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In this paper the smallest thermal screening mass associated with the correlator of the CT-odd operator,
∼ TrFμν

~Fμν, is determined in strongly coupled non-Abelian gauge plasmas which are holographically dual
to nonconformal, bottom-up Einsteinþ scalar gravity theories. These holographic models are constructed
to describe the thermodynamical properties of SUðNcÞ plasmas near deconfinement at large Nc, and we
identify this thermal mass with the Debye screening mass mD. In this class of nonconformal models with a
first-order deconfinement transition at Tc the Debye screening mass mD displays the same behavior found
for the expectation value of the Polyakov loop (which we also compute) jumping from zero below Tc to a
nonzero value just above the transition. In the case of a crossover phase transition, mD=T has a minimum
similar to that found for the speed of sound squared c2s . This holographic framework is also used to evaluate
mD as a function of η=s in a strongly coupled conformal gauge plasma dual to Gauss–Bonnet gravity. In
this case, mD=T decreases with increasing η=s in accordance with extrapolations from weak coupling
calculations.
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I. INTRODUCTION

In the deconfined phase of non-Abelian gauge theories,
the inverse of the Debye screening mass,m−1

D , can be used to
define a screening length of the thermal medium that roughly
signals the effective maximum interaction distance between
two colored heavy probes. Debye screening is the mecha-
nism behindMatsui and Satz’s well-known proposal [1] that
the “melting” (dissociation) of heavy quarkonia states in the
quark-gluon plasma (QGP) is a signature of deconfinement.
Although in weakly coupled Abelian and non-Abelian

plasmas the Debye screening mass has been calculated long
ago at one loop in perturbation theory [2–4], higher-order
perturbative calculations [5–8] indicate the breakdown of
the perturbation series expansion for this quantity. Thus, a
nonperturbative, gauge invariant definition of the Debye
screening mass is needed. A definition that is inherently
nonperturbative and gauge invariant was proposed by
Arnold and Yaffe in Ref. [9] where mD was defined as
the largest inverse screening length among all the possible
Euclidean correlation functions involving pairs of CT-odd
operators in the thermal gauge field theory. Previous studies
concerning thermal screening lengths in non-Abelian
plasmas include lattice calculations [10–16], nonperturba-
tive analyses of the gluon propagator at finite temperature
[17–20], other analytical approaches [21,22], and holo-
graphic calculations [23–25].
In this paper we use the gauge/gravity duality [26–29] to

understand the general properties of the smallest thermal
screening mass associated with the CT-odd operator,
∼ TrFμν

~Fμν, in nonconformal strongly coupled plasmas

described by Einstein gravity plus a scalar field. We shall
follow Ref. [23] and identify this thermal screening mass
as the Debye mass mD in the strongly coupled plasma.
After associating this Debye screening mass in the field
theory with the lowest lying mass in the spectrum [30,31]
of axion fluctuations in the bulk [23], we show (given some
reasonable conditions regarding the axion effective action)
that the bulk axion spectrum is gapped, positive, and
discrete in the deconfined phase of these theories. This
shows that this thermal screening radius, which may be
relevant for the melting of heavy quarkonia in this class of
strongly coupled large-Nc plasmas, is necessarily finite
(even in the case of a second-order deconfining transition).
Also, we find that mD=T generally follows the behavior of
the expectation value of the Polyakov-loop operator near
the phase transition. In fact, for a first-order deconfinement
phase transition, mD=T jumps from zero below the critical
temperature Tc to a finite value immediately above it.
To estimate the behavior of this screening mass in a

nonconformal strongly coupled plasma with similar
properties to the QCD plasma, we consider a variety of
holographic bottom-up models constructed using five-
dimensional Einsteinþ scalar effective bulk actions. The
first model, which we call model A, is built in the context of
improved holographic QCD (IHQCD) [32–36], being a
simple analytical model [37] involving an Einsteinþ scalar
gravity bulk action dual to a strongly coupled non-Abelian
which possesses a first-order confinement/deconfinement
phase transition. The second class of models (model B)
[38–40] is also based on Einsteinþ scalar bulk actions, but
now the scalar potentials are chosen in order to reproduce
some lattice QCD thermodynamical results. The model that
reproduces lattice data for pure SUð3Þ Yang–Mills, which
possesses a first-order deconfinement transition [41–43], is
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called model B1, whereas the model that matches lattice
data for QCD with (2þ 1) light flavors of quarks [44] is
called model B2. For all models, A, B1, and B2, we obtain,
numerically, the screening mass mD as a function of the
temperature T. For models A and B1, both of which present
a first-order phase transition, we explicitly verify the
existence of a discontinuity in mD=T at the critical temper-
ature Tc, where mD=T jumps discontinuously from 0 to a
finite value above Tc. For model B2, which displays a
crossover phase transition, mD=T increases with T
smoothly from zero and has a local minimum at a given
temperature (following a behavior similar to that shown by
the speed of sound), after which it then continuously rises
to its conformal limit.
As a final application, we consider the screening mass in

a strongly coupled conformal plasma dual to Gauss–Bonnet
gravity [45,46]. In this theory the shear viscosity to entropy
density ratio, η=s, is different than 1=ð4πÞ [47–49] for a
range of values of the controlling parameter of the theory,
λGB, associated with the higher-order derivatives in the
action as shown in Refs. [50,51]. Thus, in this case one can
see how mD=T depends upon η=s in this strongly coupled
plasma and compare with the results of the phenomeno-
logical approach based on fits to the heavy quark potential
at strong coupling pursued in Ref. [52]. We find the
intriguing result that mD=T decreases with increasing η=s.
This paper is organized as follows. In Sec. II we motivate

the nonperturbative definition of thermal screening lengths
in non-Abelian gauge theories (the reader that is already
familiar with Ref. [9] may want to skip the introductory
Secs. II A and II B and go directly to Sec. II C) and present
the holographic prescription for evaluating these quantities
in strongly coupled plasmas dual to bottom-up theories of
gravity involving the metric and a scalar field. In this
section we also present some general results for the thermal
screening mass associated with TrFμν

~Fμν which are valid in
this holographic framework. In Sec. III we briefly review
the results and techniques of Refs. [23,30,31] for evaluating
this thermal screening mass in a strongly coupled N ¼ 4
super Yang-Mills (SYM) plasma. Section IV is dedicated to
the evaluation of mD and the Polyakov loop in model A. In
Sec. V we review some general results for the B class of
models pertinent to our purposes. Section VI (Sec. VII) is
reserved for the evaluation of mD in the B1 model (B2
model, respectively). We show that the heavy quark free
energy (extracted from the expectation value of the
Polyakov loop) in these holographic models for SUðNcÞ
Yang–Mills theory nicely describes recent lattice data [53].
In Sec. VIII we analyze mD × η=s in Gauss–Bonnet
gravity. Section IX contains our conclusions and outlook.1

II. GENERALRESULTS FORTHEHOLOGRAPHIC
DEBYE SCREENING MASS

For the sake of completeness, in Secs. II A and II B,
we review some necessary results on screening lengths in
thermal gauge theories and the nonperturbative definition
of the Debye screening mass proposed in Ref. [9]. Then, in
Sec. II C we motivate the holographic prescription for the
evaluation of the Debye mass and study some of its general
properties using holography.

A. Screening lengths in thermal gauge theories

Let Ô be a gauge invariant operator and consider the
(equal-time) Euclidean two-point correlation function

GEð~xÞ≡ h0jÔ†ð~xÞÔð~0Þj0i: ð1Þ

A quantum field theory (QFT) in thermal equilibrium can,
as usual, be studied using the Matsubara (or imaginary
time) formalism [4], where we consider the compactifica-
tion of the imaginary time τ ¼ it direction in a circle of
radius β ¼ 1=T, where T is the temperature of the thermal
bath. A key insight to this discussion [9,23] is that the
resulting Euclidean symmetry allows us, instead of com-
pactifying along the time direction, to compactify along
any of the spatial directions; for instance, we may com-
pactify along the x spatial direction. Let fjnig be a
complete set of eigenstates of the translation operator
HE along the x direction, with corresponding eigenvalues
En. Then, inserting the completeness relation for the basis
fjnig, one finds

GEðxÞ ¼
X∞
n¼0

h0jÔ†ðxÞjnihnjÔð0Þj0i: ð2Þ

Since HE is a Euclidean translation operator,

ÔðxÞ ¼ eHEjxjÔð0Þe−HEjxj; ð3Þ
and, thus,

GEðxÞ ¼
X∞
n¼0

e−Enjxjjcnj2; ð4Þ

where

cn ≡ hnjÔð0Þj0i: ð5Þ

For large spatial separations, the ground state contribution
to Eq. (4) dominates, and

GEðxÞ ∼ e−E0jxjjc0j2: ð6Þ
Thus, E−1

0 may be taken as the screening length ofGEðxÞ—
for distances jxj greater than E−1

0 , the fluctuations of Ô are
effectively not correlated.

1In Appendix Awe present the technical details of a coordinate
change used in the study of the B models. We also present the
evaluation of the glueball spectrum at T ¼ 0 in model B1 in
Appendix B.
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B. Nonperturbative definition of the
Debye screening mass

In this section we briefly review the nonperturbative
definition of the Debye screening mass proposed in
Ref. [9].
In QED, perturbatively, the Debye screening mass mD

can be determined as the pole in the 00 component of the
photon propagator at zero frequency, Π00ð0; ~p2Þ (Fig. 1)—
i.e., the solution of

Π00ð0; ~p2 ¼ −m2
DÞ þm2

D ¼ 0: ð7Þ

The screening length of the static potential of two static test
charges is given by the inverse Debye mass m−1

D . Magnetic
fields are unscreened in perturbation theory so that Πij → 0

as ~p → 0—the Debye screening mass captures the physics
of electric screening. This definition can be applied
perturbatively to non-Abelian gauge theories, yielding
the lowest-order, one-loop, perturbative result in the ultra-
relativistic approximation (neglecting particle masses and
chemical potentials) [2–4]

mD ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Nc

3
þ Nf

3

r
gT þOðg2TÞ; ð8Þ

for an SUðNcÞ gauge theory with Nf minimally coupled
fermions, where g is the gauge theory coupling constant.
Reference [9] proposed a way to define the Debye

screening mass in an explicit gauge invariant (and non-
perturbative) manner using Euclidean time reflection
symmetry that is useful in the context of strongly coupled
plasmas. Consider the CT (the composite of time reversal T
and charge conjugation C) transformation in real time.
The corresponding symmetry in Euclidean time is Rτ,
where Rτ is the imaginary (Euclidean) time reflection. To
see this, note that any Lorentz invariant theory must have
CPT symmetry, where P stands for spatial inversion.

Correspondingly, any Euclidean invariant theory must be
rotation invariant. Since PRτ is a pure rotation in an
Euclidean theory, CPT must correspond to PRτ. Also,
given that P is time independent, Rτ must correspond to

CT. Since A0 is even under Rτ and ~A is odd under Rτ, the
authors of Ref. [9] defined the Debye screening massmD as
the inverse of the largest correlation length (or, equiva-
lently, the smallest screening mass) of all correlation

functions hÂð~xÞB̂ð~0Þi involving two local, gauge invariant
operators Â, B̂, both odd under Euclidean time reflection Rτ

(CT in real time). This construction explicitly removes
the magnetic gluon exchange and takes into account only
the chromoelectric gluons. Thus, according to Ref. [9], the
Debye screening mass may be defined as the largest inverse
screening length in this channel:

GEð~xÞ ¼ hÂð~xÞB̂ð~0Þi ∼ e−mDj~xj as j~xj → ∞: ð9Þ

In this paper we will adopt this definition of the Debye
screening mass since it can be readily used in the case of
strongly coupled plasmas that are holographically dual to
theories of gravity, as shown in Ref. [23]. From the
preceding discussion, we see that to evaluate this Debye
screening mass one has to determine correlation lengths of
two-point functions in a non-Abelian plasma—or, equiv-
alently, evaluate the smallest Rτ odd glueball mass in a
three-dimensional Yang–Mills theory at zero temperature.
From the holographic standpoint, the extraction of the
glueball masses in the large Nc and strong coupling limit
was done in Refs. [30,31]. The holographic prescription
for evaluating the glueball masses corresponds to analyzing
in the theory of gravity dual to the QFT in question the
fluctuations of the bulk fields that source, in the corre-
sponding gauge theory, the gauge invariant operators that
couple to the glueballs which have the same quantum
numbers of the dual bulk field.
In the case of the JPC ¼ 0−þ channel (which is Rτ odd),

according to the IHQCD framework [32,33,54], one must
analyze the dimension-4 operator TrFμν

~Fμν which is
sourced by a massless (pseudoscalar) axion field aðx; zÞ
in the bulk. Then, as discussed in Ref. [23], the Debye mass
corresponds to the imaginary wave vector of smallest
magnitude for which the equations of motion correspond-
ing to the axion fluctuations admit plane wave solutions of

the kind ei~k·~xaðzÞ that are regular at the horizon and obey a
Dirichlet condition at the boundary [55].
A direct consequence of this definition of the Debye

screening mass in holographic strongly coupled plasmas is
that this mD is independent of the gauge coupling and the
number of colors when both of them are sufficiently large.
In fact, since thismD is determined by the bulk fluctuations
of the axion in a supergravitylike action, this quantity
cannot depend on the gauge coupling (since for a two
derivative action there are no terms including the string

FIG. 1. Perturbative definition of the Debye mass. A single
photon (gluon) is exchanged between two static test charges. The
pole of the photon (gluon) propagator at zero frequency gives
the Debye screening massmD, the inverse screening length of the
static potential.
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scale ls) nor the number of colors (which only appears in
this case as an overall multiplicative factor in the action in
the form of the five-dimensional Newton’s constant). This
should be kept in mind when one tries to make a connection
between these strongly coupled results and the general
intuition acquired over the years about the Debye mass
computed within perturbation theory. For instance, we shall
show below that this mD is never zero in the deconfined
phase of the strongly coupled plasma, which is described
by a black brane in the bulk. Therefore, even in the case
of a second-order phase transition, the mD we compute
would be nonzero. Thus, one cannot directly identify this
quantity with the one that describes the fluctuations of
Polyakov loops in effective models for the QGP [56–59].

C. General properties of the holographic
axion spectrum

Armed with the holographic prescription for extracting
the Debye screening mass by means of the bulk axion
spectrum, we now examine some of its general properties
in a large class of gravity duals. The action for the
fluctuations of the massless axion in these backgrounds
is assumed to be of the form2

S ¼ 1

32πG5

Z
d5x

ffiffiffi
g

p ðZðzÞgμν∂μa∂νaÞ; ð10Þ

where G5 ∼ 1=N2
c is the five-dimensional gravitational

constant and ZðzÞ is a given function of the holographic
coordinate z—the reason for including this axion coupling
function is that in certain classes of backgrounds, as in
those of improved holographic QCD [32–36], a resumma-
tion of the contributions originating from string theory
should result in an effective action for the axion that
involves this multiplicative factor. The specific form for
this function will be defined later in the paper.
The background metric for the asymptotically five

dimensional Anti-de Sitter (AdS5) space-time (with con-
formal boundary at z → 0) is defined by the line element

ds2 ¼ e2AðzÞ
�
fðzÞdτ2 þ d~x2 þ dz2

fðzÞ
�
; ð11Þ

where fð0Þ ¼ 1 and the black brane horizon zh is the
smallest root of fðzhÞ ¼ 0. Moreover, note that
limz→0e2AðzÞ ¼ R2=z2 where R is the radius of the asymp-
totic AdS5 space. The equation of motion for the axion is

∂μðZðzÞe5Agμν∂νaÞ ¼ 0; ð12Þ

and, in momentum space (taking the Matsubara frequency
to zero since we want the largest inverse correlation length)

with the plane wave ansatz að~x; zÞ → ei~k·~xaðzÞ, one finds

the equation of motion (with M2 ¼ −~k2),

∂zðe2BfðzÞa0Þ þM2e2Ba ¼ 0; ð13Þ

where a0ðzÞ ¼ daðzÞ=dz and we have defined the function

BðzÞ≡ 3

2
AðzÞ þ 1

2
logZðzÞ: ð14Þ

An alternative, but useful, form of the equation of motion
is obtained by introducing ψ ¼ eBa, which leads to

−ψ 00 −
f0

f
ψ 0 þ 1

f
½fðB02 þ B00Þ þ f0B0�ψ ¼ M2

f
ψ : ð15Þ

This form of the equation of motion is especially useful
at zero temperature where f ¼ 1. In this case, we have the
Schrödinger-like equation

−ψ 00 þ VðzÞψ ¼ M2ψ ; ð16Þ

where the potential V is defined as

VðzÞ ¼ B0ðzÞ2 þ B00ðzÞ: ð17Þ

The pole of the corresponding Euclidean Green’s function
is obtained by imposing a Dirichlet condition for the
fluctuation at the boundary while at the horizon zh the
axion fluctuation must be finite. This completely specifies
the eigenvalue problem to find M2.
Let us now state some basic facts about the bulk axion

spectrum in these theories. First, M2 is real. Second, the
spectrum is gapped (M2 > 0) if there is a black brane
horizon in the bulk. Third, the spectrum is discrete.
That the spectrum is purely real follows simply from the

fact that Eq. (13) and its boundary conditions are posed as a
Sturm–Liouville problem.
Now, let us analyze the mass gap. It is easy to seeM ¼ 0

is not in the spectrum. If M ¼ 0, then the equation of
motion (13) can be easily integrated yielding two linearly
independent solutions, a ∝ const and a ∝

R
dze−2Bf−1.

The solution a ∝ constant ≠ 0 is not normalizable in
the UV and must be discarded. The other solution is
normalizable; however, near the horizon, as fðzÞ ∼
−jf0ðzhÞjðzh − zÞ and B ∼ BðzhÞ, a ∝ logðz − zhÞ → ∞.
Thus, the normalizable solution in the UV is not finite
on the horizon. Thus,M ¼ 0 does not satisfy the boundary
conditions and is not in spectrum if there is a horizon.
To prove that M2 < 0 is not allowed, we employ an

argument used by Witten [28]. The equation of motion (13)
can be obtained from the on-shell action

2Note that, since in IHQCD the bulk axion is trivial in the
background, the action for its fluctuations is easily determined to
be the one in (10) [54].
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1

32πG5T

Z
zh

0

dzZðzÞe3A½fð∂zaÞ2 −M2a2�: ð18Þ

If a is a normalizable solution of the equations of motion,
then after integrating Eq. (18) by parts one sees that it must
vanish. Now, suppose that M2 < 0. Then in Eq. (18) both
terms are strictly positive. Thus, we must have da=dz ¼ 0
and a ¼ 0, since the solution is normalizable. This is just
the trivial solution, and, thus, M2 < 0 cannot be an
eigenvalue of the equation of motion. Therefore, as we
have already shown that M ≠ 0, we see that M2 > 0. This
shows the existence of the mass gap.
Finally, intuitively, the spectrum must be discrete—the

axion is confined into an asymptotically AdS5 space-time
with a black brane deep in the bulk. The Dirichlet
asymptotic boundary and the horizon work as two “walls”
that confine the axion into an infinite well, hence the
discrete spectrum.

III. DEBYE SCREENING MASS IN STRONGLY
COUPLED N ¼ 4 SYM THEORY

A. Axion spectrum

In this section we review the holographic evaluation of
the Debye mass (i.e., the smallest thermal mass associated
with axion fluctuations in the bulk) in a strongly coupled
N ¼ 4 SYM plasma by means of the gauge/gravity duality
[23]. Since the dilaton is constant in this case, the equations
of motion for the dilaton and the axion fluctuations are
degenerate. Also, the Z function is constant, and one can
set it to unity since one can consistently set the other bulk
fields in type IIB supergravity, apart from the metric and the
five-form F5, to be trivial. Thus, one can simply retrieve the
result from Ref. [30] for the spectrum of a massless scalar
field in a Schwarzschild AdS5 background. The final result
for the ground state is given by Ref. [23],

mD ¼ cπT; ð19Þ

where c ¼ 3.4041. Since the analytical and numerical
procedures used in this case will be applied with minimal
changes in the next two sections, it will be useful to review
here the numerical procedure used to determine the con-
stant c defined above in some detail.
For the AdS5 Schwarzchild background, the black brane

temperature is T ¼ πR2zh. The equation of motion is given
by Eq. (15); it is useful to write it in terms of the normalized
variable u ¼ z=zh ¼ πR2Tz and the dimensionless mass
~M ¼ M=ðπTÞ. We need to match the solution of the
equation of motion Eq. (15) with the asymptotic equation
of motion near the boundary u → 0,

−
d2ψ
du2

þ Vasyψ ¼ ~M2ψ ; ð20Þ

with the asymptotic potential VasyðuÞ¼Vðu→0Þ¼
15=ð4u2Þ [see Eq. (17)]. The general solution of the
asymptotic equation (20) is

ψðuÞ ¼ C1

ffiffiffi
u

p ½J2ð ~MuÞ þ C2Y2ð ~MuÞ�; ð21Þ

where Jn and Yn are Bessel functions of the first and second
kind, respectively, and C1, C2 are integration constants.
Since Y2 does not vanish at the boundary, we pick J2 as the
asymptotic solution setting C2 ¼ 0. The coefficient C1 is
chosen to fix the leading coefficient of the series expansion
of the Bessel function to 1; then C1 ¼ M2=8. Thus, at the
boundary, the full solution ψ must match the asymptotic
solution

ψ asyðuÞ ¼
8

ffiffiffi
u

p
~M2

J2ð ~MuÞ

¼ u5=2 −
1

12
~M2u9=2 þ 1

384
~M4u13=2 þOð ~M6u17=2Þ:

ð22Þ

To obtain the axion spectrum numerically, we use a
shooting procedure. One starts with an initial value for
~M2 and numerically solves the equation of motion (15)
imposing as boundary conditions that the solution ψðuÞ
matches the asymptotic solution (22) and its first derivative
for some u0 ≪ 1. One then integrates the initial value
problem up to near the horizon. When ~M2 is not an
exact eigenvalue, ψðuÞ diverges at the horizon. However,
ψðu → 1Þ changes sign when one passes by an exact
eigenvalue, and, thus, one can bracket it by scanning when
such sign change happens. Care must be taken to certify
that one has not missed the ground state (or an excited state)
by starting with values of ~M2 only slightly above zero.
Proceeding this way, one obtains for the ground state of the
axion spectrum ~M ¼ mD=ðπTÞ the result (19).

IV. DEBYE SCREENING MASS IN MODEL A

A. General IHQCD backgrounds

The IHQCD model for SUðNcÞ Yang–Mills theory
proposed in Refs. [32–36] corresponds to writing the most
general gravitational effective action involving the metric
(which is dual to the energy-momentum tensor of the gauge
theory) and the dilaton ϕ (dual to the dimension-4 scalar
glueball operator TrF2 in the gauge theory) with at most
two derivatives in the bulk. In this model, eϕ is related to
the gauge coupling. The effective five-dimensional action
in the Einstein frame for the metric and the dilaton in
IHQCD is

S ¼ 1

16πG5

Z
d5x

ffiffiffi
g

p �
R −

4

3
ð∂ϕÞ2 þ VðϕÞ

�
; ð23Þ
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plus a Gibbons–Hawking boundary term, necessary to
give a well-posed variational problem (this term and other
contributions needed in the process of holographic renorm-
alization [60,61] do not affect our discussion and are, thus,
dropped altogether). The potential VðϕÞ is assumed to
contain part of the subcritical five-dimensional string
theory contributions to the effective action. The metric
background (in the Einstein frame) is written in the
conformal gauge in the usual form

ds2 ¼ bðzÞ2
�
fðzÞdτ2 þ d~x2 þ dz2

fðzÞ
�
; ð24Þ

while the dilaton is assumed to depend only upon the
radial coordinate z, ϕ ¼ ϕðzÞ, and τ is a periodic coordinate
with period 1=T. Comparing with Eq. (11), one sees that
bðzÞ ¼ eAðzÞ. The Einstein and scalar equations of motion
that follow from extremizing (23) are

f00

f0
þ 3

b0

b
¼ 0;

6
b02

b2
− 3

b00

b
¼ 4

3
ϕ02 and

6
b02

b2
þ 3

b00

b
þ 3

b0

b
f0

f
¼ b2

f
V; ð25Þ

where the prime indicates differentiation with respect to z.
The equation of motion for ϕ is a combination of the
previous equations—as usual for Einstein’s equations, there
is some redundancy in the equations of motion (due to
Bianchi’s identity).

B. Exact solution—model A

An analytical solution [33] of the equations of motion (25)
is given by trying the ansatz

bðzÞ ¼ R
z
e−

1
3
Λ2z2 ; ð26Þ

where Λ is an infrared scale of the order of ΛQCD. Defining
the dimensionless variable y≡ Λz and λ ¼ eϕ, one can
integrate the equations of motion to find [37]

λðyÞ
λ0

¼ exp

0
B@

ffiffiffiffiffiffiffiffiffiffiffiffi
9
y2 þ 4

q
yð2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
4y2 þ 9

p
yþ 9sinh−1ð2y

3
ÞÞ

8
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
4y2 þ 9

p
1
CA;

ð27Þ

where λ0 ¼ λð0Þ. Also, the horizon function is given by

fðy; yhÞ ¼ 1 −
ðy2 − 1Þey2 þ 1

1þ ey
2
hðy2h − 1Þ : ð28Þ

Finally, the dilaton potential for this solution is given by

Vðy; yhÞ ¼
12

R2
e
2y2

3

��
1

3
y4 þ 5

6
ðy2 þ 1Þ

�
fðy; yhÞ

−
�
1

2
þ 1

3
y2
�
y
2

∂f
∂y ðy; yhÞ

�
: ð29Þ

Note that the potential depends explicitly on the temperature
via the position of the horizon yh. This is not going to be the
case in the other type of models considered in Sec. V.

1. Thermodynamics

The temperature of the thermal bath is given by the
Hawking temperature of the black brane

T ¼ jf0ðzhÞj
4π

¼ Λ
2π

y3h
y2h − 1þ e−y

2
h

: ð30Þ

The entropy density is given by the Bekenstein–Hawking
formula, which yields

s ¼ bðzhÞ3
4G5

¼ R3Λ3

4G5

e−y
2
h

y3h
: ð31Þ

Moreover, the pressure follows from s ¼ ∂p=∂T,

pðyhÞ ¼ −
Z

∞

yh

sðTðxÞÞ dTðxÞ
dx

; ð32Þ

and the energy density is given by ϵ ¼ sT − p.
The temperature function TðyhÞ has a minimum for

Tmin ¼ 0.396Λ, ymin
h ¼ 1.466. For T < Tmin, there is no

possible black brane solution, and the system is in a thermal
gas phase. However, for Tmin < T < Tc, where Tc ¼
0.400Λ is reached at ych ¼ 1.299, albeit there is a black
brane solution, the pressure is negative—this signals that
the thermal plasma is in a metastable phase. For T > Tc
(thus, yh < ych), we have a deconfined thermal plasma state.
Since the entropy density has a discontinuity at T ¼ Tc,
the transition is of first order. It is possible to explicitly
write the equation of state of the system in terms of the
speed of sound squared:

c2s ¼
d logT
d log s

¼ 1

3þ y2h

3 − y2h − ð3þ 2y2hÞe−y
2
h

y2h − 1þ e−y
2
h

: ð33Þ

In Fig. 2 we compare the equation of state of this model,
given by (30) and (33), with lattice results for a pure glue
SUð3Þ Yang–Mills plasma [42]. We see that this gravity
dual provides a reasonable qualitative description of the
equation of state of a pure glue plasma, more so considering
its relative simplicity and the fact that it is an analytical
solution of the Einsteinþ scalar equations of motion.
However, it must be noted that this simple realization of
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IHQCD does not describe lattice data quantitatively
between T=Tc ¼ 1.1–2.5.3

2. Polyakov loop

An interesting quantity to compute in this nonconformal
model is the expectation value of the Polyakov-loop
operator [62–65]

L̂ð~xÞ ¼ 1

Nc
TrP exp

�
i
Z

β

0

Â0ðτ; ~xÞdτ
�
; ð34Þ

where P indicates path ordering and the trace is in the
fundamental representation. Holographically, the evalu-
ation of the Polyakov loop in a thermal gauge theory in
the imaginary time formalism corresponds to calculating
the classical worldsheet action for a straight string in the
bulk stretching from the conformal boundary to the
horizon. This string worldsheet wraps the imaginary
time circle S1 (for details of the holographic computation
of the Polyakov and Wilson loops in this context, see
Refs. [52,66–71]). At strong coupling and large Nc, the
norm of the expectation value of the Polyakov-loop
operator (34) is given by

jhL̂ij ∼ e−FQ=T ∼ e−SNG ; ð35Þ

where FQ is the difference in the free energy of the thermal
bath due to the inclusion of a single probe heavy quark in

the system, and SNG is the (Euclidean) Nambu–Goto action
for the string worldsheet,

SNG ¼ 1

2πα0

Z
d2σ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
det ðgsμνXμ

aXν
bÞ

q
; ð36Þ

where α0 ¼ l2
s , ls is the string length, Xμ

a are the embed-
ding functions of the string worldsheet in the target space-
time, and gsμν is the metric in the string frame—since this
background comes from a five-dimensional noncritical
string theory, gsμν ¼ λ4=3gμν, where gμν is the metric in
the Einstein frame [32,33]. The indices μ; ν ¼ 0; 1; 2; 3; 4
are space-time indices, and a; b ¼ σ; τ are indices for the
string worldsheet coordinates. Evaluating the worldsheet
specified above with the background (24), one can see that

FQ ¼ 1

2πα0

Z
yh

0

dy
ffiffiffiffiffiffiffiffiffiffiffiffi
g00gzz

p ¼ 1

2πα0

Z
yh

0

dyb2sðyÞ; ð37Þ

where bs ≡ λ2=3b. As expected, the bare heavy quark
free energy is UV divergent and must be regularized. To
regularize it, we use a temperature independent subtraction,

F̄Q ¼ 1

2πα0

Z
ych

0

dyðbð0Þs ðyÞÞ2; ð38Þ

where bð0Þs ðyÞ is the vacuum form of bsðyÞ. The regularized
free energy is then Freg

Q ¼ FQ − F̄Q. For the geometry in
question,

Freg
Q Tc

σ
¼ −

Tc

Λb2sðyminÞ
Z

ych

yh

dyb2sðyÞ; ð39Þ

where, to facilitate the comparison with lattice results, we
normalized the heavy quark free energy by the holograph-
ically computed string tension σ (associated with the area
law for the rectangular Wilson loop in the vacuum) and by
the critical temperature Tc. The holographic string tension
in IHQCD is generally given by σ ¼ R2Λ2b2sðyminÞ=ð2πα0Þ
[33], where ymin denotes the location of the minimum of the
U-shaped Nambu–Goto string profile in the bulk used in
the calculation of the rectangular Wilson loop for asymp-
totically large separations.
Note that the Polyakov loop computed on the lattice

depends on the choice of renormalization scheme since the
heavy quark bare free energy is divergent in the continuum
limit (one needs to subtract the divergent part and fix the
renormalization constant). In the calculations of Ref. [53],
this constant term was set to zero. Clearly, any other value
for the constant would be fine, and the scheme dependence
just corresponds to adding an additive constant in the
free energy of the renormalized Polyakov loop.4 In this

0.5 1.0 1.5 2.0 2.5 3.0 3.5 4.0
0.00

0.05

0.10

0.15

0.20

0.25

0.30

0.35

T Tc

c s
2

FIG. 2 (color online). Speed of sound squared c2s of the plasma
as a function of T=Tc, where Tc denotes the critical temperature
for a deconfining first-order transition. The solid black line is the
result for the particular IHQCDmodel studied (see Sec. IV B), the
dashed blue line corresponds to lattice results from Ref. [42] for
an SUð3Þ Yang–Mills plasma, while the horizontal red line gives
the result for a conformal plasma, c2s ¼ 1=3.

3This can be remedied by choosing an appropriate dilaton
potential, and, as shown in Refs. [32–36], a good quantitative
agreement with pure glue lattice QCD thermodynamics in this
temperature range can be achieved. 4We thank M. Panero for discussions about this point.
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paper we chose to compare the free energy difference
ΔFQTc=σ ¼ ðFQðTÞ − FQð2TcÞÞTc=σ as a function of
T=Tc computed in the model with the one found on the
lattice (note that this still corresponds to choosing a scheme
in which the free energy difference vanishes at 2Tc).
We compare in Fig. 3 the holographic result (39) with the

lattice results for the SUðNcÞ Yang–Mills lattice data with a
different number of colors from Ref. [53]. One can see that,
even though the thermodynamics of the simple IHQCD
model only reproduces qualitatively the lattice data, the
holographic result for FQ gives a reasonable description of
the lattice data for Tc < T < 2Tc. Moreover, even though
holographic models ought to be valid only for large Nc,
reasonable agreement is seen even for Nc ¼ 3.

3. Debye screening mass

Let us begin by studying the bulk axion spectrum at
T ¼ 0 (i.e., we set f ¼ 1). The first step is to discuss the
function Z in the action for the axion fluctuations (10),
which represents a partial resummation of higher-order
forms coming from five-dimensional subcritical string
theory [32,33]. In the UV, ZðλÞ ∼ const, while in the IR
ðλÞ ∝ λ4 to ensure glueball universality. We will use the
standard IHQCD parametrization that interpolates between
these two cases [54],

ZðλÞ ¼ c0 þ c4λ4; ð40Þ
where c0 and c4 are constants. By a suitable normalization
of the action, one can set c0 ¼ 1. To study the dependence
of the results with c4, we choose three values for it spanning
a large range of values for this coefficient: 0.1, 1, and 10.
The numerical procedure to find the spectrum is the same

as the one described in Sec. III. For the vacuum case,
we consider the Schrödinger equation (16) and the

asymptotic potential in the UV, including the first sublead-
ing correction in 1=y, which gives

VðyÞ ¼ 15

4y2
−

9
ffiffiffi
2

p
c4

ð1þ c4Þy
þOð1Þ: ð41Þ

The asymptotic equation (including the subleading term)
can be solved analytically and the linearly independent
solutions are Whittaker functions Mκ;μ and Wκ;μ [72]. If
we consider only the leading term in 1=y, these solutions
reduce to the Bessel functions found in Sec. III. The
normalized near boundary series expansion, including
the subleading term in (41), is given by

ψðyÞ ¼ y1=2
�
y −

9
ffiffiffi
2

p
c4

5

y2

1þ c4
þ � � �

�
: ð42Þ

Using the shooting method to solve the eigenvalue
problem, we obtain the results shown in Table I. One
can see that glueball mass associated with the bulk axion
in the vacuum is quite insensitive to the choice of c4 and
mJPC¼0−þ ∼ 3Λ. This value is also comparable with the
corresponding results for the lightest JPC ¼ 0þþ and JPC ¼
2þþ glueballs in this model, mJPC¼0þþ ≈ 2.5Λ and
mJPC¼2þþ ¼ ffiffiffi

8
p

Λ ∼ 2.2Λ [37].
Let us now proceed to extract the Debye screening mass

in this model. Consider now the background at nonzero
temperature. The equation of motion to solve is now of the
form (15). The asymptotic solution is the same as in the
T ¼ 0 case since f → 1 for y → 0. We use the same choices
for c4 employed in the preceding calculation. Our results
can be found in Fig. 4. Since at high temperatures T ≫ Λ
the geometry of the gravity dual simplifies to AdS5, one
must have mDðT ≫ λÞ → cπT with c ¼ 3.4041 as shown
in Sec. III. Thus, our results for mD are normalized by cπT.
One can see that the results are somewhat insensitive to

the choice of c4 as long as c4 ≳ 1. Also, we note that for
T → Tþ

c , mD=ðcπTÞ ∼ 0.18, which is nearly independent
of c4—the Debye mass has a discontinuity at T ¼ Tc. As
expected, for increasing temperature, the plasma becomes
more and more screened—mD is monotonically increasing
with T until it reaches its conformal value.
Reference [24] computed the thermal screening lengths

for anN ¼ 2� plasma, which is nonconformal deformation

0 1 2 3 4 5 6

T Tc

F
Q

T
c

0.4

0.2

0.0

0.2

0.4

FIG. 3 (color online). ΔFQTc=σ ¼ ðFQðTÞ − FQð2TcÞÞTc=σ
as a function of T=Tc for model A (solid black line) defined in
Sec. IV B and for SUðNcÞ Yang–Mills [53] with Nc ¼ 3 red
circles), 4 (purple squares), and 5 (brown diamonds).

TABLE I. Glueball mass mJPC¼0−þ

associated with the bulk axion at
T ¼ 0 for some choices of c4 com-
puted using the model in Sec. IV B.

c4 maxion=Λ

0.1 3.0433
1.0 2.996
10.0 2.986
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of the N ¼ 4 SYM plasma obtained by giving a mass μ to
the adjoint scalars and fermions [73–75]. Using this top-
down nonconformal construction [24] also obtained that
mD=T (computed from the axion fluctuations) becomes
smaller than its conformal value at low temperatures when
μ=T > 1. However, this theory does not possess a finite
temperature phase transition, and, thus, the discontinuity in
mD=T at Tc found here is a new feature brought in by the
nonconformal plasmas constructed within IHQCD.

V. B CLASS OF MODELS—OVERVIEW

In this section we shall describe a second class (model B)
of strongly coupled non-Abelian plasmas with gravity
duals described by Einstenþ scalar actions [38–40] (see
also Refs. [69,70,76]) built in order to reproduce some of
the thermodynamic results obtained on the lattice at zero
baryon chemical potential. Even though the bulk fields are
the same as in the previous section, in these models the
scalar field corresponds to a relevant operator in the UV.
The interpretation put forward in Ref. [39] is that, since

these gravity models cannot truly describe perturbative
QCD physics in the UV, one must choose an intermediate
semihard scale at which asymptotic freedom is replaced
by conformal invariance. In fact, given that the scaling
dimension Δ of the glueball operator TrF2 is not a
protected quantity in QCD and it becomes smaller than
4 toward the IR, this semihard scale may be used to define
the range of applicability of this effective holographic
model in this context. This implies that, in general, these
models should not be used at high temperatures where
asymptotic freedom becomes dominant. However, as
shown in Ref. [76], these nonconformal bottom-up models
are able to describe not only the equilibrium quantities
found on the lattice but also the temperature dependence of

some nontrivial transport coefficients such as the electrical
conductivity recently computed on the lattice [77].
Moreover, these models also give valuable insight into
the energy loss experienced by heavy (and also light
quarks) in the QGP near the crossover phase transition
[78–80]. Therefore, we believe that it is relevant to consider
these constructions here as well and investigate the temper-
ature dependence of mD=T in these models. We shall see
that by carefully choosing the scalar potential one can
obtain a much better quantitative description of the
thermodynamics of pure glue as well as that of QCD with
light dynamical flavors found on the lattice.5

A. Bulk action

Even though the bulk action that defines these models is
the same as that studied in Sec. IV, we find it convenient to
follow the convention of Ref. [38] [compare the dilaton
normalization in Eq. (23) with the one below] where the
Einsteinþ scalar action is

S ¼ 1

2κ25

Z
d5x

ffiffiffi
g

p �
R −

1

2
ð∂μϕÞð∂μϕÞ − VðϕÞ

�
; ð43Þ

where k25 ¼ 8πG5. The scalar field in this action is related
to the dilaton in model A (23) by a factor of

ffiffiffiffiffiffiffiffi
3=8

p
. The

potential VðϕÞ is chosen in such a way that the thermo-
dynamic properties of the model (43) mimic the ones
desired from the gauge theory—in the next subsections,
we will describe simple choices of VðϕÞ which achieve
this task. The desired solutions of Eq. (43) must be
asymptotically AdS5 for the boundary gauge theory to
have a UV fixed point. The potential VðϕÞ is chosen in
order to interpolate between a free massive scalar field
(plus cosmological constant term) near the boundary,
VðϕÞ ∼ −12=R2 þm2ϕ2=2, and a potential which yields
the Chamblin–Reall solution [84] deep in the bulk,
VðϕÞ ¼ V0eγϕ, with γ < 0.

B. Metric ansatz

As we wish to study the gauge theory at finite temper-
ature, the solution also must contain a black brane in the
bulk. We also want translation symmetry in the gauge
theory and rotational SOð3Þ symmetry in the spatial
directions but not the full Lorentz SOð3; 1Þ symmetry
since the at nonzero temperature the thermal gauge theory
is not invariant by Lorentz boosts. An ansatz which is able
to satisfy these requirements, called here the Gubser gauge
[38], is
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T Tc

m
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c
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FIG. 4 (color online). Debye screening mass mD for the
simplified IHQCD model discussed in Sec. IV B, normalized
by the N ¼ 4 SYM Debye mass at strong coupling cπT with
c ¼ 3.4041. We present the results for c4 ¼ 0.1 black circles),
1 (blue squares), and 10 (purple diamonds).

5We note that the models considered here do not have the
correct bulk degrees of freedom to fully describe the physics
associated with chiral symmetry breaking. See Refs. [81,82] for a
model which describes chiral symmetry breaking in this class of
Einstein þ scalar models by including a second scalar field,
following the spirit of the Karch-Katz-Son-Stephanov (KKSS)
model [83].
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ds2 ¼ e2Aðhdτ2 þ d~x2Þ þ e2B
dϕ2

h
; ð44Þ

where the holographic radial coordinate is given by the
scalar field ϕ itself. We require that A, B, and h are only
functions of ϕ, i.e., AðϕÞ, BðϕÞ, and hðϕÞ. The asymp-
totically AdS5 boundary is recovered when ϕ → 0. This
choice, as shown in Ref. [38], is convenient to solve the
equations of motion for the action (43). However, this
gauge choice is not very useful for analyzing the glueball
spectra or studying Wilson and Polyakov loops. For these
purposes, it is convenient to go back to conformal gauge.
We discuss this point in more detail in Appendix A.

C. Equations of motion—general case

It is possible to write a “master” equation that yields all
the metric functions in the ansatz (44) in terms of a single
ordinary first-order differential equation [38]. The equa-
tions of motion derived from the action (43) are Einstein’s
equations

Rμν −
gμν
2

R ¼ 8πG5Tμν; ð45Þ

where Tμν is the stress-energy tensor for the scalar field.
The equation of motion for the scalar field ϕ is

∇μ∇μϕ − V 0 ¼ 0; ð46Þ

where ∇ indicates the covariant derivative and V 0 ¼
dV=dϕ (in this section, primes will always indicate
derivatives with respect to ϕ). With the ansatz (44), one
can see that the equation of motion for the ττ component is

2e2BV þ 6A0h0 þ hð24A02 − 12B0A0 þ 12A00 þ 1Þ ¼ 0;

ð47Þ

while for the xx the equation of motion is

2e2BV þ 14A0h0 − 2B0h0 þ 2h00

þ hð24A02 − 12B0A0 þ 12A00 þ 1Þ ¼ 0: ð48Þ

The common term in parentheses can be eliminated from
both equations, which yields

h00 þ ð4A0 − B0Þh0 ¼ 0: ð49Þ

The Gϕϕ equation of motion is

6A0h0 þ hð24A02 − 1Þ þ 2Ve2B ¼ 0: ð50Þ

Using the Gττ equation of motion (47) to eliminate 24A02
from Eq. (47), we obtain

A00 − A0B0 þ 1

6
¼ 0: ð51Þ

The last equation of motion is given by the scalar
equation (46),

ð4A0 − B0Þ þ h0

h
−
e2B

h
V 0 ¼ 0: ð52Þ

We use the set consisting of Eqs. (49) to (52) as our
equations of motion. These equations are not completely
independent due to Bianchi’s identity. In this case, the
derivative of Eq. (51) follows from the derivative of the
other equations of motion, and one can use any subset of
three equations among these to obtain the full geometry.

D. Zero temperature master equation

We start by describing zero temperature solutions.
With a vacuum solution at hand, one can proceed to
explore the properties of the T ¼ 0 strongly coupled
non-Abelian gauge theory with gravity dual given by
Eq. (43). Although this class of models was built primarily
in order to reproduce the thermodynamics of QCD near the
crossover phase transition [85], in Appendix B we show
that the glueball spectra are reasonably described by a
confining, zero temperature version of these models.
When T ¼ 0, the boundary gauge theory has full Lorentz

invariance, and, thus, we set h ¼ 1 in (44)

ds2 ¼ e2Aðdτ2 þ d~x2Þ þ e2Bdϕ2; ð53Þ
where τ is the Euclidean time. The equation of motion (49)
is identically satisfied when h ¼ 1. The remaining equa-
tions of motion (50), (51), and (52) simplify to

A00 − A0B0 þ 1

6
¼ 0; ð54Þ

24ðA0Þ2 − 1þ 2e2BV ¼ 0 and ð55Þ

4A0 − B0 − e2BV 0 ¼ 0: ð56Þ
Now, following the procedure used in Ref. [38] for the

T ≠ 0 case, our goal here is to obtain a first-order master
equation for GðϕÞ≡ A0ðϕÞ. Then, one can integrate G to
obtain A and the remaining metric function B. Combining
Eqs. (55) and (56), we arrive at

V
V 0 ¼

−8Gþ 2B0

24G2 − 1
: ð57Þ

We can now use Eq. (54) to eliminate B0 from this equation
and find the master equation at T ¼ 0,

Gþ V
3V 0 ¼ −

6G0G
24G2 − 6G0 − 1

: ð58Þ
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This is a first-order ordinary differential equation for
G ¼ A0 for a given potential VðϕÞ. To solve it, we have
to specify a boundary condition for GðϕÞ. Since all the
potentials we shall consider have the IR ðϕ → ∞) asymp-
totic VðϕÞ ∝ eγϕ, we see that for ϕ → ∞, V=3V0 ¼ 1=ð3γÞ.
Thus, Eq. (58) implies that when ϕ → ∞ one must have

Gðϕ → ∞Þ ¼ −
1

3γ
: ð59Þ

E. Finite temperature master equation

The procedure for extracting a master equation for the
finite temperature case was explained in detail in Ref. [38],
and we shall not repeat it here. One can show that this
master equation is

G0

Gþ V
3V 0

¼ d
dϕ

log

�
G0

G
þ 1

6G
− 4G −

G0

Gþ V
3V 0

�
: ð60Þ

Let us now discuss the boundary conditions for the
master equation (60). First, we require that hðϕÞ has a
simple zero at ϕ ¼ ϕh, which is the radial position of
the event horizon. Thus, hðϕhÞ ¼ 0 but h0ðϕ0Þ ≠ 0 so
that for ϕ≲ ϕh, hðϕÞ ≈ −h0ðϕhÞðϕ − ϕhÞ. Therefore, from
Eqs. (50) and (51), one obtains the constraints

VðϕhÞ ¼ −3e−2BðϕhÞGðϕhÞh0ðϕhÞ and ð61Þ

V 0ðϕhÞ ¼ e−2BðϕhÞh0ðϕhÞ: ð62Þ

Thus, near the horizon one may expand Gþ V=ð3V 0Þ in a
series around ϕ ¼ ϕh,

GðϕÞ ¼ −
1

3

Vðϕh

V 0ðϕhÞ
þ 1

6

�
VðϕhÞV 0ðϕhÞ

V 0ðϕhÞ2
− 1

�
ðϕ − ϕhÞ

þO½ðϕ − ϕhÞ2�: ð63Þ

By fixing the position of the horizon ϕh, we may use the
series solution (63) to obtain GðϕÞ near the horizon, at
~ϕ ¼ ϕh − δϕ, for δϕ ≪ ϕh, and then integrate numerically
from ϕ ¼ ~ϕ out to ϕ ¼ 0 using the series values for Gð ~ϕÞ
and G0ð ~ϕÞ as boundary conditions.

F. Geometry asymptotics

As mentioned above, the potential near the boundary
(ϕ → 0) is given by

VðϕÞ ∼ −
12

R2
þm2

2
ϕ2: ð64Þ

The UV scaling dimension Δ of the gauge theory operator
associated with ϕ is determined by the larger root of

ΔðΔ − 4Þ ¼ m2R2: ð65Þ

In the coordinate system (44), the asymptotic AdS5
geometry (ϕ → 0) is given by

AðϕÞ ¼ logϕ
Δ − 4

þOð1Þ and ð66Þ

BðϕÞ ¼ − logϕþOð1Þ; ð67Þ

with hðϕ → 0Þ → 1. This also fixes the asymptotic behav-
ior Gðϕ → 0Þ ∼ 1=ðϕðΔ − 4ÞÞ.

G. Obtaining the geometry and the thermodynamics

With the boundary conditions fixed and with the asymp-
totic behavior defined above, one can obtain the full metric
from GðϕÞ. First, one can see that

AðϕÞ ¼ Ah þ
Z

ϕ

ϕh

d ~ϕGð ~ϕÞ; ð68Þ

where Ah ¼ AðϕhÞ is the integration constant. Since near
the boundary A behaves as in Eq. (66), one can obtain the
integration constant Ah,

Ah ¼
logϕh

Δ − 4
þ
Z

ϕh

0

dϕ

�
GðϕÞ − 1

ðΔ − 4Þϕ
�
: ð69Þ

Now, let us also evaluate BðϕÞ and hðϕÞ. One can solve
Eq. (51) for B0 in terms of G to obtain

BðϕÞ ¼ Bh þ
Z

ϕh

0

dϕ

�
G0ðϕÞ
GðϕÞ þ

1

6GðϕÞ
�
; ð70Þ

with Bh ¼ BðϕhÞ being an integration constant, which we
will determine in the end of this subsection. Also, given that
A and B are known, one can integrate Eq. (49) to obtain

hðϕÞ ¼ h0 þ h1

Z
ϕ

ϕh

d ~ϕe−4Að ~ϕÞþBð ~ϕÞ; ð71Þ

where h0 and h1 are integration constants. To determine
them, remember that hðϕ → 0Þ ¼ 1 and hðϕhÞ ¼ 0 so that

h0 ¼ 0 and h1 ¼
1R

0
ϕh
dϕe−4AðϕÞþBðϕÞ : ð72Þ

One can show that the Hawking temperature is

T ¼ eAhþBh jV 0
hj

4π
; ð73Þ

and this can be shown to be [38]
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T ¼ ϕ1=ðΔ−4Þ
h

πR
VðϕhÞ
Vð0Þ

× exp

�Z
ϕh

0

�
GðϕÞ − 1

ðΔ − 4Þϕþ 1

6GðϕÞ
��

; ð74Þ

where we used that Vðϕ → 0Þ → −12=R2, to leading order
in ϕ. Moreover, one can also find

Bh ¼ log
�

4VðϕhÞ
Vð0ÞV 0ðϕhÞL

�
þ
Z

ϕh

0

dϕ
6GðϕÞ : ð75Þ

Let us continue with the thermodynamics. As Eq. (43) is
just the Einstein–Hilbert action coupled with some matter
fields, the entropy density of the black brane is given by the
area of the horizon

s ¼ 2π

k25
e3AðϕhÞ: ð76Þ

Therefore, Eqs. (74) and (76) give a thermodynamical
equation of state parametrized by ϕh: ðTðϕhÞ; sðϕhÞÞ. In
particular, one can write the equation of state in terms the
speed of sound:

c2s ¼
d logT
d log s

¼ d logT=dϕh

d log s=dϕh
: ð77Þ

H. Choice of the scalar potential

In this framework, the potential VðϕÞ is chosen to match
the QCD plasma thermodynamics at zero chemical poten-
tial. As mentioned above, the main restrictions on VðϕÞ are
that near the boundary ϕ → 0, VðϕÞ ∼ −12=R2 þm2ϕ2=2,
while near the black brane horizon, VðϕÞ ∼ V0eγϕ. A
simple, fairly featureless, potential that satisfies both
conditions is

VðϕÞ ¼ −
12

R2
ð1þ aϕ4Þ1=4 coshðγϕÞ

þ b2ϕ2 þ b4ϕ4 þ b6ϕ6; ð78Þ

where γ, b2, b4, and b6 are the free parameters of the
potential.6

The parameter a controls the nature of the thermody-
namical phase transition; as we shall see, a ¼ 1 implies that
the bulk theory has a Hawking–Page transition, and thus

the dual gauge theory has a first-order phase transition—
this class of models can be used to mimic the properties of
the deconfinement transition in SUðNcÞ Yang–Mills theory
[41,42]. On the other hand, a ¼ 0 implies that the dual
gauge theory has a crossover phase transition, and the
model can be used to describe the thermodynamics of
QCD with (2þ 1) light quark flavors [44]. The models
with a ¼ 1 and a ¼ 0will be called here B1 models and B2
models, respectively.
The near-UV (ϕ → 0) mass m2 of the bulk effective

action can be extracted from Eq. (78):

m2 ¼ −
12γ2

R2
þ 2b2: ð79Þ

On the other hand, as in the UV Eq. (65) holds, one obtains
that b2, Δ, and γ are not independent,

b ¼ 6γ2

R2
þ ΔðΔ − 4Þ

2R2
: ð80Þ

In Table II we show the parameters for both models we
consider in this work. We remark that in both models
Δ ¼ 3, as used before in Refs. [78–80]. These two sets
of parameters were chosen in order to fit lattice data for
pure SUð3ÞYang–Mills theory and QCD, respectively—we
shall display the numerical results for the thermodynamics
in the corresponding sections for each model.

VI. DEBYE SCREENING MASS AND
POLYAKOV LOOP IN THE B1 MODEL

Let us start by the B1 model which possesses a first-order
deconfining phase transition and models the thermody-
namics of pure SUðNcÞ Yang–Mills theory.

A. Thermodynamics

To obtain the thermodynamics of this model, we use
Eqs. (74) and (76). We start by presenting, in Fig. 5, the
temperature T (normalized by the critical temperature Tc
for the first-order transition) as a function of ϕh. As in
model A, we have two characteristic temperatures. First, we
have a minimum temperature Tmin (given by the minimum
of T in Fig. 5) below which the black hole solution does
not exist and the dominating bulk geometry corresponds
to a thermal gas. The second distinctive temperature is the
critical temperature, Tc, at which the pressure of the black

TABLE II. Parameters for the B1 (first-order phase transition)
and B2 (crossover phase transition) models. The last column
shows the corresponding scaling dimension Δ of each model.

a γ b2 b4 b6 Δ

Model B1 1
ffiffiffiffiffiffiffiffi
2=3

p
5.5 0.3957 0.0135 3.0

Model B2 0 0.606 0.703 -0.12 0.0044 3.0

6Reference [86] obtained an important constraint that must be
obeyed in order to avoid naked singularities that cannot be
covered by a black brane horizon at finite temperature: Vð0Þ ≥
VðϕÞ for ϕ ≠ 0. For the choices of scalar potentials used here,
within the range in temperature we were interested in, we did not
find any naked singularities that could not be covered by a
horizon.
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brane solution vanishes. For temperatures T such that
Tmin < T < Tc, the thermal plasma is in a (superheated)
metastable phase. For the parameters we used, given in
Table II, Tmin¼0.89Tc, with ϕh;min¼3.20 and ϕh;c ¼ 2.20.
From Eq. (76) we evaluate the entropy density s as a

function of ϕh. Using the results shown in Fig. 5, one can
eliminate ϕh and obtain s as a function of T. With sðTÞ,
one may proceed to evaluate all the thermodynamic
functions. For instance, the pressure p is given by

p ¼ −
Z

ϕh

∞
sðxÞT 0ðxÞdx; ð81Þ

while c2s is given by Eq. (77). In Fig. 6 we show the
pressure p (normalized by the N ¼ 4 SYM result) as a
function of T=Tc. In Fig. 7, we compare the model results
for the equation of state written in terms of c2s with the

corresponding lattice results for pure SUð3Þ Yang–Mills
[41]. We see that the B1 model is in fair agreement with
SUð3Þ thermodynamics representing a quantitative
improvement with respect to model A.

B. Polyakov loop

The computation of the expectation value of the
Polyakov loop proceeds as in Sec. IV B 2 using
Eq. (39). This equation assumes that the geometry is in
the conformal gauge; however, our numerical solution is
obtained in the ϕ ¼ z gauge. Thus, we need to perform a
coordinate system change—the details of this gauge change
can be found in Appendix A. Also, our geometry is given in
the Einstein frame; to evaluate the Polyakov loop, we have
used the string frame. As in model A, we assume that our
geometry is related to some five-dimensional subcritical
string theory and the string frame metric is related to the
Einstein frame metric by gsμν ¼ λ4=3gμν, where λ ¼ eϕ. A
final remark is that in this model bðyÞ ≠ bð0ÞðyÞ so that the
cancelation that took place in model A does not happen in
this case. The regularized expression for the heavy quark
free energy is

Freg
Q Tc

σ
¼ Tc

Λb2sðyminÞ
Z

ych

0

dyðb2sðyÞ − b2ð0Þ;sðyÞÞ

−
Tc

Λb2sðyminÞ
Z

ych

yh

dyb2sðyÞ; ð82Þ

where y ¼ ϕ in order to maintain the same notation used
in (39). In Fig. 8 we show our numerical results for
ΔFQ ≡ FQðTÞ − FQð2TcÞ, comparing with lattice results
for SUðNcÞ [53]. One can see that model B1 follows more
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FIG. 5. Temperature T (normalized by the critical temperature
Tc) as a function of the horizon position in the holographic
coordinate ϕh for the B1 model.
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FIG. 6. The pressure p of the plasma for model B1, normalized
by the N ¼ 4 SYM result, as a function of the normalized
temperature T=Tc.
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FIG. 7 (color online). The speed of sound squared of the plasma
c2s for model B1 as a function of the normalized temperature
T=Tc (solid red curve), compared with SUð3Þ Yang–Mills lattice
results (dot-dashed blue curve) [41]. The black dashed line is the
conformal field theory (CFT) result, c2s ¼ 1=3.
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closely the lattice data in comparison that found for
model A.7

C. Debye screening mass

We may now proceed to evaluate the Debye screening
mass in model B1. To obtain the Debye mass, we have to
obtain the lowest eigenvalue M2 of the corresponding
Eq. (15). As in the preceding subsection, this equation
was written in the conformal gauge, whereas our numeri-
cal solution for the metric is obtained in the Gubser
gauge. The numerical procedure to find mD is exactly the
same as described in Sec. IV B 3. As in model A, we
assume that the axion action is given by Eq. (10), with the
Z function given by the parametrization (40). We use the
same values of c4 as in the study of model A, c4 ¼ 0.1; 1,
and 10.
The numerical results for the Debye screening mass in

this model are presented in Fig. 9. As in the case of model
A, mD=T has a discontinuity at T ¼ Tc where it jumps
from 0 to a finite value mD=ðcπTÞ ∼ 0.35 (somewhat
higher than the jump in model A to mD=ðcπTÞ ∼ 0.2).
The value of the jump is not sensitive to the choice of c4,
and the overall behavior of mD=T as a function of T
saturates for large c4. Note that we vary c4 by 2 orders
of magnitude, and mD=T varies only by ∼ 20% at high
temperatures.

VII. DEBYE SCREENING MASS
IN THE B2 MODEL

A. Thermodynamics

In this section we describe a choice of scalar potential
that yields an equation of state for the holographic strongly
coupled plasma that closely matches the lattice results for
(2þ 1) QCD [44]. The parameters for this potential can be
found in Table II. For this model, the black brane solution
always dominates over the thermal gas solution; thus, there
is no metastable phase and no Tmin. Also, there is no
confinement at T ¼ 0. Moreover, the temperature T as a
function of ϕh is monotonically decreasing, as it can be
seen in Fig. 10. The pressure of the black brane phase is
always positive, and, thus, one cannot define a critical
temperature Tc as in models A and B1. The phase transition
in model B2 is of crossover type; the thermodynamic
quantities and their derivatives of all orders are continuous
across the “phase transition." In fact, the phase transition is
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FIG. 9 (color online). Debye screening mass for the model B1,
normalized by theN ¼ 4 SYM result cπT (with c ¼ 3.4041) as a
function of T=Tc for c4 ¼ 0.1 (black circles), 1 (blue squares),
and 10 (purple diamonds).
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FIG. 8 (color online). ΔFQTc=σ ¼ ðFQðTÞ − FQð2TcÞÞTc=σ
as a function of T=Tc for the model A (solid black line), model
B1 (blue triangles), and for SUðNcÞ Yang–Mills [53] with Nc ¼
3 (red circles), 4 (purple squares), and 5 (brown diamonds).
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FIG. 10. Temperature T as a function of the horizon position in
the holographic coordinate ϕh for model B2.

7It should be noted that our models are built to study
phenomena near the confinement/deconfinement transition from
T ∼ Tc ¼ 150 to T ∼ 3–4Tc ∼ 450–600 MeV. By construction,
these models are strongly coupled in the UV. A reflection of this
fact is that one cannot describe adequately both the Polyakov
loop and the thermodynamics simultaneously at high temper-
atures, near the conformal regime, as argued in Ref. [87].
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characterized only by a sudden, but continuous, change of
the thermodynamics properties.
Model B2 gives a reasonable description of (2þ 1) QCD

thermodynamics, as it can be seen in Fig. 11 (pressure p as
a function of the temperature T) and in Fig. 12 (equation of
state in terms of c2s).

8 The five-dimensional Einstein’s
constant G5 ¼ 0.501 is chosen to reproduce lattice data
for the pressure in Fig. 11. We also note that this model
provides a quantitative description of the norm of the
expectation value of the Polyakov loop found on the
lattice [78].

B. Debye screening mass

Following the same procedure employed in previous
sections, we may now evaluate the Debye screening mass
as a function of the temperature in this model. The results
are shown in Fig. 13. The Debye screening mass mD=T
has a local minimum around T ∼ 150 MeV showing a
similar temperature dependence found for c2s (Fig. 10). This
minimum means, intuitively, that the plasma gets less
screened (more transparent) to the strong interaction
between colored heavy probes near the phase transition.
Once again, larger values of c4 show convergence and
imply a faster rising to the conformal result (in this case by
varying c4 by 2 orders of magnitude, the high T values of
mD=T vary by ∼ 30%).

VIII. DEBYE MASS DEPENDENCE WITH
η=s—GAUSS–BONNET GRAVITY

A. Action and background geometry

As a final application of the holographic evaluation
of the Debye screening mass, we consider a class of bulk
actions that include curvature squared corrections to the
supergravity action that violate the shear viscosity bound
η=s ≥ 1=4π [48]. The action for these gravity theories, also
called Gauss–Bonnet gravity [45], is given by

S ¼ 1

16πG5

Z
d5x

ffiffiffi
g

p ��
Rþ 12

R2

�
þ

þ λGB
2

R2ðR2 − 4RμνRμν þRμνρσRμνρσÞ
�
; ð83Þ

where Rμνρσ is the Riemann curvature tensor and λGB
is a constant. In Eq. (83), the first term is the usual second-
order Einstein–Hilbert action with the addition of the
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FIG. 11. The pressure of the plasma p=T4 as a function of the
normalized temperature T, for the B2 model (solid curve),
compared with (2þ 1) flavors SUð3Þ QCD lattice results (data
points) [44].
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FIG. 12. The speed of sound squared of the plasma c2s as a
function of temperature T, for the B2 model (solid curve),
compared with (2þ 1) flavors SUð3Þ QCD lattice results (data
points) [44].
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FIG. 13 (color online). Debye screening massmD for the model
B2 with a crossover transition, normalized by the N ¼ 4 SYM
result cπT (with c ¼ 3.4041) as a function of the temperature T
for c4 ¼ 0.1 (black circles), 1 (blue squares), and 10 (purple
diamonds).

8We use the position of the minimum of c2s to set the scale of
the temperature and express T in MeV.
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cosmological constant term. The constant λGB is a measure
of the size of the higher derivative corrections. The specific
form the curvature squared corrections in (83) implies that
the metric fluctuations in a given background still follow
second-order equations.
The action (83) has an exact black brane solution [46],

ds2 ¼ R2

z2
α2
�
fGBðzÞdτ2 þ d~x2 þ dz2

fGBðzÞ
�
; ð84Þ

where the scaling factor α is defined by

α2 ¼ 1

2

	
1þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − 4λGB

p 

; ð85Þ

and the blackening factor fGB is given by

fGBðzÞ ¼
1

2λGB

2
641 −

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − 4λGB

�
1 −

z4

z4h

�s 3
75: ð86Þ

We choose our coordinate system to write the background
in a Poincaré patchlike form. The z coordinate of the black
brane horizon corresponds to the simple root of fGBðzÞ, zh.
The temperature of the black brane solution is given by
T ¼ α=ðπR2zhÞ. Comparing with Eq. (84), one can see that
the scaling factor means that the AdS radius is now given
by αR. Finally, the ’t Hooft coupling λ in this case is
λ ¼ α4R4=α02. The specific forms of a and fGB imply that
λGB < 1=4. Another constraint is given by imposing
causality at the boundary, which implies λGB ≤ 9=100 [50].
The shear viscosity/entropy density ratio η=s in this

model is related to λGB by [51]

η

s
¼ 1

4π
ð1 − 4λGBÞ: ð87Þ

If λGB > 0 one has η=s < 1=4π—the conjectured viscosity
bound for gauge theories with gravity duals is then violated.
Imposing λGB ≤ 9=100 implies 4πη

s ≥ 16=25.

B. Debye screening mass

We have not specified the string theory construction that
leads to Gauss–Bonnet gravity, but such a discussion can be
found in Ref. [88]. The only field that can contribute to the
channel used to define the Debye mass is the axion, which
is once again trivial in this background. The action for the
axion fluctuations (10) including only two derivatives is
(this is still a conformal system, and, thus, Z ¼ 1)

S ¼ α

32πG5

Z
d5xe5Að∂aÞ2; ð88Þ

where AðzÞ ¼ logðR=zÞ. Apart from the constant factor
of proportionality α in the action, this is the same action

that would be obtained with a background of the form
(11). So our equation of motion is still Eq. (15), with
B ¼ 3=2 logðz=RÞ. As in Sec. III, we use the dimension-
less variable y ¼ z=zh, which yields the dimensionless
mass ~M ¼ M=ðπTÞ.
Also, one can check that in this case the potential VðyÞ in

Eq. (15) has the same asymptotic form near the boundary,
namely Vðy → 0Þ ¼ 15=ð4y2Þ—the leading term in 1=y is
not changed. So, the asymptotic solutions are the same, and
all the tools used in Sec. III can be applied in this case
without modifications. To obtain the Debye screening mass
as a function of η=s, we analyze several values of λGB and
then use Eq. (87) to obtain the corresponding values of η=s.
We also compare our numerical results with the phe-

nomenological procedure pursued in Ref. [52]. In that
paper, we evaluated in the strongly coupled plasma dual to
Gauss–Bonnet gravity the expectation value of the rectan-
gular Wilson-loop operator at finite temperature, which
yields the potential energy VQQ̄ of a heavy quark-antiquark
pair that depends on η=s [89]. Using fits for the real part of
the potential of the form

ReVQQ̄ffiffiffi
λ

p
T

¼ − ~C1

e−
~mD
T ðLTÞ

ðLTÞδ þ ~C2; ð89Þ

where L is the interquark distance while ~C1, δ, and ~mD were
taken as fit parameters (we note that ~C2 ¼ −1=α2 by our
regularization procedure), we found an estimate for the
Debye screening mass ~mD. For λGB ¼ 0 we found
~mD ¼ 3.79πT, in reasonable agreement with the result
of Eq. (19).
We present the results for the Debye mass mD (normal-

ized by the SYM value) as a function of the η=s in Fig. 14.
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FIG. 14 (color online). Debye mass mD for the Gauss–Bonnet
gravity dual, as a function of η=s, normalized by theN ¼ 4 SYM
value. The black circles correspond to the results obtained by
computing the lightest CT-odd mode; the blue squares are the
results obtained by fits to the heavy quark-antiquark potential
evaluated holographically [52]. The shaded region corresponds to
values of η=s which violate the causality bound [50,51].
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We note that we have not restricted our calculations to the
interval 4πη

s ≥ 16=25 as required by causality but consid-
ered, for completeness, η=s ≥ 0. One can see that for
increasing η=s the interaction between colored external
probes in the plasma is less screened. This is reasonable, at
least from the point of view of a weakly coupled plasma
since η=s is roughly proportional to the mean free path of
momentum isotropization of the plasma and changing η=s
does not change the number of degrees of freedom of the
system. Thus, less screening should correspond to a larger
mean free path and, thus, to a larger η=s. We also note the
unexpected coincidence between the results obtained by
finding the lightest CT-odd mode and those obtained
following the simple phenomenological procedure using
the heavy quark potential described in the previous
paragraph.

IX. DISCUSSION AND CONCLUSIONS

In this paper we have identified the Debye screening
mass mD in non-Abelian gauge theories at strong coupling
with the lightest CT-odd mode in the spectrum (associated
with the operator TrFμν

~Fμν), following Refs. [9,23]. We
used this prescription to holographically evaluate the
Debye screening mass for a class of gravity duals involving
the metric and a scalar field. Besides the conformal cases of
N ¼ 4 SYM at strong coupling and the gauge theory dual
to Gauss–Bonnet gravity (where the scalar field in the bulk
vanishes), we investigated in detail an analytic bottom-up
model with a first-order confinement/deconfinement tran-
sition (model A) and two bottom-up holographic models
that describe the thermodynamics of QCD as seen on the
lattice—models B1 (pure glue, first-order phase transition)
and B2 (QCD, crossover transition).
The calculation of mD=T in both models for a pure

Yang–Mills plasma with a first-order phase transition at Tc,
models A and B1, revealed some interesting features.
Both models approach the conformal limit for T ≫ Tc
and exhibit relatively little sensitivity to the axion coupling
prefactor Z. The most remarkable feature of both models
is the discontinuity of mD=T at the critical temperature
Tc—mD jumps from 0 in the thermal gas phase (T < Tc) to
a nonzero value at T ¼ Tc. This behavior for mD=T in a
pure SUðNcÞ Yang–Mills plasma is consistent with pre-
vious lattice studies [16].
We also computed the expectation value of the Polyakov

loop in these models, finding an impressive agreement
with lattice results [53] even for Nc ¼ 3. Moreover, even
model A, which does not provide an adequate quantitative
description of SUð3Þ thermodynamics, yields a reasonable
description for the Polyakov loop. This suggests that the
Polyakov loop is largely insensitive to a variation in the
number of colors Nc in a pure glue plasma and that even
Nc ¼ 3 may be reasonably described by a large-Nc
expansion [53]. Moreover, it would be interesting to

identify more clearly what is the specific nonperturbative
mechanism present in these holographic models that is
responsible for this simultaneous description of lattice
QCD thermodynamics and the expectation value of the
polyakov loop.
Model B2 provides a reasonable description of the

thermodynamics of (2þ 1) QCD.9 The Debye screening
mass, correspondingly, satisfies mDðTÞ > 0 strictly and is
always continuous. Near the crossover phase transition
region at T ∼ 150 MeV, we see a minimum of mD=T
(Fig. 13). This minimum resembles, qualitatively, that
found for the speed of sound squared c2sðTÞ, as shown
in Fig. 12. For all the models, A, B1, and B2, the conformal
regime is reached from below; that is, mDðTÞ < cπT. The
minimum of mD=T near the phase transition may have
consequences for the energy loss of colored probes in the
plasma [94]. Also, such a minimum implies that correla-
tions in the medium are less screened, which effectively
increases the range of interactions, and this may be
responsible for the (expected) small value of η=s around
T ∼ 150 MeV [95–98]. Equivalently, in this temperature
range, the expectation value of the Polyakov loop becomes
small, and, within the framework of the semi-QGP model
[56,99], such a reduction may also lead to a suppression
of η=s [100,101].
The Debye screening mass of N ¼ 4 SYM at strong

coupling, mD ¼ 3.4041πT, extracted using the procedure
of Ref. [9], yields a result that is remarkably close to the
crude estimate used in Ref. [52] where fits to the heavy
quark-antiquark potential gave mD ¼ 3.79πT. However,
this coincidence should be interpreted with caution since,
as discussed in Ref. [52], the heavy quark-antiquark
potential in N ¼ 4 SYM at strong coupling is not expo-
nentially screened (for small values of LT) as required to
obtain the Debye screening mass from VQQ̄.
By considering a gravity theory with higher-order

derivatives such that the gauge plasma does not satisfy
η=s ¼ 1=ð4πÞ, namely Gauss–Bonnet gravity, we have
evaluated the dependence of mD=T with η=s, as shown
in Fig. 14. We found that in this case less screening is seen
as η=s is increased. It would be interesting to check this
result in other strongly coupled gauge theories. In particu-
lar, one could consider gravity duals that correspond to
gauge theories in which η=s < 1=ð4πÞ still in the context
of applications to the QGP. For example, one can consider
axion induced anisotropic deformations of N ¼ 4 SYM
[102,103] or strongly coupled N ¼ 4 SYM subjected to
an external magnetic field [104,105]. However, the pre-
scription of Ref. [9] cannot be straightforwardly applied to

9We should, however, emphasize that the gauge theory
described by this gravity dual does not strictly possesses fermions
in the fundamental representation. Those can be included using
D-branes in the bulk geometry [90,91]. See Ref. [92] for a general
review and Ref. [93] for a study of the Veneziano limit in bottom-
up constructions.
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these theories because they are not invariant by CP—P
invariance is explicitly broken by the inclusion of the axion
field in Ref. [102] and by the presence of an external
magnetic field in Ref. [105].
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APPENDIX A: GAUGE CHOICES
FOR MODELS B1 AND B2

As mentioned in the main text, for the models B1 and
B2, the Gubser gauge (44), while adequate for studying the
thermodynamics, is not convenient for evaluating Polyakov
and Wilson loops or finding the glueball spectrum (as done
in Appendix B). For these purposes, it is convenient to
change to the conformal gauge given by

ds2 ¼ e2 ~AðzÞ
�
~hðzÞdτ2 þ d~x2 þ dz2

~hðzÞ

�
: ðA1Þ

Comparing Eq. (A1) with Eq. (44), we see that the
following relation must hold among the metric functions:

dz
dϕ

¼ eB−A: ðA2Þ

We require that the asymptotic AdS5 is located at z ¼ 0 and
that the horizon is at z ¼ zh. The solution of Eq. (A2) that
satisfies these requirements is

zðϕÞ ¼
Z

ϕ

0

d ~ϕeBð ~ϕÞ−Að ~ϕÞ: ðA3Þ

We can invert (numerically) Eq. (A3) to get ϕðzÞ. Then, the
functions ~AðzÞ and ~hðzÞ are given by ~AðzÞ ¼ AðϕðzÞÞ
and ~hðzÞ ¼ hðϕðzÞÞ.

APPENDIX B: GLUEBALL SPECTRA
IN MODEL B1

In this section we compute the glueball spectra for model
B1, which displays confinement at T ¼ 0. The parameters
used in the scalar potential in this model are given in
Table II.

Let us briefly review the numerical procedure for finding
the vacuum geometry and the glueball spectra. One first
numerically integrates the equations of motion (58) subject
to the boundary condition (59); then, we search, numeri-
cally, for the eigenvalues of the Schrödinger’s equation (16),
as described in the main text. To find the spectra, we change
the metric from the z ¼ ϕ gauge (44) to the conformal
gauge, as described in Appendix A. The potential for
Schrödinger’s equation is given by Eq. (17), where B
depends on whether we are dealing with the scalar JPC ¼
0þþ glueballs, tensor JPC ¼ 2þþ glueballs, or pseudoscalar
JPC ¼ 0−þ glueballs [33,106],
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FIG. 15 (color online). Glueball spectra in the model B1. The
glueball masses are normalized by the mass of the fundamental
JPC ¼ 0þþ glueball. n indicates the order of the excited state;
n ¼ 0 is the fundamental state.
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FIG. 16 (color online). Chew–Frautschi plot of the glueball
spectra, comparing results from model B1 with lattice results
for SUð3Þ [107,108] and large-Nc SUðNcÞ [109,110] Yang–Mills
theory.
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ðscalarÞ0þþ BðzÞ ¼ 3

2
AðzÞ þ 1

2
logXðzÞ;

ðtensorÞ2þþ BðzÞ ¼ 3

2
AðzÞ;

ðaxialÞ 0−þBðzÞ ¼ 3

2
AðzÞ þ 1

2
logZðλðzÞÞ: ðB1Þ

In Eq. (B1), XðzÞ is defined by

XðzÞ≡ dΦ=dz
3AðzÞ ; ðB2Þ

whereΦ¼ ffiffiffiffiffiffiffiffi
3=8

p
ϕðzÞwhileλðzÞ¼eϕðzÞ,withZðλÞ still given

byEq. (40).For a comparisonwith lattice results,wenormalize
the spectrum by the fundamental 0þþ glueball mass.
Our results are shown in Figs. 15 and 16. For

comparison we used lattice results for the glueball

spectra in pure Yang–Mills with gauge groups SUð3Þ
[107,108] and SUðNcÞ in the large-Nc limit [109,110].
We see in Fig. 15 that linear Regge trajectories are
achieved for n > 4. Also, we note that the axial glueball
has little sensitivity to the choice of c4—in the interval
c4 ¼ 0.1 to c4 ¼ 10, the masses are almost degenerate.
For this reason, in Fig. 15 we show only the results for
c4 ¼ 1. Comparing with lattice results (Fig. 16), we see
that reasonable agreement is found for the tensor glue-
ball among all calculations. The axial glueball of model
B1 and large-Nc SUðNcÞ Yang–Mills are both reason-
ably close; however, both axial glueball masses are off
by a factor of 2 when compared with the SUð3Þ Yang–
Mills fundamental axial glueball. This contrasts with
the results found for the holographic Polyakov loop in
Sec. VI B, where the results were relatively insensitive
to Nc.
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