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We present a treatment of the high energy scattering of dark Dirac fermions from nuclei, mediated by the
exchange of a light vector boson. The dark fermions are produced by proton-nucleus interactions in a fixed
target and, after traversing shielding that screens out strongly interacting products, appear similarly to
neutrino neutral current scattering in a detector. Using the Fermilab experiment E613 as an example, we
place limits on a secluded dark matter scenario. Visible scattering in the detector includes both the familiar
regime of large momentum transfer to the nucleus (Q2) described by deeply inelastic scattering, as well as
small Q2 kinematics described by the exchanged vector mediator fluctuating into a quark-antiquark pair
whose interaction with the nucleus is described by a saturation model. We find that the improved
description of the lowQ2 scattering leads to important corrections, resulting in more robust constraints in a
regime where a description entirely in terms of deeply inelastic scattering cannot be trusted.
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I. INTRODUCTION AND MOTIVATION

There is compelling evidence that most of the mass in the
Universe is in the form of nonbaryonic dark particles. And
yet, the identity of this dark matter (DM) remains elusive.
Among the many proposed candidates, weakly-interacting
massive particles (WIMPs) are the most popular, due to the
fact that their abundance in the Universe can be explained
by virtue of their being thermal relics provided they have
weak scale masses and couplings [1].
One possibility is that the dark matter particles do not

interact with ordinary matter strictly by the weak force.
Rather, they may be able to exchange particles that interact
with quarks or gluons. In this case, the relevant couplings
would have to be small. Such particles could potentially be
discovered by any of three methods. First, dark matter
particles in locations in our galaxy where they are especially
abundant could annihilate to form baryonic matter and,
eventually, photons that might be detected (indirect detec-
tion). Second, dark matter particles in the halo of our galaxy
might interact with nuclei in a detector on earth and this
interaction might be observable (direct detection). Third,
dark matter particles might be created in hadron collisons at
an accelerator (accelerator production). If this happens often
enough at a colliding beam accelerator such as the Large
Hadron Collider, one might discover these events by look-
ing, for example, for a missing energy signal. Alternatively,
one might create dark matter particles in hadron collisions
with nuclei in a fixed target and detect them through their
interactions with nuclei in a suitable detector.

Currently, the best constraints on dark particles interact-
ing with quarks come from a mixture of searches for direct
detection and accelerator production. In a direct detection
experiment, a particle χ with mass mχ and velocity vχ
interacts with a nucleus in the detector and one looks for the
nuclear recoil, where the typical magnitude of vχ ≃ 10−3 is
determined by the gravitational potential of the Galaxy. If
mχ is not large enough, the momentum mχvχ will not be
large enough to create an observable nuclear recoil [2–5].
For this reason, the current generation of direct detection
experiments have not been sensitive to dark matter particles
with mχ ≲ 5 GeV. However, these limits may improve in
experiments using specialized detection techniques (e.g.
based on measurements of ionization yield) [6,7]. As a
result, the best bounds on hadronic interactions for such
light dark matter particles currently come from accelerator
production at colliders [8–18], particularly for the case in
which the particles mediating these interactions are heavy
compared to the momentum transfer of the production
process.
Of special interest are models in which the dark sector

particles that mediate the interactions between the χ and
standard model particles are not heavy but rather light, in
some cases even lighter than the χ particles. This is the
secluded scenario of Refs. [19,20]. If the dark matter
particles χ are themselves light enough so that they escape
from direct detection experiments, a promising way to look
for them is at fixed target experiments [20,21] where a
beam of protons strike a target to produce a beam of χ
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particles which are sufficiently weakly interacting so as to
pass through shielding (as do neutrinos) where they can
eventually be detected via their rare scattering with the
nuclei comprising a detector. The advantage of a fixed
target experiment over a colliding beam experiment is the
higher luminosity that a fixed target experiment can offer, a
key factor when searching for extremely rare production
processes. In particular, we focus on the Fermilab beam
dump experiment E613, which utilized a 400 GeV incom-
ing proton beam on a tungsten target. Future high energy
beam dump experiments could potentially extend the reach
of E613 [22].
We employ a very simple model for the dark sector of the

theory consisting of a single Dirac fermion dark matter
particle χ and a light vector particle V, which couples to
both χ particles as well as quarks. We refer to V as the dark
vector boson. The relevant interactions are

LI ¼ Vμ

�
gqq̄v

X
q

q̄ γμqþ gχχ̄vχ̄γμχ

�
: ð1Þ

This framework is similar to a “dark photon” model, in
which V picks up interactions to the standard model
through kinetic mixing with hypercharge [23], but differs
in that it has universal charges for the quarks and is agnostic
concerning the coupling to leptons. We discuss the dark
photon case in more detail below, but it is worth noting here
that for the regions of parameter space of interest to us,
1 MeV < mχ < 10 GeV and mv ∼ 1 MeV, there are much
stronger constraints on a dark photon mediator from
experiments with electrons on fixed targets [24,25] than
on models interacting only with quarks [26]. Thus one
might consider the interaction (1) in a leptophobic model in
which the light vector particles do not couple to leptons.
The leptophobic model is not really intended to be taken as
a realistic model for the dark sector, but is a convenient
framework to explore the degree to which nonperturbative
QCD plays a role in describing how χ particles scatter off of
the nuclei in a detector. The high energy of the χ particles
produced by E613’s 400 GeV beam demands this more
detailed treatment of scattering than is necessary for the low
energy neutrino factories discussed in the context of a
similar model in [27–29].
We will frame the discussion in terms of a dark matter

search at E613 using the simple model of Eq. (1). In Sec. II
we describe the production of dark particles at proton fixed
target experiments. In Sec. III, we calculate the rescattering
rate of produced χs in the detector, using both a deeply
inelastic scattering (DIS) approach, detailed in Sec. IV, and
a parton saturation approach, detailed in Sec. V. We
examine the connection between the two approaches in
Sec. VI. In Sec. VII, we use the results of experiment
E613 to place limits on the couplings in Eq. (1) and in a
closely related “minicharge” model. Finally, we present

conclusions in Sec. VIII. Details of the kinematics are
provided in an Appendix.

II. PRODUCTION OF DARKMATTER PARTICLES

When beam protons strike the tungsten target in experi-
ment E613, they can produce χχ̄ pairs through the diagram
shown in Fig. 1. We demand that one or both of the χ
particles have a high energy in the lab frame. Then this is a
hard process that can be reliably calculated in lowest order
perturbation theory, taking the tungsten nucleus to consist
of Z ¼ 74 protons and A − Z ≈ 110 neutrons, treated as
noninteracting. The interactions of Eq. (1) are implemented
in MADGRAPH 5 [30] with the help of FEYNRULES [31].
The inclusive cross sections for the process

pp → χ̄χ þ X ð2Þ

for a proton of energy EB incident upon a proton at rest is
simulated at the parton level in the Monte Carlo generator.
In order to convert this into the number of χs or χ̄s produced
with energy E and angle θ, we write [approximating the
cross section from neutrons in the nucleus as being
identical to the cross sections from protons, as is approx-
imately true in our model (1)]

dN
dEdθ

¼ A
dσðpp → χχ̄Þ

dEdθ
LTnTPOT; ð3Þ

multiplying by the length of the target LT , the density of
tungsten nuclei inside it, nT , and the number of protons
incident on the target corresponding to the data set, POT.
Here the cross section is the cross section to produce either
a χ or a χ̄.
The number of χs that actually make it to a detector

further depends on the angular acceptance of the detector.
The E613 detector geometry is somewhat complicated in
this regard. The detector face was 3 m × 1.5 m, with the
beam offset along the horizontal axis by 0.75 m. To be
conservative, we assume χs must be incident within the
0.75 m radius circle centered on the beam axis, though in
practice there was a larger instrumented region which could
be capable of detecting additional χs with larger production
angles. The produced χs are thus incident on the detector
provided their production angle is less than,

FIG. 1 (color online). Feynman diagram for direct production
of χ particles from pA collisions.
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θmax ¼
0.75 m
55.8 m

¼ 0.0134: ð4Þ

The number of χs per unit energy incident on the detector is
then1

dN
dE

¼
Z

θmax

0

dθ
dN
dEdθ

: ð5Þ

In Fig. 2, we show a plot of the calculated dN=dE divided
by g2qq̄vg

2
χχ̄v.

III. STRUCTURE FUNCTIONS FOR DARK
MATTER SCATTERING IN THE DETECTOR

The detector is made of lead plus liquid scintillator.
When a χ particle enters the detector with energy E, it
can scatter from a lead nucleus. In order for the scattering
to be detected, we demand that the scattering transfer at
least an amount of energy Ecut to the nucleus. We take
Ecut ¼ 20 GeV, corresponding to the minimum energy
demanded by the detector to register a jet [32,33]. Thus
the expected number of events is proportional to the
convolution of dN=dE from Eq. (5) with the cross section
σðE;EcutÞ for a χ particle to deposit energy greater than Ecut
in the nucleus.
How should we calculate σðE;EcutÞ? Our process is quite

analogous to deeply inelastic lepton scattering. We can take
advantage of that. There is a standard analysis that allows
us to write the cross section for χ scattering from the
nucleus via vector boson exchange in terms of two structure
functions,FT and FL. In this section, we apply this standard

analysis to χ scattering, using variables that are convenient
for our present purposes. Although this analysis substan-
tially simplifies the problem, it does not tell us what the
structure functions FT and FL are. We will examine two
rather different models for the structure functions in the
following two sections.
The χ particle exchanges a virtual dark vector boson with

the nucleus, as depicted in Fig. 3. The χ particle has
momentum pχ before the scattering and momentum p0

χ

after the scattering. The dark vector boson carries spacelike
momentum q ¼ pχ − p0

χ . One defines Q2 ¼ −q2 so that
Q2 > 0. We define ν to be the energy of the vector boson in
the nucleus rest frame. Thus the cut on the energy delivered
to the nucleus is a cut ν > Ecut. We let P be the momentum
of the nucleus before the scattering and M be its mass.
Normally, ðPþ qÞ2 > M2, so that the scattering breaks up
the nucleus. We define the Bjorken scaling variable xbj by

xbj ¼
Q2

2Mν
: ð6Þ

We use the mass M of the nucleus here. If we were to
consider the nucleus as consisting of A independent
nucleons, then we might instead use Axbj ¼ Q2=ð2mpνÞ.
Using lowest order perturbation theory in the interactions

of the vector boson and using Lorentz invariance, parity
invariance, and current conservation for the strong inter-
actions, the differential cross section has the form familiar
from deeply inelastic lepton scattering:

dσ ¼ 1

4M½E2 −m2
χ �1=2

ð2πÞ−3d4p0
χδðp0

χ
2 −m2

χÞ

×
g2χχ̄vL

μν4πg2qq̄vWμν

ðq2 −m2
vÞ2

; ð7Þ
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FIG. 2 (color online). Typical distribution of χ particles as a
function of energy, dNdE, divided by g2qq̄vg

2
χχ̄v. The vertical scale is

logarithmic. We show the distribution of all produced particles χ
and χ̄ and the distribution of particles produced at angles that will
result in their impacting the target. Many of the lowest energy
dark particles are produced at wide angles and miss the detector.

FIG. 3 (color online). Classic picture of deeply inelastic
scattering from a lead nucleus, with the exchanged vector
boson replaced by a massive dark vector boson that carries
momentum q and interacts with a quark from the nucleus carrying
momentum pq.

1Some dark matter particles can be lost on their way to
the detector because they scatter in the rock that lies between the
production point and the detector or in the iron shielding of the
detector. We discuss this effect in the calculations of Sec. VII.
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where Lμν is

Lμν ¼ 4pμ
χpν

χ − 2ðpμ
χqν þ qμpν

χÞ þ q2gμν ð8Þ

and Wμν is the hadronic matrix element of the quark
currents to which the vector particle couples, not including
the coupling g2qq̄v but including a conventional factor
1=ð4πÞ,

Wμν ¼
1

4π

X
X

hPjJμð0ÞjXihXjJνð0ÞjPið2πÞ4δðPþ q− pXÞ:

ð9Þ

With the use of Eq. (A19) in Appendix A, this is

dσ ¼ g2χχ̄vg
2
qq̄v

16πM
dνdQ2

E2 −m2
χ

LμνWμν

ðQ2 þm2
vÞ2

: ð10Þ

We use ν and Q2 as integration variables instead of the
components of p0

χ . The kinematics impose limits on ν and
Q2, which we derive in Appendix A. Defining

μ2ðνÞ ¼ m2
χν

2

½EðE − νÞ −m2
χ � þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
½EðE − νÞ −m2

χ �2 −m2
χν

2
q

ð11Þ

from Eq. (A13), the limits are [Eqs. (A11), (A17), and
(A18)]

Ecut < ν < E −mχ ;

2μ2ðνÞ < Q2 < 4½EðE − νÞ −m2
χ � − 2μ2ðνÞ;

Q2 < 2Mν: ð12Þ

Now we can write Wμν in terms of standard structure
functions,

Wμν ¼ Cμν
T FTðxbj; Q2Þ þ Cμν

L FLðxbj; Q2Þ; ð13Þ

where

Cμν
T ¼ −gμν þ qμqν

q2
þ 2xbj
P · qþ 2xbjM2

�
Pμ −

P · q
q2

qμ
�

×

�
Pν −

P · q
q2

qν
�
;

Cμν
L ¼ 1

P · qþ 2xbjM2

�
Pμ −

P · q
q2

qμ
��

Pν −
P · q
q2

qν
�
:

ð14Þ

Notice that Cμν
T qν ¼ Cμν

L qν ¼ 0 and that Cμν
T aν ¼ 0 for any

vector a in the P-q plane while Cμν
L aν ¼ 0 for any vector

orthogonal to P and q. Thus CT corresponds to the

exchange of transversely polarized virtual vector bosons
while CL corresponds to the exchange of longitudinally
polarized virtual vector bosons. The structure functions FT
and FL are related to the standard structure functions F1

and F2 by FT¼F1 and FL¼ð1þ2xbjM2=P·qÞF2−2xbjF1.
We can thus write the cross section in terms of structure

functions as

dσ ¼ g2χχvg2qqv
16πM

dνdQ2

E2 −m2
χ

1

ðQ2 þm2
vÞ2

× ½Cμν
T LμνFTðxbj; Q2Þ þ Cμν

L LμνFLðxbj; Q2Þ�: ð15Þ
One finds

Cμν
T Lμν ¼

Q2ð2E − νÞ2
ν2 þQ2

þQ2 − 4m2
χ ;

Cμν
L Lμν ¼ Mν

4EðE − νÞ −Q2

ν2 þQ2
: ð16Þ

Thus

dσ ¼ g2χχvg2qqv
16π

dνdQ2

E2 −m2
χ

ν

ðQ2 þm2
vÞ2

×

��ð2E − νÞ2
ν2 þQ2

þQ2 − 4m2
χ

Q2

�
2xbjFTðxbj; Q2Þ

þ 4EðE − νÞ −Q2

ν2 þQ2
FLðxbj; Q2Þ

�
: ð17Þ

The cross section that we want, σðE;EcutÞ, is then this dσ
integrated over ν > Ecut, taking into account the kinematic
constraints (12). This result is exact within the approxi-
mation of considering single vector boson exchange, but, of
course, we need to be able to calculate FT and FL. We
explore this in the following two sections.

IV. DIS MODEL

One way is to approach this as deeply inelastic scatter-
ing, as depicted in Fig. 3. The χ exchanges a virtual V that
is absorbed by a quark in the nucleus. IfQ2 is large, there is
a short distance interaction in which the vector boson
interacts with a quark or gluon in the nucleus. There are
also long range interactions, both in the initial state and in
the final state. For an inclusive cross section like that
considered here, the final state interactions do not affect the
cross section. The initial state interactions do affect the
cross section, but they can be factored into parton distri-
bution functions. The short distance interaction can be
calculated perturbatively. Thus FT and FL are written as a
convolution of parton distribution functions with the
partonic structure functions F̂T and F̂L.
We will work at lowest order in perturbation theory for

F̂T and F̂L. At lowest order, the contributions from the
gluon parton distribution function vanish for both F̂L ¼ 0
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and F̂T. For quarks at lowest order, F̂L ¼ 0 and F̂T is
simply a delta function that sets the quark momentum
fraction equal to xbj. (There would be a squared charge,
g2qq̄v, but we have already factored that out of the hadronic
matrix element.) That is, FL ¼ 0 and

FT ¼ 1

2xbj

X
q

xbjfq=Aðxbj; Q2Þ: ð18Þ

Here we sum over flavors of quarks and antiquarks, q ¼
u; ū; d; d̄; s; s̄ under our assumption that the mediator
particle v couples equally to all the flavors. (However,
we have omitted charm and bottom quarks here since the
corresponding parton distribution functions are small.) We
have multiplied and divided by xbj so that one factor is
xbjfq=Aðxbj; Q2Þ, which is relatively insensitive to xbj at
small xbj. We note that the parton distributions here are the
distributions in the nucleus A. The distribution of partons in
a nucleus may be related approximately to the distribution
of partons in a proton. For instance, if A is a nucleus with
baryon number A and charge Z then

fu=Aðxbj; Q2Þdxbj
≈ ½Zfu=pðAxbj; Q2Þ þ ðA − ZÞfd=pðAxbj; Q2Þ�dðAxbjÞ:

ð19Þ
That is

fu=Aðxbj; Q2Þ ≈ AZfu=pðAxbj; Q2Þ
þ AðA − ZÞfd=pðAxbj; Q2Þ: ð20Þ

Note that there are two factors of A or Z here. However, we
use parton distribution functions for the nucleus provided at
leading order by Hirai-Kumano-Nagai (HKNlo) [34],
rather than this approximate formula.
Thus in the DIS model we have

dσ ¼ g2χχvg2qqv
16π

dνdQ2

E2 −m2
χ

ν

ðQ2 þm2
vÞ2

×

�ð2E − νÞ2
ν2 þQ2

þQ2 − 4m2
χ

Q2

�X
q

xbjfq=Aðxbj; Q2Þ:

ð21Þ

This approximation for the cross section should work well
as long asQ2 is large, say larger than a few GeV2. However,
our numerical studies indicate that a good part of the cross
section can come from the integration region in which
Q2 < 1 GeV2. For that region, we need another model.

V. SATURATION MODEL

There is another model available that should be useful for
smaller values ofQ2 and large values of ν. In this model, we

view the interaction in the rest frame of the nucleus, as
illustrated in Fig. 4. The dark vector boson, carrying a large
momentum, splits into a quark-antiquark pair. Each of the
quark and antiquark also carry a large momentum as they
move towards the nucleus. Thus they form a color dipole
that can interact with the nucleus. The dipole interacts with
the nucleus via gluon exchange, as illustrated in Fig. 5. We
will model this interaction.
To motivate the model, it is helpful to examine the

kinematics of the interaction in a little detail. We work in
the rest frame of the nucleus and align the negative z-axis
with the momentum ~q of the dark vector boson. Then,
defining q� ¼ ðq0 � q3Þ= ffiffiffi

2
p

, we have q− ≈
ffiffiffi
2

p
ν and

qþ ≈ −2−3=2Q2=ν. Thus in this frame q− is large and qþ
is small. In the Feynman diagram in Fig. 5, the dark vector
boson couples to a quark propagator with momentum pq,
as in Fig. 3. We can estimate that p−

q is large while pþ
q is

small. Imagine writing the quark propagator in coordinate
space, with the quark traveling through a space-time
separation Δx between the point where it interacts with
a gluon from the nucleus and the point where it couples
to the dark vector boson. Since pq · Δx ¼ pþ

qΔx−þ
p−
qΔxþ þ p⊥

q · Δx⊥, we conclude that typically Δx− is
large while Δxþ is small. That is, the quark moves a long
way in the minus direction. In fact, an estimate for pþ

q is
pþ
q ≈ 2−3=2Q2=ν, so that an estimate for a typical range in

the minus direction is Δx− ¼ 25=2πν=Q2. Assuming that
the first interaction of the quark with a gluon is inside the
nucleus, this accounting puts the interaction of the quark
with the dark vector boson well outside the nucleus when ν
is large and Q2 is not large.

FIG. 4 (color online). Dipole picture for a χ particle scattering
from a nucleus.

FIG. 5 (color online). The dipole created by the dark vector
boson interacts with the nucleus via gluon exchange.
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This physical picture, depicted in Fig. 4, seems at first to
be completely different from the DIS picture of the
previous section. Yet, if ν is very large and also Q2 is
large, both pictures can be correct and we can arrive at two
ways of approximating the same cross section. The differ-
ence in the pictures arises from the difference of reference
frames. The DIS picture is most easily derived in a
reference frame in which the nucleus has a large momen-
tum along the positive z-axis. The dipole picture of this
cross section is most easily derived in the rest frame of the
nucleus, with the dark vector boson having a large
momentum along the negative z-axis.
We now need a model for FT and FL in the picture in

which the dark vector boson turns into a quark-antiquark
pair. The model, known as the saturation model, comes
from the work of Nikolaev and Zakharov [35], Golec-
Biernat andWüsthoff [36,37], andMueller [38]. There is an
extensive literature on the subject [39–49]. We will follow
mostly Ref. [48] and will incorporate some refinements
introduced by Bartels, Golec-Biernat, and Kowalski [49].
When Q2 is small, the longitudinal structure function FL

is small compared to 2xbjFT since an on-shell massless
vector boson does not have longitudinal polarizations. (For
an analysis of FL in the saturation picture, see Ref. [50].)
Thus we simply approximate FL by zero in the saturation
model, as we did in the DIS model. This leaves FT. The
result [48] in the saturation model for FT is

2xbjFT ¼ 1

4π

X
f

24Q2

ð2πÞ3
Z

db

×
Z

dΔ
G
	 ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

Q2 þ Λ2
ρ

q
Δ



Δ2
Ξðb;ΔÞ: ð22Þ

Here one sums over quark flavors f ¼ fu; d; sg and the
parameter Λρ is discussed below. We integrate over a two
dimensional vector b and a two dimensional vector Δ. The
picture as outlined above is that the dark vector boson splits
into a q-q̄ pair, both with a large momentum in the direction
of the dark vector boson momentum q. When this q-q̄ pair
reaches the nucleus, the quark is at transverse position bþ
Δ=2 and the antiquark is a position b − Δ=2.
The function G

	 ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Q2 þ Λ2

ρ

q
Δ


=Δ2 represents the

squared wave function for the q-q̄ pair, integrated over
the fraction α of the longitudinal momentum of the pair that
is carried by the quark. The function GðzÞ is

GðzÞ ¼
Z

1

0

dα½1 − 2αð1 − αÞ�

×
h ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

αð1 − αÞ
p

zK1

	 ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
αð1 − αÞ

p
z

i

2
: ð23Þ

Here K1ðxÞ is the modified Bessel function of order 1,
equal to −dK0ðxÞ=dx. The function GðzÞ equals 2=3 for

z ¼ 0. It behaves like 8=½3z2� for z → ∞. Thus a rough
approximation to it is

GðzÞ ≈ 2

3½1þ z2=4� : ð24Þ

This approximation is good to about 15% for all values of z.

We take the argument of G to be z ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Q2 þ Λ2

ρ

q
Δ. The

perturbative calculation gives just QΔ. That means that the
spatial extent of the wave function is of order Δ ∼ 1=Q.
That should be right for largeQ. But for smallQ, we expect
that the q and q̄ exchange gluons so as to bind themselves
into one or more mesons—predominantly a single ρmeson.
The ρ meson has a size, which we can denote by 1=Λρ. To
represent this nonperturbative effect, it seems sensible to

replace QΔ by
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Q2 þ Λ2

ρ

q
Δ. For the inverse radius of

a ρ meson, an approximate first guess might be Λρ≈
1=ð1 fmÞ ≈ 200 MeV.
The function Ξðb;ΔÞ represents the probability that the

q-q̄ pair scatters from hadron A. If Δ is not small, then this
probability is approximately 1 if either the quark or the
antiquark hits hadron A. But if Δ is very small, the color
dipole moment of the q-q̄ pair is small and the pair can pass
right through hadron A without scattering. (This effect is
known as color transparency). This suggests the following
model (from Mueller [38] and Golec-Biernat and Wüsthoff
[36,37]). We write2

Ξðb;ΔÞ ¼ 1 − e−Δ
2Q2

s ðbÞ=4; ð25Þ

where Q2
s is the saturation scale. Evidently if Δ2 ≪ 1=Q2

s
then Ξðb;ΔÞ ∝ Δ2 and the scattering probability tends to
zero as Δ2 decreases. There is no scattering because the
gluon field in hadron A does not see the q-q̄ pair.
Before we go on to talk about the saturation scaleQ2

s ðbÞ,
we should discuss Eq. (25) and its connection to unitarity
and to classical optics. Define Tðb;ΔÞ by Ξðb;ΔÞ ¼
1 − Tðb;ΔÞ. We think of Ξ as the probability for the
dipole to be absorbed by the nucleus and we think of T as
the analogue of the transmission coefficient in optics [48].
Let RA be the radius of the nucleus. We can then determine
the necessary limiting properties of the function Tðb;ΔÞ.
Here we follow Ref. [48], which contains more details.

(i) If the dipole misses the nucleus, i.e. jbj > RAþ
Δ=2, then Ξðb;ΔÞ must be zero, therefore
Tðb;ΔÞ ¼ 1.

(ii) If the quark and the antiquark that make up the
dipole are separated from each other by zero dis-
tance then, since it is a color singlet object, it simply

2Golec-Biernat and Wüsthoff write this in the form
2
R
dbΞðb;ΔÞ ¼ σ0½1 − expð−Δ2=ð2R2

0Þ�, which is approxi-
mately equivalent when σ0 and R0 are suitably adjusted.
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passes through the nucleus. Therefore, Tðb;ΔÞ ¼ 1
for Δ ¼ 0.

(iii) For small Δ, the probability for the dipole to interact
with the nucleus should be proportional to the square
of the color dipole moment of the dipole:
Tðb;ΔÞ ∝ Δ2. We need Δ2 here because in the
cut Feynman diagram for the process the dipole
must exchange at least two gluons with the nucleus.

(iv) For smallΔ, we can calculate the coefficient ofΔ2 in
T using QCD perturbation theory.

(v) Tðb;ΔÞ ≈ 0 for large dipoles (large Δ), when
jbj < RA. That is, a large, strongly interacting dipole
cannot pass through the nucleus leaving it intact.

To calculate the coefficient of Δ2 in T, we recognize that
the probability that the gluon field does see the q-q̄ pair
depends not only on how small the color dipole moment is
but also on how strong the gluon field is. Thus it is not
surprising that the saturation scale Q2

s ðbÞ in Eq. (25) is
proportional to the density of gluons in the nucleus:

Q2
s ðbÞ ¼

2π2αsðμ2Þ
3

xGðx; μ2ÞϕðbÞ: ð26Þ

Here ϕðbÞ is modeled as a geometrical quantity that tells
how the gluons are spread in the transverse separation from
the center of the nucleus:

ϕðbÞ ¼ 3

2πR3
A

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
R2
A − b2

q
Θðb2 < R2

AÞ: ð27Þ

The function ϕðbÞ is normalized to
R
dbϕðbÞ ¼ 1. The

function Gðx; μ2Þ is the gluon distribution function in the
nucleus. We again employ the HKNlo distribution for lead,
which is defined such that the total gluon distribution for
the nucleus is given byGðx; μ2Þ ¼ AGHKNðAxbj; μ2Þ, which
we insert in place of Gðx; μ2Þ in Eq. (26).
We need to set μ2 in αsðμ2Þ and xGðx; μ2Þ and we need to

set x in xGðx; μ2Þ. We follow the form of the choices of
Bartels, Golec-Biernat, and Kowalski [49]. For the scale μ2,
we take

μ2 ¼ C
Δ2

þ μ20: ð28Þ

The choice of a constant divided by Δ2 is sensible in the
perturbative regime of small Δ2. However, for large Δ2 we
do not want μ2 to be arbitrarily small. Thus we add a
constant, μ20 to C=Δ2. We find a reasonable fit for C ¼ 6.00
and μ20 ¼ 2.0 GeV2. For the momentum fraction variable in
the gluon distribution, we take

x ¼ Q2 þ 4m2
q

2Mν
: ð29Þ

This is xbj when Q2 is not too small. But for very small Q2,
we do not want x to be arbitrarily small. Thus we add a

small mass term, 4m2
q, to Q2. This is in the same spirit as

our adjustment of the argument of GðzÞ in Eq. (22).
Following Ref. [49], we take mq ¼ 140 MeV.
We see that there is some QCD theory and some

modeling in the net formula for Ξ. The resulting function
Ξðb;ΔÞ is illustrated in Fig. 6. We can perhaps appreciate
from the figure that the model dependence is less than one
might have thought. For jΔj > R=10, Ξðb;ΔÞ is very close
to 1 for jbj < R. When we get to jbj ≈ R, Ξ drops very
quickly to zero. The value Ξ ≈ 1 is nonperturbative, but it
is not really model dependent because 1 is the largest that
Ξ could be. For jΔj < R=10, the behavior of Ξðb;ΔÞ is not
so trivial. However, this region is perturbative, so we have
some control over the theory. In part, the shape is
determined by the function ϕðbÞ from Eq. (27). This
part of the formula for Ξ is simply a model for the
distribution of gluons. The model is that the density of
gluons is uniform throughout the nucleus. Thus there is
some model dependence, but the model dependence is not
too large.
There is more model dependence in the function

G
	 ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

Q2 þ Λ2
ρ

q
Δ


=Δ2 in Eq. (23). This function is calcu-

lated using lowest order perturbation theory, so it should be
accurate for large Q2 and, correspondingly, small Δ. For
small Q2 it simply represents a plausible model.

VI. CONNECTION BETWEEN THE DIS AND
SATURATION MODELS

In Eq. (22), we can try to take the large Q2 limit of xbjFT

by taking the largeQ2 limit under the integration over Δ. In

3. 2. 1. 0
3.

2.

1.

0

Log10 b R

L
og

10
R

b,

0.1

0.3

0.5

0.7

0.9

FIG. 6 (color online). The function Ξðb;ΔÞ as a function of
jbj=R and jΔj=R where R is the radius of the lead nucleus. We
calculate Ξðb;ΔÞ using Eqs. (25), (26), and (27) with parameters
given in Eqs. (28) and (29) and using HKNlo parton distributions
for the distribution of gluons in a lead nucleus, with x ¼ 10−4

and Q2 ¼ 1 GeV2.
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this limit, the argument,
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Q2 þ Λ2

ρ

q
Δ, of the function G

becomes just QΔ. Then for large QΔ we have
GðQΔÞ ∼ 8=½3Q2Δ2�, as we noted earlier. We need to
enforce that QΔ is large inside the integration over Δ and
we do that in a crude way by inserting a factor ΘðΔ >
a=QÞ for some constant a. This gives the approximation

2xbjFT ≈
X
f

2

π4

Z
db

Z
dΔ

ΘðΔ > a=QÞ
Δ4

Ξðb;ΔÞ: ð30Þ

This matches with our DIS formula Eq. (18) if we identify

xfq=Aðx;Q2Þ ¼ 1

π4

Z
db

Z
dΔ

ΘðΔ > a=QÞ
Δ4

Ξðb;ΔÞ:
ð31Þ

There is a factor of 2 in this formula that results from
summing over flavors f in Eq. (30) and over flavors
and antiflavors in Eq. (18). The right-hand side of this
equation has some x dependence because the gluon dis-
tribution that appears in the exponent in Ξ depends on x. It
is independent of the choice of quark flavor or antifla-
vor q ∈ fu; ū; d; d̄; s; s̄g.
There is a more direct approach to this, which was

obtained in Ref. [48]. One starts directly with the operator
definition of the parton distribution functions, fq=Aðx; μ2Þ,
and analyzes the operator matrix element using the dipole
picture. The operator matrix element requires ultraviolet
renormalization, to eliminate a divergence from small Δ in
the integration over Δ. To match the standard MS definition
of parton distribution functions, one should use dimen-
sional regularization and an appropriate pole subtraction.
However, one can obtain the same result at one loop order
with a simple cut. The result of this analysis is Eq. (31) with

a ¼ 2e1=6−γE ≈ 1.32657: ð32Þ
Equation (31) is based on lowest order perturbation

theory for the wave function of the quark dipole, so one
expects that it should begin to be accurate for Q2 large
enough so that perturbation theory applies. However the
formula does not properly account for Dokshitzer-Gribov-
Lipatov-Altarelli-Parisi (DGLAP) evolution, so the result
should begin to fail for very largeQ2. In Fig. 7, we test how
well this relationship works by plotting Axfq=AðAx;Q2Þ
versus log10ðAxÞ for a few values of Q2. We see that the
approximation in Eq. (31) is only moderately successful at
Q2 ¼ 2 GeV2, but that it works quite well for
Q2 ¼ 10 GeV2. By Q2 ¼ 50 GeV2, it is still working quite
well but is beginning to fail.

VII. APPLICATION TO SCATTERING
OF DARK MATTER

We have studied the scattering of dark Dirac fermions
through a vector mediated interaction with quarks. This
amounts to a neutrinolike neutral current event, with the
added theoretical interest of having no heavy electroweak
boson to regulate the momentum transfer of the interaction.
In this section we shall apply this formalism to a model of
dark matter.
Continuing from Sec. II, with the scattering cross

sections now in hand, it is straightforward to calculate
the number of events expected in the detector. We first
calculate the mean free path of the propagating dark
particle,

λ ¼ 1

ρAσðχN → χNÞ ; ð33Þ

where ρA is the number density of nuclei and σðχN → χNÞ
is the nuclear scattering cross section. The mean free path
enters into the rescattering probability,

P ¼
Z

L

0

dx
1

λ
e−

x
λ ¼ 1 − e−

L
λ : ð34Þ

The final number of events expected in the detector is

Ndet ¼
Z

dEð1 − PshieldingðEÞÞ × PdetectorðEÞ ×
dN
dE

;

ð35Þ
where dN=dE is defined in Eq. (5). For scattering in the
shielded region, composed of ∼15 m of iron, we impose an
arbitrary 1 GeV cut on the required energy transfer to
prevent divergence of the deep inelastic cross section. We
note that in practice, for the small values of the couplings
that we can constrain, the probability of rescattering in
shielding is extremely small, such that practically no
scattering occurs. Further, since the probability of any
given dark particle scattering is so low, one does not need to
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FIG. 7 (color online). The parton distribution function
fq=Aðx;Q2Þ for ū quarks in a uranium nucleus according to
the HKNlo parton distributions [34] used in this paper compared
to the same distribution in the saturation model, Eq. (31). We plot
Axfq=AðAx;Q2Þ versus log10ðAxÞ for Q2 ¼ 2 GeV2, 10 GeV2,
and 50 GeV2.
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account for the degradation of the beam along the length of
the detector, and can approximate the scattering probability
as simply P ∼ L=λ. A fully realistic treatment would
include multiple rescatterings, including low energy scat-
ters that degrade the energy of incoming particles. This is
not necessary for our purposes, which are adequately
modeled by a single scattering event per dark particle.
Using Eq. (35) and data provided by the experimental

collaboration [32,33] (and interpreted as below in [51]), we
may constrain our model. The E613 experiment delivered
1.8 × 1017 protons on target (POT), and estimate that at
most 100 detected events per 1017 POT represent muonless
neutral current events at 90% C.L. Thus, we exclude
couplings where the number of expected detector
events, Nχ > 180.
The result of this analysis as applied to the model (1) is

shown in Fig. 8, with the mediator mass set to 1 MeV and
the mediator–dark particle coupling fixed to unity. The two
colored regions in the plot correspond to the scattering
models described in Secs. IVand V. The “DIS only” region
cuts off integration of the cross section for Q2 < 1 GeV2,
applying the scattering picture of Sec. IV. The region
labeled “With saturation model” applies the same formal-
ism, but additionally includes the dipole scattering mecha-
nism described in Sec. V for the Q2 < 1 GeV2 region,
resulting in a substantial improvement of the constraint.
Also plotted is a mapping of the constraint on a leptophobic
U(1) gauge boson, which couples to baryon number.
Several constraints on such a model are described in
[26,52]. Figure 8 shows the strongest of these that is
independent of the mediator mass (so long as it is sub-
GeV), which arises from the contribution of the new boson
to the decay width of Υ mesons into hadronic final states.
In fact, for the chosen mediator mass at exactly 1 MeV,

there exists a very strong constraint from low energy n-Pb
scattering [52,53]. Throughout this work, we have used
1 MeV as a stand in for “light.” Raising the mediator mass

to around 20 MeV does not affect the present results, but
does reinstate their novelty over constraints from n-Pb
scattering.
While we emphasize that this is a toy model, very similar

models are of considerable phenomenological interest,
and apt to be studied at existing fixed target facilities
[29]. It is also possible to search for light leptophobic dark
vector in a halo independent way with direct detection
experiments [54].
As another concrete example to demonstrate the impact

of our formalism, we consider a “minicharged” particle
scenario [55], which is realized as the limit in which the
mediator is a massless Uð1Þ vector boson which mixes
kinetically with hypercharge [23,55–58]. The dark sector
matter (the Dirac fermion) that is charged under the
additional U(1) interacts with the standard model only
through this mixing, which is parametrized via the mixing
angle, κ, in the gauge invariant Lagrangian term L ⊃
− κ

2
FμνXμν, where Fμν and Xμν are, respectively, the field

strength tensors of the SM and dark U(1) gauge groups.
One can diagonalize the kinetic term in the Lagrangian

with a field redefinition, the result of which is to induce
electromagnetic interactions with the dark particles, which
have an effective “minicharge,” ϵ ¼ κgh=e, where gh is the
hidden photon-dark fermion coupling and e is the electro-
magnetic coupling constant. Then the cross section for both
production and scattering scale with ϵ2. For our scenario
involving quarks, the appropriate quark charges must be
included in the cross section, such that the coupling of the
mediator to the nucleus is correctly modeled as proceeding
via mixing with the photon. The exclusion limits on the
minicharge ϵ are shown in Fig. 9. It is worth noting that the
constraint from the effective number of light particle
species, Neff , is strong but subject to astrophysical uncer-
tainties that make terrestrial collider based studies worth-
while. The constraints plotted are independent of the
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FIG. 8 (color online). Exclusion limits for the leptophobic
model described in the text, with gχχ̄v ¼ 1 and a mediator mass of
1 MeV. Also plotted is the region excluded by the study of Υ
decays from [26].
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FIG. 9 (color online). Exclusion limits for minicharged par-
ticles in the MeV to GeV mass regime, including the results of
this analysis. Other constraints are shown, arising from colliders
[60], a SLAC beam dump [61], the LHC [62], CMB [63,64] and
recent work on the number of light species, Neff [65].
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minicharged particles constituting a given fraction of the
relic density. If one specifies the fraction of the relic density
that minicharged particles compose, additional strong
limits may be placed by considering a daily modulation
signal at direct detection experiments [59].
In Fig. 10, we compare (only) the constraints on the

minicharge model previously derived from E613 [51] with
those derived in this work, in the plane of the minicharged
particle mass and ϵ. The results from our analysis using
only the deeply inelastic scattering regime are shown as the
red dashed line, whereas the inclusion of the low Q2 <
1 GeV2 regime via dipole scattering leads to the solid red
line. A large improvement in the strength of the bound from
the improved treatment of the low transfer scattering is
evident. The previous constraint [51] is shown as the
shaded region, and shows a marked transition in the
strength of the bound on ϵ by about an order of magnitude
as the particle mass crosses a few hundred MeV. This sharp
transition is the result of dark particle production through
meson decay, which switches off around 500 MeV, leaving
Drell-Yan production of the dark particles to dominate. We
have not included this production mechanism in our bound,
as it is model-dependent and tangential to our goal of an
improved description of the χ-nucleus scattering cross
section. A more appropriate comparison of the impact of
our improved computations is to the blue dashed curve,
which extrapolates the previous bound by extending the
Drell-Yan-only limit to lower masses. Of course, the actual
bound on the minicharged model at low mass would be
better represented by including the χ production from
meson decay together with our improved treatment of
the scattering, though this is beyond the scope of this work.
Clearly, fixed target experiments are a fertile ground for
testing this class of models.

VIII. CONCLUSIONS

We have investigated the detection of dark Dirac
fermions in the context of the E613 beam dump

experiment. The model employed gives rise to neutral
current scattering, but in the absence of a heavy electro-
weak gauge boson to mediate the interaction. We studied
the deep inelastic scattering in the detector in detail, and
introduced a model valid at the low Q2 values that become
important in the absence of a heavy mediator to regulate the
1=Q4 behavior of the cross section. Though this formalism
is valid in principle for any mediator mass, the importance
of the low-Q2 region diminishes in the presence of a heavy
mediator particle.
By including the effects of scattering at Q2 < 1 GeV2

with a well theoretically motivated dipole model, we
substantially improve upon constraints calculated using
parton-level deep inelastic scattering alone. This could be
especially relevant for new particle searches at future high
energy beam dump facilities, which would allow access to
regions of low Q2 and small Bjorken-x.
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APPENDIX: KINEMATICS

In this appendix, we present some of the details for the
cross section for scattering a dark spin 1=2 particle, χ, with
momentum pχ , from a hadron A with momentum P. The
hadron can be a nucleus. The dark particle has mass mχ

while the hadron has mass M. The dark particle mass may
be of order 1 GeV or it may be smaller. The dark particle
energy in the hadron rest frame, which we call E, is large
compared to 1 GeV. We will introduce two different models
for the scattering cross section.
In the hadron rest frame, we write the components of P

and pχ as

P ¼ ðM; 0; 0; 0Þ; ðA1Þ

pχ ¼ ðE; 0; 0; kÞ; ðA2Þ

where k ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
E2 −m2

χ

q
. The final state χ has 4-momentum
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FIG. 10 (color online). The minicharge constraints arising only
from the E613 experiment. See text for details.
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p0
χ ¼ ðE − ν; k0 sin θ cosϕ; k0 sin θ sinϕ; k0 cos θÞ; ðA3Þ

where

k0 ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðE − νÞ2 −m2

χ

q
: ðA4Þ

We suppose that the χ in the final state is not observed.
Thus we will integrate over p0

χ.
The momentum transfer is

q ¼ pχ − p0
χ ðA5Þ

and is characterized by the energy transfer ν,

q · P ¼ Mν; ðA6Þ

and by the invariant

Q2 ¼ −q2 ðA7Þ

with Q2 > 0. In terms of the final state χ momentum,

Q2 ¼ 2EðE − νÞ − 2kk0 cos θ − 2m2
χ : ðA8Þ

We define

xbj ¼
Q2

2Mν
: ðA9Þ

Note that xbj ≤ 1. Also note that when A is a nucleus of
baryon number A, one often defines a scaled xbj equal to
AQ2=ð2MνÞ. We do not do that here. However, we note that
the ultimate limit on xbj is xbj ≤ 1, but the practical limit
beyond which the cross section is very small is xbj ≤ 1=A.
We will integrate over Q2 and ν and will need the

integration limits. Begin with ν. We will impose a cut

ν > Ecut: ðA10Þ

That is, we wish to calculate the cross section for the
process when at least a certain amount of energy Ecut is
delivered to the hadron. Also Eq. (A4) and k02 > 0 gives
ν < E −mχ . Thus the integration range for ν is

Ecut < ν < E −mχ : ðA11Þ

Next, we need the limits on Q2 at fixed ν. Define a
function μ2ðνÞ by

kk0 ¼ EðE − νÞ − μ2ðνÞ −m2
χ : ðA12Þ

Then

μ2ðνÞ ¼ m2
χν

2

½EðE − νÞ −m2
χ � þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
½EðE − νÞ −m2

χ �2 −m2
χν

2
q :

ðA13Þ

Then Q2 has a simple form in terms of μ2ðνÞ,

Q2 ¼ 2½EðE − νÞ −m2
χ �½1 − cos θ� þ 2μ2ðνÞ cos θ: ðA14Þ

One boundary of the integration region is forward scatter-
ing, cos θ ¼ 1. On this boundary we have

Q2 ¼ 2μ2ðνÞ; cos θ ¼ 1: ðA15Þ

The other boundary of the integration region is at
cos θ ¼ −1. There, we have

Q2 ¼ 4½EðE − νÞ −m2
χ � − 2μ2ðνÞ; cos θ ¼ −1:

ðA16Þ

For small mχ , this is Q2 ≈ 4EðE − νÞ with small correc-
tions. Put together, the inequalities −1 < cos θ < 1 lead to

2μ2ðνÞ < Q2 < 4½EðE − νÞ −m2
χ � − 2μ2ðνÞ: ðA17Þ

There is a separate upper bound for Q2. The momentum
q is absorbed by the hadron, giving a final state with
momentum Pþ q. We need ðPþ qÞ2 > M2. This con-
dition gives xbj < 1 or

Q2 < 2Mν: ðA18Þ

Having found the integration limits, we translate the
integration over p0

χ into integration over ν and Q2 (inte-
grating over the azimuthal angle ϕ to give a factor 2π). We
obtain,

d4p0
χδðp0

χ
2 −m2

χÞ ¼
k02dk0

2E0 d cos θdϕ

¼ π

2
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
E2 −m2

χ

q dνdQ2: ðA19Þ

where E0 ¼ E − ν and k0 is given by Eq. (A4).
We will introduce two different models for the structure

functions, and in particular for FT. We will simply state the
results of these models. However, if we want to examine
the physics behind the models, it is convenient to use
choose our reference frame wisely. We note that FT and FL
depend only on q and P. Thus we should choose a frame
in which q and P are simple. We choose a frame in which
both q and P have no transverse components and in
which q has a positive 3-component. Additionally, we
now write momentum components in ðpþ; p−; pTÞ format
with p� ¼ ðp0 � p3Þ= ffiffiffi

2
p

. In our new frame,
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P ¼ ðM=
ffiffiffi
2

p
;M=

ffiffiffi
2

p
; 0Þ;

q ¼
�

1ffiffiffi
2

p ½νþ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ν2 þQ2

p
�;− 1ffiffiffi

2
p Q2

νþ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ν2 þQ2

p ; 0

�
: ðA20Þ

In the kinematic region important for this paper, Q2 ≪ ν2, so that

q ≈
� ffiffiffi

2
p

ν;−
Q2

2
ffiffiffi
2

p
ν
; 0

�
: ðA21Þ

Thus qþ ≫ q−.
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