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We study previously introduced models of pseudo–Nambu-Goldstone boson Higgs from linearly
realized minimal coset SO(5)/SO(4) and matter in the fundamental in supersymmetric theories. Partial
compositeness is at work for top and electroweak gauge fields. New states potentially relevant for LHC
signatures are identified and we show how to reinterpret existing experimental results as exclusion bounds.
The lightest colored particles, with a mass below the TeV, are fermionic and scalars top partners. We outline
a viable mechanism originating masses of other standard model quarks: they result from the generation of
dimension five operators in a nonminimal flavor violating context. We study the impact of such operators
on flavor processes and we show how experimental bounds are satisfied.
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I. INTRODUCTION

After the discovery of a 126 GeV boson at the LHC [1,2]
the spectrum of the standard model (SM) has been entirely
observed if this particle is identified with the Higgs boson.
At the same time from an effective theory point of view
such a value for the Higgs boson mass is highly unnatural
and ameliorations of this problem are achieved if the SM is
embedded in a larger theory. Anyhow explaining why no
signal of such a theory has not revealed yet retaining the
concept of naturalness is becoming more and more chal-
lenging as long as search for new physics phenomena does
not yield positive results. After Run I of LHC a tension has
grown between the need of beyond the SM (BSM) physics
close to the electroweak (EW) scale and bounds on BSM
particles: the concept of naturalness has to be revised and
we have to accept a certain level of fine tuning (FT).
Among possible extensions of the SM supersymmetry

(SUSY) is the most studied one: SUSY partners, in
particular of the Higgs boson and of the top quark, should
improve the ultraviolet (UV) behavior of the theory. The
bounds on the appearance of such partners are a classical
example of the little hierarchy problem mentioned above.
Another different approach is offered by theories in

which the Higgs scalar is a bound state of a new strong
dynamics [3,4]: the UV divergencies responsible for the
SM hierarchy problem would be cut off at a scale at which
the Higgs is resolved in its constituents. In this way a
minimal and unavoidable amount of tuning, namely the
separation between the weak scale and this new scale
typically of the order of the TeV, is accepted. A clever idea
to dynamically generate this separation is to embed the
Higgs boson in a strongly interacting theory, controlled
by a large coupling g�, in which it emerges as a pseudo–
Nambu-Goldstone boson (pNGB) of a spontaneously
broken global symmetry and hence as a tree level flat
direction, and rely on radiative corrections to give it a
potential capable to break the EW symmetry [5].

To couple such a Higgs boson to SM fermions and gauge
bosons partial compositeness [6,7] is often advocated: SM
states mix with bound states of this new sector and
interactions with the Higgs are consequently induced. At
the same time partial compositeness does not respect
the global symmetry of the strong sector and therefore,
together with any other source of explicit breaking, it is
responsible for the pseudo nature of the NG boson: with
the strong sector in isolation the Higgs in the effective
action would remain a flat direction, being the global
symmetry only spontaneously broken, without any explic-
itly violating term. Partial compositeness predicts the
existence of partners with the same quantum number of
SM fields. They live at the scale g�f but some of them have
to be lighter, as pointed out in effective models [8–11], if we
want to correctly reproduce the Higgs mass: notice that if
this is not the case and the BSM sector is consistently
characterized by a single mass scale the Higgs is generically
expected to be too heavy.
There has been a lot of research activity along this line,

recently summarized in an up to date review [12].
Considerable results have been achieved employing holo-
graphic techniques: it is believed that models with addi-
tional compact space dimensions find their sensible UV
completions in string constructions. Four dimensional
purely fermionic completions, without unnatural scalars,
have also been looked for [13–15], the main obstruction
being the lack of techniques to tackle strongly coupled
theories. In this paper we explore a different route and we
exploit the virtues of supersymmetry, namely we consider
infrared (IR) theories arising below a certain scale Λ as
Seiberg dual of some SQCD like theory. The SM gauge
group is embedded in a larger flavor symmetry and SM
gauge couplings are faint with respect to the gauge coupling
of the SQCD, and in first approximation they can be
neglected along the RG flow, with some exceptions. At
sufficiently low energy, since the SQCD is in the so called
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magnetic free phase, SM gauge interactions are important.
At very high scales, while the SQCD in the electric phase is
asymptotically free the same is not true for the SM gauge
group because of the presence of many new charged fields:
we eventually have the appearance of Landau poles.
These models fall in a class of SUSY composite Higgs

models (CHM) studied in [16]. They consist of the
following structure: SSM fields (without the Higgs and
possibly without the right top), a second sector denoted as
composite providing a NG boson with the quantum number
of the SM Higgs and a third hidden sector communicating,
without spoiling the spontaneous breaking of the global
symmetry, a soft SUSY breaking needed for obvious
experimental reasons. For the purposes of this discussion
neither the origin nor the mediation of SUSY breaking
ought to be further specified. Note that given the embed-
ding of partial compositeness into the superpotential stops
and left sbottoms are also realized as partially composite
states.
Aim of this article is to investigate CHM in SUSY

theories, in particular we focus on incarnations introduced
in [17]. They are based on a minimal coset SOð5Þ=SOð4Þ
linearly realized with SM fields in the fundamental and top
fermion fully or partially composite. For non–top SM
fermion masses we depict a different mechanism other
than partial compositeness, driven also by the fact that their
impact on the Higgs potential is negligible: we avoid a
proliferation of partners that otherwise would dominate the
running of the gauge couplings and make Landau poles
appear at low energies, ruining the structure generating a
pNGB Higgs. We instead assume the generation at some
high scale of dimension five operators coupling a quark
superfield bilinear with a pair of “quarks” of the composite
sector, flowing in the IR to the SM Yukawa couplings: a
mass separation from the EW scale is favored. In generic
CHM partial compositeness moderates flavor violations
[18]; in our configuration we do not introduce fermionic
partners for quarks but on the other hand we inherit the
flavor problem of SUSY, hence we assume a sufficient level
of alignment for squark masses: in this situation we discuss
how the presence of additional dimension five operators is
harmless. We also elaborate on experimental signatures
and consequent exclusions from collider experiments,
namely from LHC data analysis. We show how to reinter-
pret current searches as bounds on supersymmetric CHM.
The paper is organized as follows: in Sec. II we recall the

models introduced in [17]; the case of a partially composite
right top is investigated in Sec. III, where the expected
BSM particles’ spectrum is presented: limits from available
experimental observations are derived in Sec. IV. In Sec. V
we discuss a deformation of the vacuum of the theory and
we link it, in Sec. VI, to irrelevant operators responsible for
non–top masses. In Sec. VII we briefly show the numerical
results for a case with fully composite right top field,
explaining why the model suffers a severe tension. At the

end of the paper, Sec. VIII, we draw our conclusions. In the
Appendix we report, for completeness, the whole spectrum
of the main model analyzed in the text.

II. GENERAL STRUCTURE OF THE MODELS

We briefly review the framework of [17]. Beyond the
SM superfields there is a N ¼ 1 SUSY gauge theory
with SOð4Þm gauge group respecting a global symmetry
Gf ¼ SOð5Þ ×G. It can be viewed as the low energy
theory, via Seiberg duality, of a SQCD gauge theory based
on SOðNÞ gauge group with Nf ¼ N electric quarks QI. A
mass term

Wel ⊇ mQaQa; a ¼ 1;…; 5 ð1Þ

leaves a Gf ⊆ SUðNfÞ invariance. For N ≥ 6 the theory is
asymptotically free and it flows to a IR free magnetic theory
with SOð4Þm gauge group and a superpotential of the form

Wmag ⊇ −μ2Maa þ hqIMIJqJ ð2Þ

where q and M are dubbed dual or magnetic quarks and
mesons. The magnetic quarks qI are in the fundamental
of the SOð4Þm gauge group, while the mesons MIJ are
singlets. Both fields are composite in terms of the under-
lying degrees of freedom of the SOðNÞ UV theory. The
coupling h is not calculable within the duality recipe but a
reasonable assumption is that it reaches a Landau pole at
the same energy of the magnetic gauge coupling gm. The
parameter μ is defined as μ2 ¼ −mΛ where Λ is the
dynamically generated scale and the hierarchy m ≪ Λ is
required.
The term Wmag ⊃ −μ2Maa is responsible for a sponta-

neous breaking of both the global symmetry Gf and of
supersymmetry [19]. Up to global rotations, the nonsu-
persymmetric, metastable, vacuum is at

hqnmi ¼
μffiffiffi
h

p δnm ¼ fffiffiffi
2

p δnm; ð3Þ

with all other fields vanishing. In Eq. (3) we have
decomposed the flavor index a ¼ ðm; 5Þ, m; n ¼ 1;…; 4,
and we have explicitly reported the SOð4Þm gauge index n
as well. SUSY is broken by the nonvanishing F term of the
meson FM55

¼ −μ2. The vacuum (3) spontaneously breaks

SOð4Þm × SOð5Þ → SOð4ÞD; ð4Þ

where SOð4ÞD is the diagonal subgroup of SOð4Þm ×
SOð4Þ. The global G is left unbroken. The six NGB’s
along the broken SOð4Þm × SOð4Þ directions, given by
Reðqmn − qnmÞ, are eaten by the SOð4Þm magnetic gauge
fields ρμ, that become massive, while the four NGB’s along
SOð5Þ=SOð4ÞD remain massless and are identified with the
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four real components of the Higgs field. At the linear level
they are contained in Reqn5 .
The SM vector fields are introduced by gauging a

subgroup of the flavor symmetry group1

Gf ⊇ SUð3Þc × SUð2Þ0;L × Uð1Þ0;Y : ð5Þ

The SUð2Þ0;L × Uð1Þ0;Y gauge fields introduced in this way
are not yet the SM gauge fields, because the flavor-
color locking given by the vev Eq. (3) generates a mixing
between the SOð4Þm ≅ SUð2Þm;L × SUð2Þm;R magnetic
gauge fields and the elementary gauge fields. The massless
combination is identified with the actual SM vector fields.
The four uneaten NGB hâ can be collected within the

matrix

U ¼ exp
�
i

ffiffiffi
2

p

f
hâTâ

�
ð6Þ

where Tâ are the four broken generators (5 × 5 skew-
symmetric Hermitian matrices satisfying TrTâTb̂ ¼ δâ b̂,
see the Appendix of [17]) and f is the decay constant of the
σ-model. The Higgs, being a NG boson of a spontaneous
breaking of a global symmetry, could be removed from the
nonderivative part of the action with a field redefinition:
however the symmetry is not exact and it is explicitly
broken by the SM gauge group and by the coupling with
the top (super)field, leading to a potential for the Higgs
field. We call gauge and matter contribution, respectively,
the contributions to this potential proportional to powers of
the gauge coupling and of the mixings, respectively. We
follow the nomenclature and the notation of [16], in
particular we parametrize the Higgs potential in the unitary
gauge as

VðhÞ ¼ −γs2h þ βs4h þ � � � ; ð7Þ

where sh ¼ sin h
f. We restrict to solutions with a minimum

with fixed value ξ ¼ 0.1, defined as ξ ¼ sin2 hhi
f ≃ γ

2β. Since

we have m2
h ∼ ξβ we can trade the pair fξ; mhg for the

pair fγ; βg.

III. SO(11) MODEL WITH ELEMENTARY TR

A. Structure of the Lagrangian

An explicit realization of a SUSY model where tL and tR
are elementary to start with is based on a SO(11) gauge
theory with Nf ¼ 11 flavors, introduced in [17]. It is a
model with vector resonances as described in [16] and, in
their notation, it dynamically realizes the condition

h=
ffiffiffi
2

p ¼ λR ¼ λL.
2 These couplings control the top mass

and their strength is directly related to the appearance of
some top partners: the weaker they are the lighter these top
partners have to be to reproduce the top mass. In the present
setup they are naturally stronger than in the general work of
[16]. This observation will allow us, in the next subsection,
to numerically explore a different and wider zone in
parameter space than the one inspected in [16].
The superpotential of the composite sector is

Wel ¼ mQaQa −
λ1
2ΛL

ðQiQjÞ2 − λ2
2ΛL

ðQiQaÞ2

þ λLðξLÞiaQiQa þ λRðξRÞiaQiQa: ð8Þ

We split the flavor index I (I ¼ 1;…; 11) in two sets
I ¼ ði; aÞ, a ¼ 1;…; 5, i ¼ 6;…; 11. The last two terms
in the superpotential are Yukawa couplings between the
SSM fields ξL;R and the fields QI of the composite sector.
The fields ξL;R encode tL and tR in covariant spurions.
When λL ¼ λR ¼ 0, the global symmetry is

Gf ¼ SOð5Þ × SOð6Þ; ð9Þ

with SO(5) and SO(6) acting on the Qa and Qi flavors,
respectively. The SO(11) theory becomes strongly coupled
at the scale Λ. Below that scale, it admits a weakly coupled
description in terms of a magnetic dual SOð4Þm gauge
theory with superpotential

Wmag ¼ −μ2Maa −
1

2
m1M2

ij −
1

2
m2M2

ia

þ ϵLðξLÞiaMia þ ϵRðξRÞiaMia

þ hqIMIJqJ; ð10Þ

where

μ2 ¼ −mΛ; m1 ¼
λ1Λ2

ΛL
; m2 ¼

λ2Λ2

ΛL
;

ϵL ¼ λLΛ; ϵR ¼ λRΛ; ð11Þ

are the low energy parameters in terms of the microscopic
ones. ϵL and ϵR are the couplings in front of the SUSY
version of partial compositeness operators andMia provide
the needed superfield resonances. For simplicity, in the
following we take all the parameters in Eq. (11), including
h, to be real and positive.

1The hypercharge is a combination of a Uð1Þ ⊂ SOð5Þ and a
Uð1ÞX ⊂ G, where the X charge is nonvanishing for quarks.

2These are not λL;R appearing in the following equations. We
instead kept h with the same meaning.
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We add explicit soft SUSY breaking terms:

Vsoft ¼ ~m2
tL j ~qLj2 þ ~m2

tR j~tRj2 þ
�
1

2
Mαλαλα þ H:c:

�
þ ~m2

1jMiaj2 þ ~m2
2jMabj2 þ ~m2

3jqij2þ
− ~m2

4jqaj2 − ~m2
5jMijj2; ð12Þ

Because of these soft terms the vacuum Eq. (3) gets
modified to

hqmn i ¼
~μffiffiffi
h

p δmn ¼ fffiffiffi
2

p δnm; ~μ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
μ2 þ ~m2

4

2h

r
: ð13Þ

B. Numerical analysis

We show here the numerical results from an extensive
scan in parameter space in the determination of the mass
spectrum of the model, particularly the Higgs mass. We fix
ϵR by requiring the correct top mass mtð1 TeVÞ≃
150 GeV and then scan randomly for the other parameters
searching for points with ξ≃ 0.1. For any such point we
then extract the Higgs mass from the exact potential and
compute the full spectrum.
We find that the Higgs mass is distributed in the range

70GeV≲mH≲160GeV, peaking between 100–140 GeV.
The measured value mH ≃ 126 GeV is therefore a typical
value for this model. For each point of the scan we obtain
the FT computing numerically the logarithmic derivative
of the logarithm of the Higgs mass with respect to all the
parameters of the model, and taking the maximum value
[20]. The FT ranges between ∼10 and ∼300, the typical
value being around 50, with no evident correlation with the
value of the Higgs mass.
Let us now discuss some properties of the spectrum in

the gauge sector and in the matter sector. The details of the
particle content and analytic formulas can be found in
Tables II and III and in the Appendix.

1. Gauge sector

The mass of the spin-1 resonances is given bymρ ¼ gmf,
up to corrections of order OðgSM=gmÞ due to mixing
with the elementary SUð2ÞL × Uð1ÞY gauge bosons.
Considerations of metastability and perturbativity fix
gmðfÞ≃ 2.5, which means mρ ≃ 1950 GeV for ξ ¼ 0.1.
Such values are still above the experimental limits from
direct searches at the LHC [21–23] for limits not from
experimental collaborations, but are in tensions with
indirect bounds from the S parameter.
The lightest uncolored scalar resonance has a mass

bounded from above by the same value as the vector
resonance. It usually is the complex neutral singlet M55

with a mass roughly around the TeV. With less frequency
it is the Imqn5 or the lightest eigenstate of the symmetric
part of qnm.

Among the spin-1=2 states, the lightest one in our scan is
usually a wino (200–1200 GeV) or the doublet ~hu;d arising
from qn5 andM5n (around 1 TeV) or the state in the (1,3) of
SUð2ÞL × SUð2ÞR coming from the magnetic gauginos ρ
and the fermions in the antisymmetric part of qnm (in
particular, the one ~ρ�R with Y ¼ �1, 600–1300 GeV, which
does not mix with the elementary bino and the one ~ρ3R
which does mix, 200–1200 GeV).
The goldstino, contained in the superfieldM55, combines

with the goldstino coming from the external SUSY break-
ing: a combination of the two will be eaten by the gravitino
and the orthogonal will stay in the spectrum as a massive
particle. The exact value for their masses depends on the F
terms and we can have different mixed situations in collider
experiments, leading to a cascades of decays from neu-
tralino to pseudogoldstino in turn decaying to the true
goldstino, resulting in multiphoton events (and missing
transverse energy) [24].

2. Matter sector

As in some non-SUSY CHM, the lightest colored
fermion resonance is the exotic doublet with Y ¼ 7=6:
the singlet with Y ¼ 2=3 coming from a mixture of the
elementary tR and Mi5 is heavier, typically ∼1 TeV, while
the mass of the lightest fermion ranges up to 900 GeV.
In the case of colored spin-0 particles the spectrum

contains stops and sbottoms as well as their composite
partners and in absence of soft terms the discussion would
proceed as for fermions. Taking into account Eq. (12) the
lightest among the colored scalars is a resonance mixing
either with ~tL or with ~tR, respectively contained in a doublet
with Y ¼ 7=6 or in a singlet with Y ¼ 2=3. Actually the
whole bidoublet (a doublet with Y ¼ 7=6 and a doublet
with Y ¼ 1=6) is almost degenerate in mass, the mass
difference between the two doublets being≲100 GeV. The
mass of the lightest scalar ranges from 600 GeV to 1 TeV.
See Fig. 2 for pair production cross sections.
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FIG. 1 (color online). Masses of the lightest colored fermions
and scalar resonances. In shaded green we superimposed the
exclusions discussed in Sec. IV. Colors represents Higgs mass as
indicated aside.
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The gluino has a mass M3 which does not enter the
Higgs effective potential at one loop, therefore it can be
heavier than the current bounds without affecting the FT of
the model: contrary to what happens in the minimal
supersymmetric standard model (MSSM) the EW scale
is only logarithmically sensitive to stops masses [16]. It is
also worth mentioning the existence of the chiral superfield
Mij with supersymmetric mass m1, singlet under the
electroweak group and in the symmetric components
of the ð3þ 3̄Þ × ð3þ 3̄Þ representation of SUð3Þc. Since
it does not enter the Higgs potential at one loop, its
holomorphic mass m1 is free in our setup and for con-
sistency we take it m1 < Λ ∼ 10 TeV. In the following we
will assume that it is heavy enough and neglect its
phenomenology.

3. A benchmark point

We report here a benchmark point satisfying the bounds
discussed in the following section selected from the set of
the points collected with the numerical scan. We scanned
over all the following parameters, allowing for randomly
chosen Oð1Þ values, apart from gm which is determined by
the ration μ=Λ ¼ 10−1 and ϵR which is fixed by the top
mass. We have

gmðfÞ¼ 2.5; m2¼ 5.5 ϵL ¼ 2.9; ϵR ¼ 3.3; ð14Þ

~mtL ¼ 5.2; ~mtR ¼ 1.9; M1 ¼ 2; M2 ¼ 2.2;

~m1 ¼ 0.5; ~m2 ¼ 0.9; ~m3 ¼ 0.3;

~m4 ¼ 0.6; ~mλ ¼ 0.5; ð15Þ

where mλ is a soft Majorana mass for SOð4Þm gauginos
and dimensionful parameters are expressed in units
of f ¼ 778 GeV. The value of h is fixed such that
0≃ g−1m ðΛÞ ¼ h−1ðΛÞ. Taking into account QCD correc-
tions at one loop we specify

W ¼ hqMq ⊇ 2hmqiMiaqa þ hgqaMabqb ð16Þ

since only superfields carrying an index i are colored. For
the given value of m2 we have

hmðfÞ ¼ 1.9; hgðfÞ ¼ 1.4: ð17Þ

We then obtain mh ¼ 125.8 GeV. The vector resonances
have a mass of 2 TeV, the lightest noncolored scalar has a
mass of 770 GeV and it is the SM singlet we denoted with
M55, while other EW scalars are above the TeV and the
lightest noncolored fermion, besides the goldstinos, has a
mass of 1.2 TeV and the quantum numbers of a Higgsino.
Among colored states the lightest fermion is the Q ¼

5=3 exotic with a mass of 860 GeVand the lightest scalar is
a stop partner with a mass of 880 GeV.

IV. DETECTION BOUNDS

Given the features outlined in the previous section direct
searches should concentrate on colored states, in particular
fermions and scalars with exotic electric charge 5=3. As
stressed in the Appendix there is a consistent R-parity
charges assignment (Table I): this implies, as usual, that
scalar colored partners and EW fermion partners are pair
produced and that the lightest among them is stable.
Fermionic top partners share the same R parity as

elementary fields, because they mix with them; since they
are a typical signature of CHM models [27] dedicated
searches exist: Q ¼ 5=3 fermions are QCD pair produced
and each of them decays to a W boson and a top, in turn
decaying to another W and a bottom quark, therefore a
good strategy is to look for events with two same sign
leptons coming from the two W bosons [28]. Since no
excess has been observed CMS put a bound of 800 GeVon
the mass [29] of these heavy fermions.
Turning to scalar particles the lightest is a stop partner

and exotic scalars with Q ¼ 5=3 are typically a bit heavier.
For such particles there are not dedicated searches; the main
decay channels for them are wino plus the Q ¼ 2=3 top
partner, wino plus top (through its mixing with the heavy
doublet) and gravitino plus fermionicQ ¼ 5=3 partner. The
branching ratios depend on the details of the spectrum. In
case of light charginos and heavy enough stop partners we
can try to reinterpret the results for sbottoms pair produced
and decaying into winos and tops: events with two b-jets
and isolated same sign leptons are considered by CMS in
[30] and a bound is set at 550 GeV, well below the values
found in the numerical scan.

800 1000 1200 1400 1600 1800 2000
105

0.001
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scalar 14 TeV

fermion 8 TeV

fermion 14 TeV

FIG. 2 (color online). Pair production cross sections at LHC
through QCD interactions. Dashed lines are the LO values,
computed with M ADG RAPH 5 [25], using CTEQ6L PDFs and
the model produced with the package FEYN RULES [26]; solid
lines are the NLO, using a common KNLO ¼ 1.5.

TABLE I. RP assignment of the lowest component of the
superfields.

W;B;G ρm qna Mab qL tR Mia qni Mij
RP þ þ þ þ − − − − þ
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In the model presented the scalar withQ ¼ 5=3 is almost
degeneratewith a full bidoublet of SO(4), namelywith other
scalars with 1=3 and 2=3 electric charge. As it happens for
the fermionic partners Higgs vev insertions and the mixings
ϵL;R ≠ 0 affect the masses of these particles and remove this
degeneracy inducing splitting of order 100 GeV. Thus we
analyze limits on the masses of the other components of the
bidoublet: in particular the scalar with Q ¼ 2=3 would
behave similarly to a stop with decoupled gluinos. Bounds
on stops decaying into top and neutralino or bottom and
chargino in events with one isolated lepton are derived by
CMS from the full 19.5 fb−1 data set and stops are excluded
with a mass approximatively below 650 GeV [31].
Also CMS collaboration provides a stronger bound, of

750 GeV [32], on pair produced stops each decaying into
top and neutralinos using razor variables.

Finally we stress that the simultaneous presence of
fermions and scalars in the same mass range can strengthen
the respective exclusion limits. Also in our setup multiple
scalar stop partners appear (see the Appendix) and each of
these can be produced and decay at the LHC thus
heightening the number of expected events and conse-
quently the exclusion bounds. We denote with σðMÞ the
pair production cross section of one scalar top partner with
mass M and with Mexcl;n the excluded mass in case of n
identical scalars; if we assume a BR ¼ 1 in top and
neutralino we estimate

nσðMexcl;nÞ ¼ σðMexcl;1Þ ⇒

Mexcl;n ¼ σ−1
�
σðMexcl;1Þ

n

�
ð18Þ

assuming that the production cross section for n particles
is just n times the case with a single scalar in the spectrum:
we neglect decay chains and mutual interactions which
deserve a dedicated study. We numerically have

Mexcl;n −Mexcl;1

Mexcl;1
≃ 0.1 for n ¼ 2; 3: ð19Þ

Turning to noncolored states the lightest particles are
fermions with quantum numbers of EW gauginos or
Higgsinos. As recently summarized in [33] limits on
charginos and neutralinos pair produced have been set
by ATLAS [34] and CMS [35]: with all sleptons and
sneutrinos decoupled they set limits at 350 GeV from
events with three or more leptons in the final state. This
analysis also allows CMS to put bounds on sbottoms and
excludes at 95% CL masses below 570 GeV.

TABLE III. Spectrum of heavy matter fields: (a) scalars,
(b) fermions. See also Eq. (A2).

Field Mass ðSUð3Þc;SUð2ÞL;Uð1ÞYÞ
~qL; qM; qq M1=6

qL ð3; 2; 1
6
Þ

~Q1=6
� ~m1=6

Q� ð3; 2; 1
6
Þ

~̄Q
−1=6
� ~m−1=6

Q̄� ð3̄; 2;− 1
6
Þ

~X7=6
� ~m7=6

X� ð3; 2; 7
6
Þ

~̄X
−7=6
� ~m−7=6

X̄� ð3̄; 2;− 7
6
Þ

~tR; ~S
−2=3 ~m−2=3

~S� ð3̄; 1;− 2
3
Þ

~̄S
2=3

~mS̄2=3 ð3; 1;− 2
3
Þ

(a)

Field Mass ðSUð3Þc; SUð2ÞL;Uð1ÞYÞ
Q1=6

� m1=6
Q� ð3; 2; 1

6
Þ

X7=6
� m7=6

X� ð3; 2; 7
6
Þ

S−2=3 mS ð3̄; 1;− 2
3
Þ

(b)

TABLE II. Spectrum of heavy gauge fields: (a) scalars, (b) vec-
tors, (c) fermions. See also Eq. (A1).

Field Mass ðSUð3Þc; SUð2ÞL;Uð1ÞYÞ
Real: qρL

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðg2m þ g20Þf2 − 2 ~m2

4

p
(1,3,0)

Real: q3ρR
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðg2m þ g020 Þf2 − 2 ~m2

4

p
(1,1,0)

qþρR
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
g2mf2 − 2 ~m2

4

p
ð1; 1; 1Þ þ H:c:

Hd

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2h2f2 − 2 ~m2

4

p
ð1; 2;− 1

2
Þ þ H:c:

Reals: s1;2q ð ffiffiffi
2

p
hf;

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2h2f2−2 ~m2

4

p
Þ (1,1,0)

Reals: ϕ1;2
q�;0 ð ffiffiffi

2
p

hf;
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2h2f2−2 ~m2

4

p
Þ ð1; 3; ð�1; 0ÞÞ

Mu;d

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
h2f2 þ ~m2

2

p
ð1; 2;� 1

2
Þ þ H:c:

sM
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2h2f2 þ ~m2

2

p
ð1; 1; 0Þ þ H:c:

ϕM�;0

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2h2f2 þ ~m2

2

p
ð1; 3; ð�1; 0ÞÞ þ H:c:

M55

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
~m2
2 þ δ ~m2

55

q
ð1; 1; 0Þ þ H:c:

(a)

Field Mass ðSUð3Þc;SUð2ÞL;Uð1ÞYÞ

ρ�1 fgm ð1; 1;�1Þ
ρB f

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
g2m þ g020

p
(1,1,0)

ρW f
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
g2m þ g20

p
(1,3,0)

(b)

Field Mass ðSUð3Þc; SUð2ÞL;Uð1ÞYÞ

~ρaL; ~q
a
ρL; ~w

a M ~w (1,3,0)

~ρ3R; ~q
3
ρR; ~b M ~b (1,1,0)

~ρ�R ; ~q
�
ρR m�

ρ ð1; 1;�1Þ
~hu;d hf ð1; 2;� 1

2
Þ

~ϕ�;0; ~s
ffiffiffi
2

p
hf ð1; 3; ð�1; 0ÞÞ þ ð1; 1; 0Þ

ψM55
mψM55

(1,1,0)

~g m3=2 (1,1,0)
(c)
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Projections for exclusion limits for scalar and fermionic
top partners from LHC at a center of mass energy of 14 TeV
can be obtained simply rescaling integrated luminosities.3

Figure 3 clearly shows that higher luminosities, and higher
center of mass energies, data will probe the relevant part of
the parameter space. We expect they will be able to exclude
exotic 5=3 charge fermions up to 1400 (1650) GeV and
scalars up to 1300 (1550) GeV with data corresponding
to an integrated luminosity of 75ð300Þ fb−1, assuming
BRs ¼ 1 for Q ¼ 5=3 fermions into W and top; the Q ¼
2=3 scalar is assumed to decay only to top and neutralino so
to apply the analysis of [32]. We also point out that for
fermions the single production becomes more important
than the pair production increasing the partner’s mass and
it takes over for heavy masses generically in the range
700–1000 TeV, both at 8 and 14 TeV. The single production
does not go through QCD interaction and it is model
dependent, it mainly happens as a W and t fusion and it is
generated by the mixing given by partial compositeness,
therefore we do not expect the presence of SUSY to alter it
significantly. We refer to [37] for a more refined discussion.
We conclude this section noting that we can interpret

already existing experimental searches to exclude portions
of the parameters space of the model in Sec. III: we expect

future experiments, LHC at 14 TeV will play a prepon-
derant role, to further probe it and constrain it to regions
with higher level of FT.

V. SOFT DEFORMATION OF THE VACUUM

In this section we turn back to the model building and we
study soft deformations including, besides scalar and
gaugino masses as in Eq. (12), A and B terms for the
couplings in the superpotential Eq. (10). They cannot be
derived from the parameters of the electric theory, namely
the techniques employed to follow the soft masses [38]
cannot be used in the case of A and B terms because the
former can be computed exactly only in absence of any
superpotential and thus they are expected to be valid up to
perturbative corrections in couplings, while the latter are
identically zero if the superpotential vanishes.
The most general soft terms may lead to unwanted

tachyonic directions and we restrict to safe cases where
they only modify the spectrum: this happens if they are not
too large with respect to the holomorphic and soft masses.
The presence of B terms for the electric quarks induces a
term of the form

Lsoft ⊇ −μ2Bμ2TrM ð20Þ

which introduces a new qualitative feature, even for
arbitrary small Bμ2 . In fact the scalar potential now includes

V ⊇ j2hMnnqnmj2 þ jhqnmqnm − μ2j2
þ ðμ2Bμ2Maa þ H:c:Þ þ ~m2

2jMnnj2 − ~m2
4jqnmj2: ð21Þ

The vev of the magnetic quarks, Eq. (13), becomes

hqmn i ¼
~μffiffiffi
h

p δmn ; ð22Þ

where

~μ≃
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
μ2 þ ~m2

4

2h

r
−

hμ4ðBμ2Þ2ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
μ2 þ ~m2

4

2h

q
ð4hμ2 þ 2 ~m2

4 þ ~m2
2Þ2

ð23Þ

expanding for small Bμ2 : the true value for ~μ is a solution of
a cubic equation. At the same time magnetic mesons also
acquire a vev

hM55i ¼ X5; hMmni ¼ Xδmn ð24Þ

where

8<
:

X5 ¼ −
μ2Bμ2

~m2
2

X ¼ −
μ2B

μ2

4h~μ2þ ~m2
2

: ð25Þ

800 1000 1200 1400 1600 1800
0.1

1

10

100

MX GeV

fb

20 fb 1

75 fb 1

300 fb 1

8 TeV

14 TeV

800 1000 1200 1400 1600
0.01

0.1

1

10

100

MX GeV

fb

20 fb 1

75 fb 1

300 fb 1

8 TeV

14 TeV

FIG. 3 (color online). Expected exclusion bounds on masses of
the lightest fermionic (left panel) and scalar (right panel) top
partners from 75 (dashed line) and 300 (solid line) fb−1 atffiffiffi
s

p ¼ 14 TeV. The dotted lines correspond to present bounds at
800 and 750 GeV discussed in the text.

3ATLAS published projections for future sensitivities in [36].
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The spectrum of the theory gets modified but the only
qualitative difference is about the Goldstone bosons: the
four uneaten ones, identified with the Higgs, are now
contained in the massless combination

cos α × Reqn5 þ sin α × ReM5n; ð26Þ
where

sin α ¼ 2ðX − X5Þ
f

: ð27Þ

Their kinetic term comes from jDμqaj2 and jDμMabj2; at
the nonlinear level they are described by a σ-model through
a matrix U as in Eq. (6) with a new decay constant

f ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2

h
ð~μ2 þ 2hðX − X5Þ2Þ

r
: ð28Þ

In the limit of vanishing B term we have X ¼ X5 ¼ 0 and
cos α ¼ 1. For numerical analysis we work in the regime of
small Bμ2 , in particular we neglect its effects on the Higgs
mass: this is consistent as long as the suppression between
Bμ2 and other masses, both holomorphic and soft, is at least
of the order of one loop effects.
In the next section we couple SM fermions pairs to the

Higgs field exactly through its small component along the
meson M5n.

VI. QUARK MASSES

A. Generation

The plain generalization of partial compositeness in our
SUSY setup to all quarks and leptons does not work: it
requires the presence of a large number of (super)partners,
leading to tremendously large flavor symmetry of the
composite sector and aggravating the problem of SM
Landau poles. A sizeable contribution to the QCD beta
function comes from the dual mesons in the adjoint of the
flavor symmetry, which contains as a subgroup SUð3Þc.
For N partially composite quarks we have a global
SOð6ÞN , included in a simple SOð6NÞ global symmetry
of the strongly interacting SQCD: the presence of such a
large group and the presence of mesons in its adjoint
representation make impracticable the extension of partial
compositeness even only for the bottom. Therefore we
abandon it for all the fermions but the top. Ordinary non-
SUSY models are less touched by this problem and they
can accommodate partners for all quarks without introduc-
ing Landau poles below 4πf ≃ Λ, the UV cutoff. Then they
can be completed, at least in principle, by models with a
nonsimple group of global symmetries, in contrast to what
happens in our setup.
We need a further explicit breaking of the SO(5) global

symmetry, proportional to two matrices λABU and λABD where
A;B ¼ 1; 2; 3 are family indices. The extension to leptons

through another pair of matrices is straightforward.
Deformations in the electric superpotential4

Wel ⊇ λABU
ΛL

ðξiaL;UÞAðξibU ÞBQaQb þ
λABD
ΛL

ðξiaL;DÞAðξibDÞBQaQb

ð29Þ
generate Yukawa terms if the dual mesonsMab ∼

QaQb
Λ get a

vev, Eq. (24). ξL;U and ξU are the spurionic embeddings of
up type quarks in a fundamental of SO(5). ξL;D and ξD are
the spurions for down type quarks and can be defined in
analogy to the up case but with a different X charge
assignment, X ¼ −1=3. The most general low-energy
Lagrangian will contain

L ⊇ q̄ALεu
B
RH

c þ q̄ALλ
AB
u uBRH

c þ q̄LAλABd dBRH þ � � � þ H:c:

ð30Þ

where λu;d ¼ λ†U;D
Λ
ΛL

sin α5 and the dots stand for higher
dimensional operators: Eq. (30) arises from the expan-
sion in powers of f−1 of Mab ¼ UcahMcdiUdb once
we make explicit the Higgs dependence through the
matrix U defined in Eq. (6). H is the Higgs doublet
H¼ðHðþÞ;Hð0ÞÞt¼ 1ffiffi

2
p ðih1þh2;−ih3þh4Þt. Without loss

of generality we can go to the top basis in which

ε ∼ ϵALϵ
�B
R

f2 is different from zero only for A ¼ B ¼ 3: this

is the term generated by the mixings in Eq. (11). The
second and the third terms in Eq. (30) are the new operators
responsible for the other quark masses. They have simi-
larities with technicolor theories, where quark bilinears are
coupled to an operatorH arising from a strongly interacting
theory and responsible for EW breaking. The main
differences are first that in our case the Higgs is protected
by a shift symmetry and second that this coupling is not the
dominant source for the top mass.
To estimate the size of these masses we restrict for a

moment on a single generation:

L ∼ λD sin α
Λ
ΛL

vb̄RbL þ H:c: ð31Þ

where v ¼ 246 GeV is the Higgs vev andΛ is the crossover
scale dynamically generated mentioned in Sec. II. If ΛL ∼
10Λ the correct value for the bottom mass can be reached
with λD ¼ Oð1Þ and sin α ∼ 0.1. As discussed in [17] a
natural value for Λ is around 10 TeV while ΛL can be
chosen to be the scale of Landau poles for SUð3Þc, in the
region 102–103 TeV. Other quarks require smaller cou-
plings: we do not explain neither the hierarchy among SM

4The simplest way to induce these operators, as well as the
ones in Eq. (8), is through the exchange of heavy chiral super-
fields, schematically W ¼ λABξAΦξB þQΦQþ ΛL

2
Φ2.

5The dagger is only for notational convenience.
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masses nor the hierarchical structure of the CKM matrix,
we assume them and we only distinguish between the top,
partially composite, and other quarks, elementary. This
different origin of the masses results in the splitting
between the top and other quarks, making them naturally
live at two different scales.
Finally we define Yd ¼ λd and Yu ¼ λu þ ε; they can be

brought to diagonal form with

Yu;d → Ydiag
u;d ¼ V†

u;dYu;dUu;d: ð32Þ
If we perform the transformations Vd, Uu and Ud we go to
the basis in which Yd is diagonal, while Yu → V†

dVuY
diag
u

and we can define the CKM matrix VCKM ¼ V†
uVd. Thus

λu → V†
dλuUu ¼ V†

CKMY
diag
u − V†

dεUu: ð33Þ
Since the matrix V†

dεUu has arbitrary entries the second
term signals a departure from minimal flavor violation
(MFV). In the next subsection we elaborate on it and on its
consequences.

B. Flavor constraints

A number of processes involving transitions in flavor
space, ΔF ¼ 0; 1; 2, results in flavor and CP observables
and they very often receive sizeable contributions from the
presence of new physics, which in a broad class of CHM
are mainly induced by the mixing of quarks with their
partners. Despite the fact that these mixings are related to
SM Yukawas the resulting suppression might be not
enough for a generic composite sector and additional flavor
symmetries are frequently postulated: a recent review is
provided in [39]. If light quarks are not partially composite,
that is there are no mixings with bound states, these
contributions are absent: this is almost the case for the
interactions introduced in subsection VI A, we will for-
mulate a more precise statement later in this subsection.
On the other hand our model exhibits the same tensions

of the MSSM, due to the presence of sparticles around the
TeV scale: squark mass matrices cannot be completely
anarchic. Solutions to regulate the contributions to flavor
processes are either to assume a certain level of degeneracy
or alignment among squarks masses or to rely on some
hierarchy between the first two generations and the third
one, without threatening the naturalness, ending up with a
scenario close to effective SUSY, depicted for instance in
[40] where a discussion on flavor processes is also present.
Correlations among new physics contributions in different
processes could help in the future to distinguish among
these possibilities [41]. We derive our results with aligned
squarks masses6 and we allow for small misalignment
treated in the mass insertion approximation.

We do not perform a full analysis of all existent bounds;
we instead concentrate in what follows on the effects of
the physics leading to the superpotential in Eq. (29): at the
scale ΛL other operators are plausibly generated. Under the
spurionic flavor group Uð3Þq × Uð3Þu × Uð3Þd we assign
the quantum numbers:

qL ∼ ð3; 1; 1Þ; ucR ∼ ð1; 3̄; 1Þ; dcR ∼ ð1; 1; 3̄Þ;
λu ∼ ð3; 3̄; 1Þ; λd ∼ ð3; 1; 3̄Þ: ð34Þ

Compatibly with these charges, with gauge invariance and
with the holomorphy of the superpotential we can write the
following dimension five operators7,8

W ⊇ a1
ΛL

ðucRλUqLÞðdcRλDqLÞ

þ a2
ΛL

ðucRλUtÂqLÞðdcRλDtÂqLÞ

¼ YABCD

ΛL
½a1ðucR;AqL;BÞðdcR;CqL;DÞ

þ a2ðucR;AtÂqL;BÞðdcR;CtÂqL;DÞ� ð35Þ

where YABCD ¼ λABU λCDD . Dimension five operators in the
MSSM are discussed in [42–44]: they results in, among
other terms, contact interactions between two quarks
and two squarks. We assign the couplings λu;d to the
vertices quark-squark-Higgsino, neglecting deviations
for tops, stops, and left sbottoms. With Higgsino
exchange we draw one loop diagrams contributing
to four fermions interactions, experimentally con-
strained by ΔF ¼ 2 transitions in mesons. The resulting
operator is

ðd̄R;CkdL;DlÞðd̄L;EidR;FjÞ
λEAu λBFd

ð4πÞ2 ~mΛL

×

�
δijδkl

�
YABCD

�
a1−

a2
6

�
−YADCBa2

2

�
−
�
B↔D

j↔ l

��
;

ð36Þ

where ~m is a common soft mass for the squarks and the
Higgsino in the loop. For operators of the form

c
Λ2
F
ðd̄RdLÞðd̄LdRÞ ð37Þ

6Alignment is nicely realized in a variety of SUSY breaking
mediation schemes: for instance in gauge mediation A-terms
vanishes at the mediation scale.

7At high energies the flavor spurions are λU;D and not λu;d, the
difference being a factor ΛL

Λ sin α ∼ 100.
8tÂ are the SUð3Þc generators such that tÂijt

Â
kl ¼ 1

2
ðδilδjk−

1
3
δijδklÞ.
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the most stringent bounds come from kaons (the
strongest is on the CP violating part). The Wilson
coefficient computed from Eq. (36) identically vanishes,
even in the non-MFV limit of Eq. (33). Nonaligned
squark masses at ε ¼ 0 results, in the mass insertion
approximation, in (the hadronic matrix element with
j ↔ l is less significant by a factor of 3 [45,46])

c
Λ2
F
≃ 1

ð4πÞ2 ~mΛL
A2λ5

�
ΛL

Λ sin α

�
4

ydysy2t δ

⇒

8<
:

ΛF ¼ 1 TeV

c≃ 10−8δ
	
1 TeV

~m


	
100 TeV

ΛL


 ð38Þ

where for concreteness we fix a1 ¼ a2 ¼ 1; A and λ are
the parameters appearing in the Wolfenstein parametri-
zation of the CKM matrix and δ measures the relevant
misalignment of squarks: it is the mixing of the first two
families left handed squarks normalized with a common

mass ~m2, δ ¼ ð ~m2
QÞ1;2
~m2 . From [47] we easily read:

Rec < 6.9 × 10−9;

Imc < 2.6 × 10−11 if ΛF ¼ 1 TeV:
ð39Þ

Bounds from box diagrams for different processes, with
squarks and gluinos at 1 TeV, are stronger, they set for δ
an upper bound around 10−2, see [48] and references
therein,9 resulting in c≃ 10−10, below the bound
Eq. (39) (the bound on the CP violating effect computed
here is not fully satisfied, it needs a1 ≃ a2 ¼ Oð10−1Þ or
so, or smaller δ). The numerical value of c is of the
same order also with general ε.
Similarly the up-type quarks are involved in D mesons

oscillations: in this case the calculation is performed in the
up-type mass basis, that is

λu ¼ Ydiag
u − V†

uεUu; λd ¼ VCKMY
diag
d : ð40Þ

The relevant operator has the same form as in Eq. (36) with
the exchange u ↔ d. In this case the coefficient is
identically zero only if ε ¼ 0, and for ε ¼ Oð1Þ it is
controlled by ð ΛL

Λ sin αÞ2y2bAλ2; its value can be recast as

ΛF ¼ 1 TeV; c≃ 10−10
�
1 TeV

~m

��
100 TeV

ΛL

�
ð41Þ

with a1 ¼ a2 ¼ 1, below the experimental constraints, c <
10−8 [47]. Small squarks mass insertions do not change this
numerical value.10

Hence we can infer that the inclusion of Eq. (35) does not
reintroduce violations and does not hack the solution settled
to avoid flavor problems.
At the same time a completely generic structure for

λu;d is disfavored: in fact although there are heavy
fermionic partners only for one family they linearly
mix with all the three up type quarks. In other words
the third up quark, the one which is partially composite,
is not exactly the top in the basis in which ðϵL;RÞA ∼ δ3A:
this might induce operators of the form ðc̄RuLÞðc̄LuRÞ
through the tree level exchange of heavy resonances at
their mass scale, which we fix at 1 TeV. This operator is
controlled by

c≃ ðU�
dÞ32ðVuÞ31ðV�

uÞ32ðUdÞ31 ð42Þ

and the same bound as before applies here, c < 10−8,
therefore the rotation matrices Vu and Ud cannot be fully
generic. A possible way out is to assume that in the
discussed basis one of the two top partners, either the
right or the left one, does not couple to the quarks of
the two other generations; a second possibility is to
assume that Vu and Ud have some hierarchical structure
which might be related to the CKM matrix or to the
hierarchy among families. Both would be consequences
of the form of λu and λd perhaps explained by physics
at the cutoff scale ΛF and we do not discuss them
further.

VII. SO(9) MODEL WITH COMPOSITE tR

A. Structure of the Lagrangian

As emphasized in [10] in minimal CHM with matter
embedded in the fundamental and composite tR the Higgs
mass is predicted to be too light, regardless the presence of
SUSY which does not play a role in the argument. In the
model we are going to analyze there is an extra source of
explicit SO(5) breaking but we show how it is not sufficient
and why also in this case we do not evade the general
conclusion.
An explicit realization of a SUSYmodel where tR is fully

composite is based on a SO(9) chiral gauge theory with
Nf ¼ 9 flavors [17], in a way similar to the model of
Sec. III. We sketch here the salient features and we refer to
the original paper for the details irrelevant for our present
discussion. ξia and ϕia, neutral under the gauge group, are
the spurion containing qL and a new exotic field. When
they are decoupled the unbroken global symmetry is
Gf ¼ SOð5Þ × SUð4Þ. The new field, SUð2ÞL singlet with9Notice that in box diagrams down squarks run into the

loop while loops with vertices from Eq. (35) are sensitive to
up squark mass insertions, constrained by box diagrams for
D − D̄ oscillation.

10Bounds on down-type squark mass mixings are reported in
[49,50].
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hypercharge 2 contained in the spurion ϕ, is necessary for
anomaly cancellation. Notice that it is elementary, we
cannot take it arising within the strongly interacting gauge
theory because the latter is well defined and it is not left
unspecified. The explicit embeddings in spurions are given
in Eq. (4.4) of [17].
The SO(9) theory becomes strongly coupled at the

scale Λ and at lower energies it is described by an
emergent SOð4Þm gauge theory. The elementary fields
couple to the SOð4Þm mesons through the mass mixing
ϵt and ϵϕ.
The spontaneous SUSY breaking is not enough to give a

sizable mass to the SSM sparticles, so we add explicit soft
breaking terms to the theory. We also add SUSY breaking
terms in the composite sector, by assuming that they respect
the global symmetry Gf.
A linear combination of fermions given by tL and the

appropriate components of ψMim
remains massless and is

identified with the SM left-handed top. The right top
superfield is contained in the meson Mi5 ∼QiQ5.

B. Numerical analysis

The next step is the computation of the effective action
for the Higgs field, performed in the unitary gauge. As we
mentioned before the Higgs is a NG boson of a sponta-
neous breaking of a global symmetry: the broken symmetry
is not exact and it is explicitly broken by the SM EW
gauge group and by the couplings ϵt and ϵϕ. In the matter
contribution we further distinguish between colored and
noncolored exotic fields. We then perform a numerical scan
in the parameter space.
The value of ϵt is fixed by the top mass; the mixing ϵϕ of

the noncolored field is in principle free. γg, γ
ðcÞ
m , and γðncÞm

are equally important and they cancel against each other:
the size of these cancellations is a lower bound on the FT.
For what concern the coefficient of the quartic term we
have β ∼ βm ≫ βg.
The Higgs turns out to be too light (∼100 GeV) unless

a sizable source of SO(5) breaking comes from the
noncolored sector, as in fact was expected by simple
arguments based on general assumptions resumed in [16].
Since the Higgs mass square is proportional to the sum

βðcÞm þ βðncÞm in principle raising the noncolored contribu-
tion controlled by ϵϕ would be sufficient. At the same
time large values for ϵϕ are disfavored because generally

γðncÞm < 0 and it tends to align the Higgs in a EW
preserving vacuum. Due to this tension the model as it
stands is excluded. We have chosen to report the results
because, despite SUSY, the construction is quite minimal
and we expect it to be representative for more general
examples: it embodies a composite top right model with
the addition of an extra massive singlet. The situation can
be improved if we introduce more FT: due to the
logarithmic dependence on soft masses we would need

stops at a scale Oð100Þ TeV, definitely losing the
naturalness. We can also introduce more complication
in the model or focus on SO(5) representations different
from the fundamental, but we do not continue along
this path.

VIII. CONCLUSIONS

We have studied SUSY models of composite Higgs,
namely we concentrate on numerical results for some
models previously introduced.While the specific realization
with a fully composite top right does not reproduce the
correct Higgs mass value at the chosen reference value
of ξ ¼ 0.1, and not even for reasonably more tuned
values, the model with partially composite top quark can
accommodate it.
We thus derived bounds on new particles’ masses

reinterpreting existing searches at LHC. The model is
not excluded and interestingly enough some lighter
states could be accessible soon at 14 TeV: in particular
fermionic partners, especially with exotic hypercharge,
would be a smoking gun of composite Higgs model and
on top of that our supersymmetric setup would predict the
existence of scalar partners in the same range of masses,
below the TeV.
Given the kindness of the model we decided to take a few

steps further and study a possible mechanism to commu-
nicate electroweak symmetry breaking (EWSB) to all SM
quarks and give them masses. It relies on the generation of
dimension five operators at a scale chosen at 100–
1000 TeV and on the presence of a slightly more compli-
cated, but more general, vacuum structure. In this way the
top mass and other masses are qualitatively different and
we account for the observed hierarchy.
The model shares the same tensions coming from flavor

constraints as the more conventional framework of the
MSSM and no additional troubles are introduced once
irrelevant deformations are turned on: we thus expect to
employ existing ideas to avoid flavor bounds, as for instance
alignment among squark masses.
Also we noticed that the presence of top resonances can

induce unwanted flavor violations if the UV structure of the
model is completely generic: the solution might be related
to the origin of the hierarchies in the quark sector and we
did not investigate it in detail.
Precision measurements together with already existing

searches at colliders steer us to gain useful insights. Future
experiments will eventually hint some new physics, either
in the form of some direct detection or in some deviations,
or will bring us to regions of higher and higher tuning
where more radical ideas will be needed. We thus reserve
the possibility to better investigate this class of models and
make more precise predictions, taking advantage of their
self contained validity as effective theories up to scales of
the order 100–1000 TeV.
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APPENDIX: SPECTRUM OF SO(11) MODEL

We present here some details on the particle spectrum
of the model in Sec. III, neglecting EWSB effects and the
vev Eq. (24). Throughout the paper we have defined the
gauge sector as the one which contributes to the one loop
Higgs potential via the SM electroweak gauge couplings,
while the matter sector as the one which contributes
through the mixings ϵ. This classification reflects also the
R-parity assignment for the superfields: it is the same as
the one of the corresponding SM superfield with which
the field mixes.

1. Gauge sector

ðM ~wÞ2 ¼

0
B@

m2
λ þ g2mf2 igmmλf −g20f
−igmmλf ðg2m þ g20Þf2 ig0M2f

−g20f2 −ig0M2f M2
2 þ 2g20f

2

1
CA

ðM ~bÞ2 ¼ ðM ~wÞ2 with fg0 → g00;M2 → M1g

ðm�
ρ Þ2 ¼ f2g2m þm2
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2
�mλ

2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
4f2g2m þm2

λ

q
; ðA1Þ

mλ is a soft Majorana mass for SOð4Þm gauginos.M ~w,M ~b
and m�

ρ are Majorana masses.

2. Matter sector

ðM1=6
qL Þ2 ¼

0
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