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We consider models of pure gravity mediation in which scalar mass universality is imposed at the grand
unified scale and gaugino masses are generated through loops. The minimal model requires a very
restricted range for tan β ≈ 2–3 and scalar masses (set by the gravitino mass) of order 300 TeV–1.5 PeV in
order to obtain a Higgs mass near 126 GeV. Here we augment the minimal model with one or more sets of
vector multiplets (either a 10 and 10 pair or one or more 5 and 5̄ pairs). If coupled to the minimal
supersymmetric standard model Higgs, these allow for radiative electroweak symmetry breaking over a
significantly larger range of tan β ≈ 2–40 and can fit the Higgs mass with much smaller values of the
gravitino mass. In these models, the lightest supersymmetric particle is often the bino, and in order to
satisfy the relic density constraint, the bino must be nearly degenerate with either the wino or gluino. In the
models considered here, bino gluino coannihilations determine the relic density and since the two are
nearly degenerate, LHC limits on the gluino mass are greatly relaxed allowing light relatively gravitinos
and gluino masses well within the reach of the LHC.
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I. INTRODUCTION

With the completion of Run I at the LHC, there is no hint
of supersymmetry at mass scales ~m≲ 1 TeV [1]. As a
result, simple models based on supergravity such as the
constrained minimal supersymmetric standard model
(CMSSM) [2] are being pushed to higher mass scales
[3], taking away one of the arguments for low-energy
supersymmetry. On the other hand, the necessity for higher
mass scales, opens the door to model building and in
particular allows for the construction of very simple models
such as pure gravity mediation (PGM) [4–8]. In its simplest
form [7], PGM with scalar mass universality contains one
single free parameter, the gravitinomass,m3=2 which sets the
boundary condition for the scalar masses at some UV input
scale, usually taken to be the grand unified (GUT) scale.
In the minimal model of PGM, one assumes a flat Kähler

potential, and there is no tree level source for either gaugino
masses or A terms. At one-loop, gaugino masses and A
terms are generated through anomalies [9] and one expects
m1=2; A0 ≪ m0 in these models, reminiscent of split super-
symmetry [10]. Radiative electroweak symmetry breaking
(EWSB) can be incorporated into the model at the expense
of one additional parameter, cH, associated with a Giudice-
Masiero-like term [11–13] in the Kähler potential as
described below. One can also easily trade cH for the ratio
of the two Higgs vacuum expectation values, tan β, leaving
the theory to be defined by m3=2, tan β and the sign of the μ
term. A similar particle spectrum was also derived in
models with strong moduli stabilization [13–15].
A Higgs mass ≈126 GeV [16] is another phenomeno-

logical constraint that must be imposed on the model. In
[7], it was shown that the minimal PGM model described

above with scalar mass universality and radiative EWSB
can account for the correct Higgs mass for gravitino masses
in the range about 300–1500 TeV for a narrow range of
tan β ¼ 1.7–2.5. Indeed, the determination of the Higgs
mass provides one with a (model-dependent) upper limit on
the scalar mass scale of order a PeV [17,18]. Because the
lightest supersymmetric particle (LSP) in this theory is a
wino with a nearly degenerate chargino, there is a lower
limit on the scalar mass scale of about 80 TeV, needed to
satisfy the experimental lower bound on the chargino mass
[19]. A long lived chargino may be a tell tale signature of
models of this type [4,5,15,20,21]. Dark matter may also be
a natural consequence of this model as thermal wino dark
matter with a relic density equal to the WMAP/Planck [22]
determined value is expected when m3=2 ¼ 460–500 TeV
when μ < 0 [7]. For lower m3=2 or μ > 0, either the dark
matter comes from a source other than supersymmetry, or
winos are produced nonthermally through moduli or
gravitino decay [15,20,23–26].
The parameter space in PGMmodels can be significantly

broadened [8] if Higgs mass universality at the GUT scale
is not enforced as in nonuniversal Higgs mass models
[27–29]. Simply allowing the Higgs soft masses to differ
from the gravitino mass at the GUT scale frees up (to some
extent) the restricted range on tan β and allows significantly
lower values of the gravitino mass while still producing a
Higgs mass of 126 GeV. The two Higgs soft masses may
equal each other (one extra parameter) or differ (two extra
parameters).
In this paper, we consider another generalization of PGM

models, which maintains scalar mass universality. PGM is
altered to include the contributions of additional vector
representations. In particular, we consider the effects of
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adding either pairs of 10 and 10’s and/or pairs of 5 and 5̄’s.
The presence of these fields has multiple effects. They
affect the running of the gauge couplings, primarily
through the change in the beta functions. They also alter
the anomaly mediated supersymmetry breaking (AMSB)
contribution to gaugino masses as well as the threshold
corrections to the gaugino masses and can lead to a much
lighter(heavier) than expected gluino(wino). In the models
considered, we often find that the LSP is a bino (rather than
a wino as in minimal PGM models) and in order to satisfy
the relic density constraint, the bino must be nearly
degenerate with the gluino.1 In this case, the LHC limits
on the gluino mass [31] are significantly relaxed.
If we also include a 5 and 5̄ the bino can also coannihilate
with the wino.
Because these new vectorlike fields can couple to the

Higgs through Yukawa couplings, they will affect the
renormalization group running of the Higgs mass as well
as the EWSB conditions. This will expand the allowed
range of tan β. Furthermore, these Yukawa couplings will
further enhance the Higgs mass. Here we only consider the
coupling of the 10 to the uplike MSSM Higgs with
coupling y0t. In this case, the minimization of the Higgs
potential is performed as in the CMSSM and yields a
solution for μ (and cH), though the sign of μ is not
determined by the solution. It is also possible to couple
the new fields to the downlike MSSM Higgs with coupling
yb0. In this case, minimization may give rise to two distinct
solutions with jμ1j ≠ jμ2j. Here, however we will consider
only cases which are affected by the new toplike Yukawa
coupling and return to the possible effects of the bottomlike
Yukawa elsewhere.
The paper is organized as follows. In the next section, we

review and update PGM with scalar mass universality. In
particular, we include a new calculation of the Higgs mass
in split SUSY models [32] which corrects and updates the
previous calculation [33]. We also enforce the experimental
value of αs at the weak scale at the expense of pure gauge
coupling unification and examine the Higgs mass in this
scenario. In Sec. III, we introduce the vector multiplets and
describe our treatment of the running of the renormalization
group equations (RGE)’s and loop corrections. In Sec. IV,
we display some results for the Higgs and gaugino masses
in this model. Our conclusions are given in Sec. V. Details
of the calculations are collected in Appendixes A–D.

II. UPDATE ON UNIVERSAL PGM

As noted earlier, PGM models are based on minimal
supergravity (mSUGRA) with a flat Kähler potential. The
form [34–36] of the scalar potential in mSUGRA is
given by

V ¼
���� ∂W∂ϕi

����
2

þ ðA0Wð3Þ þ B0Wð2Þ þ H:c:Þ þm2
3=2ϕ

iϕ�
i ;

ð1Þ

where the ϕi’s are the low-energy fields,W is the low-scale
superpotential,

W ¼ ðyeH1Lec þ ydH1Qdc þ yuH2QucÞ þ μ0H1H2;

ð2Þ

with the SU(2) indices being suppressed.Wð2Þ andWð3Þ are
the bilinear and trilinear superpotential terms. As one can
see, the scalar masses are universal and are proportional to
the gravitino mass. In addition, simple models of super-
symmetry breaking impose B0 ¼ A0 −m3=2. If there is an
R symmetry, and the gauge kinetic function, hαβ ∝ δαβ is
independent of any supersymmetry breaking moduli with
nonvanishing F terms, gaugino masses vanish at the tree
level, and are generated at one loop through anomalies [9].
The remaining parameters, μ and tan β, can be derived

from the minimization of the Higgs potential. In general,
obtaining the correct electroweak vacuum can be problem-
atic unless one adds a Giudice-Masiero term [11–13],

ΔK ¼ cHH1H2 þ H:c:; ð3Þ

in the Kähler potential. Here, cH is a constant and allows
the μ and B terms to remain linearly independent, as in
the CMSSM. In this way, both μ and cH can be derived
from the minimization of the Higgs potential, while the
supergravity GUT scale boundary condition [36] B0 ¼
A0 −m3=2 is maintained:

μ ¼ μ0 þ cHm3=2; ð4Þ

Bμ ¼ μ0ðA0 −m3=2Þ þ 2cHm2
3=2: ð5Þ

Above, we have maintained our assumed flat Kähler
potential with μ0 being the μ term of the superpotential.2

Recall that in PGM models, A0 ≪ m3=2.
As the tree-level gaugino masses are essentially vanish-

ing, the dominant source for gaugino masses comes from
the one-loop anomaly mediated contributions [9], which
are proportional to their one loop MSSM β functions,
β1 ¼ 11, β2 ¼ 1, and β3 ¼ −3, giving

M1 ¼
33

5

g21
16π2

m3=2; ð6Þ

1Similar conclusions were found in a related model which did
not include the renormalization group evolution of couplings and
masses, nor insist on radiative EWSB [30].

2To allow a GM term for the Higgs fields, the R charge of
HuHd must be zero. In this case, μ0 must have the same R charge
as the gravitino and could arise as some coupling times the
gravitino mass. Therefore, the only source of R-symmetry
breaking is the gravitino mass. In what follows, we will keep
the gravitino as the only source of R-symmetry breaking.
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M2 ¼
g22

16π2
m3=2; ð7Þ

M3 ¼ −3
g23

16π2
m3=2: ð8Þ

Here, the subscripts of Ma, ða ¼ 1; 2; 3Þ, correspond to
the gauge groups of the Standard Model Uð1ÞY , SU(2) and
SU(3), respectively. Note that there are potentially large
one-loop corrections to gaugino masses particularly at
small tan β [37,38].
In [7], we followed the prescription detailed in [15] using

the calculations in [33] to calculate the Higgs mass, mh.
Assuming gauge coupling unification, we found that the
Higgs mass fell into the required range (124–128 GeV)
for a narrow range in tan β≃ 1.7–2.5, and m3=2 ≃
300–1500 GeV, with mh increasing as either tan β or
m3=2 are increased. Here, we update this result making
several changes to the calculation. First, and most impor-
tantly, we fix αs at the weak scale to its measured value
taken here as αsðMZÞ ¼ :1180. For example with m3=2 ¼
1 PeV and tan β ¼ 2,mh ¼ 126.5 GeV if we assume gauge
coupling unification. However, in this case, αsðMZÞ ¼
0.088, far below the experimental value. Fixing αsðMZÞ
corresponds to an increase in αs and as a consequence a
decrease in the top quark Yukawa coupling, yt, thus
lowering mh by a few percent. In addition, gauge coupling
unification is lost as αsðMGUTÞ is larger than α1ðMGUTÞ ¼
α2ðMGUTÞ by about 3%. Secondly, we have improved our
treatment of the gluino threshold in the running of αs. With
this improvement, mh is found to be 122.5 GeVat the same

test point. Thirdly, we employ the recent calculations in
[32] which correct some errors in the one-loop calculations
quoted in [33] and include new two-loop contributions, but
both of these changes make only a minor correction to the
Higgs mass for the cases considered, as the dominant
contribution is due to yt.
In Fig. 1, we show the updated calculation of the Higgs

mass as a function of tan β (left) and m3=2 (right). In the left
panel, we see that for each value of m3=2, the Higgs mass
rises as tan β is increased. At some point, the increase is
very sudden as the derived value of μ2 goes to 0, and we
lose the ability to achieve successful radiative EWSB. As μ
is decreased the Higgsinos become lighter and there are
additional contributions to the running of the Higgs quartic
coupling. As a result, the Higgs mass is largest for points
which corresponds to the focus point region of the CMSSM
[39]. For low values of tan β, the top quark Yukawa
diverges during the running of the RGEs and that region
is shown as shaded.
In the right panel of Fig. 1, we see the behavior of the

Higgs mass for fixed tan β as a function of the gravitino
mass. Once again, as m3=2 is increased, the solution for μ is
driven smaller and the Higgs mass in increased. Beyond the
point where the curve appears to go vertical, there is no
radiative EWSB.
In comparison with the results in [7], while the Higgs

mass is typically lower, the qualitative conclusions are
unchanged. For large m3=2 ∼Oð1Þ PeV, and in a narrow
range for tan β, a Higgs mass of 126 GeV is possible. The
results for the remaining particle spectrum such as the
gaugino sector are unchanged.
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FIG. 1 (color online). The light Higgs mass as a function of tan β (left) and m3=2 (right). The LHC range (including an estimate of
theoretical uncertainties) ofmh ¼ 126� 2 GeV is shown as the pale green horizontal band. The different curves correspond to different
values ofm3=2 between 60 and 1500 TeVas marked. In the right panel, the curves correspond to four values of tan β between 1.8 and 2.4
as marked.
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III. ADDING VECTOR MULTIPLETS

It is well known that adding (light) vectorlike states to
supersymmetric theories with anomaly meditation [9] can
help resolve the problem of tachyonic sleptons [40]. While
the this problem is inherently absent in PGM models, the
presence of such vectorlike states affects the low- energy
theory in several fundamental ways. Additional fields with
StandardModel charges will affect the running of the gauge
couplings, and as such will directly affect the pattern of
gaugino masses in AMSB [6,30,41]. Here, we show that
coupling vectorlike fields to the MSSM Higgs not only
affects the running of the gauge couplings, but also the soft
mass parameters associated with the two Higgs doublets
and can greatly ease the problem of radiative EWSB.
Indeed, we are able to find solutions for a wide range of
values of tan β, greatly easing the problem of obtaining a
Higgs mass in the desired LHC range.
We begin by including additional states labeled Φ; Φ̄

which are in either a 5 and 5̄ or 10 and 10 representation of
SU(5). In its simplest form, the theory need not contain any
superpotential interactions involving the new fields, but
have only the following Kähler potential:

K ¼ jΦj2 þ jΦ̄j2 þ CðΦΦ̄þ H:c:Þ: ð9Þ
In PGM, supersymmetry breaking will generate universal
scalar masses for these fields in addition to mass terms
which arise from the Giudice-Masiero term included in K.
The latter leads to an effective μ term with μ ¼ Cm3=2 and
Bμ ¼ 2Cm2

3=2. The mass matrix for the scalars associated

with Φ and Φ̄ is

M2 ¼ m2
3=2

�
ccðC2 þ 1Þ 2C

2C ðC2 þ 1Þ

�
; ð10Þ

evaluated here at the input GUT scale.
As an example, let us first consider the case where Φ is

given by a 10 representation of SU(5). In this case, gauge
invariance would allow a superpotential coupling of the 10
to the MSSM Higgses which are found in a 5u and 5̄d
representation,

W ¼ y0t5u1010þ y0b5̄d10 10 : ð11Þ
Since the colored components of the 5u and 5̄d Higgses
should have GUT scale masses and decouple from the
theory, this reduces to

W ¼ y0tHuQU þ y0bHdQ̄ Ū; ð12Þ

where Q;U, and E make up the components of the 10. The
Giudice-Masiero term for the 10 and 10 gives a constraint
on the R charge, R10 þ R1̄0 ¼ 0. Because of this, R
symmetry requires one of either y0t or y0b to be zero
unless there is additional R-symmetry breaking beyond
the gravitino mass.

Furthermore, for y0b ¼ 0 the combination − 1
2

V1L2
v2

tan2β þ
1
2

V1L1
v1

(for definitions of the expression and more details see

Appendix C) is even in μ, containing terms μ0 and μ2 only.
This gives the typical and relatively simple solution for μ2.
However, when y0b ≠ 0 there is also a linear term in μwhich
allows for the possibility of two distinct solutions of μ, i.e.
jμ1j ≠ jμ2j. We leave the analysis of this theory for future
work and from here on we take yb ¼ 0.
To include this sector of the theory, we must input a new

Yukawa coupling, y0t at the GUT scale along with C and the
soft masses which are set at their universal value given
by m3=2,

m2
Q ¼ m2

Q̄ ¼ m2
U ¼ m2

Ū ¼ m2
3=2: ð13Þ

As noted above and in Appendix A, the Giudice-Masiero
term induces a μ term as well as a supersymmetry breaking
B term given by

μQ ¼ μU ¼ C10m3=2 ð14Þ

bQ ¼ bU ¼ 2C10m2
3=2: ð15Þ

These quantities are then also run down to the weak scale
using the β functions given in Appendix A. Also given in
Appendix A are the contributions to the MSSM β functions
which are affected by the new terms. We have neglected the
running of the B terms as their beta functions are propor-
tional to gaugino masses and A terms, both of which are
small compared with the gravitino mass. The physical
masses of the new states are determined by the diagonal-
ization of the mass matrices given in Appendix B.
The dominant contribution to the fermion masses come

from the Giudice-Masiero term and are

Mf ¼ C10m3=2 ð16Þ

By comparing the fermion and boson masses, we see that in
the limit that C10 ≫ 1, the boson and fermions become
degenerate.
In PGM models, gaugino masses are given by their

anomaly mediated contribution, and when we include new
vectorlike multiplets, the β functions for the gaugino
masses are affected. The one-loop RGEs for the gauge
couplings above the SUSY scale, are altered to be

β1 ¼ βMSSM þ 5

3
ðN5þ5̄ þ 3N10þ1̄0Þ

β2 ¼ βMSSM þ N5þ5̄ þ 3N10þ1̄0:

β3 ¼ βMSSM þ N5þ5̄ þ 3N10þ1̄0 ð17Þ

At two loops the RGEs are modified as well and these
contributions are given in Appendix A. The expression
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above for the β function is valid in the supersymmetric
regime where boson and fermions are nearly degenerate and
smaller than the renormalization scale Q. As the scale Q
drops below the masses associated with the vectorlike fields,
their contributions are removed from the β functions. Since
fermions and bosons contribute differently to the β function,
they will be integrated out differently. As we pass the scale
where the fermions are integrated out, we remove (2=3) of
the above contribution due to 5; 5̄; 10, and 10’s in the one-
loop beta function. The two different scalars have different
masses and are decoupled at different thresholds subtracting
for each (1=6) of the total as Q drops below their mass.
Radiative electroweak symmetry breaking is also affected

by the presence of the new vectorlike states. As seen in
Eq. (A21) in Appendix A, the new Yukawa coupling y0t
contributes to the running of the uplike Higgs soft mass,mHu

in an analogous way to the top quark Yukawa coupling,
driving it negative as one runs down from the GUT scale.
This makes it easier to find solutions to the Higgs mini-
mization equations, and allows for larger values of tan β.
Perhaps more importantly however, the new vectorlike states

contribute to the one loop corrected Higgs potential. As
discussed in Appendix C, the (Q; Q̄;U; Ū mass matrices are
nontrivial and contribute to the solutions for μ and cH).
In addition, we include threshold corrections to neutra-

lino, chargino, and gluino masses. These are handled in a
similar way to MSSM corrections given in [37,38].
Finally, we comment on the effect of the vectorlike states

on the calculation of the Higgs mass. As noted earlier, we
follow the MSSM calculation outlined in [32]. However, as
explained in Appendix D, we include new one-loop
contributions to the Higgs quartic coupling. Because the
fermions and bosons of the additional vectorlike states
both have masses similar to m3=2, these corrections can be
implemented as one-loop threshold corrections at the scale
MSUSY. Because the threshold corrections do not affect yt,
they will have little effect on the running of the Higgs
quartic coupling and make only an additive correction.
These corrections tend to increase the Higgs mass by a few
percent. However, for larger values of the GM term the
fermion masses are larger than the boson masses and these
corrections will suppress the Higgs mass.
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FIG. 2 (color online). Gaugino masses as a function of the gravitino mass for fixed y0t ¼ 0.15 (upper panels), y0t ¼ 0.65 (lower panels)
and fixed C10 ¼ 0.13 (left panels), C10 ¼ 0.17 (right panels). tan β ¼ 5 in all four panels. The gluino mass is shown as a red solid line,
the wino mass by a blue dotted line, and the bino mass by a green dashed line.
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IV. RESULTS

As discussed earlier, the inclusion of new vectorlike
states, affects the gaugino and Higgs masses as well as the
allowed ranges of the two PGM input parameters,m3=2 and
tan β. In this section, we display the resulting gaugino and
Higgs masses as a function of the two PGM parameters as
well as the new GM couplings C10;5 and the Yukawa
coupling y0t. As noted earlier, we ignore the effects of the
downlike coupling, y0b.

A. Adding a 10 and 10

In this section, we will restrict our attention to the case
with one additional 10 and 10 pair. Additional 10 and 10
pairs would induce nonperturbative running in the strong
gauge coupling.
We begin the discussion of the particle spectrum with the

parameter dependence of the gaugino masses. As discussed
above, the inclusion of vectorlike multiplets modify the well-
known anomaly mediated relations between the gaugino
masses [6,30,41]. In Fig. 2, we show results for the gaugino
masses as a function of the gravitino with tan β ¼ 5 for fixed

values of the Giudice-Masiero term, C10 ¼ 0.13, 0.17 and
toplike Yukawa, y0t ¼ 0.15, 0.65. As one can see, all of the
gaugino masses are approximately linearly dependent on
the gravitino mass and there is little dependence on tan β.
Parameter values have been chosen such that there is (in
most cases) a region where the bino is the LSP and nearly
degenerate with one of the two other gauginos. In this case,
we were only able to find regions with bino-gluino degen-
eracy which is sufficient for controlling the relic density
through coannihilations [42]. While the gaugino mass
spectrum is only weakly dependent on y0t, there is a relatively
strong dependence on C10 as we now explain.
From Eq. (A1), the contribution of a single 10 and 10

pair, would yield β1 ¼ 16, β2 ¼ 4, and β3 ¼ 0 and the
anomaly mediated contribution to the gluino mass is zero.
Now, the gaugino masses are modified slightly by two-loop
effects, but the most significant correction comes from the
one-loop threshold corrections [37,38]. This is particularly
true when one includes the corrections due to a 10 and 10
pair alone because β3 ¼ 0. The C10 dependence of the
gaugino masses is sourced in the scalar and fermionic
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FIG. 3 (color online). The Higgs mass as a function of the gravitino mass for fixed y0t ¼ 0.15 (upper panels), y0t ¼ 0.65 (lower panels)
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masses of the 10 and 10. Recall that the masses of the 10
and 10 (scalars and fermions) are dependent onC10 through
μQ and bQ for the scalars (see Eqs. (14) and (15) and
Appendix B) and the fermion masses are directly propor-
tional to C10 [see Eq. (16)] and so the threshold corrections
are strongly dependent on C10 and in some regions of
parameters space proportional to C10. There is also a weak
dependence of the gluino mass on m3=2 due to running. For
large m3=2, the RG running is terminated at a higher scale
and the μi are less enhanced. Because the bino and wino
anomaly mediated masses are nonzero, their scaling is less
dependent on C10. For smaller values of C10 and larger
values of m3=2, the threshold corrections to the gluino mass
are insufficient and the gluino becomes the LSP. This
portion of the parameter space is, of course, excluded. Thus
we have an upper bound on the gravitino mass and as such
an upper bound on the sparticle mass spectrum.
As one can see from Fig. 2, there is only a limited range

in C10 where the mass spectrum is acceptable. At C10 ¼
0.13, the degeneracy point (and upper limit onm3=2) occurs
at relatively low gravitino mass, around m3=2 ∼ 50 TeV.

For this value of C10, degeneracy occurs when m ~B ≲
m~g ∼ 800 GeV. While this is below the nominally quoted
LHC lower limit on the gluino mass, these limits are greatly
relaxed when the neutralino and gluino are nearly degen-
erate as is the case here. When C10 is lowered to 0.11, the
degeneracy point occurs at m3=2 ≈ 20 TeV and the gaugino
masses are only about 300 GeV. In the upper right panel of
Fig. 2, there is no cross over between the bino and gluino and
the bino is always the LSP leading to an excessive relic
density. EWSB fails before the gluino mass drops below the
bino mass.Without the assistance of larger y0t, EWSB fails for
larger values of the gravitino mass. At higher y0t, as in the
lower right panel of Fig. 2, radiative EWSB is extended to
higher gravitino mass and we find a degeneracy point around
m3=2 ∼ 300 TeV and m ~B ≲m~g ∼ 5 TeV, just outside the
reach of the LHC. Raising C10 further, impedes the pos-
sibility of radiative electroweak symmetry breaking unless y0t
is increased. However, as C10 is further increased the scalars
in the 10 and 10 run tachyonic and the model breaks down.
In Fig. 3, we show the calculated Higgs mass as a

function of the gravitino mass for fixed values of C10 and y0t
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FIG. 4 (color online). The Higgs mass as a function of tan β for fixed y0t ¼ 0.15 (upper panels), y0t ¼ 0.65 (lower panels) and fixed
C10 ¼ 0.13 (left panels), C10 ¼ 0.17 (right panels). Five values of m3=2 are chosen: 50 TeV (solid red); 100 TeV (green dashed);
250 TeV (blue short dashed); 500 TeV (violet dotted); and 1 PeV (cyan dot-dashed).
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and four or five values of tan β. Curves which end abruptly
at largem3=2 do so due to the absence of EWSB. Recall that
our requirement that m~g ≈m ~B from the cosmological relic
density constraint, implies that for low C10, we must have
m3=2 ≲ 50 TeV. In the left panels of Fig. 3, we can read off
which values of tan β are needed to obtain the correct Higgs
mass for m3=2 ≲ 50 TeV. At large C10 with y0t ¼ 0.65,
bino-gluino degeneracy required m3=2 ≈ 300 TeV, which
in turn requires lower values of tan β ≲ 5. At large y0t,
values of tan β as low as 2 are not allowed. The RG running
of the top Yukawa are altered by y0t, and the top Yukawa
coupling will become nonperturbative for the combination
of large values of y0t and small tan β.
In Fig. 4, we show the complementary plots of the

calculated Higgs mass as a function of tan β for fixed values
of C10 and y0t and five values of the gravitino mass.
To see more explicitly the dependence of the sparticle

masses on the Giudice-Masiero coupling, C10, we show in
Fig. 5 the dependence of the gaugino masses as a function of
C10, and in Fig. 6 the dependence of the Higgs mass as a
function of C10. As one clearly sees, the gaugino masses are
predominantly sensitive to the gravitino mass and the six
curves break up into two groups of three depending on the

two values of m3=2 chosen. One also sees the strong
dependence of the gluino mass on C10. This is crucial since
the addition of a 10 and 10 pair cancels the MSSM value of
β3 and the gluino is a priori very light in this model. Indeed
when C10 is small, we see that the increase in the gluino
mass is relatively modest when increasing the gravitino mass
from 50 to 200 TeV. At larger C10 the gluino’s dependence
on m3=2 becomes comparable to the other gaugino masses.
The Higgs mass as shown in Fig. 6 is relatively

insensitive to C10 and we see much stronger dependences
on bothm3=2 and tan β. We do see, however, a sharp drop in
mh above a critical value in C10. At sufficiently large C10,
the fermion masses given by Eq. (16) become large and
begin to cancel the one-loop contribution to mh from the
scalars. When tan β ¼ 5 and m3=2 is large (as in the lower
right panel), this cancellation occurs after we lose the
ability to achieve radiative EWSB.

B. Adding a 10 and 10 plus a 5 and 5̄

In this section, we consider the consequences of adding a
5 and 5̄ pair. We will again give these fields a GM term in
the Kähler potential. However, without an additional singlet
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FIG. 5 (color online). The gaugino masses, m ~B (upper), m ~W (lower left), m~g (lower right) as a function of C10, for combinations of
m3=2 ¼ 50, 200 TeV, tan β ¼ 2, 5, and y0t ¼ 0.15, 0.55.
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or some mixing with a 10, these fields cannot couple to the
Higgs fields.3

In Fig. 7, we have plotted the gaugino masses with
respect to C5, the GM term for the 5 and 5̄ for fixed
m3=2 ¼ 100 TeV, tan β ¼ 3, and y0t ¼ 0.07 for four choices
of C10 ¼ 0.02, 0.04, 0.06, and 0.08. Note that the preferred
ranges of y0t and C10 are both lower in this case due to the
additional running induced by the addition of the 5 and 5̄.
As is expected, the gaugino masses all increase with C5.
However, these figures show features of the scaling with C5

that has been previously neglected in other works [6,30,41].
In previous analyses, the running of the μi had been
ignored. At the GUT scale these masses are universal.
However, as they are run down to the SUSY breaking scale
their masses diverge. Since the running of supersymmetric
parameters are proportional to anomalous dimensions, as
discussed in Appendix A, the μD of the 5 and 5̄ will run

differently than the μL. In fact, the beta function of μD has a
piece proportional to the strong coupling and so is much
more enhanced than μL. Now in the limit, μD;L=m3=2 ≫ 1,
the gaugino masses become independent of μD;L and scale
only with m3=2. This behavior can be seen in Fig. 7 for
C5 ≳ 0.6 for wino and C5 ≳ 0.3 for the gluino. Again, this
levelling out occurs at different values of C5 because the
supersymmetric masses run differently. The bino mass is
dependent on both μL and μD. Because of this, it has three
different regions of scaling with respect to C5. For
C5 ≲ 0.3, it is increasing most quickly because it is scaling
with respect to both μL and μD. However, onceC5 ≳ 0.3 the
scaling of the bino mass with μD disappears and it now only
scales with μL. Above C5 ∼ 0.6, the scaling with μL
disappears and its mass only scales with m3=2.
In Fig. 8, we show two sets of gaugino masses for

m3=2 ¼ 50, 100 and tan β ¼ 3, 3.5, respectively. Here, we
see explicitly the strong dependence of the gaugino masses
on m3=2. The value of tan β is adjusted to obtain the correct
value of mh. At very low C5 ≲ 0.1, we have a gluino LSP.
However, very quickly as C5 is increased, the LSP becomes
the wino. Indeed, from this figure, we see that by including
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FIG. 6 (color online). The Higgs mass as a function of C10 for fixed m3=2 ¼ 50 TeV (upper panels), m3=2 ¼ 200 TeV (lower panels)
and fixed tan β ¼ 2.5 (left panels), tan β ¼ 5 (right panels). Five values of y0t are chosen: 0.15 (solid red); 0.25 (green dashed); 0.35 (blue
short dashed); 0.45 (violet dotted); and 0.55 (cyan dot-dashed).

3Through the operator 5u105, this field could interact with the
up Higgs and slightly change the phenomenology. However, this
case would not be significantly different from what we have
already considered and could lead to flavor problems.
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a 5 and 5̄ we get regions of parameter space where the dark
matter density is realized through bino-wino coannihilation
around C5 ∼ 0.4. At larger values of C5, the LSP is a bino
and without the benefit of coannihilation, the relic density
of dark matter would be too large.
Finally, since the 5 and 5̄ do not couple directly to the

Higgs fields they will have minimal effect on the Higgs
mass. However, if any of the masses of the 5 and 5̄ are
below MSUSY, they will alter the running of the gauge
couplings as well as the top Yukawa coupling. However,
this is effectively a two-loop effect and is very minor.

V. SUMMARY

The initial run of the LHC, which saw no definitive signs
of supersymmetric particles and found a rather large Higgs
mass, has given credence to models with split super-
symmetrylike mass spectra. The simplest of these models,
Universal PGM, has a very restricted hierarchy of gaugino
masses generated by anomaly mediation. The dark matter
candidate is the wino, which has been under scrutiny [43].
It also requires a rather large value of m3=2 in order to
generate a sufficiently heavy Higgs mass. At large m3=2,

the gaugino masses may be well beyond the reach of
the LHC.
Generating corrections to this very restrictive spectrum of

gauginos is rather nontrivial. However, Supergravity.does
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FIG. 7 (color online). The gaugino masses, m ~B (upper), m ~W (lower left), m~g (lower right) as a function of C10, for m3=2 ¼ 100 TeV,
tan β ¼ 3 and y0t ¼ 0.07 for different values of C10.
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offer one rather simple mechanism for generating additional
mass contributions to the gaugino masses. If vectorlike
multiplets of SUð5Þ with a Giudice-Masiero term in the
Kähler potential are added, the gauginomass relations can be
altered. They are altered in two ways. First, the additional
anomaly mediated contribution to the gauginos arising from
an enhanced β function is never subtracted off by threshold
corrections as the theory drops below the scale of the 10 and
10. This is due to the sign of the B term for the 10 and 10
which is generated by the Giudice-Masiero term. Secondly,
if the Giudice-Masiero term in the Kähler potential is large,
the threshold corrections to the gauginos will also be large
and further increase the masses of gauginos.
In this paper, we have considered a generalization of

PGM which includes an additional 10 and 10 and 5 and 5̄.
These fields change many aspects of the model. First, they
alter the gaugino mass spectra in a nontrivial way, opening
the door for other (nonwino) dark matter candidates.
Secondly, these fields can couple to the MSSM Higgs
bosons. These couplings aid EWSB and open up the
parameter space of tan β.
The simplest of these models includes an additional 10

and 10 pair. In this case, with the 10 coupled to the MSSM
uplike Higgs, it is possible to achieve radiative EWSB for
tan β ¼ 2 ∼ 40. Because tan β is allowed to be much larger
than in the simple universal PGM case, m3=2 can be taken
much smaller. The gluino mass is suppressed because m3=2
is smaller and β3 ¼ 0. As a result, the gauginos maybe
within reach of the LHC. The simplest dark matter
candidate is the bino whose relic density is suppressed
by coannihilating with gluino. To get sufficient suppres-
sion, the bino and gluino need to be rather degenerate.
Because of this degeneracy, the LHC constraints on the
gluino are relaxed. These models also tend to have an upper
bound on the gravitino mass because the gluino becomes
the LSP for larger values of m3=2.
Adding an additional 5 and 5̄, removes the upper bound

on the gravitino mass since the gluino now scales more
drastically withm3=2. It also jumbles up the mass hierarchies
of the gauginos, and we now have dark matter candidates
coming from bino and wino coannihilation. Also the wino
can again be the LSP for intermediate values ofC5. This case
also highlights the effects of RG running on the gaugino
mass spectrum which can have significant effects.
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APPENDIX A: ONE-LOOP β FUNCTIONS

In this and subsequent Appendixes, we will restrict
our attention to the contributions of the 10 and 10 only.
The contributions due to the 5 and 5̄ can be found in an

analogous manner. At one-loop, the RGEs can be found
from the anomalous dimensions and their analytic con-
tinuation into superspace. Starting with the Yukawa cou-
plings, we have the formula for the anomalous dimension,

γji ¼
1

32π2

�
yilmyjlm − 4

X
α

CαðΦiÞg2α
�
; ðA1Þ

where the yilm are Yukawa couplings and Cα is the
quadratic Casimir associated with the gauge group labeled
by α. gα is the gauge coupling. The beta function for the
Yukawa coupling is

βðyijkÞ ¼ γni ynjk þ γnyink þ γnyijn: ðA2Þ

For convenience we list the hypercharge of the different
states:

Q∶
Y
2
¼ 1

6
U∶

Y
2
¼ −

2

3
Hu∶

Y
2
¼ 1

2
E ≔ 1: ðA3Þ

Now the anomalous dimensions of the fields Q;U; Q̄; Ū
are

γQ ¼ 1

16π2

�
jy0tj2 −

8

3
g23 −

3

2
g22 −

1

18
g2Y

�
ðA4Þ

γU ¼ 1

16π2

�
2jy0tj2 −

8

3
g23 −

8

9
g2Y

�
ðA5Þ

γE ¼ −
1

8π2
g2Y ðA6Þ

γHu
¼ 1

16π2

�
3jy0tj2 þ 3jytj2 −

3

2
g22 −

1

2
g2Y

�
ðA7Þ

and the anomalous dimensions for Hd, Q̄, Ū, and Ē can be
found by taking yt → yb and y0t → y0b in the anomalous
dimensions for Hu, Q, U, and E, respectively, and we have
neglected the contribution of the τ Yukawa coupling. The
anomalous dimensions for the MSSM fields with the same
gauge symmetries can be found by taking y0t → yt. Since
the anomalous dimensions are diagonal, we get

βðy0tÞ ¼ y0tðγQ þ γU þ γHu
Þ

¼ y0t
16π2

�
6jy0tj2 þ 3jytj2 −

16

3
g23 − 3g22 −

13

9
g2Y

�

ðA8Þ

βðytÞ ¼ ytðγQSM
þ γUSM

þ γHu
Þ

¼ yt
16π2

�
6jytj2 þ 3jy0tj2 −

16

3
g23 − 3g22 −

13

9
g2Y

�

ðA9Þ
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βðy0bÞ ¼ y0bðγQ̄ þ γŪ þ γHd
Þ

¼ y0b
16π2

�
6jy0bj þ 3jybj2 −

16

3
g23 − 3g23 −

13

9
g2Y

�

ðA10Þ

βðybÞ ¼ y0bðγQSM
þ γDSM

þ γHd
Þ

¼ yb
16π2

�
6jybj þ 3jy0bj2 −

16

3
g23 − 3g23 −

7

9
g2Y

�
:

ðA11Þ

The MSSM running of yτ will also be affected because it
depends on γHu

. From examining the expression for γHu
, we

see that this will give an additional contribution to the
running of yτ of 3jy0bj2.
The beta functions for the masses can be found from the

expression

d
dt

ðm2Þji ¼ γl�i ðm2Þjl þ γjlðm2Þli þ 2γð2Þji

þ 2g2Y
16π2

δji
Y
2
Tr

�
Y
2
m2

�
; ðA12Þ

where

γð2Þji ¼ 1

16π2

�
yiklðm2Þlnyjkn þ

1

2
A�
iklA

jkl

− 2
X
α

g2αCαðΦiÞð2jMαj2δji − ðm2ÞjiÞ
�
: ðA13Þ

Here the Aikl are A terms and Mα are gaugino masses.
For Hu we have

γð2ÞHu
¼ 1

16π2

�
3jytj2ðSt −m2

Hu
Þ þ 3jy0tj2ðSt0 −mHu

Þ

− 3g22jM2j2 − g2yjM1j2 þ
�
3

2
g22 þ

1

2
g2Y

�
m2

Hu

�
;

ðA14Þ

where

St ¼ m2
~tL
þm2

~tR
þm2

Hu
þ jAtj2 ðA15Þ

St0 ¼ m2
Q þm2

U þm2
Hu

þ jA0
tj2; ðA16Þ

γð2Þ for Q is

γð2ÞQ ¼ 1

16π2

�
jy0tj2ðSt0 −m2

QÞ −
16

3
g23jM3j2 − 3g22jM2j2

−
1

9
g2Y jM1j2 þ

�
8

3
g23 þ

3

2
g22 þ

1

18
g2Y

�
m2

Q

�
; ðA17Þ

and for U it is

γð2ÞU ¼ 1

16π2

�
2jy0tj2ðSt0 −m2

UÞ −
16

3
g23jM3j2

−
16

9
g2Y jM1j2 þ

�
8

3
g23 þ

8

9
g2Y

�
m2

U

�
: ðA18Þ

Now the anomalous dimensions are again diagonal, so we
can simplify the RGEs to

d
dt

ðm2Þji ¼ 2γjlðm2Þli þ 2γð2Þji þ 2g2Y
16π2

δji
Y
2
S; ðA19Þ

where

S ¼ Tr

�
Y
2
m2

�
: ðA20Þ

The β functions are then

βðm2
Hu
Þ ¼ 1

8π2

�
3jytj2St þ 3jy0tj2St0 − 3g22jM2j2

− g2Y jM1j2 þ
1

2
g2YS

�
; ðA21Þ

βðm2
QÞ ¼

1

8π2

�
jy0tj2St0 −

16

3
g23jM3j2 − 3g22jM2j2

−
1

9
g2Y jM1j2 þ

1

6
g2YS

�
; ðA22Þ

βðm2
UÞ ¼

1

8π2

�
2jy0tj2St0 −

16

3
g23jM3j2

−
16

9
g2Y jM1j2 −

2

3
g2YS

�
: ðA23Þ

The β functions for m2
Hd
;m2

Q̄, and m
2
Ū can be obtained from

those for m2
Hu
; m2

Q, and m2
U; with the transformations,

yt → yb, y0t → y0b, S → −S, St → Sb, and S0t → S0b.
Next, we calculate the β function for the supersymmetric

masses. Because the 10 and 10 break up into MSSM-like
fields after the GUT breaking, they will each have there
own effective μ term in the superpotential4 of the form

W ¼ μQQQ̄þ μUUŪ þ μEEĒ: ðA24Þ

The beta functions for these masses can simply be found
from the expressions

4These terms actually arise from the Kähler potential via the
Giudice-Masiero mechanism and have input values given by
μi ¼ C10m3=2.

JASON L. EVANS AND KEITH A. OLIVE PHYSICAL REVIEW D 90, 115020 (2014)

115020-12



βðμQÞ ¼ μQðγQ þ γQ̄Þ; ðA25Þ

βðμUÞ ¼ μQðγU þ γŪÞ; ðA26Þ

βðμEÞ ¼ μEðγE þ γĒÞ; ðA27Þ

which give

βðμQÞ ¼
1

16π2

�
jy0tj2 þ jy0bj2 −

16

3
g23 − 3g22 −

1

9
g2Y

�
μQ;

ðA28Þ

βðμUÞ ¼
1

16π2

�
2ðjy0tj2 þ jy0bj2Þ −

16

3
g23 −

16

9
g2Y

�
μU;

ðA29Þ

βðμEÞ ¼ −
1

4π2
g2YμE: ðA30Þ

Finally, for completeness, we give the two-loop con-
tributions to the gauge coupling β functions which can be
written as

βð2Þa ¼ g3a
ð16π2Þ2 B

ð2Þ
ab g

2
b; ðA31Þ

where in the MSSM,

Bð2Þ
ab ¼

2
64

199
9

9 88
3

3 25 24

11
3

9 14

3
75; ðA32Þ

which can be decomposed into the pieces coming from

the 10 and 5̄ representations. The contribution to Bð2Þ
ab from

the 10 is

Bð10Þ
ab ¼

2
64

115
18

1
2

8

1
6

21
2

8

1 3 17

3
75: ðA33Þ

The contribution from the 5̄ is

Bð5Þ
ab ¼

2
64

35
54

3
2

16
9

1
2

7
2

0

2
9

0 17
3

3
75: ðA34Þ

Each Higgs contributes

BðHÞ
ab ¼

2
64

1
2

3
2

0

1
2

7
2

0

0 0 0

3
75: ðA35Þ

There is also contribution from gauginos which is given by
BA
ab ¼ diagð0;−24;−54Þ. Using these we see that we get

Bð2Þ
ab ¼ BA

ab þ 3ðBð10Þ
ab þ Bð5Þ

ab Þ þ 2BðHÞ
ab : ðA36Þ

Since the contribution to the RGEs from a 10 is the same
as a 10 and 5 is the same as a 5̄, we can decompose the
two-loop RGEs as follows:

B2tot
ab ¼ Bð2Þ

ab þ 2N10þ1̄0B
ð10Þ
ab þ 2N5þ5̄B

ð5Þ
ab : ðA37Þ

APPENDIX B: MASS MATRICES

The soft masses and μ terms are run down to the weak
scale and evaluated at the scale MQ and MU determined
iteratively using the mass matrices for these fields,

M2
Q ¼

�m2
Q þ μQ bQ

bQ m2
Q̄ þ μ2Q

�

M2
U ¼

�
m2

U þ μU bU
bU m2

Ū þ μ2U

�
: ðB1Þ

These matrices are diagonalized using the rotation
matrices,

UU ¼
�
cos βU − sin βU
sin βU cos βU

�

UQ ¼
�
cos βQ − sin βQ
sin βQ cos βQ

�
; ðB2Þ

where

tan βQ ¼
m2

Q̄ −m2
Q þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðm2

Q −m2
Q̄Þ2 þ 4jbQj2

q
2jbQj

ðB3Þ

tan βU ¼
m2

Ū −m2
U þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðm2

Q −m2
Q̄Þ2 þ 4jbUj2

q
2jbUj

: ðB4Þ

Now we use these mixing matrices and rotate the fields to

�
Qþ
Q−

�
¼ UQ

�
Q

Q̄†

� �
Uþ
U−

�
¼ UU

�
U

Ū†

�
: ðB5Þ

APPENDIX C: THE HIGGS POTENITAL

The possibility of incorporating radiative electroweak
symmetry breaking requires viable solutions to the mini-
mization of the Higgs potential. In this Appendix we
outline the effect of the new vectorlike multiplets in the
one-loop corrected Higgs potential.
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The Higgs potential can be written as

VT ¼ m2
1v

2
1 þm2v22 − Bv1v2 þDþ V1L; ðC1Þ

where

D ¼ g21 þ g22
8

ðv21 − v22Þ2; ðC2Þ

B is the MSSM supersymmetry bilinear mass term, and V1L
is the Coleman-Weinberg potential. Here v1ð2Þ is under-
stood to be the vacuum expectation value of HdðuÞ. The
derivatives of the potential with respect to v1 and v2 can be
easily combined to give a solution for B:

2B ¼ ðm2
1 þm2

2Þ sin 2β

þ sin 2β
2

�
D1 þ V1L1

v1
þD2 þ V1L2

v2

�
; ðC3Þ

where the subscripts i on D and V1L represent derivatives

with respect to vi. The combination
VT2
v2

tan2β − VT1
v1

can be

rearranged to solve for v2 ¼ v21 þ v22:

v2 ¼ 4

ðg21 þ g22Þðtan2β − 1Þ

×

�
m2

1 −m2
2tan

2β −
1

2

V1L2

v2
tan2β þ 1

2

V1L1

v1

�
: ðC4Þ

Now the Coleman-Weinberg potential can be written as

V1L ¼ m4

32π2

�
ln

�
m2

Q2

�
−
3

2

�
ðC5Þ

for each mass eigenstate of the theory. This is well known
in the MSSM, but the introduction of vectorlike multiplets
requires the diagonalization of a new 4 × 4 mass matrix for
the case of a 10 and 10 written in the (Q̄; Q†; Ū; U†) basis:

M2
10 ¼

2
666664

mQ̄
2 þ μQ

2 bQ 0 μQv2y0t
bQ v22y

02
t þmQ

2 þ μQ
2 μUv2y0t v1μy0t

0 v2y0tμU mŪ
2 þ μU

2 bU
v2y0tμQ y0tv1μ bU v22y

02
t þmU

2 þ μU
2

3
777775
: ðC6Þ

Here we have set y0b ¼ 0 for simplicity. Upon diagonaliza-
tion, derivatives of the eigenmasses can be taken with
respect to v1 and v2.
There is in addition a contribution to V1L from the

fermionic states which have the following mass matrix in
the (Q;U; Q̄; Ū) basis:

M ~10 ¼

0
BBB@

0 v2y0t μQ 0

v2y0t 0 0 μU

μQ 0 0 0

0 μU 0 0

1
CCCA: ðC7Þ

Once again, derivatives of the eigenmasses with respect to
v1 and v2 are needed in order to evaluate Eq. (C4). Recall
that fermionic states contribute to V1L with the opposite
sign relative to the bosonic states.
Finally we note that when y0b ¼ 0, the combination

− 1
2

V1L2
v2

tan2β þ 1
2

V1L1
v1

is even in μ (containing terms, μ0

and μ2 only), allowing for a relatively simple solution for
μ2. When y0b ≠ 0 there is also a linear term in μ which
allows for the possibility of two solutions of μ with
jμ1j ≠ jμ2j. But we do not discuss this case any further here.

APPENDIX D: THE HIGGS QUARTIC COUPLING

The new fields will affect the quartic Higgs coupling and
we compute this contribution here. First, we sort the
interactions into quartic and trilinear terms and only keep
interactions with the Higgs fields in them. The quartic
couplings interactions are

− L4 ¼ jytj2jHuQj2 þ jytj2jHuUj2 ðD1Þ

¼ jytj2ðjHuUU1i
Uij2 þ jHuUQ1i

Qij2Þ: ðD2Þ

The trilinear couplings are

−L3 ¼ y0tμQðU†
Q2i

UU1j
HuQiUj þ H:c:Þ

þ y0tμUðU†
U2j

UQ1i
HuQiUj þ H:c:Þ

¼ y0tMijHuQiUj; ðD3Þ

where

Mij ¼ μQU
†
Q2i

UU1j
þ μUU

†
U2j

UQ1i
: ðD4Þ

The fermion interactions are simple and take the form
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−Lf ¼ ytHu
~Q ~U : ðD5Þ

There are four diagrams that then contribute to the Higgs
quartic coupling. These are found in Fig. 9.
Now the contribution from the fermion graph is

ΓF ¼ −
4NCjytj4

ðμ2Q − μ2UÞ2
ðμ4QB0ð0; muQ; μQÞ

þ μ4UB0ð0; μQ; μQÞ − 2μ2Qμ
2
UB0ð0; μQ; μUÞÞ: ðD6Þ

The contribution from the diagram with quartic scalar
interactions only gives

ΓSS ¼ 2NCjytj4ðjUU1j
j2jUU1i

j2B0ð0; mUi
; mUj

Þ
þ jUQ1i

j2jUQ1j
j2B0ð0mQi

; mQj
ÞÞ: ðD7Þ

Although it is not shown, the infinities of ΓF and ΓSS

cancel and these are the only infinities that appear.

The contribution from the diagram with quartic scalar
couplings and trilinear couplings gives

4NCjytj4ðU�
U1j

MT
ijM

�
jkUU1k

CðmUj
;mQj

; mUk
Þ

þ UQ1j
MijM

†
jkU

�
Q1k

CðmQj
;mUj

;mQk
ÞÞ: ðD8Þ

Last, we give the contribution for all trilinear couplings
which gives

Γ4T ¼ 4NCjytj4ðMijM
†
jkMklM

†
liDðmQi

; mUj
; mQk

; mUl
ÞÞ:
ðD9Þ

We have defined the above expressions in terms of the
Passarino-Veltman functions which are

B0ð0; m1; m2Þ ¼
Z

d4−ϵp
ð2πÞ4

1

ðp2 −m2
1Þðp2 −m2

2Þ
ðD10Þ

Cðm1; m2; m3Þ ¼
Z

d4−ϵp
ð2πÞ4

1

ðp2 −m2
1Þðp2 −m2

2Þðp2 −m2
3Þ

ðD11Þ

Dðm1; m2; m3; m4Þ ¼
Z

d4−ϵp
ð2πÞ4

1

ðp2 −m2
1Þðp2 −m2

2Þðp2 −m2
3Þðp2 −m2

4Þ
; ðD12Þ

with the infinities subtracted off in B0. This gives a one-loop correction to the Higgs quartic coupling of

δλeff ¼ −
1

2
ðΓF þ ΓSS þ ΓSTT þ Γ4TÞ: ðD13Þ

Q̄

Q̄

U
U

Q,U

Q,U

Q,U

Q, U

Ū, Q̄

Q, Q̄

QQ̄

Ū, UŪ , U

FIG. 9. The diagrams contributing to the Higgs quartic coupling.
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