ�

A0 ZD½B2;ρ�
A gB3 � � � : ð243Þ

The key point is that the same decoration operators appear
as in (242).
We can now write down the result for the full finite-

volume correlator

CL ¼ σfD½B2;ρ�
C þD½B2;ρ�

A0 ZD½B2;ρ�
A gσ† þ σfD½B2;ρ�

C þD½B2;ρ�
A0 ZD½B2;ρ�

A giB3fD½B2;ρ�
C þD½B2;ρ�

A0 ZD½B2;ρ�
A gσ†

þ σfD½B2;ρ�
C þD½B2;ρ�

A0 ZD½B2;ρ�
A giB3fD½B2;ρ�

C þD½B2;ρ�
A0 ZD½B2;ρ�

A giB3fD½B2;ρ�
C þD½B2;ρ�

A0 ZD½B2;ρ�
A gσ† þ � � � ð244Þ

As in the previous subsection, this can be reorganized into
the form

CL ¼ C∞ þ
X∞
n¼0

A0½ZiB½B2;ρ�
3 �nZA ð245Þ

where

iB½B2;ρ�
3 ¼

X∞
n¼0

D½B2;ρ�
A ½iB3D

½B2;ρ�
C �niB3D

½B2;ρ�
A0 ; ð246Þ

A0 ¼
X∞
n¼0

σ½D½B2;ρ�
C iB3�nD½B2;ρ�

A0 ; ð247Þ

A ¼
X∞
n¼0

D½B2;ρ�
A ½iB3D

½B2;ρ�
C �nσ†; ð248Þ

C∞ ¼
X∞
n¼0

σD½B2;ρ�
C ½iB3D

½B2;ρ�
C �nσ† :ð249Þ

The latter three equations give the final forms of the end
caps and the infinite-volume correlator, now including all
factors of B3.
We can now sum the geometric series in Eq. (245) and

perform some simple algebraic manipulations to bring the
result to its final form,

CL ¼ C∞ þ A0 1

1þ F3Kdf;3
iF3A; ð250Þ

where

Kdf;3 ≡K½B2;ρ�
df;3 þ B½B2;ρ�

3 ð251Þ

is the full divergence-free three-to-three amplitude. Thus
we have obtained our claimed result, Eq. (42), from which
follows the quantization condition Eq. (18).
We close our derivation by returning to an issue raised in

the introduction to this section, namely the possibility of
poles in A, A0, and C∞. We argue that, while such poles can
be present, they cannot contribute to the finite-volume
spectrum, i.e. they do not lead to poles in CL. Only solutions
to the quantization condition (18) lead to poles in CL.
The intuitive argument for this result is that A, A0, and

C∞ are infinite-volume quantities. While they are non-
standard, being defined with the fPV prescription and
involving the decoration described above, they have no
dependence on L. Thus, if they did lead to poles in CL, this
would imply states in the finite-volume spectrum whose
energies were independent of L [up to corrections of the
form expð−mLÞ]. The only plausible state with this
property is a single particle, but this is excluded by our
choice of energy range (m < E� < 5m). Three-particle
bound states will have finite-volume corrections that are
exponentially suppressed by expð−γLÞ, with γ ≪ m being
the binding momentum, but these should be captured by
our analysis, just as is the case for two-particle bound states
[23]. Finally, above-threshold scattering states should have
energies with power-law dependence on L. This is true in
the two-particle case, and we expect it to continue to hold
for three particles. This is confirmed, for example, by the
analysis of three (and more) particles using nonrelativistic
quantum mechanics [27,28].
For the two-particle analysis this argument can be made

more rigorous, and it is informative to see how this works.
We have recalled the two-particle quantization condition in
Sec. IVA, and give here the form of the corresponding
two-particle finite-volume correlator:
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CL;2 ¼ C∞;2 þ iA0
2

1

1þ FK2

FA2: ð252Þ

The subscripts “2” on A, A0, and C indicate that these are
the two-particle end caps and correlator, while F is defined
in Eq. (22) (although here we drop the spectator-momen-
tum argument).
What we now show is that there are poles in A2, A0

2, and
C∞;2, but these cancel in CL;2. To see this we use the
freedom to arbitrarily choose the interpolating functions σ
and σ† without affecting the position of poles in CL;2.
Specifically, we set both σ and σ† equal to the two-particle
Bethe-Salpeter kernel iB2, which, we recall, is a smooth
nonsingular function. One then finds that

C∞;2 ¼ iK2 − iB2 and A2 ¼ A0
2 ¼ iK2: ð253Þ

Inserting these results into Eq. (252) we find that (for this
choice of end caps)

CL;2 ¼ −iB2 þ iK2 þ iK2

1

1 − iFiK2

iFiK2

¼ −iB2 þ
i

K−1
2 þ F

: ð254Þ

From Eqs. (253) and (254) we draw two conclusions.
First, A2, A0

2, and C∞;2 have poles whenever K2 diverges.
Such poles occur, for a given angular momentum, when
δl ¼ π=2 mod π. Thus, using the fPV prescription, there
are, in general, poles in A2, A0

2, and C∞;2. Second, these
poles cancel in CL;2, as shown by the second form in
Eq. (254), which is clearly finite when K2 diverges.
We suspect that a similar result holds for the three-

particle analysis, but have not yet been able to demonstrate
this. Thus, in the three-particle case we must rely for now
on the intuitive argument given above.

V. CONCLUSIONS AND OUTLOOK

In this work we have presented and derived a three-
particle quantization condition relating the finite-volume
spectrum to two-to-two and three-to-three infinite-volume
scattering quantities. This condition separates the depend-
ence on the volume into kinematic quantities, as was
achieved previously for two particles.
There are two new features of the result compared to the

two-particle case. First, the three-particle scattering quan-
tity entering the quantization condition has the physical on
shell divergences removed. The resulting divergence-free
quantity is thus spatially localized. This is crucial for any
practical application of the formalism since it allows for
the partial-wave expansion to be truncated. Indeed, it is
difficult to imagine a quantization condition involving the
three-particle scattering amplitude itself, given that the
latter is divergent for certain physical momenta.

The second feature is that the three-particle scattering
quantity is nonstandard—it is not simply related to the
(divergence-free part) of the physical scattering amplitude.
This is because it is defined using the fPV pole prescription,
and also because of the decorations explained in Sec. IV E.
We strongly suspect, however, that a relation to the physical
amplitude exists. In particular, we know from Ref. [13] that
the finite-volume spectrum in a nonrelativistic theory can
be determined solely in terms of physical amplitudes, and
the same is true in the approximations adopted in Ref. [14].
We are actively investigating this issue.
The three-particle quantization condition involves a

determinant over a larger space than that required for
two particles. Nevertheless, as explained in Secs. III,
because the three-particle quantity that enters has a uni-
formly convergent partial-wave expansion, one can make a
consistent truncation of the quantization condition so that it
involves only a finite number of parameters. This opens the
way to practical application of the formalism.
We have provided in this paper two mild consistency

checks on the formalism—that it correctly reproduces
the known results if one particle is noninteracting (see
Sec. IVA), and that the number of solutions to the
quantization condition in the isotropic approximation is
as expected (see Appendix C). We have also worked out a
more detailed check by comparing our result close to the
three-particle threshold E� ≈ 3m to those obtained using
nonrelativistic quantum mechanics [27,28]. Here one has
an expansion in powers of 1=L, and we have checked
that the results agree for the first four nontrivial orders.
This provides, in particular, a nontrivial check of the form
of F3, Eq. (19), and allows us to relate Kdf;3 to physical
quantities in the nonrelativistic limit. We will present
this analysis separately [29].
Two other issues are deferred to future work. First,

we would like to understand in detail the relation of our
formalism and quantization condition to those obtained in
Refs. [13,14]. Second, we plan to test the formalism using
simple models for the scattering amplitudes, in order to
ascertain how best to use it in practice.
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APPENDIX A: SUM-MINUS-INTEGRAL
IDENTITY

In this appendix we derive the sum-minus-integral identity
that plays a central role in the main text. This identity is
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closely related to that given in Ref. [17] in the context of the
two-particle quantization condition.
The identity is

1

2

�
1

L3

X
~a

− fPV Z
~a

�
gð~k; ~aÞhð~k; ~aÞHð~kÞ

2ωa2ωkaðE − ωk − ωa − ωkaÞ
¼ g�l0;m0 ð~kÞFl0;m0;l;mð~kÞh�l;mð~kÞ; ðA1Þ

which holds up to (implicit) exponentially suppressed
finite-volume corrections. The matrix Fð~kÞ is given in
the main text but repeated here for convenience:

Fl0;m0;l;mð~kÞ≡ Fiϵ
l0;m0;l;mð~kÞ þ ρl0;m0;l;mð~kÞ; ðA2Þ

Fiϵ
l0;m0;l;mð~kÞ

≡ 1

2

�
1

L3

X
~a

−
Z
~a

�

×
4πYl0;m0 ðâ�ÞY�

l;mðâ�ÞHð~kÞHð~aÞHð~bkaÞ
2ωa2ωkaðE − ωk − ωa − ωka þ iϵÞ

�
a�

q�k

�
lþl0

:

ðA3Þ

The phase-space quantity ρ and the cutoff function H are
defined, respectively, in Eqs. (25) and (28). The kinematic
notation is that described in Sec. II: the spectator has fixed

four momentum ðωk; ~kÞ, the particle whose momentum is
summed/integrated has four momentum ðωa; ~aÞ, while the
third particle is in general off shell, with four momentum

ðE2 − ωa; ~bkaÞ. The four momentum of the nonspectator

pair is P2 ¼ ðE2; ~P2Þ ¼ ðE − ωk; ~P − ~kÞ, and ~bka ¼
~P2 − ~a. If the third particle was on shell, it would have
energy ωka [defined in Eq. (1)], so the on shell condition is

E2 ¼ ωa þ ωka. This is where the denominator in Eq. (A3)
vanishes. The boost to the CM frame of the nonspectator

pair sends P2 to ðE�
2;k; ~0Þ and ðωa; ~aÞ to ðω�

a; ~a�Þ. If all three
particles are on shell, then the magnitude of ~a� satisfies
a� ¼ q�k [with q�k given by Eq. (6)].
The two functions in the identity (A1), g and h, contain

the momentum dependence arising from quantities respec-
tively on the left and right of the three-particle cut. They
could be combined into a single function, but for our
formalism it is advantageous to keep them separate. We
assume that g and h are smooth (infinitely differentiable)
functions of the components of ~a and that they
fall off at large j~aj such that the sum and integral are
convergent. Note that, since k and a are on shell, and the

total momentum is fixed, the independent quantities are ~k
and ~a, which are thus given as the arguments of g and h.
In general, the third momentum is off shell, so these
functions involve off shell amplitudes. What appears on
the right-hand side of the identity, however, are on shell
projections of these amplitudes after decomposition into the
angular-momentum basis in the CM frame of the non-
spectator pair. This projection is explained around Eq. (63)
for the case where g ¼ σ and h ¼ σ†, but applies equally
well to any functions.
One difference between our identity and that of

Ref. [17] is that, in the three-particle context, the two-
particle subsystem can be arbitrarily far below threshold.
The dominant subthreshold contribution to F comes from
the factor of ρ in Eq. (A2), which in turn arises from the
difference between fPV and iϵ pole prescriptions [see
Eq. (59)]. This factor is needed so that the dependence

on ~k is smooth, but is not important for the derivation of the
sum-integral identity. Indeed, we can rewrite the identity
using the iϵ prescription and cancel factors of ρ:

1

2

�
1

L3

X
~a

−
Z
~a

�
gð~k; ~aÞhð~k; ~aÞHð~kÞ

2ωa2ωkaðE2 − ωa − ωka þ iϵÞ ¼ g�l0;m0 ð~kÞFiϵ
l0;m0;l;mð~kÞh�l;mð~kÞ: ðA4Þ

This is now very similar to the identity of Ref. [17], and we focus on this form henceforth.
To demonstrate (A4) we need simply to subtract the two sides and show that the result is exponentially suppressed.

The difference is proportional to

Hð~kÞ
�
1

L3

X
~a

−
Z
~a

�
gð~k; ~aÞhð~k; ~aÞ − g�l0;m0 ð~kÞ4πYl0;m0 ðâ�Þða�=q�kÞl

0þlY�
l;mðâ�Þh�l;mð~kÞHð~aÞHð~bkaÞ

2ωa2ωkaðE2 − ωa − ωka þ iϵÞ ; ðA5Þ

where we have assumed that the sums over angular-
momentum indices can be interchanged with the ~a integral.
The overall factor of Hð~kÞ serves only to ensure that the
boosts to the two-particle CM frame are well defined. We
note that the sums and integrals are convergent in the
ultraviolet because of the assumed properties of g and h (in

the first term in the numerator) and the presence of the
cutoffs H (in the second term). The difference (A5) will
vanish, up to exponentially suppressed corrections, if the
integrand/summand is nonsingular and smooth as a func-
tion of ~a. This in turn holds if (i) all functions appearing in
the expression have a smooth dependence on ~a, and (ii) the
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difference in the numerator cancels that in the denominator
in such a way that the ratio is smooth. We address these
conditions in turn.
The only nonsmooth functions appearing in (A5) are the

spherical harmonics, which are ill defined at ~a� ¼ 0 for
l > 0. Smoothness is ensured, however, by the factors of
ða�Þl0þl, which turn the spherical harmonics into poly-
nomials in the components of ~a. Thus the first condition is
satisfied. For subsequent work, it is useful to understand the
a� dependence of the coefficients in the angular-momen-
tum expansion of g and h. Recall that one first changes to

~a� as the independent variable, e.g. g�ð~k; ~a�Þ≡ gð~k; ~aÞ, and
then expands in harmonics:

g�ð~k; ~a�Þ ¼ g�l0;m0 ð~k; a�ÞYl0;m0 ðâ�Þ
ffiffiffiffiffiffi
4π

p

¼ g�l0;m0 ð~k; a�Þ
a�l

Yl0;m0 ðâ�Þa�l
ffiffiffiffiffiffi
4π

p
: ðA6Þ

For a� → 0, the last form is simply a rewriting of the Taylor
expansion in the spherical basis, since Yl0;m0 ðâ�Þa�l is a
homogeneous polynomial of order l in the components of

~a�. This implies that g�l0;m0 ð~k; a�Þ=a�l has a finite limit as

a� → 0. Furthermore, since g�ð~k; ~a�Þ is, by assumption,

smooth at a� ¼ 0, g�l0;m0 ð~k; a�Þ=a�l must be a smooth
function of a�2 and not a�. Thus, for small a�,

g�l0;m0 ð~k; a�Þ
a�l

¼
X∞
n¼0

snða�2Þn; ðA7Þ

with sn being the Taylor coefficients. An analogous result
holds for h.
We turn now to the second condition, that zeroes in the

numerator and denominator should cancel. To satisfy this
we need the numerator of (A5) to vanish on shell. It does
vanish because, when E2 ¼ ωa þ ωka, we have Hð~aÞ ¼
Hð~bkaÞ ¼ 1, a� ¼ q�k, and

g�l0;m0 ð~kÞYl0;m0 ðâ�Þ
ffiffiffiffiffiffi
4π

p
¼ g�l0;m0 ð~k; q�kÞYl0;m0 ðâ�Þ

ffiffiffiffiffiffi
4π

p

¼ g�ð~k; q�kâ�Þ ¼ gð~k; ~aÞ ðA8Þ

(and similarly for h). In addition, the numerator must
vanish fast enough to cancel the denominator. To see that
this is also true it is convenient to re-express the denom-
inator in terms of CM variables. Following the arguments
of Ref. [17], we can make the replacement

1

2ωa2ωkaðE2 − ωa − ωka þ iϵÞ
→

ω�
a

2ωaE�
2;kðq�k þ a�Þðq�k − a� þ iϵÞ ; ðA9Þ

since the difference is nonsingular. This shows us that the
singularity lies in the radial integral over a�. Now consider
the ratio (A5) at fixed angle â�, so that the spherical
harmonics are fixed. Then, from the discussion above, we
know that both terms in the numerator are smooth functions
of a�, which thus have Taylor expansions about a� ¼ q�k. In
the difference, the constant term in these Taylor expansions
cancels, and so the ratio with 1=ðq�k − a�Þ is a smooth
function of a�. In particular we have demonstrated that the
numerator does not have a nonanalytic form such asffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
q�k − a�

p
, which would fail to cancel the singularity.

A special case occurs if q�k → 0, for then there is a double
pole in a�. In addition, one might be concerned about the
factor of 1=ðq�kÞl

0þl. These features do not, however, lead
to problems. We know from Eqs. (A7)–(A8) that

g�l0;m0 ð~kÞ ∝ q�lk , and similarly for h, so the 1=q�k factors
are canceled. Furthermore, because of Eq. (A7), the differ-
ence in the numerator of (A5) is proportional to a�2, and
thus fully cancels the double pole.
This completes the demonstration of the key identity.

We close this section by presenting some further results
for the kinematic functions F and Fiϵ. First, we give the
relation to the kinematic functions cP introduced in
Ref. [17]. These replace the product g × h with a single
function, which is then expanded in a single set of
spherical harmonics. Because of this, the relation involves
Clebsch-Gordon coefficients. Specifically we find (see
also Ref. [10])29

Fiϵ
l0;m0;l;mð~kÞ ¼

iReðq�kÞ
16πE�

2;k
δl0;lδm0;m

þ
X
~l; ~m

ffiffiffiffiffiffi
4π

p
cP~l; ~mðq�kÞ

4E�
2;kðq�kÞ ~l

Z
dΩa�Y�

~l; ~m
ðâ�Þ

× Yl0;m0 ðâ�ÞY�
l;mðâ�Þ: ðA10Þ

Because Ref. [17] uses an exponential cutoff while we use

Hð~aÞHð~bkaÞ, this result holds only up to exponentially
suppressed finite-volume corrections.30

29One subtlety in the derivation of Eq. (A10) is that the powers
of a�=q�k do not always match. This is because we use a double
expansion in spherical harmonics while Ref. [17] use a single
expansion. One can show, however, that the differences always
lead to exponentially suppressed contributions.

30One might wonder why we use the H functions to provide
the cutoff, since, as far as sum-integral identity is concerned, we
could use any reasonable cutoff. The reason we use H is that
some of the factors of F arise from insertions of the quantity G
[Eq. (21)]. But G contains, as part of its essential definition, two
factors of H, one of which becomesHð~aÞ when we convert the G
to an F. Thus an H cutoff is forced upon us for such Fs, and we
wish to use a uniform definition. It is then convenient to enforce
a↔bka symmetry by adding in Hð~bkaÞ.
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Finally, we derive a result needed in the main text,
namely

Fl0;m0;l;mð~kÞ ¼ Fiϵ
l0;m0;l;mð~kÞ ¼ 0 if l0 þ l ¼ odd; ðA11Þ

up to exponentially suppressed corrections. It is sufficient
to show this result for one of F and Fiϵ, since it holds
trivially for their difference, ρ, which is diagonal in angular
momentum. We demonstrate (A11) for Fiϵ.
The result follows by averaging the original expression

(A3) with that obtained by changing variables ~a →
~P − ~a ¼ ~bka. In this way, the numerator of Fiϵ is replaced,
up to an overall constant, with

½Yl0;m0 ðâ�ÞY�
l;mðâ�Þða�Þl

0þl

þ Yl0;m0 ðb̂�kaÞY�
l;mðb̂�kaÞðb�kaÞl

0þl�
×Hð~aÞHð~bkaÞ: ðA12Þ

If all particles are on shell, then from Eq. (5), we have that

~a� ¼ −~b�ka, so the two terms exactly cancel when the
parities of the spherical harmonics are opposite, i.e. if
lþ l0 is odd.31 As we move away from the on shell
condition, the cancellation will be inexact. However,
as we now demonstrate, the residue is proportional to
E2 − ωa − ωka, which is enough to cancel the pole in Fiϵ,
so that the sum-integral difference of the residue is
exponentially suppressed. We recall that the boost to
the two-particle CM frame transforms four vectors as

ðE2 − ωa; ~bkaÞ → ðE�
2;k − ω�

a;−~a�Þ and

ðωka; ~bkaÞ → ðω�
b; ~b

�
kaÞ: ðA13Þ

But since

ðωka; ~bkaÞ ¼ ðE2 − ωa; ~bkaÞ − ðE2 − ωa − ωka; ~0Þ; ðA14Þ

we see from the linearity of boosts that

~b�ka ¼ −~a� þOðE2 − ωa − ωkaÞ: ðA15Þ

This completes the demonstration.
We note that a similar argument leads to the conclusion

that cPl;m vanishes for odd l, as first noted in Ref. [25].

APPENDIX B: SMOOTHNESS OF fPV
POLE PRESCRIPTION

In this appendix we explain why the fPV pole prescrip-
tion, defined in Eq. (59), leads to results that are smooth
functions of the spectator momentum. The general integral
that appears has the form

fð~kÞ ¼ fPV Z
~a

gð~k; ~aÞHð~kÞ
2ωa2ωkaðE − ωk − ωa − ωkaÞ

: ðB1Þ

The notation is the same as in Eq. (A1), except that here we
have combined the two functions g and h in the numerator

of (A1) into the single function g. The issue is whether fð~kÞ
is a smooth function of ~k. All quantities appearing in the
integrand are smooth functions: ωk and ωka manifestly,

Hð~kÞ by construction, and gð~k; ~aÞ by assumption.32 We also
assume that the behavior of g at large j~aj is such that the
integral remains convergent however many derivatives of

the integrand with respect to the components of ~k we take.
Then the only source for a lack of smoothness is the pole in
the integrand.
It is useful to change variables to ~a�, the momentum in

the two-particle CM frame. This gives

fð~kÞ ¼ Hð~kÞ
2E�

2;k

fPV Z
d3a�

ð2πÞ3
~g�ð~k; ~a�Þ

ðq�2k − a�2Þ ; ðB2Þ

~g�ð~k; ~a�Þ ¼ gð~k; ~aÞ ðE − ωk − ωa þ ωkaÞðE�
2;k þ 2ω�

aÞ
8ωkaω

�
a

:

ðB3Þ

The expression multiplying g on the right-hand side of (B3)
equals unity on shell. Expanding ~g� in spherical harmonics,

~g�ð~k; ~a�Þ ¼ ~g�l;mð~k; a�ÞYl;mðâ�Þ
ffiffiffiffiffiffi
4π

p
; ðB4Þ

we observe that only the l ¼ 0 component contributes to
the integral:

31A special case occurs when ~a ¼ ~P=2 ¼ ~bka, for then the two
terms in the sum are the same. The derivation remains valid,
however, since in this configuration ~a� ¼ 0, implying that the
only nonvanishing contributions are from l ¼ l0 ¼ 0.

32The initial application of the result of this appendix, in the
discussion following Eq. (63) in the main text, has g composed of
the product σσ†, which is smooth by construction. Subsequently,
one or both of these factors are replaced by Bethe-Salpeter
kernels, which are also smooth because singularities are far
from threshold. The nearest singularity is the left-hand cut which
occurs when E�

2;k ¼ 0 (corresponding to s ¼ u ¼ 0, t ¼ 4m2

in Mandlestam variables), but we are protected from this cut
by the cutoff function Hð~kÞ. Finally, the factors are replaced
by two-particle K-matrices, or decorated end-cap functions.
Here the necessary smoothness is established by the argument
of this appendix. Thus we are using the result of this appendix
iteratively.
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fð~kÞ ¼ Hð~kÞ
4π2E�

2;k

fPV Z
∞

0

da�
a�2 ~g�0;0ð~k; a�2Þ
ðq�2k − a�2Þ

¼ Hð~kÞ
8π2E�

2;k

fPV Z
∞

0

dða�2Þ
ffiffiffiffiffiffiffi
a�2

p
~g�0;0ð~k; a�2Þ

ðq�2k − a�2Þ : ðB5Þ

Here we have made explicit that ~g�0;0 is a function of a
�2, as

follows from the result (A7).
In this form, the fPV prescription of Eq. (59) becomes

fð~kÞ ¼ Hð~kÞ
8π2E�

2;k

Z
∞

0

dða�2Þ
� ffiffiffiffiffiffiffi

a�2
p

~g�0;0ð~k; a�2Þ
ðq�2k − a�2 þ iϵÞ

�

þHð~kÞ~g�0;0ð~k; q�2k Þ
8πE�

2;k

×

�
iq�k ðq�2k > 0Þ;
−jq�kj ðq�2k < 0Þ: ðB6Þ

If q�2k > 0, so the nonspectator pair is above threshold, thefPV and PV prescriptions are the same, and Eq. (B6) gives
the standard relationship between PV and iϵ prescriptions.
In particular, the second term cancels the imaginary part of
the iϵ-regulated integral. The new feature of the prescrip-
tion occurs below threshold, i.e. for q�2k < 0. Here there is
no pole to regulate, so the iϵ prescription is superfluous,
and the integral is real. Nevertheless, the prescription adds
the second term, also real, which is needed to avoid a cusp

in fð~kÞ at threshold. We stress that in the second term ~g� is
evaluated on shell, with a�2 ¼ q�2k . If q�2k < 0, then ~g� must
be evaluated below threshold. As discussed in the previous
appendix, the assumed smoothness of g implies that ~g�0;0 is a
function of q�2k , and thus can be straightforwardly evaluated
for q�2k < 0.
To show that fð~kÞ is smooth, we now extract the essential

features of Eq. (B5) and consider the integral

fðzÞ ¼
Z

∞

0

dw
ffiffiffiffi
w

p
gðw; zÞ
z − w

: ðB7Þ

Here w and z are playing the roles of a�2 and q�2k ,
respectively, and g, a smooth function of its arguments,

ensures convergence [and includes Hð~kÞ]. The only differ-
ence from Eq. (B5) is that the dependence on all compo-

nents of ~k inH and ~g� has been simplified to dependence on
q�2k alone. This simplification is justified because it is the

dependence of the pole term on ~k that can lead to a lack of
smoothness, and this dependence is correctly incorporated
in Eq. (B7).
We treat z as complex, and assume that gðw; zÞ can be

analytically continued to complex arguments without
encountering singularities. Then fðzÞ is well defined and
analytic in the entire complex plane except along the
positive real axis. As z approaches the positive real
axis from above or below one obtains the �iϵ-regulated
integrals:

fðx� iϵÞ ¼
Z

∞

0

dw
ffiffiffiffi
w

p
gðw; xÞ

x − w� iϵ
: ðB8Þ

These are both complex, with the same real parts but
differing imaginary parts, �πi

ffiffiffi
x

p
gðx; xÞ. fðzÞ thus has a

cut on the positive real axis.
The integral of interest, fð~kÞ of Eq. (B5), becomes, in our

stripped-down version, and for positive q�2k ,

f ePVðxÞ ¼ 1

2
½fðxþ iϵÞ þ fðx − iϵÞ�: ðB9Þ

Here x is real and positive, and we have used the result that
the PV prescription (which is the same as the fPV pre-
scription for x > 0) can be written as the average of the
integral with the contour running above and below the pole
[see Fig. 19(a)]. Our aim is to extend f ePV to a function of z,

and study its analyticity properties.

FIG. 19 (color online). Contours in w complex plane contributing to f ePVðzÞ. (a) z real and positive; (b) z above the positive real axis;

(c) z below the positive real axis. In each case the cross indicates the location of the z ¼ w pole, and the numbers indicate the weights
associated with each contour.
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If z is moved off the positive real axis then, to avoid
nonanalytic dependence, the integration contours must be
deformed as shown in Figs. 19(b)–19(c). Thus f ePVðzÞ
differs from fðzÞ (the integral along the real axis) by pole
terms:

f ePVðzÞ ¼ fðzÞ − signðImzÞiπ ffiffiffi
z

p
gðz; zÞ

¼ fðzÞ þ π
ffiffiffiffiffiffi
−z

p
gðz; zÞ: ðB10Þ

The sign of ImðzÞ enters because the direction of the
contour around the pole depends on this sign. As shown in
the second expression, however, the two possibilities can be
combined into a single expression using the properties of
the square root (assuming that the branch cut for

ffiffiffiffiffiffi
−z

p
is

placed along the positive real axis). We now observe that
there is no discontinuity for negative real z, since both fðzÞ
and

ffiffiffiffiffiffi
−z

p
are analytic there. Furthermore, by construction

the discontinuities of fðzÞ and the pole term cancel exactly
along the positive real axis [as they must to yield a real
f ePVðxÞ]. Thus we find the key result: f ePVðzÞ is analytic

throughout the complex plane, i.e. is entire. Since an entire
function is infinitely differentiable, it follows that f ePVðxÞ is
smooth along the entire real axis.
We now apply this result to our integral of interest,

Eq. (B5). The rule is to write the difference between the
results of the fPV and iϵ prescriptions, which is standard
above threshold, as an analytic function of q�2k , and then
continue to q�2k < 0. Noting that

iq�k ¼ −
ffiffiffiffiffiffiffiffiffiffi
−q�2k

q
for q�2k ¼ xþ iϵ; ðB11Þ

we obtain the result quoted in (B6) for the below threshold
case,

−
ffiffiffiffiffiffiffiffiffiffi
−q�2k

q
→ −jq�kj for q�2k ¼ −x: ðB12Þ

Thus our fPV prescription indeed yields a smooth function

of ~k.
We have checked this result on an extensive set of

examples, e.g. for gðw; zÞ ¼ wn expð−wÞ with n ≥ 0 being
an integer, where the integrals can be done analytically, and
for gðw; zÞ ¼ expð−w2Þ, where numerical integration is
required. As an illustration, we show the results for
gðw; zÞ ¼ expðz − wÞ in Fig. 20.
Finally, we stress that the factor of

ffiffiffiffi
w

p
in the integrand of

fðzÞ is crucial for the smoothness of the fPV prescription.
This factor is present in the original integral, Eq. (B5),
because of three-dimensional phase space. Without this
factor, the above- and below-axis pole terms would not be
equal along the negative real axis. For example, if

ffiffiffiffi
w

p
is

replaced by an analytic function, say x, then one can easily
show, using the arguments above, that f ePVðzÞ result has a
complex discontinuity along the negative real axis.

APPENDIX C: DETAILED STUDY OF THE
ISOTROPIC APPROXIMATION

In this appendix we study the approach to the isotropic
limit described in Sec. III in the context of a specific choice
of parameters. Our aims are to show how lost states are
recovered, and also to gain more intuition for the workings
of the quantization condition and, in particular, the impact
of the violation of particle-interchange symmetry by our
coordinates and truncation. Although our considerations
are specific to the chosen parameters, much of the dis-
cussion holds for a general choice of parameters.
We work in the static frame, ~P ¼ 0. To simplify

numerical values we choose a volume such that the particle
mass satisfies m ¼ 2π=L. While this is artificial, we stress
that none of the general conclusions depend on this choice.

The single-particle momenta are ðL=2πÞ~k ¼ ~0, (1, 0, 0),
(1, 1, 0), (1, 1, 1), etc., together with permutations. We refer
to these, respectively, as the n ¼ 0, 1, 2, 3 shells, etc. Given
our choice of m, the corresponding single-particle energies
are ωn ¼

ffiffiffiffiffiffiffiffiffiffiffi
nþ 1

p
×m.

We are interested in values of E for which there is more
than one free three-particle energy level, so that we can see
what happens when one of these is replaced by the solution
to Eq. (38). The minimal case is to have two free levels.
These levels occur at E ¼ 3m (all particles at rest), E ¼
ð1þ 2

ffiffiffi
2

p Þm ≈ 3.83m (one particle at rest and two with
opposite momenta from the n ¼ 1 shell), E ¼ 4.46m, etc.
Thus the range of E should extend above 3.83m. We also
want to minimize N, the size of the matrices appearing in
the quantization condition. The critical energies above

which the cutoff function Hð~kÞ is nonvanishing are, for
the n ¼ 1–4 shells, ð1þ ffiffiffi

2
p Þm, ð ffiffiffi

2
p þ ffiffiffi

3
p Þm ≈ 3.15m,

FIG. 20 (color online). f ePVðxÞ for gðw; zÞ ¼ expðz − wÞ com-

pared to the result of using the PV prescription, fPVðxÞ.
The former [dashed (red)] is smooth, while the latter [solid
(blue)] has a cusp at x ¼ 0. For x < 0, the difference between the
two functions is the pole term, the second term in Eq. (B10).
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ð2þ ffiffiffi
3

p Þ ≈ 3.73m, and ð2þ ffiffiffi
5

p Þm ≈ 4.24m, respectively.
Thus we are forced to include the n ¼ 3 shell (in order to
attain E > 3.83m) but if we restrict E < 4.24m we do not
need the n ¼ 4 shell.
Thus we end up with the energy range of interest being

3m < E < 4.24m and N ¼ 1þ 6þ 12þ 8 ¼ 27. Our aim
is to find all solutions to the quantization condition,

detð1þ Fs
3K

s
df;3Þ ¼ 0; ðC1Þ

within this range. Here Ks
df;3 is defined in Eq. (14), while

Fs
3 is simply F3 [Eq. (19)] after truncation to lmax ¼ 0.

(An explicit expression is given below.) As already noted,
the free states lie at E ¼ 3m and 3.83m. There are four such
states: one at 3m and three at 3.83m. One might have
expected six states at E ¼ 3.83m, since two of the particles
have momenta in the n ¼ 1 shell, but only three are distinct
for identical particles. It is useful to classify the states
according to their transformation properties under the
octahedral symmetry group. The E ¼ 3m state lies in
the trivial A1 irrep, while the three E ¼ 3.83m states
decompose as A1 þ E, where E is the doublet. Here we
are using standard notation for irreps of the cubic group;
see, e.g., Ref. [30]. Interactions can lead to mixing between
the two A1 states, but not with the doublet. What we thus
expect is that one of the two A1 states is replaced by the
solution to the isotropic quantization condition, Eq. (38),
while the other remains at its free energy, as does the
doublet.
As a first step in the analysis, it is useful to rewrite

Fs
3 as33

Fs
3 ¼

1

L3

�
1

3

Fs

2ω
−
Fs

2ω

1

H
Fs

2ω

	
;

H ¼ 1

2ωKs
2

þ Fs

2ω
þ 1

2ω
Gs; ðC2Þ

whereKs
2, G

s, and Fs are defined, respectively, in Eqs. (34)
and (36)–(37). Recall that all these quantities, as well as Fs

3,
are matrices in spectator-momentum space alone, with size
N × N. The form (C2) follows by straightforward algebraic
manipulations from the definition of Eq. (19). One advan-
tage of the new form is that it manifests the symmetry of
Fs
3, since ~Gs ¼ 1

2ωG
s is symmetric, and all other matrices

are diagonal. Another is that it shows how Fs appears on
both ends of Fs

3.
The matrices entering the quantization condition have

transformation properties under the symmetries of the finite
box that greatly simplify their forms. Beginning with
~Fs ≡ Fs=ð2ωÞ, it is clear from its definition, Eq. (37), that
it is invariant under cubic rotations and parity. Thus its

entries, which are all diagonal, depend only on the class n
of the spectator momentum ~k. For example, all six entries
for the n ¼ 1 class are equal. Thus there are only four
independent entries in ~Fs. The same holds for the other
diagonal matrix, Ks

2.
The situation with ~Gs is more complicated—all entries

are nonvanishing. To simplify ~Gs we must decompose the
N spectator-momentum indices into irreps of the finite-box
symmetry group, namely the direct product of the cubic
group and parity. The decomposition is

n ¼ 0 → Aþ
1 ; ðC3Þ

n ¼ 1 → Aþ
1 þ Eþ þ T−

1 ; ðC4Þ

n ¼ 2 → Aþ
1 þ Eþ þ T−

1 þ Tþ
2 þ T−

2 ; ðC5Þ

n ¼ 3 → Aþ
1 þ T−

1 þ Tþ
2 þ A−

2 ; ðC6Þ

where the superscript is parity. A2 is a nontrivial singlet,
while T1 and T2 are three-dimensional irreps. Off diagonal
elements of ~Gs connecting different irreps, or different
elements of the same irrep, vanish. Thus ~Gs is block
diagonal, with a four-dimensional Aþ

1 block, a 2 × 2-
dimensional Eþ block, etc.
The same block structure holds for Ks

df;3, but here
additional simplification occurs because of the isotropic
approximation, Eq. (33). In this approximation, all entries
of Ks

df;3 are equal. Since the Aþ
1 irreps are obtained by

averaging over their respective momentum shells, while all
other irreps involve differences, only the Aþ

1 block of Ks
df;3

is nonvanishing. Furthermore, since Ks
df;3 has only a single

nonzero eigenvalue, whose eigenvector we call j1Ki, all
entries of the Aþ

1 block are related. Here we will slightly
relax the approximation, so that all entries which are
allowed by symmetries have magnitudes of order ϵ ≪ 1.
Thus we can write

Ks
df;3 ¼ j1KiNKiso

df;3ðEÞh1Kj þ ½OðϵÞ�; ðC7Þ

where the second term indicates anN × N matrix with form
consistent with the symmetries whose nonzero entries are
ofOðϵÞ (though unrelated). If we choose the indices so that
the Aþ

1 block is placed first, ordered according to the class
n, the dominant eigenvector is easily found to be

h1Kj ¼
1ffiffiffiffi
N

p ð1;
ffiffiffi
6

p
;

ffiffiffiffiffi
12

p
;

ffiffiffi
8

p
; 0;…Þ: ðC8Þ

We now return to the quantization condition (C1). Since
all matrices which enter are diagonal or block diagonal, the
condition can be studied block by block. We begin with
the Aþ

1 block, which is the most interesting as it contains the
dominant eigenvector of Ks

df;3. Since ~Fs and Ks
2 were

33We stress that the matrix H used here has nothing to do with
the smooth cutoff function Hð~kÞ.
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diagonal in the original basis, with no cross terms between
different classes n, they remain diagonal in the irrep basis.
In general, there are no relations between the four diagonal
elements of the Aþ

1 blocks. As we approach the free-
spectrum energies, however, ~Fs does gain further structure.
This is because it contains poles at these energies [from the
sum contained in Fs, Eq. (37)]. Specifically, one finds that

~Fs ¼ diag
�
1

2
B0 þ 3B1; B1; 0; 0

�
þ diagðOð1ÞÞ; ðC9Þ

where the pole terms are

B0 ¼
1

L3

1

ð2mÞ3
1

E − 3m
; ðC10Þ

B1 ¼
1

L3

1

2mð2ω1Þ2
1

E −m − 2ω1

: ðC11Þ

The factor of 3 multiplying B1 in the first entry on the right-
hand side of Eq. (C9) arises from the fact that six terms in
the sum over ~a in Fs contribute B1=2. The second term in
~Fs is the nonpole part, arising from the rest of the sum over
~a and from the integral.
Pole terms also appear in ~Gs. Using Eq. (21) we find the

Aþ
1 block to be

~Gs ¼

0
BBB@

B0

ffiffiffi
6

p
B1 Oð1Þ Oð1Þffiffiffi

6
p

B1 B1 Oð1Þ Oð1Þ
Oð1Þ Oð1Þ Oð1Þ Oð1Þ
Oð1Þ Oð1Þ Oð1Þ Oð1Þ

1
CCCA: ðC12Þ

Apart from the fact that the matrix is symmetric, there is no
relation between the Oð1Þ terms. The combination whose
inverse appears in Fs

3 [Eq. (C2)] is thus

H ≡ 1

2ωKs
2

þ ~Fs þ ~Gs

¼

0
BBB@

3
2
B0 þ 3B1

ffiffiffi
6

p
B1 0 0ffiffiffi

6
p

B1 2B1 0 0

0 0 0 0

0 0 0 0

1
CCCAþ ½Oð1Þ�; ðC13Þ

where the Oð1Þ symmetric matrix now contains entries in
all positions.
Our task is to combine these forms and insert them in the

quantization condition. Since B0 and B1 become large for
different regions of E, we treat these cases one at a time.
The simpler is when E ≈ 3m, such that jB0j ≫ 1, while
B1 ∼Oð1Þ. Using Raliegh-Schrödinger perturbation
theory, one finds that the inverse of H becomes

H−1 ¼
� 2

3B0
þOð1=B2

0Þ Oð1=B0Þ
Oð1=B0Þ Oð1Þ

�
: ðC14Þ

Here we are using a block notation in which the first block
has dimension one (the n ¼ 0 Aþ

1 subspace) while the
second block has dimension three (containing the n ¼ 1–3
Aþ
1 states). This result exemplifies two general features of

H−1 when a one-dimensional subspace ofH becomes large.
First, the projection of H−1 onto this subspace is, up to
small corrections, simply the inverse of the projection of H
onto the subspace. Thus it is proportional to 1=B0. Second,
the off diagonal elements of the inverse (those connecting
the one-dimensional subspace to the remainder of the
space) are of Oð1=B0Þ. We use these results again below.
Combining the results above, we find that, when

jB0j ≫ 1,

L3Fs
3 ¼

~Fs

3
− ~FsH−1 ~Fs ðC15Þ

¼
� B0

6
þOð1Þ 0

0 Oð1Þ

�
−
� B0

2
þOð1Þ 0

0 Oð1Þ

�

×

� 2
3B0

þOð1=B2
0Þ Oð1=B0Þ

Oð1=B0Þ Oð1Þ

�

×

� B0

2
þOð1Þ 0

0 Oð1Þ

�
ðC16Þ

¼ ½Oð1Þ�; ðC17Þ

using the same 1þ 3 block notation as in Eq. (C14).
The key result is that all terms proportional to positive
powers of B0 cancel. When we combine (C17) with the
result (C7) for Ks

df;3 and evaluate the determinant, the
quantization condition becomes

detð1þ Fs
3K

s
df;3Þ ¼ 1þ NKiso

df;3ðEÞh1KjFs
3j1Ki þOðϵÞ

¼ 0: ðC18Þ

We see that there is only a single solution in the Aþ
1 channel,

that given essentially by the “isotropic solution” of
Eq. (38), aside from small corrections from theOðϵÞ terms.
There is no possibility of a solution that is OðϵÞ from
E ¼ 3m, because there are no terms of the form ϵB0 or ϵB2

0,
which could have led to Oð1Þ contributions to the quan-
tization condition. Such terms are required to cancel the 1
in Eq. (C18), in order to get solutions that are infinitesi-
mally displaced from the free solution.
The analysis near E ¼ mþ 2ω1, when jB1j ≫ 1, is more

involved, for in this case the free poles do not cancel. Using
Eq. (C13), H is now given by

H ¼ jB1i5B1hB1j þOð1Þ; ðC19Þ
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where the one-dimensional subspace in which H is large is
spanned by

hB1j ¼
1ffiffiffi
5

p ð
ffiffiffi
3

p
;

ffiffiffi
2

p
; 0; 0Þ: ðC20Þ

Using the results quoted above, we have

H−1 ¼ jB1i
�

1

5B1

þOð1=B2
1Þ
�
hB1j

þ
X4
j¼2

Oð1=B1ÞðjBjihB1j þ jB1ihBjjÞ

þ
X4
j¼2

Oð1ÞjBjihBjj; ðC21Þ

where the jBji, j ¼ 2–4, are any choice of basis vectors
orthogonal to jB1i.
To display Fs

3 it is better to switch from the ordering
of Aþ

1 elements according to their momentum class to the
“K-basis.” In this new basis, the vectors are h1Kj together
with

h2Kj ¼
1ffiffiffi
7

p


−

ffiffiffi
6

p
; 1; 0; 0

�
; ðC22Þ

h3Kj ¼
1ffiffiffiffi
N

p


−

ffiffiffiffiffiffiffiffiffiffi
20=7

p
;−

ffiffiffiffiffiffiffiffiffiffiffiffiffi
120=7

p
;

ffiffiffiffiffiffiffiffiffiffiffiffiffi
84=20

p
;

ffiffiffiffiffiffiffiffiffiffiffiffiffi
56=20

p �
;

ðC23Þ

h4Kj ¼
1ffiffiffiffiffi
20

p ð0; 0;−
ffiffiffi
8

p
;

ffiffiffiffiffi
12

p
Þ: ðC24Þ

This basis makes maximal use of the form ofKs
df;3 [Eq. (C7)]

as well as the fact that the dominant terms in ~Fs lie in the first
two entries on the diagonal. In addition, we note that h1Kj
and h3Kj, when contracted with ~Fs, have large components
only in the subspace in which H−1 is small:

h1Kj ~Fs ¼
ffiffiffiffiffi
15

7

r
B1hB1j þOð1Þ; ðC25Þ

h3Kj ~Fs ¼
ffiffiffiffiffi
15

7

r
B1hB1j þOð1Þ: ðC26Þ

Also important is that no large terms appear when we
contract h4Kj with ~Fs:

h4Kj ~Fs ¼ Oð1Þ: ðC27Þ
The net effect of these results is that the largest

contributions occur when Fs
3 is contracted with h2Kj.

Specifically, we find

Fs
3 ¼

0
BBB@

Oð1Þ OðB1Þ Oð1Þ Oð1Þ
OðB1Þ OðB2

1Þ OðB1Þ OðB1Þ
Oð1Þ OðB1Þ Oð1Þ Oð1Þ
Oð1Þ OðB1Þ Oð1Þ Oð1Þ

1
CCCA

K

; ðC28Þ

where the subscript on the matrix indicates that this result is
in the K-basis. We see that Fs

3 does contain single and
double B1 pole terms (unlike for B0, where they cancel).
There is one cancellation, however, which leads to the
absence of pole terms in the j1Kih1Kj element. This is
important, since we know from Eq. (C7) that the only large
entry in Ks

df;3 is in exactly this element:

Ks
df;3 ¼

0
BBB@

NKiso
df;3ðEÞ OðϵÞ OðϵÞ OðϵÞ
OðϵÞ OðϵÞ OðϵÞ OðϵÞ
OðϵÞ OðϵÞ OðϵÞ OðϵÞ
OðϵÞ OðϵÞ OðϵÞ OðϵÞ

1
CCCA

K

: ðC29Þ

The final step of the B1 analysis is to insert these results
into the quantization condition (C1) and evaluate the
determinant. We are looking for solutions which occur
when B1 is large, so that they are almost at the free-particle
energy. By explicit evaluation, we find that the dominant
contributions to the determinant involving B1 are of
OðϵB2

1Þ. Thus the appropriate scaling of B1 relative to ϵ
is such that ϵB2

1 ¼ Oð1Þ. Using this scaling, it turns out that
only the upper-left 2 × 2 blocks in the K-basis are relevant
for solutions to the quantization condition. Other blocks
lead to contributions proportional to ϵB1, which remains
small. Thus, for the purpose of finding solutions to the
quantization condition we can make the replacements

Fs
3 →

0
BBB@

Oð1Þ OðB1Þ 0 0

OðB1Þ OðB2
1Þ 0 0

0 0 0 0

0 0 0 0

1
CCCA and

Ks
df;3 →

0
BBB@

NKiso
df;3ðEÞ OðϵÞ 0 0

OðϵÞ OðϵÞ 0 0

0 0 0 0

0 0 0 0

1
CCCA: ðC30Þ

This shows that, in the Aþ
1 block, the quantization condition

involves only two states, and not four:

det

�
1þ NKiso

df;3ðEÞh1KjFsj1Ki þOðϵB1Þ OðϵB1Þ
OðB1Þ 1þOðϵB2

1Þ

�

¼ 0: ðC31Þ

When E is far from mþ 2ω1, so that B1 ¼ Oð1Þ, the B1

terms are small, and one finds only the isotropic solution,
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Eq. (38). But now, when ϵB2
1 ¼ Oð1Þ, there is the pos-

sibility of a second solution. To demonstrate the existence
and to find position of this solution, however, appears to
require knowledge of the subdominant parts of Fs, Ks

2,
and Ks

df;3. Nevertheless, what is clear is that any solution
will lie very close to the free-particle energy, since it will
require jB1j ≫ 1.
We now turn to blocks of the matrices in other irreps.

These can only lead to solutions close to free-particle
energies since Ks

df;3 is of OðϵÞ throughout these blocks.
Such solutions require factors of B1 to counterbalance those
of ϵ. B1 appears in ~Fs in all diagonal elements with
spectator momentum of class n ¼ 1, and thus [see
Eq. (C4)] appears in both Eþ and T−

1 blocks. The same
can be seen to hold for ~Gs.
We consider first the Eþ block. This has dimension four,

since there are Eþ irreps in both n ¼ 1 and n ¼ 2 classes,
while the Eþ irrep itself is a doublet. The structure within
each Eþ irrep is, however, always proportional to the
identity matrix. Thus we display the blocks as 2 × 2
matrices, each element of which is implicitly proportional
to the identity matrix. The matrices have the form

~Fs ¼
�
B1 þOð1Þ 0

0 Oð1Þ

�
;

H ¼
�
2B1 þOð1Þ Oð1Þ

Oð1Þ Oð1Þ

�
;

Ks
df;3 ¼

�
OðϵÞ OðϵÞ
OðϵÞ OðϵÞ

�
; ðC32Þ

from which it follows that

Fs
3 ¼

�
− B1

6
þOð1Þ Oð1Þ
Oð1Þ Oð1Þ

�
;

1þ Fs
3K

s
df;3 ¼

�
1þOðϵB1Þ OðϵB1Þ

OðϵÞ 1þOðϵÞ

�
: ðC33Þ

Thus the determinant is 1þOðϵB1Þ, and can vanish if
ϵB1 ¼ Oð1Þ. In this case we know that such a solution will
exist, irrespective of the overall sign of the ϵB1 term, sinceB1

can take either sign, depending on whether E is above or
belowmþ 2ω1. Thus we conclude that the Eþ irrep yields a
solution with E ≈mþ 2ω1. Recalling the implicit 2 × 2
identitymatrix in each entry, thiswill be a degenerate doublet.
At this stage we have uncovered all the solutions we

want—four in all (assuming that the Aþ
1 quantization

condition does have an almost-free solution). But there
remains the T−

1 block in which both ~Fs and ~Gs have entries
of B1. If these end up multiplying factors of ϵ, as in the Eþ
block, then there is potential for unwanted solutions to the
quantization condition, corresponding to states which

violate particle-interchange symmetry. The way in which
the formalism avoids this is through the particle-
interchange symmetry that has been carefully maintained
in Kdf;3. The issue is subtle, however, because our coor-
dinates, and, in particular, the truncation we are using, is
not particle-interchange symmetric.
The T−

1 block has contributions from classes n ¼ 1, 2,
and 3, each of which is three dimensional, so the overall
block dimension is nine. Entries within each 3 × 3 sub-
block are, however, proportional to the identity matrix, so
we leave this implicit and display only the 3 × 3 matrix
indexed by momentum class. We find

~Fs ¼

0
BB@

B1 þOð1Þ 0 0

0 Oð1Þ 0

0 0 Oð1Þ

1
CCA;

~Gs ¼

0
BB@

−B1 þOð1Þ Oð1Þ Oð1Þ
Oð1Þ Oð1Þ Oð1Þ
Oð1Þ Oð1Þ Oð1Þ

1
CCA; ðC34Þ

where the minus sign on B1 in ~Gs arises from the negative
parity of the T−

1 irrep and the fact that the nonzero elements
of ~Gs in the original basis are those connecting an n ¼ 1
momentum to its parity conjugate. It follows from (C34)
that B1 cancels from H, so that H−1 is a general symmetric
Oð1Þ matrix with no small elements. We then find

Fs
3 ¼

0
BB@

OðB2
1Þ OðB1Þ OðB1Þ

OðB1Þ Oð1Þ Oð1Þ
OðB1Þ Oð1Þ Oð1Þ

1
CCA; ðC35Þ

so that, as in the Eþ block, Fs
3 contains single and double

poles.
If Ks

df;3 was simply a symmetric matrix containing terms
of OðϵÞ, then an analysis similar to that for the Eþ block
would imply the presence of almost-free solutions to the
quantization condition in the T−

1 block. These would be
unexpected, and indicate that our formalism was violating
particle-interchange symmetry in a fundamental way. We
are saved from this conclusion by the presence of additional
structure inKs

df;3, following, not surprisingly, from particle-
interchange symmetry. We recall that, before truncation,
Kdf;3 is, by construction, exactly symmetric under particle
interchange. We argue below that a consequence of this
symmetry is that, if E ¼ mþ 2ω1 (so that the free three-
particle state is exactly on shell), then

½Ks
df;3�ð1;0;0Þ;k0 ¼ ½Ks

df;3�ð−1;0;0Þ;k0 ðC36Þ
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(and similarly for the permutations of the left-hand
momentum index). Here the right-hand index indicates
an arbitrary momentum. The key feature of this result is that
only the first index is parity inverted—the second is
unchanged. This implies that the projection on the left-
hand index onto the irrep T−

1 , which involves taking the
difference between the two sides of Eq. (C36), vanishes
identically. As we move away from E ¼ mþ 2ω1, the two
sides start to differ, but we expect this difference to grow at
least linearly in E − ðmþ 2ω1Þ ∝ 1=B1.
The upshot is that particle-interchange symmetry leads

to the following form for Ks
df;3:

Ks
df;3 ¼

0
BB@

Oðϵ=B2
1Þ Oðϵ=B1Þ Oðϵ=B1Þ

Oðϵ=B1Þ OðϵÞ OðϵÞ
Oðϵ=B1Þ OðϵÞ OðϵÞ

1
CCA: ðC37Þ

The top-left element is doubly suppressed because it
involves a cancellation of the type just described for both
left- and right-hand indices. Combined with the result for
Fs
3, Eq. (C35), this implies that detð1þFs

3K
s
df;3Þ¼1þOðϵÞ.

Thus there are no solutions to the quantization condition,
and no unwanted states.34

We now demonstrate Eq. (C36). On the left-hand side the

spectator momentum is ~k ¼ ð1; 0; 0Þ, so the total momen-

tum of the other two particles is −~k. By assumption (given
our truncation) the amplitude in the CM frame of the other
two particles is independent of angle. For one choice of

angle the other two momenta are ~0 and −~k (since this gives
the correct energy E). Thus the amplitude on the left-hand
side of (C36) is equal to the original Kdf;3 (with no super-

script s) when the three outgoing momenta are ~k, ~0, and −~k.
By exactly the same argument, the amplitude on the right-

hand side equals Kdf;3 for outgoing momenta −~k, ~0, and ~k.
But since Kdf;3 is symmetric under incoming particle
exchange, the amplitudes on the two sides are equal.
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