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We study the asymmetric nuclear matter using a holographic QCD model by introducing a baryonic
charge in the infrared boundary. We first show that, in the normal hadron phase, the predicted values of the
symmetry energy and its slope parameter are comparable with the empirical values. We find that the phase
transition from the normal phase to the pion condensation phase is delayed compared with the pure mesonic
matter: the critical chemical potential is larger than the pion mass which is obtained for the pure mesonic
matter. We also show that, in the pion condensation phase, the pion contribution to the isospin number
density increases with the chemical potential, while the baryonic contribution is almost constant.
Furthermore, the value of chiral condensation implies that the enhancement of the chiral symmetry
breaking occurs in the asymmetric nuclear matter as in the pure mesonic matter. We also give a discussion
on how to understand the delay in terms of the four-dimensional chiral Lagrangian including the rho and
omega mesons based on the hidden local symmetry.
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I. INTRODUCTION

It is expected that investigation of the hadron physics in
extreme conditions will give a clue for our understanding of
quantum chromodynamics (QCD). In particular studying
asymmetric nuclear matter is also important to derive the
equation of state inside neutron stars [1], which will give a
clue to understand the recently found very heavy neutron
star [2,3].
We often draw the QCD phase diagram on the plane of

temperature T and the baryon chemical potential μB [4,5]. It
is expected that various phases exist on the plane ðT; μBÞ of
the phase diagram: e.g., the quark-gluon plasma phase and
the color superconducting phase. Similarly, finite isospin
chemical potential μI provide a rich phase structure which
includes the pion condensation phase. There are many
works studying the phase diagram at μI ≠ 0. In particular,
the pion condensation phase transition on the plane ðμB; μIÞ
are studied by introducing μI together with μB in the
Nambu-Jona-Lasinio (NJL) model [6–15] and holographic
QCD models [16,17] and so on [18–21].
As a first step to study the rich phase structure, it is

interesting to study the phase transition from the normal
hadron phase to the pion condensation phase together with
the equation of state in the pion condensation phase on the
plane ðμB; μIÞ. References [6–11] show the T − μB − μI
phase diagram via the NJL model, in which the dependence
of the isospin density on the isospin chemical potential is
shown only for T ¼ μB ¼ 0. On the other hand, by using
holographic QCD models [16,17], the pion condensation
phase transition is discussed. In Ref. [17], they draw the

phase diagram on the plane ðμB; μIÞ in the Sakai-Sugimoto
model. Reference [16] also studies stability of the normal
hadron phase at finite isospin density by introducing the
baryon charge as the Reissner-Nordström (RN) blackhole
charge in a hard wall holographic QCD model. However,
the equation of state in the pion condensation phase is not
discussed in these works.
In the previous work [22], we studied the pion con-

densation in the pure mesonic matter using a holographic
QCD model by introducing the isospin chemical potential
as a UV boundary value of the gauge field. We showed that
the phase transition from the normal hadron phase to the
pion condensation phase is of the second order and the
critical value of the isospin chemical potential is equal to
the pion mass, consistently with the chiral Lagrangian
analysis [23].
In Ref. [22], we studied the μI dependence of the chiral

condensate defined by ~σ ≡ ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
hσi2 þ hπai2

p
, and showed

that, although the “σ” condensate decreases rapidly with
the isospin chemical potential in the pion condensation
phase, the π condensate increases more rapidly. As a result
the chiral condensate ~σ keeps increasing, which implies the
enhancement of the chiral symmetry breaking in the pion
condensation phase. The symmetry structure for this is
understood in the following way: When the isospin
chemical potential is introduced, the chiral symmetry

SUð2ÞR×SUð2ÞL is explicitly broken to Uð1Þð3ÞR ×Uð1Þð3ÞL ¼
Uð1Þð3ÞV ×Uð1Þð3ÞA , where the superscript ð3Þ implies that the
generator T3 of SU(2) is used for the U(1) as

exp½iθVT3� ∈ Uð1Þð3ÞV . In the normal hadron phase the

Uð1Þð3ÞA is broken by the “σ” condensate spontaneously
and the quark mass explicitly. In the pion condensation

*h248ra@hken.phys.nagoya‑u.ac.jp
†harada@hken.phys.nagoya‑u.ac.jp

PHYSICAL REVIEW D 90, 115027 (2014)

1550-7998=2014=90(11)=115027(11) 115027-1 © 2014 American Physical Society

http://dx.doi.org/10.1103/PhysRevD.90.115027
http://dx.doi.org/10.1103/PhysRevD.90.115027
http://dx.doi.org/10.1103/PhysRevD.90.115027
http://dx.doi.org/10.1103/PhysRevD.90.115027


phase, on the other hand, the Uð1Þð3ÞV symmetry is sponta-
neously broken by the π condensate, which generates a

massless Nambu-Goldstone boson. Since both Uð1Þð3ÞA and

Uð1Þð3ÞV are subgroups of the chiral SUð2ÞR × SUð2ÞL
symmetry, the above structure implies that the chiral
symmetry is never restored in the mesonic matter with
the isospin chemical potential, and actually the breaking is
enhanced in the pion condensation phase. We note that the
above properties are obtained in the pure mesonic matter, so
that it is interesting to ask whether they are changed by the
existence of the nucleon in the matter.
In this paper, we adopt a simple way for introducing the

baryonic sources: We include a pointlike nucleon source at
the IR boundary coupling to the iso-triplet vector meson in
the hard wall holographic QCD model as in Ref. [24], and
studied the pion condensation in the asymmetric nuclear
matter. We will show that the phase transition from the
normal hadron phase to the pion condensation phase is
delayed in the asymmetric nuclear matter compared with
the pure mesonic matter. In other words, the critical
chemical potential is larger than the pion mass. On the
other hand, the enhancement of the chiral symmetry
breaking still occurs since the chiral condensate ~σ keeps
increasing with the isospin chemical potential.
This paper is organized as follows: In Sec. II, we briefly

review the holographic QCD model used in our analysis,
and introduce the baryonic charge following Ref. [24].
Section III is devoted to the study of the symmetry energy
and the pion mass in the normal hadron phase. In Sec. IV,
we study the pion condensation phase and obtain the
relation between the isospin chemical potential and the
isospin number density as well as the chiral condensate. In
Sec. V, we make an analysis of the pion mass in the normal
hadron phase using the four-dimensional chiral model
based on the hidden local symmetry [25,26]. We give a
summary and discussions in Sec. VI. We also show the
equations of motion in Appendix A.

II. MODEL

In the present analysis, we employ a holographic QCD
model given in Refs. [27–29] for the mesonic part. Then the
mesonic action in the five-dimensional space is given by

S5 ¼ SX þ SBD ð2:1Þ

where

SX ¼
Z

d4x
Z

zm

ϵ
dz

×
ffiffiffi
g

p
Tr

�
jDXj2 −m2

5jXj2 −
1

4g25
ðF2

L þ F2
RÞ
�
;

ð2:2Þ

SBD ¼ −
Z

d4x
Z

zm

ϵ
dz

×
ffiffiffi
g

p
TrfλzmjXj4 −m2zmjXj2gδðz − zmÞ ð2:3Þ

with m2
5 ¼ −3. The metric is written as

ds2 ¼ a2ðzÞðημνdxμdxν − dz2Þ ¼ gMNdxMdxN ð2:4Þ

with

aðzÞ ¼ 1

z
; ð2:5Þ

where zm and ϵ are the IR cutoff and UV cutoff. Here N and
M run over 0,1,2,3,5 and ημν is the defined as the
Mankowski metric: ημν ¼ diagð1;−1;−1;−1Þ.1
The model has the chiral symmetry Uð2ÞL×

Uð2ÞRð¼Uð1ÞL×Uð1ÞR×SUð2ÞL×SUð2ÞRÞ, under which
the fields transform in the following form:

X → X0 ¼ gLXg
†
R; ð2:6Þ

LM → L0
M ¼ gLLMg

†
L þ igL∂Mg

†
L; ð2:7Þ

RM → R0
M ¼ gRRMg

†
R þ igR∂Mg

†
R ð2:8Þ

with gR ∈ Uð2ÞR and gL ∈ Uð2ÞL. The covariant derivative
and the field strength are defined as

DMX ¼ ∂MX − iLMX þ iXRM; ð2:9Þ

FL
MN ¼ ∂MLN − ∂NLM − i½LM;LN � ð2:10Þ

and similar for FR
MN. These fields are parametrized as

LI
M ¼ Tr½LMσ

I�; RI
M ¼ Tr½RMσ

I�; ð2:11Þ

VI
M ¼ RI

M þ LI
M

2
; AI

M ¼ RI
M − LI

M

2
; ð2:12Þ

X ¼ 1

2
ðS0σ0 þ SaσaÞeiπbσbþiη ð2:13Þ

where σI ¼ ðσ0; σaÞ ¼ ð1; σaÞ and σa are the Pauli matrices.
In the following analysis we adopt the gauge L5 ¼ R5 ¼ 0

and the IR boundary condition FL
5μjzm ¼ FR

5μjzm ¼ 0.

Now, let us include the effects of the nucleon into the
model. Here we introduce baryonic sources for the quark
number density nq and the baryonic contribution to the

1Although there is a Chern-Simons term in addition, the term
does not affect our result since we assume the rotational
invariance in the present analysis.
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isospin number density, denoted by nBaryonI , through the
following term2:

Sint ¼
Z

d4x
Z

zm

ϵ
dz½V0

0nq þ V3
0n

Baryon
I �δðz − zm þ δzÞ

ð2:14Þ
where δz (> 0) is an infinitesimal length and V0

0 and V
3
0 are

the gauge fields corresponding to the quark number density
and isospin number density. The baryon number density nB
is defined as nB ¼ nq=Nc. We introduced the baryonic
sources by the δ-function having a peak near the IR
boundary [24], which doesn’t modify the IR boundary
conditions.
In the present analysis, we assume that the proton

(neutron) does not appear as long as the proton (neutron)
chemical potential μp (μn) is smaller than the mass of a
nucleon, denoted by mN. Therefore our analysis will be
done for the following three cases separately:

ðiÞ −mN ≤ μp < mN; −mN ≤ μn < mN;

ðiiÞ mN ≤ μp; −mN ≤ μn < mN;

ðiiiÞ mN ≤ μp; mN ≤ μn: ð2:15Þ

The proton and neutron chemical potential μp and μn are
related with the isospin chemical potential μI and the
baryon chemical potential μB through μp ¼ μB þ μI=2 and

μn ¼ μB − μI=2. The assumption implies 2nBaryonI ¼ nB ¼
0 in case (i) and 2nBaryonI ¼ nB ¼ np in case (ii) because

nBaryonI and nB are expressed as the difference between the
proton density np and the neutron density nn and the sum of

them, respectively: nBaryonI ¼ np−nn
2

, nB ¼ np þ nn. case
(i) corresponds to the pure mesonic case which is studied
in Ref. [22]. On the other hand, nBaryonI and nB are
independent of the each other in case (iii). We will show
the results of our analysis in case (ii) and case (iii) to
compare with the pure mesonic case.
We note that the four-dimensional part of the gauge

symmetry is fixed when Sint is introduced. In other words,
Sint is not invariant under the four-dimensional gauge
transformation. Then, we introduce the quark number
chemical potential μq and the isospin chemical potential
μI as the UV boundary values of the time components of
the gauge fields as3

V0
0jϵ ¼ μq − cð0Þ; V3

0jϵ ¼ μI − cð3Þ; ð2:16Þ

where the constants cð0Þ and cð3Þ are corresponding to the
degree of freedom of the gauge transformation. In the next

section, we will determine the values of cð0Þ and cð3Þ by the
physical requirements for the pion mass and the equation of
state between the chemical potential and the density.
This holographic QCDmodel involves the following five

parameters,

g25; zm; mq; λ; m2: ð2:17Þ

To match this model with QCD, the parameter g25 is
adjusted as [27]

1

g25
¼ Nc

12π2
: ð2:18Þ

For the physical inputs to determine the parameters, we use
the pion mass mπ ¼ 139.6 MeV, the pion decay constant
fπ ¼ 92.4 MeV, the ρ meson mass mρ ¼ 775.8 MeV, and
the a0 meson mass. As in Ref. [22], we use the a0 meson
mass ma0 ¼ 980 MeV as a reference value, and see the
dependence of our results on the scalar meson mass. The
values of the parameters corresponding toma0 ¼ 980 MeV
are determined as

zm ¼ 1=ð323 MeVÞ; mq ¼ 2.29 MeV;

λ ¼ 4.4; m2 ¼ 5.39: ð2:19Þ

As in Ref. [22], we assume that the pion condensation
phase has the rotational symmetry, Li ¼ Ri ¼ 0,4 and the
iso-triplet scalars do not condense, Sa ¼ 0. Furthermore,
we take V1

0 ¼ V2
0 ¼ 0 and A3

0 ¼ π3 ¼ 0 which form a set of
solutions of the equation of motion (EOM) for these fields.
Similarly, the set of the η ¼ 0 and A0

0 ¼ 0 satisfies the EOM
and we take this solution.
The grand potential density Ω is given from the

Lagrangian L:

Ω ¼ −
Z

zm

ϵ
dzL ð2:20Þ

where the explicit form of the Lagrangian L is shown in
Eq. (A2). One can derive the EOM for the vector field V0

0

and V3
0 from Eq. (2.20),

∂5

a
g25

∂5V0
0 ¼ nqδðz − zm þ δzÞ;

∂5

a
g25

∂5V3
0 −

a3ðS0Þ2
2

½2sin2bV3
0 þ θ sin 2b sin ζ�

¼ nBaryonI δðz − zm þ δzÞ: ð2:21Þ

2The sign of this term is uniquely determined from the
definition of the chemical potential introduced in Eq. (2.16).

3The baryon number chemical potential μB is related to μq as
μB ≡ Ncμq.

4Note that we also take expectation values of operators made
by Li and Ri such as

P
iRiRi, which are invariant under the

rotational symmetry, vanish since our present analysis is of the
leading order in the large Nc expansion and the hadronic loop
contributions are suppressed.
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By parametrizing V0
0 and V3

0 as

V0
0ðzÞ¼μq−cð0Þ þφ0ðzÞþg25nq

Z
z

ϵ
d~z ~zθð~z−zmþδzÞ;

V3
0ðzÞ¼μI−cð3Þ þφ3ðzÞþg25n

Baryon
I

Z
z

ϵ
d~z ~zθð~z−zmþδzÞ;

ð2:22Þ

where θ is a step function, Eq. (2.21) is rewritten as

∂5

a
g25

∂5φ
0 ¼ 0;

∂5

a
g25

∂5φ
3 ¼ a3ðS0Þ2

2
½2sin2bðμI − cð3Þ þ φ3Þ

þ θ sin 2b sin ζ�: ð2:23Þ
Here the boundary conditions are given by

Vð0;3Þ
0 jϵ ¼ μðq;IÞ − cð0;3Þ; ∂5V

ð0;3Þ
0 jzm ¼ 0

→ φð0;3Þjϵ ¼ 0;

( ∂5φ
0jzm ¼ −g25zmnq

∂5φ
3jzm ¼ −g25zmn

Baryon
I

:

ð2:24Þ

III. SYMMETRY ENERGY AND DELAY
OF THE PHASE TRANSITION

In this section we first study the dependence of the pion
mass on the isospin chemical potential μI in the normal
hadron phase to show the delay of the pion condensation
compared with the pure mesonic matter studied in
Ref. [22]. Next, we investigate the symmetry energy to
check whether the present way to introduce the baryonic
matter works well in the normal hadron phase by compar-
ing our result with its empirical value. For studying the
hadron phase we set b ¼ 0 and θ ¼ 0 in the equations of
motion in Eqs. (2.21) and (2.23).
In case (iii), we first derive the relation between the

chemical potential μI and the isospin number density nI.
For b ¼ θ ¼ 0, it is easy to solve the equation of motion
(2.23) with the boundary conditions in Eq. (2.24) to have

φ3 ¼ −
g25n

Baryon
I

2
z2: ð3:1Þ

Substituting this solution into Eq. (2.20), we obtain

Ω ⊃ −
Z

zm

ϵ
dz

a
2g25

ð∂5V3
0Þ2 − nBaryonI V3

0jzm−δz

¼ g25z
2
m

4
ðnBaryonI Þ2 − ðμI − cð3ÞÞnBaryonI ; ð3:2Þ

where a ¼ 1
z. Minimizing the Ω in terms of the nBaryonI for a

given value of the isospin chemical potential μI yields the

relation between the isospin chemical potential μI and the
isospin number density of the asymmetric matter nBaryonI :

nBaryonI ¼ 2

g25z
2
m
ðμI − cð3ÞÞ: ð3:3Þ

Here in the normal hadron phase the isospin density nI
equals to the density nBaryonI because mesons carrying
isospin charge do not condense.
Similarly, for the quark number density we also have

nq ¼
2

g25z
2
m
ðμq − cð0ÞÞ: ð3:4Þ

The baryon number density, nB ¼ nq=Nc, appears when
the baryon chemical potential μN is larger than the mass of
nucleon mN ¼ 939 MeV. This implies that the cð0Þ is
determined as cð0Þ ¼ mN=Nc, as in Ref. [24]. This argu-
ment yields the following relation:

nB ¼ 2

g25z
2
mN2

c
ðμB −mNÞ: ð3:5Þ

Let us next study the μI dependence of the pion mass.
The equations of motion for the pion fluctuation up till the
quadratic order in the momentum space are given by,

−
1

aðaS0Þ2 ∂5½aðaS0Þ2∂5π
�� ¼ E�ðμIÞ½A�

0 þ π�E�ðμIÞ�;

1

aðaS0Þ2 ∂5

�
a
g25

∂5A�
0

�
¼ ½A�

0 þ π�E�ðμIÞ�; ð3:6Þ

where the fields are parametrized as

π� ¼ π1 ∓ iπ2ffiffiffi
2

p ; A�
0 ¼ i

A1
0 ∓ iA2

0ffiffiffi
2

p ð3:7Þ

and

E�ðμIÞ ¼ M � μI

�
1 −

z2

z2m

�
∓ cð3Þ

z2

z2m
: ð3:8Þ

S0 is the solution of Eq. (A1) and M is the energy of the
static pion. Equation (3.6) together with the boundary
conditions, πjϵ ¼ ∂5πjzm ¼ 0, yield the value of the M as
the eigenvalue. The lowest value of the eigenvalue M is
identified with the pion mass,m�

π. Here the parameter cð3Þ is
determined as zero by assuming that πþ and π− are
degenerating at μI ¼ 0: E�ðμIÞ ¼ M � μIð1 − z2=z2mÞ.
Figure 1 shows the μI dependence of the pion mass in the

normal hadron phase. The π− mass drawn by the red curve
increases with the isospin chemical potential. The πþ mass
by the green curve, on the other hand, decreases and
reaches zero at μI ¼ 235 MeV, which implies that the πþ
condenses and that the transition to the pion condensation
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phase occurs. We would like to stress that the πþ mass here
decreases more slowly than the one obtained in the pure
mesonic matter shown by the blue curve. One can easily see
that the critical value of the isospin chemical potential for
the phase transition is larger than the pion mass for the pure
mesonic case. This is due to the existence of the baryons in
the matter, which can also be understood by an analysis of
the chiral Lagrangian based on the Hidden Local Symmetry
as shown in Sec. V.
The energy density of the system is defined as

E ¼ Ωþ nqμq þ nIμI at zero temperature and given by

E ¼ g25z
2
m

4
ðnIÞ2 þ

g25z
2
mN2

c

4
ðnBÞ2: ð3:9Þ

Then, the symmetry energy is obtained as5

EsymðnBÞ≡ ∂ðE=nBÞ
∂α2

����
α¼0

¼ g25z
2
m

16
nB ð3:10Þ

where α≡ 2nI
nB
. At the saturation density n0 ¼ 0.16 fm−3,

we can estimate Esymðn0Þ ¼ 29 MeV by using Eq. (2.18)
and Eq. (2.19), which is comparable to the empirical value
of 32.3� 1.0 MeV [31]. In Refs. [32,33], the value of the
parameter γ defined as EsymðnBÞ ¼ Esymðn0ÞðnBn0Þγ is esti-
mated as γ ¼ 0.55–0.69, which is different from the result
of the present analysis, γ ¼ 1. The slope parameter of the
symmetry energy is given by

L≡ 3n0
∂EsymðnBÞ

∂nB
����
nB¼n0

¼ 3n0
g25z

2
m

16
ð3:11Þ

and its value is estimated as L ¼ 87 MeV, where its
empirical value is known as 45.2� 10.0 MeV [31]. We

may understand that the deviations of values of γ and L are
caused by the next leading order in the large Nc expansion.
In case (ii), as we stated in Sec. II, 2nBaryonI and nB are

equal to np, which leads to the following solutions of
Eq. (2.23) in the normal hadron phase, b ¼ θ ¼ 0:

φ3 ¼ −
g25n

Baryon
I

2
z2 ¼ −2

g25np
2

z2;

φ0 ¼ −
g25nq
2

z2 ¼ −Nc
g25np
2

z2: ð3:12Þ

Now, the grand potential density is given by

Ω ⊃ −
Z

zm

ϵ
dz

a
2g25

½ð∂5V0
0Þ2 þ ð∂5V3

0Þ2�

− nBaryonI V3
0jzm−δz − nqV0

0jzm−δz
¼ g25

4

�
N2

c þ
1

4

�
z2mn2p −

�
μp − Nccð0Þ −

cð3Þ
2

�
np;

ð3:13Þ

where we used 2nBaryonI ¼ nB ¼ np and μp ¼ μB þ μI
2
.

Minimizing this in terms of np, we have

np ¼ 2

g25z
2
m

4

1þ 4N2
c

�
μp − Nccð0Þ −

cð3Þ
2

�
ð3:14Þ

Thus, we set Nccð0Þ þ cð3Þ
2
¼ mN because the proton density

np must vanish as μp → mN .
In case (ii), the pion mass depends on not only μI but also

μB through

E�ðμIÞ ¼ M � μI

�
1 −

1

1þ 4N2
c

z2

z2m

�

∓ 2
1

1þ 4N2
c
ðμB −mNÞ

z2

z2m
∓ cð3Þ

z2

z2m
ð3:15Þ

in Eq. (3.8). In the limit μI → 0 at μB ¼ mN
6 the degen-

eration of the charged pions gives us cð3Þ ¼ 0. The μI
dependence of the pion mass is the almost same as that in
the pure mesonic case [case (i)] because the difference is
suppressed by the factor 1

1þ4N2
c
¼ 1

37
.

IV. PION CONDENSATION PHASE

Next, we study the equation of state in the asymmetric
nuclear matter. First, we will perform the following analysis
in case (ii) and in case (iii), separately, and show the results
of in case (iii). In the last of this section, our results on the
(μI, μB) plane will be shown, which are given by combining
the result of each case.

FIG. 1 (color online). μI dependence of the pion masses. The
red and green curves show the masses of π− and πþ, respectively.
We also show the μI dependence of the πþ mass in the pure
mesonic matter obtained in Ref. [22] by the blue curve.

5Note that this definition of the symmetry energy is different
from the one used in Ref. [30]. 6We cannot take the limit μI → 0 at μB ≠ mN in case (ii).
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From the Lagrangian Eq. (A2), the equations of motion are obtained as

∂5ð−a3∂5S0Þ þ a3S0ð∂5bÞ2 − 3a5S0 − a3S0½sin2bðφ3 þ μIÞ2 þ θ sin 2b sin ζðφ3 þ μIÞ þ θ2 − θ2sin2bsin2ζ� ¼ 0;

∂5ð−a3ðS0Þ2∂5bÞ −
a3ðS0Þ2

2
½sin 2bfðφ3 þ μIÞ2 − θ2sin2ζg þ 2θ cos 2b sin ζðφ3 þ μIÞ� ¼ 0;

∂5

�
a
g25

∂5θ

�
−

a
g25

θð∂5ζÞ2 −
a3ðS0Þ2

2
½sin 2b sin ζðφ3 þ μIÞ þ 2θf1 − sin2bsin2ζg� ¼ 0;

∂5

�
a
g25

θ2∂5ζ

�
−
a3ðS0Þ2

2
½θ sin 2b cos ζðφ3 þ μIÞ − θ2sin2b sin 2ζ� ¼ 0;

∂5

�
a
g25

∂5φ
3

�
−
a3ðS0Þ2

2
½2sin2bðφ3 þ μIÞ þ θ sin 2b sin ζ� ¼ 0: ð4:1Þ

These differential equations are solved with the boundary
conditions listed in Table I. We note that, in case (iii), the IR
boundary condition for φ3 and the value of nBaryonI are
determined by the minimization condition for the grand
potential

0 ¼ ∂Ω
∂nBaryonI

¼ −
Z

dzV3
0δðz − zm þ δzÞ

¼ − μI − φ3jzm−δz; ð4:2Þ

and the condition in Eq. (2.24)

nBaryonI ¼ −
1

g25

∂5φ
3

z

����
zm

: ð4:3Þ

In case (ii), on the other hand, the condition ∂Ω=∂np ¼ 0
together with the solution of φ0 and the condition in
Eq. (2.24) leads to

N2
c∂5φ

3jzm þ 1

2
φ3jzm þ μB þ μI

2
−mN ¼ 0: ð4:4Þ

It should be noticed that the condition provides the μB
dependence of the isospin number density nI in case (ii),
although the coupled equations of motion in Eq. (4.1) do

not include μB. On the other hand, in case (iii), neither the
boundary conditions nor the equations of motion have μB
dependence, which implies that the isospin number density
is independent of the baryon number chemical potential.
Now, let us study the isospin number density in case (iii),

which is defined by

nI ¼ −
∂Ω
∂μI ¼ nMeson

I þ nBaryonI ð4:5Þ

where the nMeson
I expresses the mesonic contribution to the

isospin number density given by

nMeson
I ¼

Z
dz

a3ðS0Þ2
2

½2sin2bðφþ μIÞ þ θ sin 2b sin ζ�:

ð4:6Þ

In Fig. 2, we show the resultant equation of state between
the isospin density and the isospin chemical potential
obtained by solving Eq. (4.1). For μI < 235 MeV there

FIG. 2 (color online). Equation of state between the isospin
chemical potential μI and the isospin number density nI drawn by
the red curve. The blue and green curves show the μI depend-
ences of the mesonic contribution nMeson

I and the baryonic
contribution nBaryonI , respectively. The pink dots show the result
shown in Ref. [22] for pure mesonic matter.

TABLE I. Boundary conditions for the relevant wave functions.
(IR condition) implies that N2

c∂5φ
3jzm þ 1

2
φ3jzm þ μB þ μI

2
−

mN ¼ 0 is satisfied.

Variables UV IR

S0 S0
z jϵ ¼ mq ∂5S0jzm ¼ − S0

2zm
ðλðS0Þ2 − 2m2Þj

zm
b bjϵ ¼ 0 ∂5bjzm ¼ 0

θ θjϵ ¼ 0 ∂5θjzm ¼ 0

ζ ζjϵ ¼ π
2

∂5ζjzm ¼ 0
φ3 φ3jϵ ¼ 0 φ3jzm ¼ −μI in case (iii)

(IR condition) in case (ii)
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is no pion condensation, so that the isospin number density
increases linearly with the chemical potential following
Eq. (3.3) as drawn by the red curve in Fig. 2. At μcI ¼
235 MeV the phase transition occurs from the normal
hadron phase to the pion condensation phase. This critical
chemical potential μcI ¼ 235 MeV is consistent with the
one determined from the pion mass shown in Fig. 1, but the
value is larger than the critical value for the pure mesonic
matter, for which μcI ¼ mπ [22] as seen by the green curve
in Fig. 2. This delay of the phase transition is due to the
existence of the baryons, which can also be understood by
an analysis of the four-dimensional chiral Lagrangian as
shown in the next section.
In the pion condensation phase, the pion contribution to

the isospin number density increases monotonically with
the chemical potential as shown by the pink curve in Fig. 2,
while the baryonic contribution by the blue curve is almost
constant: nBaryonI ∼ 0.2 fm−3. As a result the mesonic
contribution dominates the isospin number density. This
implies that the energy provided by the isospin chemical
potential is mostly used for generating the pion condensa-
tion rather than converting the neutron into proton.
Figure 3 shows the dependence of the equation of state

on the scalar meson mass. The value of parameter λ is
determined from the mass of the a0 meson, where λ ¼ 1.0,
4.4, and 100 correspond to the ma0 ¼ 610, 980, and
1210 MeV, respectively. We find that the critical value
of the isospin chemical potential is independent of λ and
the behavior of the equation of state is not sensitive to the
value of λ.
As we stated in the introduction, the existence of the

isospin chemical potential μI explicitly breaks the chiral
symmetry group SUð2ÞR × SUð2ÞL down to its subgroup

Uð1Þð3ÞR × Uð1Þð3ÞL ¼ Uð1Þð3ÞV × Uð1Þð3ÞA , where the super-
script ð3Þ implies that the generator T3 of SU(2) is used

for the U(1) as exp½iθVT3� ∈ Uð1Þð3ÞV . For studying the
order parameters for the phase transition, we define the
following π condensate and the “σ” condensate [22]:

hπai≡ 1

2
Tr

�
iσaa

�
∂5

X
z

�
þ H:c:

	
ϵ

¼ hq̄γ5σaqi;

hσi≡ 1

2
Tr

�
a

�
∂5

X
z

�
þ H:c:

	
ϵ

¼ hq̄qi: ð4:7Þ

We plot the “σ” condensate and the π condensate
obtained by the present analysis in Fig. 4, together with
those condensates for the pure mesonic matter. This figure
shows that the present behavior is quite similar to the
previous one except the difference of the phase transition
point: in the normal hadron phase the “σ” condensate
exists, which leads to the breakdown of the Uð1Þð3ÞA
symmetry, but the π condensate is zero. At the phase
transition point, the π condensate appears, which sponta-
neously breaks the Uð1Þð3ÞV symmetry, while the “σ”
condensate starts to decrease very rapidly. For large μI ,
the “σ” condensate is almost zero while the π condensate
keeps increasing.
We next show the chiral circle in Fig. 5. The red solid

curve shows that the behavior for the nuclear matter is quite
similar to the one for the pure mesonic matter shown by the
green dotted line: Although the “σ” condensate decreases

FIG. 3 (color online). Dependence of the equation of state on
the value of λ. The green, red, and blue curves are for λ ¼ 1.0, 4.4,
and 100, respectively.

FIG. 4 (color online). Dependence of the “σ” condensate hσi
and the π condensate hπi on the isospin chemical potential μI .
The condensates are scaled by the “σ” condensate at the vacuum
indicated by hσi0. The blue curves are the dependence of hσi and
hπi shown in Ref. [22] for the pure mesonic matter.

FIG. 5 (color online). Chiral circle shown by red curve. The
black curve is an unit circle and the green curve is the chiral circle
for the pure mesonic matter.
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and the π condensate increases, the chiral condensate
defined by

~σ ≡
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
hσi2 þ hπai2

q
ð4:8Þ

stays constant until about 150 MeV above the critical
chemical potential. In the large μI region, the chiral
condensate ~σ grows very rapidly. This implies that the
enhancement of the chiral symmetry breaking occurs in the
asymmetric nuclear matter, similarly to the one in the pure
mesonic matter as shown in Ref. [22].
Next, we study the equation of state and the condensates

in case (ii) as well as those in case (i) in a similar way. The
resultant hπ1i, hσi and nI in the entire (μB, μI) plane are
shown in Figs. 6, 7, and 8, respectively. The green lines in
these figures show the boundary between case (i) and case
(ii) and that between case (ii) and case (iii), which are
corresponding to μp ¼ mN and μn ¼ mN . Figure 6 shows
that there is the first order transition on the boundary
between the pion condensation phase in case (ii) and the
normal hadron phase in case (iii). In Fig. 7, we see that hσi
decreases discontinuously at the first order transition line in
response to sudden increase of hπ1i in Fig. 6. Figure 8
shows the equation of state on the (μB, μI) plane. In these
figures, the values of hπ1i, hσi and nI drastically change on
μn ¼ mN which is the boundary between case (ii) and
case (iii).

V. AN ANALYSIS BY THE CHIRAL LAGRANGIAN
BASED ON THE HIDDEN LOCAL SYMMETRY

In this section, we show that the delay of the phase
transition to the pion condensation phase is understood as
the baryonic matter effect in the framework of the four-
dimensional chiral Lagrangian including the ρmeson based
on the hidden local symmetry (HLS) [25,26].
The mesonic part of the HLS Lagrangian is given by

L ¼ F2
πTr½α̂⊥μα̂

μ
⊥� þ aF2

πTr½α̂∥μα̂μ∥�

þ F2
π

4
Tr½ξLχξ†R þ ξRχ

†ξ†L� −
1

2g2
Tr½VμνVμν�; ð5:1Þ

where χ is an external field which has the expectation value
corresponding to the pion mass, hχi ¼ m2

π1. The α̂⊥μ and
α̂∥μ are defined as

α̂⊥;∥μ ¼
DμξL · ξ†L �DμξR · ξ†R

2i
; ð5:2Þ

where ξL;R are the fields including pions, Vμ is the gauge
field including the rho and omega mesons and the covariant
derivative of these fields are

DμξL ¼ ∂μξL − iVμξL þ iξLLμ;

DμξR ¼ ∂μξR − iVμξR þ iξRRμ: ð5:3Þ

The baryon and isospin chemical potentials, μB and μI, are
introduced as the expectation value of the time component
of the external gauge fields: hL0i ¼ hR0i ¼ μB

2
σ0 þ μI

2
σ3.

Here we introduce the following terms including the
baryons explicitly:

N̄iγμDμN þ GN̄γμα̂μ∥N; ð5:4Þ

where N is the baryon field andDμ is a covariant derivative
defined as DμN ¼ ð∂μ − iVμÞN. We replace the bilinear
baryon fields by the mean field as

FIG. 6 (color online). hπ1i
hσi0 vs μB vs μI . The green lines are

the boundaries between case (i) and case (ii) and between case (ii)
and case (iii).

FIG. 7 (color online). hσi
hσi0 vs μB vs μI . The green lines are

the boundaries between case (i) and case (ii) and between case (ii)
and case (iii).

FIG. 8 (color online). nI vs μB vs μI . The green lines are the
boundaries between case (i) and case (ii) and between case (ii)
and case (iii).
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ðV3
0 þ Gα̂3∥0ÞnBaryonI þ ðV0

0 þ Gα̂0∥0ÞnB; ð5:5Þ

where α̂ð0;3Þ∥0 ¼ Trðα̂∥0σð0;3ÞÞ, V3
0 is the time component of

the neutral rho meson and V0
0 is the time component of the

omega meson.
Taking the unitary gauge of the HLS and integrating out

the rho and omega mesons and assuming the rotational
symmetry, we obtain the following effective Lagrangian for
the pion coupling to the baryonic sources:

L ¼ F2
πTr½α̂⊥0α̂

0⊥� þ
F2
π

4
Tr½ξLχξ†R þ ξRχ

†ξ†L�

−
1

2a0F2
π
n2B −

1

2a0F2
π
ðnBaryonI Þ2 þ μBnB þ α3∥0n

Baryon
I ;

ð5:6Þ

where a0 ≡ a
ð1−GÞ2

7 and αμ∥ ¼ α̂μ∥ þ Vμ. Existence of the

terms in the last line of Eq. (5.6) causes the deviation from
the result obtained by the Oðp2Þ chiral Lagrangian without
the baryonic sources, which delays the transition to the pion
condensation comparing to of the pure mesonic analysis.
Figure 9 shows the relation between the pion mass and the
isospin chemical potential for a0 ¼ 0.7 (green), 0.5 (blue),
0.3 (pink) and of the holographic QCD model (the red
curve). The dotted black line corresponds to the case for the
pure pion matter, a0 ¼ 0. This figure shows that the point at
which the curve reaches zero depends on the value of a0.
The critical value of the isospin chemical potential for
0 < a0 < 1 is larger than the pion mass, which implies that
delay of the transition is understood by using a model based
on the HLS with the baryonic sources.

VI. A SUMMARY AND DISCUSSIONS

We introduced a baryonic source at the IR boundary
coupling to the iso-triplet vector meson in the hard wall
holographic QCD mode, and studied the pion condensation
in the asymmetric nuclear matter. We showed that the phase
transition from the normal matter to the pion condensation
phase is delayed in the asymmetric nuclear matter com-
pared with the pure mesonic matter. Furthermore, our result
shows that the meson contribution to the isospin number
density increases with the chemical potential, while the
baryon contribution stays constant. We would like to stress
that the chiral symmetry breaking is enhanced in the
asymmetric nuclear matter as in the pure mesonic matter.
We show the phase diagram obtained from the present

analysis in Fig. 10, where the blue and red area express the
hadron phase and the pion condensation phase, respec-
tively. The phase transition is of the second order except on
the yellow line expressing the first order. In case (i), the
phase transition to the pion condensation occurs at which
the isospin chemical potential is equal to the pion mass as
shown in Ref. [22]. On the other hand, in case (iii), done by
the present analysis, the critical point of the transition is
delayed compared with in case (i). A similar delay also
occurs in case (ii), although the effect is very tiny and it is
hard to see in Fig. 10.
The model which we used in Sec. V explicitly includes

the rho and omega mesons. The existence of the rho meson
is essential for the delay of the phase transition. This
indicate that the phase transition point in the NJL model
may be changed by including the following vector four-
Fermi interaction [14,34–38]:

gv½ðψ̄σaγμψÞ2 þ ðψ̄σaγμγ5ψÞ2�; ð6:1Þ

where gv is a positive coupling constant, ψ is a quark field,
and σa are Pauli matrices in the flavor space.

FIG. 9 (color online). The μI dependence of the πþ mass
obtained from the chiral Lagrangian. The green, blue and pink
curves are the results for a0 ¼ 0.7, 0.5, and 0.3, respectively. The
πþ mass given from the analysis of the holographic QCD model
is indicated by the red curve. We also show the μI dependence of
the πþ mass in the pure mesonic matter obtained in Ref. [22] by
the dotted black line.

Pion condensation phase

Normal hadron phase

Pion condensation phase
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ii iii
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FIG. 10 (color online). Phase diagram: μB vs μI . The blue and
red area express the hadron phase and the pion condensation
phase, respectively.

7Since the value of the parameter a is known as about two in
the HLS [26], a0 ¼ a

ð1−GÞ2 is larger than zero.
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In the present analysis, we put the baryonic charge at the
IR boundary. In more general case, the charge is spread into
the bulk by the gauge interaction. Furthermore, the cou-
pling of the baryon to the scalar mesons is not included.
Such effects could be included by the holographic mean
field approach [39,40], which is left for future publication.
References [16,30,41] studied the asymmetric matter in

the hard wall holographic QCD model. Our results for the
meson mass splitting and the symmetry energy are com-
parable to their results.
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APPENDIX: EQUATIONS OF MOTION

At the vacuum, the nonzero value of S0 brakes the chiral
symmetry to the vector part of its symmetry. The iso-singlet
scalar field S0 satisfies the following equation of motion
(EOM) and the boundary conditions:

∂5a3∂5S0 þ 3a5S0 ¼ 0;

mq ¼
S0

z

����
ϵ

;

�
∂5S0 þ

S0

2zm
ðλðS0Þ2 − 2m2Þ

	
zm

¼ 0; ðA1Þ

where the mq corresponds to the explicit braking of the
chiral symmetry due to the current quark mass.
Using the assumptions given in Sec. II and the variables

parametrized in Eqs. (2.12) and (2.13), the Lagrangian L is
written as

L ¼ L1 þ L2;

L1 ¼
a3

2
½−ð∂5S0Þ2 − ðS0Þ2ð∂5bÞ2� þ

3a5

2
ðS0Þ2

þ a3ðS0Þ2
2

½sin2bðV3
0Þ2 þ θ sin 2b sin ζV3

0 þ θ2 − θ2sin2bsin2ζ�

þ a
2g25

½ð∂5V3
0Þ2 þ ð∂5θÞ2 þ θ2ð∂5ζÞ2� þ nBaryonI V3

0δðz − zm þ δzÞ;

L2 ¼
a
2g25

ð∂5V0
0Þ2 þ nqV0

0δðz − zm þ δzÞ; ðA2Þ

where

eiπ
aσa ¼ cos bþ i sin bσ1;

Aa
0 ¼ ðθ cos ζ; θ sin ζ; 0Þ: ðA3Þ

For convenience, we fixed π2 ¼ 0 by using the isospin symmetry Uð1ÞI which is the subgroup of Uð1Þ3L × Uð1Þ3R.
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