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We study the asymmetric nuclear matter using a holographic QCD model by introducing a baryonic
charge in the infrared boundary. We first show that, in the normal hadron phase, the predicted values of the
symmetry energy and its slope parameter are comparable with the empirical values. We find that the phase
transition from the normal phase to the pion condensation phase is delayed compared with the pure mesonic
matter: the critical chemical potential is larger than the pion mass which is obtained for the pure mesonic
matter. We also show that, in the pion condensation phase, the pion contribution to the isospin number
density increases with the chemical potential, while the baryonic contribution is almost constant.
Furthermore, the value of chiral condensation implies that the enhancement of the chiral symmetry
breaking occurs in the asymmetric nuclear matter as in the pure mesonic matter. We also give a discussion
on how to understand the delay in terms of the four-dimensional chiral Lagrangian including the rho and
omega mesons based on the hidden local symmetry.
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I. INTRODUCTION

It is expected that investigation of the hadron physics in
extreme conditions will give a clue for our understanding of
quantum chromodynamics (QCD). In particular studying
asymmetric nuclear matter is also important to derive the
equation of state inside neutron stars [1], which will give a
clue to understand the recently found very heavy neutron
star [2,3].

We often draw the QCD phase diagram on the plane of
temperature 7 and the baryon chemical potential 5 [4,5]. It
is expected that various phases exist on the plane (7, up) of
the phase diagram: e.g., the quark-gluon plasma phase and
the color superconducting phase. Similarly, finite isospin
chemical potential y; provide a rich phase structure which
includes the pion condensation phase. There are many
works studying the phase diagram at y; # 0. In particular,
the pion condensation phase transition on the plane (ug, yi;)
are studied by introducing u; together with up in the
Nambu-Jona-Lasinio (NJL) model [6—15] and holographic
QCD models [16,17] and so on [18-21].

As a first step to study the rich phase structure, it is
interesting to study the phase transition from the normal
hadron phase to the pion condensation phase together with
the equation of state in the pion condensation phase on the
plane (up, ;). References [6-11] show the T — g — py
phase diagram via the NJL model, in which the dependence
of the isospin density on the isospin chemical potential is
shown only for 7' = up = 0. On the other hand, by using
holographic QCD models [16,17], the pion condensation
phase transition is discussed. In Ref. [17], they draw the
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phase diagram on the plane (up, y;) in the Sakai-Sugimoto
model. Reference [16] also studies stability of the normal
hadron phase at finite isospin density by introducing the
baryon charge as the Reissner-Nordstrom (RN) blackhole
charge in a hard wall holographic QCD model. However,
the equation of state in the pion condensation phase is not
discussed in these works.

In the previous work [22], we studied the pion con-
densation in the pure mesonic matter using a holographic
QCD model by introducing the isospin chemical potential
as a UV boundary value of the gauge field. We showed that
the phase transition from the normal hadron phase to the
pion condensation phase is of the second order and the
critical value of the isospin chemical potential is equal to
the pion mass, consistently with the chiral Lagrangian
analysis [23].

In Ref. [22], we studied the y; dependence of the chiral
condensate defined by &= \/(6)> + (z°)% and showed
that, although the “c” condensate decreases rapidly with
the isospin chemical potential in the pion condensation
phase, the 7 condensate increases more rapidly. As a result
the chiral condensate 6 keeps increasing, which implies the
enhancement of the chiral symmetry breaking in the pion
condensation phase. The symmetry structure for this is
understood in the following way: When the isospin
chemical potential is introduced, the chiral symmetry

SU(2), x SU(2), is explicitly broken to U(1) ¥ x U (1) =
U(l)&,s) xU(l)S), where the superscript ) implies that the
generator 75 of SU(2) is used for the U(l) as

exp[ify T5] eU(l)g). In the normal hadron phase the

U(l);3> is broken by the “c6” condensate spontaneously
and the quark mass explicitly. In the pion condensation
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phase, on the other hand, the U(l)gf) symmetry is sponta-

neously broken by the z condensate, which generates a

massless Nambu-Goldstone boson. Since both U(1 )S) and

U(l)&,3> are subgroups of the chiral SU(2),; x SU(2),
symmetry, the above structure implies that the chiral
symmetry is never restored in the mesonic matter with
the isospin chemical potential, and actually the breaking is
enhanced in the pion condensation phase. We note that the
above properties are obtained in the pure mesonic matter, so
that it is interesting to ask whether they are changed by the
existence of the nucleon in the matter.

In this paper, we adopt a simple way for introducing the
baryonic sources: We include a pointlike nucleon source at
the IR boundary coupling to the iso-triplet vector meson in
the hard wall holographic QCD model as in Ref. [24], and
studied the pion condensation in the asymmetric nuclear
matter. We will show that the phase transition from the
normal hadron phase to the pion condensation phase is
delayed in the asymmetric nuclear matter compared with
the pure mesonic matter. In other words, the critical
chemical potential is larger than the pion mass. On the
other hand, the enhancement of the chiral symmetry
breaking still occurs since the chiral condensate ¢ keeps
increasing with the isospin chemical potential.

This paper is organized as follows: In Sec. II, we briefly
review the holographic QCD model used in our analysis,
and introduce the baryonic charge following Ref. [24].
Section III is devoted to the study of the symmetry energy
and the pion mass in the normal hadron phase. In Sec. IV,
we study the pion condensation phase and obtain the
relation between the isospin chemical potential and the
isospin number density as well as the chiral condensate. In
Sec. V, we make an analysis of the pion mass in the normal
hadron phase using the four-dimensional chiral model
based on the hidden local symmetry [25,26]. We give a
summary and discussions in Sec. VI. We also show the
equations of motion in Appendix A.

II. MODEL

In the present analysis, we employ a holographic QCD
model given in Refs. [27-29] for the mesonic part. Then the
mesonic action in the five-dimensional space is given by

Ss = Sy + SBP (2.1)
where
SX:/d4X/Z’n dZ
1
Ve IDXP - mlxP = o (7 + PR
5
(2.2)
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SBD :—/d“x/zm dz

X \/GTr{A2, | X[* = m?2, | X*}6(2 = z,0)  (2.3)
with m? = —3. The metric is written as
ds* = a*(2) (n,dx"dx* — dz*) = gyndxMdx  (2.4)
with
1
a(z) = > (2.5)

where z,, and € are the IR cutoff and UV cutoff. Here N and
M run over 0,1,2,3,5 and 7, is the defined as the
Mankowski metric: 7, = diag(1, -1, -1, —1).l

The model has the chiral symmetry U(2),x
U(2)x(=U(1), xU(1)gxSU(2), xSU(2)g), under which
the fields transform in the following form:

X = X' =g, Xgh. (2.6)
Ly—Ly= QLLMQ}; + igLaMQZ» (2.7)
Ry = R'y = grRygy + igrOuak (2.8)

with g € U(2)g and g; € U(2),. The covariant derivative
and the field strength are defined as
F%/IN = OyLy = OnLy — i[Ly, Ly] (2.10)

and similar for FR . These fields are parametrized as

LY, =Tr[Lyo']. Rl =Tr[Ryo']l. (2.11)
RI LI RI _ LI
Vi, :M, Al =M =M (2.12)
2 2
1 , .
X =2 (8% + §40) e (2.13)

where ¢!/ = (6°,6) = (1, 6“) and 6* are the Pauli matrices.
In the following analysis we adopt the gauge Ls = Rs =0

and the IR boundary condition F%,| =F§| =0.

Now, let us include the effects of the nucleon into the
model. Here we introduce baryonic sources for the quark

number density n, and the baryonic contribution to the

1Although there is a Chern-Simons term in addition, the term
does not affect our result since we assume the rotational
invariance in the present analysis.

115027-2



EQUATION OF STATE IN THE PION CONDENSATION ...

isospin number density, denoted by "

, through the
following term’:

S = / d*x / " dz[Ving, + Vi s(z = 2, + 62)
(2.14)

where 6z (> 0) is an infinitesimal length and V{ and V} are
the gauge fields corresponding to the quark number density
and isospin number density. The baryon number density np
is defined as ngp =n,/N,. We introduced the baryonic
sources by the o-function having a peak near the IR
boundary [24], which doesn’t modify the IR boundary
conditions.

In the present analysis, we assume that the proton
(neutron) does not appear as long as the proton (neutron)
chemical potential ), (u,) is smaller than the mass of a
nucleon, denoted by my. Therefore our analysis will be
done for the following three cases separately:

(i) —my <, < my, —my < p, < my,

(11) my < /"p’

(iii) my < pp,

—my <, < my,

my <y, (2.15)

The proton and neutron chemical potential y,, and u, are
related with the isospin chemical potential y; and the

baryon chemical potential yp through ), = ug + p;/2 and

pin = ug — piy/2. The assumption implies 272, "

. . B
0 in case (i) and 2n, """

Baryon
n

= n B =
= ng = n, in case (ii) because
and np are expressed as the difference between the

proton density 7, and the neutron density n, and the sum of

. Baryon n,—n
them, respectively: n; """ = -5, ng=n,+n,. case

(i) corresponds to the pure mesonic case which is studied
in Ref. [22]. On the other hand, ;™" and nj are
independent of the each other in case (iii). We will show
the results of our analysis in case (ii) and case (iii) to
compare with the pure mesonic case.

We note that the four-dimensional part of the gauge
symmetry is fixed when Sj,, is introduced. In other words,
Sin¢ 18 not invariant under the four-dimensional gauge
transformation. Then, we introduce the quark number
chemical potential y, and the isospin chemical potential
u; as the UV boundary values of the time components of
the gauge fields as’

Vole = 1g = o) Vile =ur—c@).  (2.16)
where the constants ¢y and c(3) are corresponding to the
degree of freedom of the gauge transformation. In the next

*The sign of this term is uniquely determined from the
definition of the chemical potential introduced in Eq. (2.16).
The baryon number chemical potential up is related to p,, as

KB = Nc:uq'
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section, we will determine the values of ¢(g) and c(3) by the
physical requirements for the pion mass and the equation of
state between the chemical potential and the density.

This holographic QCD model involves the following five
parameters,

ggv Zm>s m /1, m2' (217)

q

To match this model with QCD, the parameter gg is
adjusted as [27]

— NC
C1272%°

(2.18)

U\QN| Ll

For the physical inputs to determine the parameters, we use
the pion mass m, = 139.6 MeV, the pion decay constant
[z =92.4 MeV, the p meson mass m, = 775.8 MeV, and
the a; meson mass. As in Ref. [22], we use the a; meson
mass m, = 980 MeV as a reference value, and see the
dependence of our results on the scalar meson mass. The
values of the parameters corresponding to m,, = 980 MeV
are determined as

Zn = 1/(323 MeV), m, =2.29 MeV,

A=44, m? = 5.39. (2.19)

As in Ref. [22], we assume that the pion condensation
phase has the rotational symmetry, L; = R; = 0, and the
iso-triplet scalars do not condense, S = (. Furthermore,
we take V} = V3 = 0 and A} = #* = 0 which form a set of
solutions of the equation of motion (EOM) for these fields.
Similarly, the set of the = 0 and A} = 0 satisfies the EOM
and we take this solution.

The grand potential density Q is given from the

Lagrangian £:
Zm
Q=-— / dz[L

where the explicit form of the Lagrangian £ is shown in
Eq. (A2). One can derive the EOM for the vector field V8
and V} from Eq. (2.20),

(2.20)

a
85 ?85‘/8 = l’lq5(Z —Zm + 5Z),
5

a a’ (SO)Z
95
_ nll?raryoné

[2sin?bhV3 + @ sin 2b sin (]

(2= 2 + 62). (2.21)

*Note that we also take expectation values of operators made
by L; and R; such as > ;R;R;, which are invariant under the
rotational symmetry, vanish since our present analysis is of the
leading order in the large N, expansion and the hadronic loop
contributions are suppressed.
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By parametrizing V) and V} as
0 0 S so(z
Vo(z) =pg—c)+°(2) +g§nq/ dz70(Z—2z,,+62),
€
z
V(@) =p—ci)+9°(2) +9§n]13ary°"/ d220(Z— 2, +62),
€

(2.22)
where 6 is a step function, Eq. (2.21) is rewritten as
055 950° = 0,

9s

a3(s0)2

a
s - a5(P3 =
9s

[2sin?b(u; — c@) + @)

+ 6sin2bsin(]. (2.23)

Here the boundary conditions are given by

0.3 0.3
V(<) )le = H(q.1) — €(03)> 35V(() >|

I 0
0 _ 2
85§0 |z,” - _gszmnq

3 o 2 Baryon *
s |zm = —Y95%mNy

(2.24)

III. SYMMETRY ENERGY AND DELAY
OF THE PHASE TRANSITION

In this section we first study the dependence of the pion
mass on the isospin chemical potential y; in the normal
hadron phase to show the delay of the pion condensation
compared with the pure mesonic matter studied in
Ref. [22]. Next, we investigate the symmetry energy to
check whether the present way to introduce the baryonic
matter works well in the normal hadron phase by compar-
ing our result with its empirical value. For studying the
hadron phase we set b = 0 and € = 0 in the equations of
motion in Egs. (2.21) and (2.23).

In case (iii), we first derive the relation between the
chemical potential y; and the isospin number density n;.
For b = 0 =0, it is easy to solve the equation of motion
(2.23) with the boundary conditions in Eq. (2.24) to have

2 Baryon
n
g =B 7 (3.1)
Substituting this solution into Eq. (2.20), we obtain
Zm a B
Q> —/ sz(%Vg)z —n; V3 s
€ Js
921%1 Baryon\2 Baryon
== ()T = (= e (3.2)
where a = 1. Minimizing the Q in terms of the nP" for a

given value of the isospin chemical potential y; yields the

PHYSICAL REVIEW D 90, 115027 (2014)

relation between the isospin chemical potential y; and the

isospin number density of the asymmetric matter 7, ">":

B 2
pBayen _

= 3.3
1 ) (3.3)

(/41 —0(3)>‘

Here in the normal hadron phase the isospin density n;
. Baryon .
equals to the density n; because mesons carrying
isospin charge do not condense.
Similarly, for the quark number density we also have

2

=—— (g — c(0))-
q ggzgn (:uq (0))

n (3.4)

The baryon number density, ng = n,/N,, appears when
the baryon chemical potential u is larger than the mass of
nucleon my =939 MeV. This implies that the c() is
determined as c(g) = my/N,, as in Ref. [24]. This argu-
ment yields the following relation:

2

np = —(,UB - mN)-
g2z N2

(3.5)
Let us next study the y; dependence of the pion mass.

The equations of motion for the pion fluctuation up till the

quadratic order in the momentum space are given by,

1
—Was [a(aS®)?0sn™] = E*(up)[Ay + 7 EF (uy)),
1 a
a(as")? 9s <? aSA(j)E> = [Ay + 7 E (u)),  (3.6)
5
where the fields are parametrized as
1 2 Al AZ
=TT pr =BT (59
V2 V2
and
2 2
b4 b4
E*(uy) = Mﬂ:ﬂ[(l —Z—z) Feoz: (3.8)

S8° is the solution of Eq. (A1) and M is the energy of the
static pion. Equation (3.6) together with the boundary
conditions, z|. = Jsz|, = 0, yield the value of the M as
the eigenvalue. The lowest value of the eigenvalue M is
identified with the pion mass, m;. Here the parameter ¢ 3) is
determined as zero by assuming that z* and z~ are
degenerating at y; = 0: E*(u;) = M £ p;(1 = 22/22,).
Figure 1 shows the y; dependence of the pion mass in the
normal hadron phase. The 7~ mass drawn by the red curve
increases with the isospin chemical potential. The z mass
by the green curve, on the other hand, decreases and
reaches zero at yu; = 235 MeV, which implies that the 7+
condenses and that the transition to the pion condensation
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2507 T, (case (iii)) ——
T, (case(iii))
+ .

| T (case(i))

*
m, [MeV]

0 50 100 150 200 250
Uy [Mev]

FIG. 1 (color online). u; dependence of the pion masses. The
red and green curves show the masses of 7~ and 7, respectively.
We also show the y; dependence of the z+ mass in the pure
mesonic matter obtained in Ref. [22] by the blue curve.

phase occurs. We would like to stress that the z" mass here
decreases more slowly than the one obtained in the pure
mesonic matter shown by the blue curve. One can easily see
that the critical value of the isospin chemical potential for
the phase transition is larger than the pion mass for the pure
mesonic case. This is due to the existence of the baryons in
the matter, which can also be understood by an analysis of
the chiral Lagrangian based on the Hidden Local Symmetry
as shown in Sec. V.

The energy density of the system is defined as
& =Q+nyu, + npy at zero temperature and given by

2 2
95%m g5zmNe
£ =21 (ny)? + 25 (np)”. (3.9)
4 4
Then, the symmetry energy is obtained as’
_ 0(&/ng) gngn
Esym(”B) = 8(12 o = 16 np (310)

where a = i—’;’ At the saturation density 1y = 0.16 fm=,
we can estimate Eyp,(n9) =29 MeV by using Eq. (2.18)
and Eq. (2.19), which is comparable to the empirical value
of 32.3 £ 1.0 MeV [31]. In Refs. [32,33], the value of the
parameter y defined as Eyy,(n5) = Egym(n9)(; ”)V is esti-
mated as y = 0.55-0.69, which is different from the result
of the present analysis, y = 1. The slope parameter of the
symmetry energy is given by

gszm
16

aEsym(nl.‘?)

L=3
"o 8113

= 3ny=—

np=ngy

(3.11)

and its value is estimated as L = 87 MeV, where its
empirical value is known as 45.2 +10.0 MeV [31]. We

>Note that this definition of the symmetry energy is different
from the one used in Ref. [30].
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may understand that the deviations of values of y and L are
caused by the next leading order in the large N, expansion.

In case (ii), as we stated in Sec. II, ZnBary °" and ny are
equal to n,, which leads to the followmg solutions of
Eq. (2.23) in the normal hadron phase, b = 6 = 0:

Baryon 2
gy gin
pP=-21  2=_0220"72

2 2
(3.12)

Now, the grand potential density is given by

o 042
QD—L sz[(asvo)

Baryony ,- 0
-y V0| - an0|zm—5z

2
g 1 3
_ZS<N2+Z>Z%L %,— <,Mp—NCC(O)——(2)>np,

(3.13)

+(05Vp)?]

Zn—02

B
where we used 2n,""*" =np=n, and u,

Minimizing this in terms of n,, we have

= HUp +%1.

2 4 0(3)
= - N, -— 3.14
" G AN ("” 077 ) G
Thus, we set N.c(g) + % = my because the proton density
n, must vanish as u, — my.
In case (ii), the pion mass depends on not only x; but also

up through
1 2
E*u)=M+pu (1 -— >
(k1) ﬂl( TN Z%)
1 22 2

TA‘_N%O"B )Zm :FC()Zm

p

T2 (3.15)

in Eq. (3.8). In the limit y; — 0 at ug = mN6 the degen-
eration of the charged pions gives us ¢z = 0. The y;
dependence of the pion mass is the almost same as that in
the pure mesonic case [case ) because the difference is

suppressed by the factor 1 4N2 =4

IV. PION CONDENSATION PHASE

Next, we study the equation of state in the asymmetric
nuclear matter. First, we will perform the following analysis
in case (ii) and in case (iii), separately, and show the results
of in case (ii1). In the last of this section, our results on the
(u;, up) plane will be shown, which are given by combining
the result of each case.

®We cannot take the limit y; — 0 at up # my in case (ii).
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From the Lagrangian Eq. (A2), the equations of motion are obtained as

05(=a’058°) + a>S°(9s5b)* — 3a°S° — a3SO[sin’b(¢?® + p;)? + Osin2bsin (¢ + p;) + 6> — @?sin’bsin?¢] = 0,

5(—a’(505h) - )

[sin 2b{ (¢

3+ pp)? — @sin®¢} + 20 cos 2bsin (¢ + p;)] = 0,

a a a*(S9)? . . 5y
s <g—2 a59> - ?Q(GSC)Z - [sin2bsin ¢ (¢ + u;) + 20{1 — sin?bsin®*¢}] = 0,
5 5
a 2 (SO)Z . 3 YY) .
Os| =6°0s¢ | — 5 [0sin2b cos { (¢ + p;) — 6*sin*b sin 2¢] = 0,
95
3(Q0\2
0s (%85(/)3) _4 (5 ) [2sin’b(@> + p;) + Osin2bsin] = 0. (4.1)
95

These differential equations are solved with the boundary
conditions listed in Table I. We note that, in case (iii), the IR
boundary condition for ¢ and the value of np**" are
determined by the minimization condition for the grand
potential

0Q
OZW:—/WV@(Z—ZWL&)
ny
=—H;— (p3|zm—61’ (42)
and the condition in Eq. (2.24)
Baryon 1 85(;03
n; =—-—— (4.3)
95 < Zm

In case (ii), on the other hand, the condition 9€2/0n, = 0
together with the solution of ¢° and the condition in
Eq. (2.24) leads to

1
N2Osp’l.,, +50° (44)

H
2 Z,,,+ﬂB+?1_mN:O'

It should be noticed that the condition provides the pup
dependence of the isospin number density n; in case (ii),
although the coupled equations of motion in Eq. (4.1) do

TABLEI. Boundary conditions for the relevant wave functions.
(IR condition) implies that N20s¢3| o T %(p3|zm +up +45 -
my = 0 is satisfied.

Variables uv IR

s Tle=m, 058", ==~ (U7 ~2m)]
b bl = dsb|. =0

0 0.=0 050|, =

¢ =% 95¢]., =0

@’ . =0 @®|. = —y, in case (iii)

<m

(IR condition) in case (ii)

not include up. On the other hand, in case (iii), neither the
boundary conditions nor the equations of motion have pp
dependence, which implies that the isospin number density
is independent of the baryon number chemical potential.

Now, let us study the isospin number density in case (iii),
which is defined by

0Q

_ Meson + nBaIyOH
1
Opy

=n) (4.5)

ny =

where the n)°" expresses the mesonic contribution to the
isospin number density given by

n?fleson — /dZ

In Fig. 2, we show the resultant equation of state between
the isospin density and the isospin chemical potential
obtained by solving Eq. (4.1). For u; < 235 MeV there

a3 (SO)2

[2sin’b(g + p;) + O'sin2b sin £].

(4.6)

1 T T T
nIB (case(111)
IM:;;’sn(case (iii)
Fng (case(iii)
ng (case(i))

[fm™>]

Isospin density
o
=

400 600
Uy [MeV]

0 m; 200

FIG. 2 (color online). Equation of state between the isospin
chemical potential y; and the isospin number density n; drawn by
the red curve. The blue and green curves show the u; depend-
ences of the mesonic contribution nMe°" and the baryonic
contribution 1", respectively. The pink dots show the result

shown in Ref. [22] for pure mesonic matter.
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is no pion condensation, so that the isospin number density
increases linearly with the chemical potential following
Eq. (3.3) as drawn by the red curve in Fig. 2. At u§ =
235 MeV the phase transition occurs from the normal
hadron phase to the pion condensation phase. This critical
chemical potential u§ = 235 MeV is consistent with the
one determined from the pion mass shown in Fig. 1, but the
value is larger than the critical value for the pure mesonic
matter, for which uf = m, [22] as seen by the green curve
in Fig. 2. This delay of the phase transition is due to the
existence of the baryons, which can also be understood by
an analysis of the four-dimensional chiral Lagrangian as
shown in the next section.

In the pion condensation phase, the pion contribution to
the isospin number density increases monotonically with
the chemical potential as shown by the pink curve in Fig. 2,
while the baryonic contribution by the blue curve is almost

constant: n,""*" ~0.2 fm™3. As a result the mesonic
contribution dominates the isospin number density. This
implies that the energy provided by the isospin chemical
potential is mostly used for generating the pion condensa-
tion rather than converting the neutron into proton.

Figure 3 shows the dependence of the equation of state
on the scalar meson mass. The value of parameter A is
determined from the mass of the @y, meson, where 4 = 1.0,
4.4, and 100 correspond to the m, = 610, 980, and
1210 MeV, respectively. We find that the critical value
of the isospin chemical potential is independent of 1 and
the behavior of the equation of state is not sensitive to the
value of A.

As we stated in the introduction, the existence of the
isospin chemical potential y; explicitly breaks the chiral
symmetry group SU(2), x SU(2), down to its subgroup

U(l)g) X U(l)(L3> = U(l)&?) X U(l)f), where the super-
script ®) implies that the generator T5 of SU(2) is used
for the U(1) as exp[ifyTs] € U(l)g). For studying the
order parameters for the phase transition, we define the

[T )

following 7 condensate and the “6” condensate [22]:

-
&
= 0.
>
ot
4 0.
[
(0]
T 0.
o
-
& o.
[0)
9]
2
200 400 600 800
Hny [MeV]

FIG. 3 (color online). Dependence of the equation of state on
the value of 1. The green, red, and blue curves are for A = 1.0, 4.4,
and 100, respectively.
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X
Tr [ia“a <85 Z) + H.c} = (qys0“q),
€

1
2
(o) = % Tr [a <85 f) + H.C.:| ) = (q9). (4.7)

We plot the “c6” condensate and the z condensate
obtained by the present analysis in Fig. 4, together with
those condensates for the pure mesonic matter. This figure
shows that the present behavior is quite similar to the
previous one except the difference of the phase transition
point: in the normal hadron phase the “c6” condensate
exists, which leads to the breakdown of the U(l)f)
symmetry, but the z condensate is zero. At the phase
transition point, the 7z condensate appears, which sponta-
neously breaks the U(1)<V3) symmetry, while the “c
condensate starts to decrease very rapidly. For large y;,
the “c” condensate is almost zero while the 7 condensate
keeps increasing.

We next show the chiral circle in Fig. 5. The red solid
curve shows that the behavior for the nuclear matter is quite
similar to the one for the pure mesonic matter shown by the

green dotted line: Although the “c” condensate decreases

59

case(‘iii‘) _
1.4 case(iii) -
| case (i) e (751)/(0')0.

I ~

(0)/40),

o o o o

-0.

0 my 200 400 600 800
1y [Mev]

FIG. 4 (color online). Dependence of the “c” condensate (o)
and the 7 condensate () on the isospin chemical potential ;.
The condensates are scaled by the “c” condensate at the vacuum
indicated by (o). The blue curves are the dependence of () and
(z) shown in Ref. [22] for the pure mesonic matter.

1.4 1 casé(iii) —
case (i) e
1.2
1l 400MeV —* e
< .;...-3‘0’0Me
L o8t 2
b
H\n:/ 0.6
0.4
0.2
0

7 S5 0 0.5 T
(0)/{0)o
FIG. 5 (color online). Chiral circle shown by red curve. The

black curve is an unit circle and the green curve is the chiral circle
for the pure mesonic matter.
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and the 7 condensate increases, the chiral condensate
defined by

o (6)? + (n%)? (4.8)
stays constant until about 150 MeV above the critical
chemical potential. In the large y; region, the chiral
condensate ¢ grows very rapidly. This implies that the
enhancement of the chiral symmetry breaking occurs in the
asymmetric nuclear matter, similarly to the one in the pure
mesonic matter as shown in Ref. [22].

Next, we study the equation of state and the condensates
in case (ii) as well as those in case (i) in a similar way. The
resultant (z'), (¢) and n, in the entire (ug, y;) plane are
shown in Figs. 6, 7, and 8, respectively. The green lines in
these figures show the boundary between case (i) and case
(i1) and that between case (ii) and case (iii), which are
corresponding to u,, = my and u, = my. Figure 6 shows
that there is the first order transition on the boundary
between the pion condensation phase in case (ii) and the
normal hadron phase in case (iii). In Fig. 7, we see that (o)
decreases discontinuously at the first order transition line in
response to sudden increase of (z') in Fig. 6. Figure 8
shows the equation of state on the (1, u;) plane. In these
figures, the values of (z'), (¢) and n; drastically change on
U, = my which is the boundary between case (ii) and
case (iii).

700

[MeV]
300“1

FIG. 6 (color online). % vs pp vs u;. The green lines are
the boundaries between case (i) and case (ii) and between case (ii)
and case (iii).

(0)/{0),

700

500
MeV]

[
300M

m,
Mev] N
Hp 1500 Mn

FIG. 7 (color online). % vs pp vs u;. The green lines are
the boundaries between case (i) and case (ii) and between case (i)
and case (iii).
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FIG. 8 (color online). n; vs pp vs y;. The green lines are the
boundaries between case (i) and case (ii) and between case (ii)
and case (iii).

V. AN ANALYSIS BY THE CHIRAL LAGRANGIAN
BASED ON THE HIDDEN LOCAL SYMMETRY

In this section, we show that the delay of the phase
transition to the pion condensation phase is understood as
the baryonic matter effect in the framework of the four-
dimensional chiral Lagrangian including the p meson based
on the hidden local symmetry (HLS) [25,26].

The mesonic part of the HLS Lagrangian is given by

£ = F%Tr[&l”&"i] + aF,zzTI'[&””&m

F2 .
+ = Trlééh + ErrEl] -

4 (5.1)

1
2—‘92 Tr[VWV’”’] s

where y is an external field which has the expectation value
corresponding to the pion mass, (y) = m21. The &, and
&y, are defined as

. _ D& =D&
ALy =—" £ > . K, (5.2)
where &; p are the fields including pions, V, is the gauge
field including the rho and omega mesons and the covariant
derivative of these fields are

Dy‘gL = 8}451, - iVﬂéL + IELEW
D/zgR = 8}4€R - iVﬂéR + iéRR/r (53)
The baryon and isospin chemical potentials, 1 and y;, are
introduced as the expectation value of the time component
of the external gauge fields: (Lo) = (Rg) =“0¢" +4 0.
Here we introduce the following terms including the
baryons explicitly:
where N is the baryon field and D, is a covariant derivative

defined as D,N = (0, —iV,)N. We replace the bilinear
baryon fields by the mean field as
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Holo‘graphi‘c QCD ‘
a"=0.7 -

L L i L ""\ ~.~T~ =
0 50 100 150 200 250 300
uy [Mev]

FIG. 9 (color online). The p; dependence of the zt mass
obtained from the chiral Lagrangian. The green, blue and pink
curves are the results for ¢’ = 0.7, 0.5, and 0.3, respectively. The
7" mass given from the analysis of the holographic QCD model
is indicated by the red curve. We also show the y; dependence of
the z mass in the pure mesonic matter obtained in Ref. [22] by
the dotted black line.

(V3 + Gao)n ™" + (V3 + G ), (5.5)

where &ﬁ%’S) = Tr(&||00(0’3)), V3 is the time component of

the neutral rho meson and V) is the time component of the
omega meson.

Taking the unitary gauge of the HLS and integrating out
the rho and omega mesons and assuming the rotational
symmetry, we obtain the following effective Lagrangian for
the pion coupling to the baryonic sources:

F2
L = F2Tr[a,0d) ] + 7” Tr[enéy + Err'E])
r 1
5 "B T 5 =
2a'F; 2a'F;

Baryon\2 3 Baryon
(ny ") + ppnp + ajony

(5.6)

where o = ﬁ7 and 0/|‘| = &’lf + VK. Existence of the

terms in the last line of Eq. (5.6) causes the deviation from
the result obtained by the O(p?) chiral Lagrangian without
the baryonic sources, which delays the transition to the pion
condensation comparing to of the pure mesonic analysis.
Figure 9 shows the relation between the pion mass and the
isospin chemical potential for @’ = 0.7 (green), 0.5 (blue),
0.3 (pink) and of the holographic QCD model (the red
curve). The dotted black line corresponds to the case for the
pure pion matter, @’ = 0. This figure shows that the point at
which the curve reaches zero depends on the value of a’.
The critical value of the isospin chemical potential for
0 < d’ < 1 is larger than the pion mass, which implies that
delay of the transition is understood by using a model based
on the HLS with the baryonic sources.

"Since the value of the parameter a is known as about two in

the HLS [26], ' = ﬁ is larger than zero.
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VI. A SUMMARY AND DISCUSSIONS

We introduced a baryonic source at the IR boundary
coupling to the iso-triplet vector meson in the hard wall
holographic QCD mode, and studied the pion condensation
in the asymmetric nuclear matter. We showed that the phase
transition from the normal matter to the pion condensation
phase is delayed in the asymmetric nuclear matter com-
pared with the pure mesonic matter. Furthermore, our result
shows that the meson contribution to the isospin number
density increases with the chemical potential, while the
baryon contribution stays constant. We would like to stress
that the chiral symmetry breaking is enhanced in the
asymmetric nuclear matter as in the pure mesonic matter.

We show the phase diagram obtained from the present
analysis in Fig. 10, where the blue and red area express the
hadron phase and the pion condensation phase, respec-
tively. The phase transition is of the second order except on
the yellow line expressing the first order. In case (i), the
phase transition to the pion condensation occurs at which
the isospin chemical potential is equal to the pion mass as
shown in Ref. [22]. On the other hand, in case (iii), done by
the present analysis, the critical point of the transition is
delayed compared with in case (i). A similar delay also
occurs in case (ii), although the effect is very tiny and it is
hard to see in Fig. 10.

The model which we used in Sec. V explicitly includes
the rtho and omega mesons. The existence of the tho meson
is essential for the delay of the phase transition. This
indicate that the phase transition point in the NJL model
may be changed by including the following vector four-
Fermi interaction [14,34-38]:

9l @ yw)* + (oyrsw)?l, (6.1)

where g, is a positive coupling constant, y is a quark field,
and ¢ are Pauli matrices in the flavor space.

600

400

200

0

pr [MeV]

0 500 1000 1500
g [MeV]

FIG. 10 (color online). Phase diagram: up vs u;. The blue and
red area express the hadron phase and the pion condensation
phase, respectively.
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In the present analysis, we put the baryonic charge at the
IR boundary. In more general case, the charge is spread into
the bulk by the gauge interaction. Furthermore, the cou-
pling of the baryon to the scalar mesons is not included.
Such effects could be included by the holographic mean
field approach [39,40], which is left for future publication.

References [16,30,41] studied the asymmetric matter in
the hard wall holographic QCD model. Our results for the
meson mass splitting and the symmetry energy are com-
parable to their results.
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APPENDIX: EQUATIONS OF MOTION

At the vacuum, the nonzero value of S° brakes the chiral
symmetry to the vector part of its symmetry. The iso-singlet
scalar field SO satisfies the following equation of motion
(EOM) and the boundary conditions:

8561385S0 + 361580 = 0,
SO

m
7z

)
€

0
Dss0 + 25— (A(S0)? — 2m2)] ~0, (A1)

Zm

where the m, corresponds to the explicit braking of the
chiral symmetry due to the current quark mass.

Using the assumptions given in Sec. II and the variables
parametrized in Egs. (2.12) and (2.13), the Lagrangian L is
written as

L=L+L,.
a’ 0\2 0\2 2 3a® 0\2
L =7 [=(8557)7 = ($°)(950)] +—-(57)
Cl3(SO)2
+— [sin?bh(V3)? + @sin 2bsin V3 + 67 — sin®bsin’(]
+ zigz [(B5V3)2 + (850)2 + 62(950)?] + nP*¥"V35(z — z,, + 62).
5
L, — 2“? (O5V)2 + n VO3(z = 2,0 + 82), (A2)
5
where
e'™" = cos b + isinbo',
Aj = (0cos(,0sinl,0). (A3)

For convenience, we fixed 7> = 0 by using the isospin symmetry U(1), which is the subgroup of U(1); x U(1)3.
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