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We discuss the sparticle (and Higgs) spectrum in a class of flavor symmetry-based minimal super-
symmetric standard models, referred to here as sMSSM. In this framework the supersymmetry breaking
Lagrangian takes the most general form consistent with a grand unified symmetry such as SOð10Þ and a non-
Abelian flavor symmetry acting on the three families with either a 2þ1 or a 3 family assignment. Models
based on gauged SUð2Þ and SOð3Þ flavor symmetry, as well as non-Abelian discrete symmetries such as S3
and A4, have been suggested which fall into this category. These models describe supersymmetry breaking
in terms of seven phenomenological parameters. The soft supersymmetry breaking masses at MGUT of all
sfermions of the first two families are equal in sMSSM, which differ in general from the corresponding third
family mass. In such a framework we show that the muon g − 2 anomaly, the observed Higgs boson mass of
∼125 GeV, and the observed relic neutralino dark matter abundance can be simultaneously accommodated.
The resolution of the muon g − 2 anomaly in particular yields the result that the first two generation squark
masses, as well the gluino mass, should be ≲2 TeV, which will be tested at LHC14.
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I. INTRODUCTION

The ATLAS and CMS experiments at the Large Hadron
Collider (LHC) have independently reported the discovery
[1,2] of a Standard Model (SM)-like Higgs boson reso-
nance of mass mh ≃ 125–126 GeV using the combined
7 and 8 TeV data. This discovery is compatible with low
scale supersymmetry, since the minimal supersymmetric
standard model (MSSM) predicts an upper bound of
mh ≲ 135 GeV for the lightest CP-even Higgs boson, if
the superparticle masses are assumed not to exceed several
TeV [3]. On the other hand, no signals have shown up for
supersymmetric particles at the LHC first run, and the
current lower bounds on the colored sparticle masses [4,5]

m~g ≳ 1.4 TeV ðfor m~g ∼m ~qÞ and

m~g ≳ 0.9 TeV ðfor m~g ≪ m ~qÞ ð1Þ
have created some skepticism about naturalness arguments
for the Higgs mass based on low scale supersymmetry.
Although the sparticle mass bounds in Eq. (1) are mostly

derived for R parity conserving constrained MSSM
(cMSSM), they are applicable to a wider class of low
scale supersymmetric models. There exist regions in the

MSSM parameter space where the bounds in Eq. (1) can be
relaxed by introducing R parity violating couplings that
break baryon number [6], but if the mass of the top quark
superpartner, the stop, is below 1 TeV, the Higgs mass
would be unacceptably small. Furthermore, neutralino dark
matter will be lost in this case, owing to the violation of R
parity. Low scale supersymmetry can indeed accommodate
a Higgs boson with mass mh ≃ 125 GeV in the MSSM
while preserving neutralino dark matter, but it requires
either a large, Oðfew–10Þ TeV, stop mass, or a relatively
large soft supersymmetry breaking (SSB) trilinear At term,
along with a stop mass of around 1 TeV [7].
One of the most popular assumptions in low scale

supersymmetric theories is that of universal soft supersym-
metry breaking mass terms for the three generations of
sfermions. This assumption is mainly motivated by the
constraints obtained from flavor-changing neutral currents
(FCNC) processes [8], with inspiration from minimal
supergravity Lagrangian [9]. A practical outcome of three
family universality of soft masses is that it would lead to
heavy sleptons in the spectrum, since the stop should be
heavy to fit the Higgs boson mass. Note, however, that the
universality assumption does not follow from any sym-
metry principle, and as we elaborate here, may be relaxed in
a controlled fashion based on underlying symmetries. Such
a framework is referred to here as sMSSM, for flavor
symmetry-based minimal supersymmetric standard model.
The Standard Model prediction for the anomalous mag-

netic moment of the muon, aμ ¼ ðg − 2Þμ=2 (muon g − 2)
[10], has a discrepancy with the experimental results [11]

*kaladi.babu@okstate.edu
†On leave from Andronikashvili Institute of Physics, Tbilisi

0177, Georgia.
ilia@bartol.udel.edu

‡shafi@bartol.udel.edu
§cemsalihun@uludag.edu.tr

PHYSICAL REVIEW D 90, 116002 (2014)

1550-7998=2014=90(11)=116002(11) 116002-1 © 2014 American Physical Society

http://dx.doi.org/10.1103/PhysRevD.90.116002
http://dx.doi.org/10.1103/PhysRevD.90.116002
http://dx.doi.org/10.1103/PhysRevD.90.116002
http://dx.doi.org/10.1103/PhysRevD.90.116002


Δaμ ≡ aμðexpÞ − aμðSMÞ ¼ ð28.6� 8.0Þ × 10−10: ð2Þ

If supersymmetry is to offer a solution to this discrepancy,
the smuon and gaugino (bino or wino) SSB masses should
be Oð100Þ GeV. Thus, it is hard to simultaneously explain
the observed Higgs boson mass and resolve the muon
g − 2 anomaly if universality of all sfermion soft masses
is imposed at the grand unified theory (GUT) scale, as
in cMSSM.
Recently there have been several attempts to reconcile

this (presumed) tension between muon g − 2 and Higgs
boson mass within the MSSM framework by assuming
nonuniversal SSB mass terms for the gauginos [12] or the
sfermions [13] at the GUT scale. A simultaneous explan-
ation of mh and muon g − 2 is possible [14] even with the
t − b − τ Yukawa coupling unification condition [15].
It has been known for some time [16] that constraints
from FCNC processes are very mild and easily satisfied for
the case in which the third generation sfermion masses
are split from those of the first two generations. The crucial
difference between sMSSM and the models of Refs. [13,16]
is that we allow the SSB mass terms for MSSM Higgs
bosons Hu and Hd to be free parameters, while in
Refs. [13,16] these massed were set equal to the sfermion
masses of the first two families or the third family. Such
boundary conditions impose very strict restrictions on the
sparticle spectrum after radiative electroweak symmetry
breaking (REWSB), and as a result the right abundance
of relic dark matter is not realized. In our approach, since the
SSB mass terms for the MSSM Higgs bosons are indepen-
dent parameters, the REWSB conditions do not affect
significantly the sparticle spectrum, and as we show, this
relaxation of SSB mass spectrum can lead to solutions with
the correct dark matter relic abundance.
In this paper we develop further the framework of the

flavor symmetry-based minimal supersymmetric standard
model, sMSSM, suggested recently [17]. It will be shown
that in this framework, which consists of seven phenom-
enological parameters that describe supersymmetry break-
ing, it is possible to explain the muon g − 2 anomaly and
the Higgs boson mass simultaneously, along with the
observed dark matter abundance. While the parameter
set of sMSSM (seven) is larger than that of cMSSM (four),
it is still rather restrictive. In comparison, the phenomeno-
logical MSSM (pMSSM) [18] describes supersymmetry
(SUSY) breaking in terms of 19 parameters. In the sMSSM
framework SUSY breaking is dictated by symmetry con-
siderations alone. It is realized by combining a grand unified
symmetry such as SOð10Þ with a flavor symmetry acting on
the three families which could be a gauge symmetry based
on SUð2Þ or SOð3Þ or a discrete non-Abelian symmetry
such as S3 or A4. These models admit either a 2þ1 or a
3 family assignment. Both assignments would lead to the
same low energy phenomenology, since a large top quark
mass effectively breaks the 3 assignment down to a 2þ1

assignment. The soft SUSY breaking Lagrangian is the most
general one consistent with these symmetries. FCNC proc-
esses mediated by SUSY particles are adequately suppressed
by the flavor symmetry, while the grand unified symmetry
further reduces the parameter set. As a consequence of these
symmetries, the soft masses of the first two families are
equal, which differs from that of the third family. This
additional freedom helps explain the muon g − 2, mh, and
dark matter abundance simultaneously. The framework is
still rather restrictive, leading to the result that the sfermions
of the first two families, as well as the gluino, should have
masses below about 2 TeV, which will be tested in the near
future at the LHC14.
The outline for the rest of the paper is as follows. In Sec. II

we summarize the salient features of flavor symmetry-based
MSSM. In Sec. III we briefly describe the dominant
contributions to the muon anomalous magnetic moment
arising from low scale supersymmetry. In Sec. IV we
summarize the scanning procedure and the experimental
constraints applied in our analysis. Here we also present the
parameter space that we scan over. Our results are presented
in Sec. V. Section VI has our conclusions.

II. FLAVOR SYMMETRY-BASED MINIMAL
SUPERSYMMETRIC STANDARD

MODEL: SMSSM

In this section we provide a brief description of the
sMSSM setup and its motivations [17]. We also describe at
the end of this section a complete model based on SUð2Þ
flavor symmetry that leads to sMSSM phenomenology at
energies below the GUT scale. We refer the reader to
Ref. [17] for a more detailed discussion including addi-
tional models that generate the sMSSM spectrum.
In supergravity models, it is generally assumed that

supersymmetry breaks dynamically in a hidden sector,
which is communicated to the visible sector via gravity.
With no further restrictions imposed, this setup would lead
to over a hundred parameters in the soft SUSY breaking
Lagrangian of MSSM, assuming that R parity remains
unbroken. These parameters are phenomenologically
restricted by stringent constraints from flavor changing
neutral currents that the SUSY particles mediate. To satisfy
such constraints, it is often assumed that the sfermions of all
three generations have a universal mass at the GUT scale.
In the constrained MSSM, for example, SUSY breaking is
described by a set of four parameters, traditionally chosen to
be fm0;M1=2; A0; tan βg, along with a discrete parameter
sgnðμÞ. Such a choice, however, is not dictated by any
symmetry argument, and modifications of this scheme have
been widely discussed. An example is the pMSSM, which
describes the soft SUSY breaking Lagrangian in terms of 19
parameters, chosen such that SUSY mediated flavor viola-
tion is sufficiently suppressed. As in the case of cMSSM this
setup is also not dictated by an underlying symmetry. The
sMSSM suggested in Ref. [17] is a framework for controlled
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SUSY breaking based on symmetry principles. As the
framework is based on gauge symmetries, the Lagrangian
is guaranteed to be protected against quantum gravitational
corrections.
In the sMSSM framework the soft SUSY breaking

Lagrangian is the most general one consistent with
two symmetries. First, it is compatible with a grand unified
symmetry such as SOð10Þ. Second, a non-Abelian flavor
symmetry of gauge origin acts on the three families with
either a 2þ1 or a 3 family assignment. This symmetry
suppresses SUSY mediated flavor violation. The grand
unified symmetry, which is well motivated, and supported
by the merging of the three gauge couplings at a GUT scale
of ≈ 2 × 1016 GeV within MSSM, reduces the soft SUSY
breaking parameters considerably. For example, gaugino
mass unification is implied by GUT, which reduces the
gaugino soft parameters of MSSM from three down to one.
Similarly, all members of a family would have a common
soft mass, as they are unified into a 16-plet of SOð10Þ.
Combined with the non-Abelian flavor symmetry, the 15
soft squared mass parameters of the 15 chiral fermions of
the MSSM are reduced to just two in sMSSM. The SUSY
phenomenology of sMSSM is described by seven param-
eters, chosen to be

fm1;2; m3;M1=2; A0; tan β; μ; mAg: ð3Þ

Here m1;2 is the common mass of the first two family
sfermions, while m3 is the soft mass of the third family
sfermions. M1=2 is the unified gaugino mass and mA is the
mass of the pseudoscalar Higgs boson. We shall now
describe how the symmetries of sMSSM lead to the
parameter set of Eq. (3).
A non-Abelian flavor symmetry, denoted as H, acts on

the three families in sMSSM. Ideally any symmetry should
be a gauge symmetry, which suggests SUð2Þ, SOð3Þ, and
SUð3Þ as possible candidates for H as these groups contain
2- and 3-dimensional irreducible representations. Among
these, SUð2Þ and SOð3Þ can yield simple and realistic
models of SUSY breaking and simultaneously generate
realistic fermion masses [17], while this is not easily
achieved in the case with SUð3Þ. Note that the representa-
tions of SUð2Þ and SOð3Þ are (pseudo)real, and gauge
theories based on these groups are automatically free of
triangle anomalies, which is not the case with SUð3Þ.
Gauging a flavor symmetry, however, is generally prob-
lematic in SUSY models, as it induces new and potentially
dangerous flavor violation via theD terms [19]. In Ref. [17]
an interchange symmetry was suggested acting on a pair of
doublets that break SUð2Þ which would set the D terms to
zero. Similarly, a simple solution for the D-term problem
was found in the case of SOð3ÞH as well [17,20]. In this
case, although the soft masses of all members of the SOð3Þ
triplets would be degenerate at the GUT scale, there is
significant mixing between the third family and certain

vectorlike families of GUT scale mass that generates a large
top quark mass. As a result, the effective low energy SUSY
breaking Lagrangian would have a common mass for the
first two family sfermions that is different from that of
the third family. Thus, both SUð2Þ and SOð3Þwould lead to
the parameter set of Eq. (3) for low energy phenomenology.
The spectrum of sMSSM can also follow from a non-

Abelian discrete flavor symmetry such as S3 and A4 [17].
We envision such symmetries to have a fundamental gauge
origin and note that in string theory constructions such
non-Abelian symmetries often emerge. In this case there is
no issue with the D term, since discrete symmetries do not
have associatedD terms. S3, the permutation group of three
letters, which is the simplest non-Abelian symmetry, admits
a 2þ1 family assignment. A4, the symmetry group of a
regular tetrahedron, which is the simplest group with a
triplet representation, admits a 3 assignment of families.
Realistic fermion mass generation and symmetry breaking
mechanism with these symmetry groups have been ana-
lyzed in Ref. [17], which all yield the spectrum of sMSSM.
The case of S3 symmetry is similar to the SUð2ÞH model,
while the case of A4 symmetry resembles the SOð3ÞH
model.
sMSSM is a systematized approach which addresses

and solves the D-term problem [19] that generally exists in
gauged family symmetry models [21] by auxiliary sym-
metries. Non-Abelian discrete family symmetries have
been used in the literature to address the SUSY flavor
violation problem [22,23], but typically the low energy
theory is not the MSSM. In the sMSSM, on the other hand,
the low energy theory is the MSSM with the parameter set
relevant for SUSY breaking given as in Eq. (3).
We conclude this section with a brief description of

one model based on SUð2ÞH flavor symmetry that yields
sMSSM at low energies [17]. The three families are
assigned under SOð10Þ × SUð2ÞH as ð16; 2Þ þ ð16; 1Þ,
with the ð16; 1Þ identified as the third family. We use
the notation of SOð10Þ, but it is not required that the model
be grand unified; the only requirement is compatibility with
a GUT symmetry such as SOð10Þ. SUð2ÞH symmetry
breaking is achieved by introducing a pair of ð1; 2Þ Higgs
fields, denoted as ϕ and ϕ̄, which acquire vacuum expect-
ation values (VEVs) of order the GUT scale, through a
superpotential given by

Wsym ¼ μϕϕϕ̄þ κðϕϕ̄Þ2: ð4Þ

Here κ is a parameter with inverse dimensions of mass,
obtained by integrating a gauge singlet field, or arising
from quantum gravity effects. Including the SUð2ÞH D
terms, and soft SUSY breaking terms, one obtains from the
minimization of the potential a condition

juj2 − jūj2 ¼
2ðm2

ϕ̄
−m2

ϕÞ
g2H

; ð5Þ
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where hϕi ¼ ð0; uÞT and hϕ̄i ¼ ðū; 0ÞT , and where m2
ϕ

and m2
ϕ̄
are the soft squared masses of the ϕ and ϕ̄ fields

respectively. This condition yields a nonzeroD term, which
would split the masses of the up- and down-type members
of all SUð2ÞH doublet sfermions, and thus induce flavor
violation [once Cabibbo-Kobayashi-Maskawa (CKM) mix-
ing is included] in meson-antimeson mixing, for example.
In Ref. [17] it was noted that this D-term problem can
be avoided simply by imposing an interchange symmetry
ϕ ↔ ϕ̄, which would set m2

ϕ ¼ m2
ϕ̄
, and thus juj2 ¼ jūj2.

Such an interchange symmetry is a subgroup of an
anomaly-free SUð2Þ global symmetry which exists in the
model with two doublets.
Realistic fermion masses are induced in the model

through the Yukawa superpotential

WYuk ¼ 16316310H þ 16i16310H

�
ϕj þ ϕ̄j

M�

�
ϵij

þ 16i16jϵij10H

�
45H
M�

�
þ � � � ð6Þ

Here ellipsis stands for higher order terms suppressed by
more powers of M�, which is presumably the Planck scale,
much larger than juj and h45Hi ∼MGUT. The coupling
16i16jϵij10H will not be allowed if the full SOð10Þ
symmetry is utilized, however the term shown with an
additional 45H, used for GUT symmetry breaking, would
be allowed because of its antisymmetric property. We see
that only the third generation acquires a mass at the
renormalizable level, while the lighter family masses are
suppressed by inverse powers such as juj=M�. After some
rotations, the fermion mass matrices resulting from Eq. (6)
can be written in the form

Mf ¼

0
B@

0 c 0

−c 0 b

0 b0 a

1
CA

f

ð7Þ

for f ¼ u; d;l; νD, which fits the observed masses and
mixings of quarks and leptons quite well [23]. CP violation
can have a spontaneous origin in this context, which would
make all SUSY breaking parameters real, and thus solve
the SUSY CP problem arising from limits on the electric
dipole moments of the electron and the neutron. The CKM
phase can still be of order 1, if some of the fields, such as
the 45H of Eq. (6), acquire complex VEVs [17].
Owing to the SUð2ÞH flavor symmetry, the soft masses of

the scalars in the ð16; 2Þ multiplet are all the same (denoted
as m1;2), while members of the ð16; 1Þ would have a
common mass that is different (denoted asm3). The gaugino
masses are unified because of the SOð10Þ symmetry. There
is no reason for the soft masses of the MSSMHiggs doublets
Hu and Hd to be equal to m1;2 or m3, as these fields belong

to different representations of SOð10Þ such as 10 and 16.
These two Higgs soft masses have been traded in Eq. (3)
with μ and mA. Finally, in the sMSSM framework it is not
required that the trilinear A terms be proportional to the
respective Yukawa couplings. Nevertheless, these A terms
would exhibit the same hierarchy as the Yukawa couplings,
and nonproportionality does not result in excessive SUSY
induced flavor violation. For low energy collider phenom-
enology, only the third familyA terms are relevant, which we
denote as A0 at the GUT scale. In a more general setting this
A0 can break into At

0, A
b
0 , and Aτ

0, which need not be all the
same. Such a difference will be relevant only for the case of
large tan β. In our analysis we define A0 ¼ A0

t ¼ A0
b ¼ A0

τ ,
which is realized in at least some versions of sMSSM.

III. THE MUON ANOMALOUS MAGNETIC
MOMENT IN SMSSM

The leading contribution from low scale supersymmetry
to the muon anomalous magnetic moment, applicable to
sMSSM, is given by [24,25]

Δaμ ¼
αm2

μμM2 tan β

4πsin2θW m2
~μL

�
fχðM2

2=m
2
~μL
Þ − fχðμ2=m2

~μL
Þ

M2
2 − μ2

�

þ αm2
μμM1 tan β

4πcos2θWðm2
~μR
−m2

~μL
Þ

×

�
fNðM2

1=m
2
~μR
Þ

m2
~μR

−
fNðM2

1=m
2
~μL
Þ

m2
~μL

�
; ð8Þ

where α is the fine-structure constant,mμ is the muon mass,
μ denotes the bilinear Higgs mixing term, and tan β is the
ratio of the VEVs of MSSM Higgs doublets. M1 and M2

denote the Uð1ÞY and SUð2Þ gaugino masses respectively,
θW is the weak mixing angle, and m~μL , m ~μR are left- and
right-handed smuon masses. The loop functions are defined
as follows:

fχðxÞ ¼
x2 − 4xþ 3þ 2 ln x

ð1 − xÞ3 ; fχð1Þ ¼ −2=3; ð9Þ

fNðxÞ ¼
x2 − 1 − 2x ln x

ð1 − xÞ3 ; fNð1Þ ¼ −1=3: ð10Þ

The first term in Eq. (8) stands for the dominant contribution
arising from the one-loop diagram with Higgsino-wino
exchange, while the second term describes contributions
from the bino-smuon loop. As the Higgsino mass parameter
μ increases, the first term decreases in Eq. (8) and the second
term becomes dominant. On the other hand, the smuons need
to be light, O (100 GeV), in both cases in order to make a
sizeable contribution to muon g − 2. Note that due to
decoupling, the formulas will eventually fail to be accurate
for large values of μ tan β. Equation (8) does not contain the
trilinear SSB term Aμ, since it is assumed that Aμ < μ tan β.
From Eq. (8), the parameter set
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fM1;M2; μ; tan β; m~μL ; m~μRg ð11Þ

is relevant at low energies for the muon g − 2 calculation.
Since the gaugino masses are universal at the GUT scale
in sMSSM, and the sfermions of the first two families have a
common mass, we have M2 ≈ 2M1 at low scale due to
renormalization group equation (RGE) running. On the other
hand, in order to have a sizeable contribution to muon g − 2
from supersymmetry, the gauginos should be sufficiently
light. Because of relatively small values of bino and wino
masses we can assume that m~μL ≈ m~μR . With these con-
straints the number of independent parameters for the g − 2
calculation can be reduced to four:

fM1; μ; tan β; m ~μRg: ð12Þ

We pay special attention to these parameters, which are
functions of the seven fundamental parameters shown in
Eq. (3), in sMSSM.

IV. SCANNING PROCEDURE, PARAMETER
SPACE, AND EXPERIMENTAL CONSTRAINTS

We employ the ISAJET 7.84 package [26] to perform
random scans over the fundamental parameter space of
sMSSM as shown in Eq. (3). In this package, the weak
scale values of gauge and third generation Yukawa cou-
plings are evolved toMGUT via the MSSM RGEs in theDR
regularization scheme. We do not strictly enforce the
unification condition g3 ¼ g1 ¼ g2 at MGUT, since a few
percent deviation from unification can be assigned to
unknown GUT-scale threshold corrections [27]. The
deviation between g1 ¼ g2 and g3 at MGUT is no worse
than 3%–4%. For simplicity, we do not include the Dirac
neutrino Yukawa coupling in the RGEs, whose contribution
is expected to be small.
The various boundary conditions are imposed at MGUT

and all the SSB parameters, along with the gauge and
Yukawa couplings, are evolved back to the weak scaleMZ.
In the evolution of Yukawa couplings the SUSY threshold
corrections [28] are taken into account at the common scale
MSUSY ¼ ffiffiffiffiffiffiffiffiffiffiffiffiffiffim~tLm~tR

p , where m~tL and m~tR denote the masses
of the third generation left- and right-handed stop quarks.
The entire parameter set is iteratively run between MZ and
MGUT using the full 2-loop RGEs until a stable solution
is obtained. To better account for leading-log corrections,
1-loop step-beta functions are adopted for the gauge and
Yukawa couplings, and the SSB parameters mi are
extracted from RGEs at multiple scales mi ¼ miðmiÞ.
The RGE-improved 1-loop effective potential is minimized
atMSUSY, which effectively accounts for the leading 2-loop
corrections. Full 1-loop radiative corrections are incorpo-
rated for all sparticle masses. We found that at low energy
scale the ratio of the trilinear A term to the respective
squark mass is less than 3 if we impose at the GUT scale
jA0=m0j < 3. As was shown in Ref. [29] in this case the

charge and color breaking minima can be avoided. We
found that these simple conditions are in good agreement
with more sophisticated checks of charge and color break-
ing vacua [30]. We used this program to check our
benchmark points.
An approximate error of around 2 GeV [31] in the

estimate of the Higgs boson mass largely arises from
theoretical uncertainties in the calculation of the minimum
of the scalar potential, and to a lesser extent from
experimental uncertainties in the values for mt and αs.
An important constraint on the parameter space arises

from limits on the cosmological abundance of stable charged
particles [32]. This excludes regions in the parameter space
where a charged SUSY particle becomes the lightest super-
symmetric particle (LSP). We accept only those solutions for
which one of the neutralinos is the LSP and saturates the
WMAP bound on relic dark matter abundance.
We have performed random scans for the following

parameter range:

0 ≤ m1;2 ≤ 3 TeV

0 ≤ m3 ≤ 3 TeV

0 ≤ M1=2 ≤ 3 TeV

−5 TeV ≤ A0 ≤ 5 TeV

−3 ≤ A0=m3 ≤ 3

2 ≤ tan β ≤ 60

0 ≤ μ ≤ 3 TeV

0 ≤ mA ≤ 3 TeV

μ > 0: ð13Þ
Here m1;2 are the SSB scalar mass parameters for the first
two generations, whilem3 is for the third generation.M1=2 is
the SSB gaugino mass, and A0 is the SSB trilinear scalar
interaction coupling. The parameters μ and mA are the
bilinear Higgs mixing term and the mass of the CP-odd
Higgs boson respectively. In contrast to the other parameters,
the values for μ and mA are set at low scale. We make mt ¼
173.3 GeV [33], and we show that our results are not too
sensitive to one or two sigma variations from this central
value [34]. Note that mbðmZÞ ¼ 2.83 GeV, which is hard
coded into ISAJET. The choice of the sgn(μ) to be positive is
dictated by the desire to explain the muon g − 2 anomaly. All
SUSY breaking parameters are restricted to lie below 3 TeV
(except for A0 which is allowed to be somewhat larger),
which would make the fine-tuning in the Higgs mass
relatively mild. The mass range chosen in our scan keeps
the masses of most of the SUSY particles below about 4 TeV
which has important implications since the strongly inter-
acting particles in this mass range are within reach of LHC.
In scanning the parameter space, we employ the

Metropolis-Hastings algorithm as described in [35].
The data points collected all satisfy the requirement of
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REWSB, with the neutralino being the LSP in each case.
After collecting the data, we impose the mass bounds on
the particles [32] and use the ISATOOLS package [36] to
implement the various phenomenological constraints. We
successively apply the experimental constraints presented
in Table I on the data that we acquire from ISAJET.

V. RESULTS

We next present the results of the scan over the parameter
space listed in Eq. (13). In Fig. 1 we show the results in the
Δaμ −m~χ0

1
, Δaμ −m ~μR , Δaμ − tan β, Δaμ − μ planes. Gray

points are consistent with REWSB and neutralino LSP.
Yellow points represent Δaμ values which would bring

theory and experiment within 1σ. Green points form a
subset of gray points and satisfy the sparticle mass bounds
and B-physics constraints described in Table I. In addition,
the lightest CP-even Higgs mass range 123 GeV ≤ mh ≤
127 GeV is applied. Brown points belong to a subset of
green points and satisfy the WMAP bound (5σ) on the
neutralino dark matter abundance.
In the Δaμ −m~χ0

1
plane of Fig. 1, we show that muon

g − 2 prefers relatively light gauginos in the SUSY spec-
trum for Δaμ to be large enough to explain the discrepancy
between theory and experiment. The brown points belong
to a subset of green points and satisfy the WMAP bound
(5σ) on neutralino dark matter abundance. We will consider
later on how to obtain the correct relic abundance of
neutralino dark matter in this model. The lower bound on
the neutralino mass arises mostly from the current gluino
mass bound [see Eq. (1)], and there is a sharp upper bound
on the former, of about 2 TeV, if we are required to have
Δaμ within 1σ of the experimental value.
From the Δaμ −m ~μR panel, we see that in order to stay

within a 1σ range of muon g − 2 and comply with all the
constraints listed in Sec. IV, the smuon mass should lie in
the range 200 GeV≲m ~μR ≲ 800 GeV.

TABLE I. Phenomenological constraints implemented in our
study.

123 GeV ≤ mh ≤ 127 GeV [1,2]

0.8 × 10−9 ≤ BRðBs → μþμ−Þ ≤ 6.2 × 10−9ð2σÞ [37]

2.99 × 10−4 ≤ BRðb → sγÞ ≤ 3.87 × 10−4ð2σÞ [38]

0.15 ≤ BRðBu→τντÞMSSM
BRðBu→τντÞSM ≤ 2.41ð3σÞ [39]

0.0913 ≤ ΩCDMh2 ≤ 0.1363ð5σÞ [40]

FIG. 1 (color online). Plots in the Δaμ −m~χ0
1
, Δaμ −m ~μR , Δaμ − tan β, Δaμ − μ planes. All points are consistent with REWSB

and neutralino LSP. Yellow points represent values of Δaμ that would bring theory and experiment to within 1σ
ð20:6 × 10−6 ≲ Δaμ ≲ 36:6 × 10−6Þ. Green (light gray for black and white printer) points form a subset of gray points and satisfy
sparticle mass and B-physics constraints described on Table I. In addition these points satisfy the lightest CP-even Higgs mass range
123 GeV ≤ mh ≤ 127 GeV. Brown (dark gray for black and white printer) points belong to a subset of green points and satisfy the
WMAP bound (5σ) on neutralino dark matter abundance.
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The results in theΔaμ − tan β plane show that it is hard to
have a substantial contribution to muon g − 2 if tan β ≲ 14.
The interval 30≲ tan β ≲ 50 is preferred from the muon
g − 2 point of view, which is also a desirable range for
t − b − τ Yukawa coupling unification as well [15,41].
It is interesting to see from the Δaμ − μ plane that there

exist large μ solutions, which means that in this case we
have a significant contribution from the bino-smuon loop. It
has been shown [42] that if bino and smuons are dominant

contributors to the muon g − 2, the corresponding param-
eter space for sleptons can be tested at the LHC and the
International Linear Collider. The Δaμ − μ plane also
shows the possibility of smaller μ values consistent with
desirable values for muon g − 2. Small values of the μ term
may make “the little hierarchy” roblem less severe.
It is interesting to show the amount of mass splitting

necessary between the third and first two family sfermion
SSB masses in order to satisfy all current phenomenologi-
cal constraints including muon g − 2. We present our
results in the m3 −m1;2 plane in Fig. 2. The color coding
is the same as in Fig. 1 but in this case the yellow points are
a subset of the green points, and the brown points belong
to a subset of yellow. The unit slope line is to guide the
eye. As we see, the yellow points are sufficiently above the
unit line, and we need to have m3=m1;2 > 4. The splitting
becomes larger (m3=m1;2 > 10) as tan β decreases.
In Fig. 3 we show the relic density channels consistent

with muon g − 2 in the m~μR −m~χ0
1
, m~νμ −m~χ0

1
, m~τ1 −m~χ0

1
,

m~t −m~χ0
1
planes. We see that a variety of coannihilation

scenarios are compatible with muon g − 2 and neutralino
dark matter. In our scenario the lightest neutralino is always
the LSP as a result of imposing this condition during the
parameter scan. We found in our scan that the μ term is
always larger than the soft mass of the bino, which
indicates that the bino is primarily the LSP particle. In
the m~μR −m~χ0

1
plane in Fig. 3, we draw the unit slope line

FIG. 2 (color online). Plots in the m3 −m1;2 plane. The color
coding is the same as in Fig. 1, but in this case yellow points (for
black and white printer, it is between the lightest and the darkest
gray regions) are a subset of green points and brown points
belong to a subset of yellow. The unit slope line is to guide
the eye.

FIG. 3 (color online). Plots in the m ~μR −m~χ0
1
, m~ν1;2 −m~χ0

1
, m~τ1 −m~χ0

1
, m~t −m~χ0

1
planes. The color coding is the same as in Fig. 2

except that the mass bound on stop is not applied in m~t −m~χ0
1
.
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which indicates the presence of the smuon-neutralino
coannihilation scenario. From the m~νμ −m~χ0

1
and m~τ1 −m~χ0

1

planes we see that it is also possible to realize stau and muon
sneutrino coannihilation scenarios.
The results in the m~t1 −m~χ0

1
plane show that it is hard to

realize the stop coannihilation scenario in this framework.
The stop in this scenario can be as light as 500 GeV and
cannot be heavier than 2 TeV. We expect that the A-funnel
scenario is also consistent with muon g − 2, although we
have not found it, perhaps due to a lack of statistics.
Figure 4 shows plots in the m ~q −m~g, m ~q − tan β,

m~g − tan β, and m~μR − tan β planes, with color coding the
same as in Fig. 2. The m ~q −m~g plane shows that imposing
1σ deviation from the measured muon g − 2 requires the
first and second generation squark masses to be less than
2 TeV, which can be tested in the upcoming LHC second
run. If the bound m~g ≳ 1.4 TeV (for m~g ∼m ~q), observed
from an analysis based on the cMSSM parameter space, is

confirmed for the case of the general low scale SUSY, then
tan β ≲ 30 will be excluded in this scenario.
In Fig. 5 we show the spin independent and spin

dependent cross sections for dark matter detection as a
function of the neutralino LSP mass. The color coding is
the same as in Fig. 1. In the left panel, the black dashed line
represents the current upper bound set by the CDMS
experiment, the red dashed line depicts the upper bound
set by XENON 100 [43], while the black (red) solid line
represents the future reach of SuperCDMS [44](XENON
1T [45]). The blue dashed line represents the current reach
of the LUX experiment [46]. In the right panel, the current
upper bounds set by Super-K [47] (red dashed line) and
IceCube DeepCore (black dashed line) are shown. The
future IceCube DeepCore bound is depicted as the black
solid line [48]. The blue dashed line represents the current
reach of the CMS experiment [49]. Since the dark matter is
mostly bino, the scattering cross section with the nucleon is

FIG. 4 (color online). Plots in the m ~q −m~g and m~g − tan β planes. Color coding is the same as in Fig. 2.

FIG. 5 (color online). Plots in m~χ0
1
− σSI and m~χ0

1
− σSD planes. Color coding is the same as in Fig. 1. (Left Panel) The black dashed

line (the first line from the top) represents the current upper bound set by CDMS experiment, the blue dashed line (the second line from
the top) represents the current reach of the LUX experiment, the red dashed line (the third from the top) depicts the upper bound set
by XENON 100 [43], while the black (the fourth line from the top) and the red (the fifth line from the top) solid lines represent the
future reach of SuperCDMS [44]and XENON 1T [45] respectively. (Right panel) The current upper bound set by Super-K [47] (red
dashed line - the first line from the top) and IceCube DeepCore (black dashed line - the second from the top) are shown. The future
IceCube DeepCore bound is depicted as the black solid line (the fourth from the top) [48]. The blue dashed line (the third from the top) is
the limit from the CMS analysis.
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low and below the limits implied by both the spin
independent and dependent processes. In the case of spin
independent scattering experiments, some solutions can be
tested in future experiments conducted by XENON 1T and
SuperCDMS. Similarly, the right panel of Fig. 5 shows that
the spin dependent cross section of dark matter with the
nucleon is below the exclusion limits of Super-K, CMS,
and IceCube Deep Core. Measurements from the Super-K
and IceCube Deep Core experiments are based on the
neutrino flux arising from dark matter annihilations, while
the CMS analysis is based on the axial vector operator,
and we hope that some of our solutions will be tested with
increasing analysis.
Finally, in Table II we present four characteristic bench-

mark points which summarize the salient features of this
model. For these points the g − 2 constraints as well as
the sparticle mass and B-physics constraints described in
Sec. IV are satisfied. The values in bold emphasize the
SM-like Higgs boson mass and muon g − 2, while those in
red highlight the masses of LSP and NLSP that describe

the related coannihilation scenario to satisfy the bound of
dark matter relic abundance. The points 1–4 respectively
correspond to the muon sneutrino, smuon, stau, and muon
sneutrino coannihilation channels. Point 1 depicts a
solution with a relatively low value of μ and accordingly
it has relatively large neutralino-nucleon spin independent
and spin dependent cross section, which can be tested
at the upcoming SuperCDMS, XENON 1T, and IceCube
DeepCore experiments. Point 4 displays a solution with
heavy gluino and squarks of the first two families.

VI. CONCLUSION

We have explored the sparticle and Higgs phenomenol-
ogy of the flavor symmetry-based MSSM framework,
referred to here as sMSSM. Such models are motivated
by a grand unified symmetry such as SOð10Þ along with
a non-Abelian flavor symmetry that suppresses SUSY
flavor violation. The SUSY breaking Lagrangian in
sMSSM is the most general one consistent with these

TABLE II. Four benchmark points satisfying all phenomenological constraints including muon g − 2 in sMSSM.
All the masses are in units of GeV. All these points are chosen to satisfy the constraints described in Sec. 3. The
values in bold emphasize the SM-like Higgs boson mass and muon g − 2, while those in red highlight the masses of
LSP and NLSP that describe the related coannihilation scenario to satisfy the bound of dark matter relic abundance.
The points 1–4 respectively correspond to muon sneutrino, smuon, stau, and muon sneutrino coannihilation
channels.

Point 1 Point 2 Point 3 Point 4

m1;2 222 302 282 244
m3 2862 1760 1678 2671
M1=2 545.6 494 692 754
tan β 35.4 20.9 44.4 46.1
A0=m3 −1.54 −2.24 −2.65 −2.18
μ 503.1 2179 2676 2895
mA 2891 1648 2749 2972
mt 173.3 173.3 173.3 173.3
Δaμ 31.8 × 10−10 24.3 × 10−10 22.5 × 10−10 23.1 × 10−10

mh 123.2 124.1 124.6 125.2
mH 2910 1658 2767 2991
mA 2891 1648 2749 2972
mH� 2911 1661 2768 2993
m~χ0

1;2
232, 420.7 211, 410 299, 573 330, 631

m~χ0
3;4

514.2, 548 2164, 2164 2658, 2658 2874, 2875
m~χ�

1;2
423.5, 546.5 411, 2169 574, 2659 633, 2877

m~g 1290 1171 1579 1724
m ~uL;R 1137, 1041 1465, 1298 1399, 1218 1561, 1401
m~t1;2 1066, 1960 896, 1553 1019, 1597 1267, 2030
m ~dL;R

1140, 1117.5 1069, 1022 1468, 1431 1563, 1521
m ~b1;2

1976, 2466 1532, 1892 1545, 1755 2014, 2354
m~ν1;2 244 473 326 340
m~ν3 2541 1724 1146 2021
m~eL;R 319, 474 491, 218 355, 706 387, 687
m~τ1;2 2195, 2546 1581, 1731 318, 1159 1109, 2025
σSIðpbÞ 0.35 × 10−9 0.53 × 10−11 0.36 × 10−11 0.13 × 10−11

σSDðpbÞ 0.19 × 10−5 0.44 × 10−7 0.43 × 10−8 0.32 × 10−8

ΩCMDh2 0.11 0.11 0.12 0.11
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two symmetries. Explicit ultraviolet complete models that
generate the sMSSM spectrum at low energies have
been presented. These include models based on SUð2Þ
and SOð3Þ gauged flavor symmetries, as well as those
based on non-Abelian discrete symmetries such as S3
and A4. The SUSY phenomenology of these models is
described by the seven parameters listed in Eq. (3).
sMSSM contains three additional parameters compared
to cMSSM. Specifically, the (common) soft mass of the
first two family sfermions is different from that of the third
family. This freedom helps us explain the muon g − 2
anomaly, along with the Higgs boson mass and the correct
relic abundance of neutralino dark matter. The parameter
space is still rather restrictive, and we have shown that the
simultaneous explanation of these observables requires
the mass of the gluino to be less than about 2 TeV, and the
mass of the first two family sleptons to be less than about
800 GeV. The parameter tan β is preferred to be relatively
large, tan β > 15.
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