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We review the current status of the minimal nonsupersymmetric SOð10Þ grand unified theory and
perform a detailed next-to-leading-order analysis of the gauge unification and proton lifetime constraints on
the part of its parameter space supporting a ZeV-scale color sextet scalar. This, together with a TeV-scale
color octet studied in detail in a preceding work, represents one of the two minimally fine-tuned settings
compatible with all the relevant consistency and phenomenology limits. Both these scenarios can be
extensively tested at the future megaton-scale proton-decay facilities. On top of that, the light octet solution
can be accessible in the TeV-scale collider searches.
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I. INTRODUCTION

With the advent of the new multikiloton-scale neutrino
experiments discussed intensively in the last years such as
Hyper-Kamiokande (HK) [1], LBNE [2] or LENA [3] there
is a good chance that a new type of beyond-Standard-Model
(BSM) signals will be revealed in the near future, possibly in
the next decade. In this respect, the recent decision of the
Japanese Science Council to list the HK proposal among the
top 27 ventures of the “Japanese Master Plan of Large
Projects” is clearly a great step towards these goals.
However, the—by many expected—CP violation in the

lepton sector associated with the so-called Dirac phase of the
leptonic mixing matrix is not the only new physics such a
machine can shed light on. Together with the number of
ongoing searches for the neutrinoless double beta decay
there is a good chance to get soon an answer to a yet more
fundamental question of whether the baryon and/or lepton
numbers, accidental global symmetries of the Standard
Model (SM) Lagrangian, are respected by the BSM physics.
The prominent signal of baryon number violation (BNV)

accessible, at least in principle, by these machines is the
hypothetical instability of protons. The current best limits on
proton lifetime from the Super-Kamiokande (SK) experi-
ment [4] reach, at 90% C.L., 8.2 × 1033 years in the pþ →
π0eþ channel and up to 2.3 × 1033 for pþ → Kþν; cf. [5].
Entering the megaton-scale range with the water-Cherenkov
technology of the HK (and the 30 kiloton ballpark with the
liquid argon time projection chambers at LBNE) makes it

possible to improve the current sensitivity by at least 1 order
of magnitude in (not only) these principal channels.
In a sharp contrast to the steady (though slow) progress

in experiment, on the theory side the proton instability
has never been addressed in full consistency at a better than
the leading-order (LO) accuracy level. Paradoxically, even
after several decades of continuous efforts the existing
proton lifetime estimates are still systematically plagued
by several-orders-of-magnitude uncertainties. Although the
main source of these errors—the large uncertainty in the
LO GUT-scale determination—can be constricted by focus-
ing on branching ratios rather than at the absolute proton
decay width, the best such approach can provide is just a
limited discrimination between wide classes of models with
similar flavor structure.
There seem to be several historical reasons why this

happened to be so. The initial studies of the gauge coupling
unification [6–8] suffered from the lack of reliable input
data which, in turn, hindered the determination of the GUT
scale with better than few-orders-of-magnitude precision.
The new data arriving in the 1980s from the CERN’s SPS
and Fermilab’s Tevatron (and later from the LEP) refuted
the original minimal SU(5) model [9] as unable to account
for the measured value of the weak mixing angle. This, in
turn, was reinterpreted as a hint for a TeV-scale supersym-
metry (SUSY) so the subsequent failure of the minimal
non-SUSY SOð10Þ GUT [10–12] due to its notorious
trouble with tachyonic instabilities was not acknowledged
too much; indeed, since about the mid 1980s there was
already the new SUSY GUT paradigm.
Unfortunately, as attractive as the low-energy SUSY idea

was in its early days, it was conceptually ruinous for any
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conclusive testability of unified models because, without
any solid information on the SUSY spectra, the proton
decay rate (dominated in SUSY by d ¼ 5 loop diagrams
including squarks, sleptons, gauginos and Higgsinos) was
incalculable. The salvation was expected from the LHC
which was generally assumed to find SUSY states in the
TeV domain. Thus, for the last twenty years the field was
in a slightly “schizophrenic” situation in which the uni-
fication idea was (in a rudimentary form) implemented in
most of the “big” theoretical endeavors like, for instance,
detailed SUSY phenomenology studies but, at the same
time, its testability was obscured by the very concept it was
supposed to reinforce.
These concerns became yet more acute in the last decade

when a strong tension among the rigid flavor structures of
the minimal renormalizable SUSY SUð5Þ and SOð10Þ
GUTs [13–17] and the new proton lifetime and neutrino
data was revealed. On top of that, there are no signs of
salvation emerging in the latest LHC SUSY searches and,
as a matter of fact, there is no reason to expect any
spectacular proliferation of SUSY states in the high-energy
phase of the LHC either.
This, all together, leads to the rather unsatisfactory

current picture where the typical errors quoted (sometimes
even not) in the existing proton lifetime studies stretch
easily up to 4 or 5 orders of magnitude. As good as it may
have been several decades ago this becomes a real issue
when the cost of the next-generation machines (capable of
boosting the sensitivity by “only” about a factor of 10)
becomes comparable to that of the most expensive particle
physics assets such as the LHC. From this perspective, the
megaton-scale proton decay facilities such as the HKwould
benefit enormously from firm and robust next-to-leading-
order (NLO) proton lifetime estimates with theory errors
contained within their order-of-magnitude-wide improve-
ment windows.
However, such fully consistent NLO studies call for an

unprecedented level of complexity and, in most cases, they
turn out to be even impossible. First, at the NLO level, the
unification scale should be determined via a thorough
two-loop renormalization group analysis. This is certainly
no problem as far as the β functions are concerned; these
are nowadays routinely calculated up to three loops (and
even more). However, there is no point in dealing with the
resulting evolution equations without a complete account of
the relevant threshold corrections at the corresponding
accuracy level. Hence, a very important ingredient of
any potentially consistent analysis is good information
about not only the light but, namely, the heavy (GUT-scale)
part of the theory spectrum. This issue, however, is often
ignored in bottom-up studies in which simplified assump-
tions about the shape of the heavy spectrum are invoked,
thus inflicting an irreducible theoretical uncertainty in
the unification scale MG comparable in size to the two-
loop β-function effects.

Moreover, there are classes of uncertainties that, in most
cases, ruin the reliability of even the relatively simple
two-loop renormalization group (RG) running studies.
These have to do namely with the proximity of MG to
the Planck scaleMP and, thus, the alleged sensitivity of the
GUT-scale physics to the quantum gravity effects (para-
metrized, at the effective level, by the MG=MP-suppressed
operators). These so-called “gravity smearing effects”
[18–22] usually amount to about a few %-level uncertainty
in the GUT-scale matching conditions which, however,
translate to a significant error in MG due to the relative
“shallowness” of the intersection pattern of the logarithmi-
cally evolving gauge couplings, again at the level of a
typical two-loop β-function effect.
Second, the generally complicated structure of the BNV

currents coupled to the colored extra scalars and vectors
calls for a detailed understanding of the flavor pattern of
the GUT models under consideration. This, at the NLO
level, amounts to getting a good grip onto their spectra as
well as onto the related RG evolution of the Yukawa
couplings and the relevant d ¼ 6 effective BNV operators;
cf. [23–26].
Although most of these issues have been extensively

discussed in the literature, a patient and systematic syn-
thesis of all these aspects is still missing. Needless to say,
this can be efficiently attempted only in a very limited class
of the simplest models where the main theoretical bias,
namely, the “gravity smearing,” is under control. This,
however, is almost never the case; alas, this turns out to
be quite hopeless in SUSY GUTs; see, e.g., [13,27,28]. In
view of this, it is not surprising that accurate proton lifetime
estimates never became part of the mainstream and it was
even less so in the pre-LHC era when the SUSY paradigm
was prevalent.
In this study we would like to review the status and

prospects of one of the rare exceptions to this “NLO
no-go,” namely, the minimal nonsupersymmetric SOð10Þ
GUT [10–12]. Remarkably enough, in this scenario the
trouble with the leading Planck-scale effects in the
GUT-scale determination is alleviated by the fact that the
45-dimensional SOð10Þ adjoint representation Φ respon-
sible for the GUT symmetry breaking cannot couple to
the pair of the gauge field strength tensors at the d ¼ 5 level
(i.e., Ga

μνΦabGbμν ¼ 0) and, thus, the gravity smearing
effects are absent at the leading order [23]. Unfortunately,
this model was left aside for many years due to the
aforementioned problem with the tachyonic instabilities
(perhaps even more probably due to its non-SUSY nature)
and it was revived only recently [29] as a GUT that is entirely
consistent at the quantum level.
Besides recapitulating the salient features of the model

and the general constraints implied by the requirements of
gauge unification and vacuum stability, we focus namely
on the interplay between its different low-energy aspects, in
particular, the nonobservation of proton decay at the SK

HELENA KOLEŠOVÁ AND MICHAL MALINSKÝ PHYSICAL REVIEW D 90, 115001 (2014)

115001-2



and the absence of light exotics at the LHC. In doing so, we
complement the existing two-loop analysis of the setting
featuring an accidentally light scalar color octet [30] with a
detailed two-loop study of the second potentially realistic
minimally fine-tuned option identified in [31] with an
accidentally light color sextet at about 1012 GeV. As we
shall argue, this scenario, as fine as it looks at the one-loop
level, would become strongly constrained at two loops if
there were no proton decay seen at the HK. Hence, in the
vast majority of the available parameter space (defining
“available” as “consistent with observation” and barring for
the moment the arbitrariness in choosing a measure on it)
the model practically admits only one type of solution
conforming to all the basic phenomenological require-
ments, namely, those featuring the very light color octet,
which, in turn, implies a signal observable either at the HK
or at the multi-TeV hadronic colliders such as the LHC or
its near-future successors.
The work is organized as follows: In Sec. II we begin

with a brief recapitulation of the salient features of the
minimal SO(10) GUT including a simplified account of
the quantum effects necessary for the technical stabilization
of its non-SU(5)-like vacua. Section III is devoted to the
discussion of what we consider to be the minimal consistent
approach to any numerical analysis in this framework. The
main guiding principle here is the overall consistency and
generality of the obtained results; the latter can be trivially
translated to the requirement of the minimum number of
fine-tunings (assuming “flat” parameter-space measure).
In this approach, all the potentially realistic areas of the
parameter space are covered up to the subsets of zero
measure. To that end, we recapitulate the existing results for
the two classes of known minimally fine-tuned solutions,
namely, those featuring a near-TeV-scale colored octet
transforming like ð8; 2;þ 1

2
Þ under the SM and an inter-

mediate-scale colored sextet with the SM quantum numbers
ð6; 3;þ 1

3
Þ. Motivated by the significant quantitative change

in the behavior of the octet solution observed at the
transition from the LO to the NLO level, cf. [30], in
Sec. IV we extend the existing LO sextet analysis to the
same NLO level. In doing so, we reveal a strong correlation
between the position of the GUT scale favored by the
relevant NLO solutions and the typical value of the seesaw
scale which, from the perspective of the detailed flavor
sector fits, turns out to be rather low. Finally, in Sec. V we
comment in brief on the overall viability of the minimal
setting and recapitulate its distinctive phenomenological
features.

II. THE MINIMAL SOð10Þ GUT

Since the gauge interactions of the matter fields [accom-
modated, as usual, in three copies of the 16-dimensional
SOð10Þ spinors ψ i] are fully specified by the minimal
coupling principle, the renormalizable grand unified

models are essentially defined by the structure of their
scalar sector and the corresponding Yukawa Lagrangian.
As for the former, the minimal SOð10Þ model of our

interest contains the anticipated 45-dimensional adjoint
scalar representation ϕ responsible for the spontaneous
breaking of the GUT symmetry down to one of its rank-5
subgroups (see Sec. II A) while the rank reduction is
triggered by the complex 126-dimensional 5-index anti-
symmetric tensor Σ. This choice is motivated namely by the
need to generate neutrino masses in the sub-eV ballpark:
since the gauge unification constraints typically place the
rank-reducing dynamics (i.e., the B − L breaking scale) to
about 1010–12 GeV [32] the corresponding vacuum expect-
ation value (VEV) σ should enter the RH neutrino masses
linearly; otherwise the effective RH neutrino mass scale
would be further suppressed (typically by σ=MPl to some
positive integer power) and, hence, the seesaw-induced
light neutrinos will tend to be far too heavy to conform to
the cosmological constraints. This, in the current scenario,
is achieved by the renormalizable Yukawa coupling of the
type L∋YΣ

ijψ iψ jΣ�. Needless to say, besides Σ there should
be at least one more “Yukawa-active” scalar in play [such
as, for instance, a 10-dimensional SO(10) vector] in order
to accommodate the quark and lepton masses and mixing
data; however, since what follows is largely independent on
these details we shall not elaborate on the specific structure
of the Yukawa sector here.

A. The effective SO(10)-breaking scalar potential

The renormalizable tree-level scalar potential of the
minimal SOð10Þ model under consideration reads

V ¼ V45 þ V126 þ Vmix; ð1Þ
where

V45 ¼ −
μ2

2
ðϕϕÞ0 þ

a0
4
ðϕϕÞ0ðϕϕÞ0 þ

a2
4
ðϕϕÞ2ðϕϕÞ2; ð2Þ

V126 ¼ −
ν2

5!
ðΣΣ�Þ0

þ λ0
ð5!Þ2 ðΣΣ

�Þ0ðΣΣ�Þ0 þ
λ2

ð4!Þ2 ðΣΣ
�Þ2ðΣΣ�Þ2

þ λ4
ð3!Þ2ð2!Þ2 ðΣΣ

�Þ4ðΣΣ�Þ4 þ
λ04

ð3!Þ2 ðΣΣ
�Þ40 ðΣΣ�Þ40

þ η2
ð4!Þ2 ðΣΣÞ2ðΣΣÞ2 þ

η�2
ð4!Þ2 ðΣ

�Σ�Þ2ðΣ�Σ�Þ2; ð3Þ

Vmix ¼
iτ
4!
ðϕÞ2ðΣΣ�Þ2 þ

α

2 · 5!
ðϕϕÞ0ðΣΣ�Þ0

þ β4
4 · 3!

ðϕϕÞ4ðΣΣ�Þ4 þ
β04
3!

ðϕϕÞ40 ðΣΣ�Þ40

þ γ2
4!
ðϕϕÞ2ðΣΣÞ2 þ

γ�2
4!
ðϕϕÞ2ðΣ�Σ�Þ2: ð4Þ
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Here the subscripts of the round brackets denote different
contractions of the fields within; let us also note that all
couplings but η2 and γ2 are real. For more details the reader
is referred to [31].
The high-scale symmetry breaking is triggered by the

SM-singlet VEVs in ϕ and Σ that we shall denote by

hð1; 1; 1; 0Þϕi≡ ωBL; hð1; 1; 3; 0Þϕi≡ ωR;

hð1; 1; 3;þ2ÞΣi≡ σ; ð5Þ

where the relevant components are classified with respect
to the SUð3Þc ⊗ SUð2ÞL ⊗ SUð2ÞR ⊗ Uð1ÞBL subgroup
of the SOð10Þ. Without loss of generality we may assume
ωBL and ωR to be real; σ can be also made real by a phase
redefinition of Σ.
As usual, the residual symmetry depends on the specific

configuration of the VEVs (5). Taking, for the moment,
σ ¼ 0, several interesting limits can be distinguished:

ωR ¼ 0;ωBL ≠ 0∶ 3c2L2R1BL;

ωR ≠ 0;ωBL ¼ 0∶ 4C2L1R;

ωR ≠ 0;ωBL ≠ 0∶ 3c2L1R1BL;

ωR ¼ −ωBL ≠ 0∶ flipped 501Z0 ;

ωR ¼ ωBL ≠ 0∶ standard 51Z; ð6Þ

where the acronyms on the rhs of each line denote (in a self-
explanatory notation) the relevant little group. To this end,
51Z and 501Z0 represent the two different embeddings of
the SM hypercharge into the SUð5Þ ×Uð1Þ subgroup of
SOð10Þ usually referred to as the “standard” and the
“flipped” SUð5Þ scenarios, respectively (for further details
see, e.g., [29]). A nonzero σ breaks all these intermediate
symmetries down to the SM group with the only exception
being the last case where the SUð5Þ symmetry remains
unbroken.
The tree-level scalar masses may be computed from the

potential (1) (for a complete list of the relevant formulas see
Appendix B of [30]). Remarkably enough, such a scalar
spectrum suffers from a notorious tachyonic instability
[10–12] having to do, namely, with the masses of the fields
with the SM quantum numbers (1,3,0) and (8,1,0):

M2ð1; 3; 0Þ ¼ 2a2ðωBL − ωRÞðωBL þ 2ωRÞ; ð7Þ

M2ð8; 1; 0Þ ¼ 2a2ðωR − ωBLÞðωR þ 2ωBLÞ: ð8Þ

It is straightforward to see that one of these always becomes
negative unless ωR and ωBL are aligned along the “approxi-
mate 501Z0 direction”

−2 ≤
ωBL

ωR
≤ −

1

2
with a2 < 0: ð9Þ

This, however, is incompatible with the gauge running
constraints because, due to the proximity of the unification
point, the corresponding 501Z0 -like symmetry breaking
pattern resembles that of the long-ago refuted minimal
SUð5Þ theory.

B. The one-loop vacuum

It is well known that these tachyonicity/vacuum insta-
bility issues may be resolved at the quantum level [29].
The point is that the extremely simplistic form of the two
critical relations (7) and (8) can be traced back to the
particular algebraic structure of the scalar potential (1) that
prevents some of its couplings from entering these mass
formulas at the tree level due to the pseudo-Goldstone
nature of the corresponding fields. This degeneracy,
however, is smeared at the loop level and, thus, there is
much more room for arranging a tachyon-free scalar
spectrum in the physically interesting regimes with jωRj ≫
jωBLj or jωBLj ≫ jωRj, i.e., those far from the dangerous
SUð5Þ-like settings (9).
As an example, let us consider the gauge contributions to

M2ð1; 3; 0Þ and M2ð8; 1; 0Þ that, at the leading loop level,
are identical to those calculated in the simplified setting
with the scalar 16 in place of 126; cf. [29]. The relevant
one-loop formulas read

M2ð1; 3; 0Þ ¼ 2a2ðωBL − ωRÞðωBL þ 2ωRÞ

þ g4

4π2
ð16ω2

R þ ωBLωR þ 19ω2
BLÞ þ � � � ;

ð10Þ

M2ð8; 1; 0Þ ¼ 2a2ðωR − ωBLÞðωR þ 2ωBLÞ

þ g4

4π2
ð13ω2

R þ ωBLωR þ 22ω2
BLÞ þ � � � ;

ð11Þ

where the ellipses stand for β2- and τ2-proportional terms
polynomial in ωR and ωBL as well as for all the logarithmic
terms. It is clear that in order for the positive gauge
corrections to overwhelm the potentially negative
a2-proportional terms it is sufficient to take ja2j small
enough, typically in the few percent ballpark.
Finally, let us note that, unlike for the simplified setting

with 45 ⊕ 16 in the Higgs sector, only some of the
undisplayed radiative corrections in (10) and (11) have
been calculated so far [in particular, the SO(10) invariant
term proportional to τ2, cf. [30]]; however, this issue should
not affect the analysis below in any significant manner. As
it was argued in [29], only the masses of the would-
be-tachyonic fields (1,3,0) and (8,1,0) may experience
significant shifts due to quantum corrections; however,
their possible effects in the relevant matching formulas
(cf. Appendix A), are typically suppressed with respect to
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those of the other fields, e.g., the gauge degrees of freedom.
Hence, in the calculations below we stick to just the
minimal set of loop corrections that suffice to tame the
tachyonic instabilities (in particular, those calculated in
[30]). We verified explicitly that all our results are robust
with respect to these theoretical uncertainties.

III. CONSISTENT SETTINGS

A. General considerations

Let us begin with a list of basic constraints shaping the
allowed patches of the parameter space supporting the
consistent and potentially realistic settings in the model of
our interest. These have been previously discussed in great
detail in [31] so here we shall just briefly recapitulate them.

1. Theoretical consistency

a. Perturbativity constraints Perturbativity is the primary
principle we shall adhere to; otherwise there is not much
one can say quantitatively about the NLO structure of the
theory. In particular, we shall assume that all couplings in
the scalar potential (1) and also the Yukawa couplings are
within the Oð1Þ domain.

b. Nontachyonicity of the scalar spectrum, local
vacuum stability A negative eigenvalue of the scalar
mass(-squared) matrix signals that the chosen field con-
figuration is not a true vacuum of the model with all the
unpleasant implications for the consistency of the broken-
phase perturbation theory developed around such a setting.
Hence, the basic consistency requirement one should
impose is that all scalar mass-squares calculated for a
given field configuration should be positive for all non-
Goldstone directions; this, in turn, ensures the local
stability of the vacuum of the theory and a meaningful
interpretation of its asymptotic states. Due to the rather
complicated structure of the scalar potential (1) the dis-
cussion of the global stability of the electroweak vacuum
will be left to a dedicated future study.

c. Gauge unification constraints As we already men-
tioned, in the non-SUSY context one generally needs to
“populate the desert” between the electroweak scale MZ
and the GUT scaleMG to some degree in order to conform
to the gauge unification constraints. As a matter of fact, this
picture is also favored by the seesaw approach to the
neutrino masses that, in its simplest incarnations, calls for a
new scale in roughly the 1012–14 GeV ballpark. Note that,
unlike in the bottom-up effective scenarios, this may be
more difficult to achieve in the unified top-down approach
due to the tight correlations in the Yukawa sector of GUTs
that usually do not leave much room for tweaking; indeed,
this is one of the generic issues plaguing the minimal
supersymmetric SO(10) GUTs [14,15]. From this perspec-
tive, the past RG results [32–35] based on the extended

survival hypothesis (ESH) [36–38] may be discouraging
because they uniformly favor the seesaw-driving VEV σ to
be at around 1010 GeVwhich is rather far from the numbers
above. On the other hand, these studies by their nature
ignore all the details of the scalar sector and, thus, should be
interpreted with care. In what follows we shall check that
each of the accepted points in the parameter space yields a
consistent gauge unification pattern at two loops including
the all-important matching effects à la Weinberg [39] and
Hall [40].

d. Minimal number of fine-tunings Since, technically,
there is no difference between pulling down the seesaw
scale to be well below MG (i.e., performing a fine-tuning
in the one-point function of the appropriate SM singlet
field) and bringing down a physical mass of any other
scalar in the spectrum (i.e., playing with the root/pole of
its two-point function) it is natural to consider all possible
shapes of the scalar spectrum accessible by a given
(preferably as small as possible) number of fine-tunings
to be at the same footing and let the model parameters just
accommodate freely to all the relevant experimental and
theoretical constraints. This is the strategy employed
many times in the past, e.g., in the nonminimal SU(5)
context [41–44] as well as in the previous analyses [31] of
the model under consideration and we shall also stick to
this approach here.

2. Phenomenology constraints

a. Proton lifetime limits The recent limit (at 90% C.L.)
on the proton lifetime in the p → π0eþ channel reads (see,
e.g., [4])

τðp → π0eþÞ > 8.2 × 1033 years: ð12Þ
In contrast, the Hyper-Kamiokande is assumed to reach the
bounds

τðp → π0eþÞHK;2030 > 9 × 1034 years; ð13Þ

τðp → π0eþÞHK;2045 > 2 × 1035 years; ð14Þ

by years 2030 and 2045, respectively1 [1]. Let us just note
that for the kaonic modes the assumed HK limit

τðp → Kþν̄ÞHK;2045 > 3 × 1034 years ð15Þ
should be just competitive with the expected LBNE
sensitivity reach (assuming the 35 kt underground
variant); however, in what follows we shall focus only on
the pionic mode due to its general preference in non-
SUSY GUTs.

1These numbers correspond to the sensitivity limits displayed
in [1] with an extra 5-year offset due to the current delay in the
HK timeline.
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b. Big bang nucleosynthesis constraints Any significant
extra entropy injected into the primordial plasma during the
BBN epoch disturbs the predictions for the abundances of
the light elements [45]. Hence, we require there to be no
remnants of the high-energy spectrum (in particular, no
colored states) with lifetimes longer than a fraction of a
second that may be strongly coupled to the plasma.

3. Classes of consistent solutions

Remarkably enough, the initial one-loop analysis [31]
revealed that at the single fine-tuning level there are only
two classes of solutions conforming to all these require-
ments, namely, those featuring a near-TeV-scale colored
octet transforming like ð8; 2;þ 1

2
Þ under the SM and those

with an intermediate-scale colored sextet ð6; 3;þ 1
3
Þ. In both

cases, the seesaw scale is pushed far above the ESH region
and, thus, in turn, the fine-tuning in σ is effectively “traded”
for that in the relevant light scalar mass.

B. TeV-scale octet

The former case, i.e., the settings with the very light
ð8; 2;þ 1

2
Þ have been studied thoroughly in the work [30].

This dedicated two-loop gauge unification analysis
revealed a very interesting tension between the upper limit
on the octet mass and the lower bound on the proton
lifetime suggesting that either the octet is below about
20 TeV (and, hence, may be within the reach of either LHC
or one of its near-future successors) or that proton decay
should be seen at the HK; see Fig. 1. Let us remark that this
result also illustrates the importance of the NLO gauge
unification analysis as, at the LO, the same bounds were so
loose (e.g., the upper limit on the octet mass stretched up

to about 2000 TeV) that no such phenomenologically
interesting feature could have been exploited. Let us also
mention that these limits apply even for the B − L scale as
high as 1013 GeV which, indeed, is fully compatible with
the assumed renormalizable implementation of the seesaw
mechanism.

C. ZeV-scale sextet

As for the second option, namely, the intermediate-scale
sextet solutions, only the LO results have been obtained so
far; cf. [31]. Although this scenario does not seem to
provide any striking signal as did the light octet setting, the
patches of the parameter space supporting this class of
scenarios turned out to be rather small [with the sextet mass
Mð6; 3;þ 1

3
Þ stretching from about 1010 GeV to about

1012 GeV], especially for the B − L breaking scale in
the seesaw-favored region (σ > 1012 GeV). Since, as we
learned in the octet case, the two-loop effects can change
the LO picture considerably, one should check whether the
sextet solution is still viable at the NLO level. This is the
scope of the next section.

IV. ZeV-SCALE SEXTET AT TWO LOOPS

Let us begin with the detailed two-loop gauge unification
analysis; the results shall be later on combined with the
proton lifetime and other phenomenological constraints in
order to assess whether there is still some parameter space
left for the sextet solutions.

A. Two-loop gauge unification

The settings with an intermediate-scale ð6; 3;þ 1
3
Þ are

characterized [31] by the generic hierarchy jωBLj ≫ jωRj;
this, in turn, corresponds to a multistage symmetry break-
ing pattern passing through an intermediate SUð3Þc ⊗
SUð2ÞL ⊗ SUð2ÞR ⊗ Uð1ÞBL stage at which a number
of components of ϕ and Σ become massive and can be
integrated out. Besides that, there can also be a further step
with a yet smaller SUð3Þc ⊗ SUð2ÞL ⊗ Uð1ÞR ⊗ Uð1ÞBL
gauge symmetry attained if jσj is larger than jωRj. At the
NLO level, this situation is conveniently modeled by a
series of effective gauge theories with the RG evolution
described by their individual β functions that, at proper
scales, are matched together appropriately; cf. [39,40]. For
that sake, the details of the (nontachyonic) scalar spectrum
are essential; cf. Sec. II B. At the electroweak scale MZ we
impose the classical set of boundary conditions [45]

αsðMZÞ ¼ 0.1185� 0.0006;

sin2 θWðMZÞ ¼ 0.23126� 0.00005;

α−1e ðMZÞ ¼ 127.944� 0.014;

where αi ≡ g2i =4π; these numbers are readily translated to

FIG. 1. Masses of the ð8; 2;þ 1
2
Þ scalar field allowed by the

NLO unification and matter stability constraints [the points
consistent with the limits (12), (13) and (14) are plotted in light
gray, dark gray and black color, respectively]; cf. [30]. In the left
panel jσj ≥ 1012 GeV is assumed while, in the right panel, we
admit for jσj ≥ 1013 GeV. Remarkably, focusing on the black
area, either the octet mass is below 20 TeV and, thus, potentially,
within the reach of the LHC or its near future successors or proton
lifetime should be seen at the HK before 2045. For more
discussion see [30].
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α−13 ðMZÞ≡ α−1s ðMZÞ ¼ 8.44� 0.04;

α−12 ðMZÞ≡ sin2θWðMZÞα−1e ðMZÞ ¼ 29.588� 0.007;

α−11 ðMZÞ≡ 3

5
ð1 − sin2θWðMZÞÞα−1e ðMZÞ

¼ 59.013� 0.004: ð16Þ

1. Effective gauge theories and matching scales

In what follows there are two basic situations to be
distinguished:

a. jσj ≥ jωRj In this case there are two symmetry breaking
steps in the descent from the SOð10Þ GUT down to the SM
to be characterized by a pair of matching scales μ1 and μ2,
namely

SOð10Þ→μ2 SUð3Þc ⊗ SUð2ÞL ⊗ SUð2ÞR ⊗ Uð1ÞX→
μ1 SM;

ð17Þ

from now on we shall stick to the canonically normalized
version of the B − L charge

X ¼
ffiffiffi
3

8

r
ðB − LÞ: ð18Þ

Numerically, the matching scales μ1;2 will be chosen
close to the “barycenters” of the sets of fields to be
integrated out (typically, in the vicinity of the masses of
the gauge bosons associated with the relevant symmetry
breaking), in particular

μ2 ≡ gjωBLj; μ1 ≡ gjσj; ð19Þ
in this definition a sample value of the unified coupling at
the GUT scale g ¼ 0.56 was used.2

b. jσj < jωRj Although we are interested in the solutions
with large jσj, it may still happen that jωRj will be yet
bigger. In such a case the relevant symmetry breaking chain
can be conveniently extended by a third matching scale μ01,
namely

SOð10Þ→μ2 SUð3Þc ⊗ SUð2ÞL ⊗ SUð2ÞR ⊗ Uð1ÞX
→
μ0
1 SUð3Þc ⊗ SUð2ÞL ⊗ Uð1ÞR ⊗ Uð1ÞX
→
μ1 SM: ð20Þ

Numerically, we shall choose μ01 ≡ gjωRj; it is also worth
pointing out that, in this case, there are two Abelian gauge
factors present at the third stage so, in principle, the Uð1Þ-
mixing effects [46] should be taken into account. Hence,
the analysis in this case becomes more involved.

2. Two-loop beta functions

a. Gauge groups with at most one Abelian factor All the
gauge groups in the chain (17) are of this type; hence, this
paragraph fully covers the jσj > jωRj case. At the two-loop
level, the running of the gauge coupling associated with the
ith gauge factor is given by the equation

d
dt
α−1i ¼ −ai −

bij
4π

αj; ð21Þ

where

t ¼ 1

2π
log

μ

MZ

with μ corresponding to the running scale. The coefficients
ai and bij are computed from the field content of the theory
as [47]

ai ¼ −
11

3
C2ðGiÞ þ

4

3

X
f

κfS2ðFiÞ þ
1

3

X
s

ηsS2ðSiÞ;

ð22Þ

bij ¼
�
−
34

3
ðC2ðGiÞÞ2

þ
X
f

�
4C2ðFiÞ þ

20

3
C2ðGiÞ

�
κfS2ðFiÞ

þ
X
s

�
4C2ðSiÞ þ

2

3
C2ðGiÞ

�
ηsS2ðSiÞ

�
δij

þ 4

�X
f

κfC2ðFjÞS2ðFiÞ þ
X
s

ηsC2ðSjÞS2ðSiÞ
�

þ � � � ; ð23Þ

where the summations run over all scalar and fermion fields
of the theory and κf ¼ 1 or 1

2
for Dirac or Weyl fermions,

respectively. Similarly ηs ¼ 1 or 1
2
for complex or real

scalars. Furthermore, C2ðGiÞ is the quadratic Casimir
operator of the group factor Gi, C2ðFiÞ and C2ðSiÞ are
the quadratic Casimirs of the ith group representations Fi
and Si and, similarly, S2 are the indexes of the same
representation including the multiplicity factors. The ellip-
sis in the expression (23) stands for the contributions of the
Yukawa couplings which, however, should have a negli-
gible effect on the running as compared to the gauge
interactions (see, e.g., Sec. IV.D in [32]). The system (21)
has a simple approximate solution

2Needless to say, the specific choice of the matching scales is
to a large extent irrelevant; the prescription (19) ensures that the
results are only marginally dependent on the specific choices of
μ1;2, i.e., that the residual higher-order effects are negligible;
cf. Sec. IV D 4 b.
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α−1i ðtÞ − α−1i ðt0Þ ¼ −aiðt − t0Þ þ
bij
4πaj

log ½1 − ωjðt − t0Þ�;

ð24Þ

where ωj ¼ ajαj, provided jωjðt − t0Þj ≪ 1. These for-
mulas are relevant for the SOð10Þ and SUð3Þc ⊗
SUð2ÞL ⊗ SUð2ÞR ⊗ Uð1ÞX stages of both cases dis-
cussed in Sec. IVA 1 as well as for the ultimate SM
running phase. Let us anticipate that a fourth stage may be
convenient in the case of the more complicated descent (20)
where the Uð1Þ-mixing effects in the β functions do play a
role; see Sec. IVA 2 b.
Above μ2, the effective theory is the full SOð10Þ

model with three copies of the 16-dimensional spinor
representations accommodating the fermionic matter fields,
the 45-dimensional adjoint representation containing the
gauge fields, and the scalar sector consisting of a real
45-dimensional adjoint representation and a complex 126-
dimensional (self-dual part of the) 5-index antisymmetric
SOð10Þ tensor. This yields

a ¼ −
37

3
; b ¼ 9529

6
: ð25Þ

At the SUð3Þc ⊗ SUð2ÞL ⊗ SUð2ÞR ⊗ Uð1ÞX level all the
scalar fields except for the color sextet and the scalars
responsible for the subsequent symmetry breaking are
integrated out, together with the gauge bosons that became
massive at this stage. Hence, the list of survivors comprises
the following components [for convenience the fields are
classified with respect to the SUð3Þc ⊗ SUð2ÞL ⊗
Uð1ÞR ⊗ Uð1ÞBL quantum numbers; see (18)]: the gauge
bosons residing in the ð8; 1; 1; 0Þ ⊕ ð1; 3; 1; 0Þ ⊕
ð1; 1; 3; 0Þ ⊕ ð1; 1; 1; 0Þ representation, the matter fields
living in the three copies of ð3; 2; 1;þ 1

3
Þ ⊕ ð3̄; 1; 2;− 1

3
Þ ⊕

ð1; 2; 1;−1Þ ⊕ ð1; 1; 2;−1Þ and the complex scalars that
form the ð1; 1; 3;þ2Þ ⊕ ð1; 2; 2; 0Þ ⊕ ð6; 3; 1;þ 2

3
Þ repre-

sentation. There are four RG equations of the type (21) for
αc, αL, αR and αX with coefficients given, consecutively, by

a ¼
�
−
9

2
; 1;−

7

3
;
13

2

�
; b ¼

0
BBB@

89 129
2

9
2

11
2

172 120 3 19
2

12 3 80
3

27
2

44 57
2

81
2

65
2

1
CCCA:

Eventually, at the pure SM level (assuming only one
effective Higgs doublet) the SUð3Þc ⊗ SUð2ÞL ⊗ Uð1ÞY
RG coefficients receive the notorious form [47]

a ¼
�
−7;−

19

6
;
41

10

�
; b ¼

0
B@−26 9

2
11
10

12 35
6

9
10

44
5

27
10

199
50

1
CA:

b. Multiple Abelian group factors Finally, let us discuss
the fine effects related to the presence of the pair of Uð1Þ
factors in the third stage of the chain (20).
Adopting the formalism in which both the Uð1Þ kinetic

forms are kept canonical [46] the Uð1Þ-mixing effects can
be subsumed into an extended form of the covariant
derivative including a matrix gauge coupling

g≡
�
gRR gRX
gXR gXX

�
: ð26Þ

As explained, for instance, in [48,49], the Lagrangian of the
theory is invariant under the orthogonal field transforma-
tions Aμ

I → OIJA
μ
J where A

μ denotes the Uð1Þ vector boson
fields and O is an orthogonal matrix in the relevant field
space. Performing, simultaneously, the gauge matrix trans-
formations g → gOT the covariant derivative does not
change and, hence, the physics remains the same. This
redundancy can be removed by considering ggT instead of
g; hence, it is very convenient to work with the matrix
analogue of the individual α couplings

A≡ ggT

4π
: ð27Þ

As usual, the two-loop RG evolution of the non-Abelian
couplings depends on the Abelian ones; however, in the
matrix formalism, their contribution cannot be factorized as
easily as in Eq. (21). Thus, for i ∈ fc; Lg, one has instead

d
dt
α−1i ¼ −ai −

bij
4π

αj −
ci
4π

; ð28Þ

where ai are again the one-loop contributions computed
from (22), b comprises the two-loop contributions from
non-Abelian couplings only (computed from (23); how-
ever, since there are only two non-Abelian couplings in
play, b will be a 2 × 2 matrix here). Finally, the two-loop
contributions of the Abelian couplings are calculated as

ci ¼ 4

 X
f;I;J

κfQI
fAIJQJ

fS2ðFiÞ þ
X
s;I;J

ηsQI
sAIJQJ

sS2ðSiÞ
!
;

where QI denotes the charges of the relevant fields under
the Ith Abelian gauge factor.
The evolution equation for the matrix Abelian coupling

(27) may be written in the form

dA−1

dt
¼ −a −

bi
4π

αi −
c
4π

ð29Þ

where (in the current case) a, bi and c are 2 × 2 matrices.
As in Eq. (21), the matrix a covers the one-loop contri-
butions and, as before, the two-loop contribution was
divided into two parts: bi comprises the contributions from
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ith non-Abelian coupling (i ¼ c; L) while c covers the self-
interactions in the Abelian sector proportional to A. The
relevant formulas read [32,46]

aIJ ¼
4

3

X
f

κfQI
fQ

J
f þ

1

3

X
s

ηsQI
sQJ

s ð30Þ

ðbkÞIJ ¼ 4

�X
f

κfQI
fQ

J
fC2ðFkÞ þ

X
s

ηsQI
sQJ

sC2ðSkÞ
�

þ � � � ð31Þ

cIJ ¼ 4

�X
f

κfQI
fQ

J
f

X
K;L

QK
f AKLQL

f

þ
X
s

ηsQI
sQJ

s

X
K;L

QK
s AKLQL

s

�
þ � � � ð32Þ

where the meaning of all symbols is the same like in
Eq. (23) and the parentheses on b illustrate its structure of a
vector of matrices.
After the breaking of the SUð3Þc ⊗ SUð2ÞL ⊗

SUð2ÞR ⊗ Uð1ÞX symmetry to the SUð3Þc ⊗ SUð2ÞL ⊗
Uð1ÞR ⊗ Uð1ÞX at the μ01 scale the set of the “light” fields
includes [in the SUð3Þc ⊗ SUð2ÞL ⊗ Uð1ÞR ⊗ Uð1ÞBL
notation] the matter fermions in the three copies of
ð3; 2; 0; þ 1

3
Þ ⊕ ð3̄; 1; þ 1

2
; − 1

3
Þ ⊕ ð3̄; 1; − 1

2
; − 1

3
Þ ⊕

ð1; 2; 0; −1Þ ⊕ ð1; 1; þ 1
2
; −1Þ ⊕ ð1; 1; − 1

2
; −1Þ, the

complex scalars transforming as ð1; 1;−1;þ2Þ ⊕
ð1; 2;þ 1

2
; 0Þ ⊕ ð6; 3; 0;þ 2

3
Þ as well as the relevant vector

bosons. With this at hand, the coefficients in (28) can be
calculated readily

ðac; aLÞ ¼
�
−
9

2
;
5

6

�
;

�
bcc bcL
bLc bLL

�
¼
�

89 129
2

172 707
6

�
;

and

cc ¼
3

2
ARR þ 13

6
AXX;

cL ¼ 1

2
ARR þ 17

6
AXX:

Furthermore, the elements of the coefficient matrices
governing formula (29) read (in the fR;Xg basis)

a ¼
� 9

2
− 1ffiffi

6
p

− 1ffiffi
6

p 11
2

�
; bc ¼

�
12 0

0 44

�
;

bL ¼
�

3
2

0

0 57
2

�
;

and

cRR ¼ 15

2
ARR − 4

ffiffiffi
6

p
ARX þ 15

2
AXX;

cRX ¼ cXR ¼ −2
ffiffiffi
6

p
ARR þ 15ARX − 3

ffiffiffi
6

p
AXX;

cXX ¼ 15

2
ARR − 6

ffiffiffi
6

p
ARX þ 29

2
AXX:

The resulting set of differential equations (28) and (29) was
solved numerically in Mathematica.

3. Threshold corrections

A proper matching among the effective gauge theories
encompassing the relevant dynamics between the consecu-
tive symmetry breaking scales requires a careful treatment
of the threshold corrections [39,40]. This, as in the case of
the β functions, amounts to integrating out the fields that
are considered “heavy” below the given matching scale. In
the simplest case when a simple gauge group G is
spontaneously broken into a direct product of subgroups
Gi (with at most one Abelian factor) at a certain scale μ, the
relevant matching formula reads

α−1i ðμÞ ¼ α−1G ðμÞ − 4πλiðμÞ ð33Þ

where (see, for instance, [30])

λiðμÞ ¼
1

48π2
S2ðViÞ þ

1

8π2

�
−
11

3
S2ðViÞ log

MV

μ

þ 4

3
κFS2ðFiÞ log

MF

μ
þ 1

3
ηSS2ðSiÞ log

MS

μ

�
: ð34Þ

Here the arguments V, F and S denote the heavy vector
bosons, fermions and scalars that are integrated out at the
scale μ andMV ,MF andMS stand for their masses3; the rest
of the notation has been again inherited from (23). Let us
note that in (34) the (Feynman gauge) Goldstone bosons
have been included into the scalar part of the expression
which, in turn, makes the formula resemble that for the a
coefficient of the one-loop β function (22); similarly, the
Faddeev-Popov ghosts have been subsumed into the first
factor in the parenthesis. In this form, relation (34) makes it
clear that the effective couplings α−1i are, at the leading
order, independent of the specific choice of μ.
The simple prescription (33)–(34) makes it relatively

straightforward to calculate the threshold corrections for
the SOð10Þ → SUð3Þc ⊗ SUð2ÞL ⊗ SUð2ÞR ⊗ Uð1ÞX
breaking at μ2 which is common to both chains (17) and
(20). In terms of the SUð3Þc ⊗ SUð2ÞL ⊗ SUð2ÞR ⊗

3Needless to say, this formula applies only to the case when all
the members of the relevant multiplets of Gi are degenerate. This
implicitly assumes that the subsequent symmetry breaking (that
may smear this degeneracy) occurs well below μ which, however,
does not need to be the case in general; see the discussion below.
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Uð1ÞBL quantum numbers the components that decouple at
μ2 are the vector bosons ð3; 2; 2;− 2

3
Þ ⊕ ð3; 1; 1;þ 4

3
Þ

together with the corresponding Goldstones ð3; 2; 2;− 2
3
Þ ⊕

ð3; 1; 1;þ 4
3
Þ and the scalars (8,1,1,0), (1,3,1,0), (1,1,3,0)

and (1,1,1,0) from ϕ and ð3; 1; 1;− 2
3
Þ, ð1; 3; 1;−2Þ,

ð3; 3; 1;− 2
3
Þ, ð3̄; 1; 3;þ 2

3
Þ, ð6̄; 1; 3;− 2

3
Þ and (8,2,2,0) from

Σ. However, there is a subtlety worth a comment here. As a
matter of fact, due to the relative proximity of ωBL and
either ωR or σ and the fine-tuning involved the mass
splittings within the SUð3Þc ⊗ SUð2ÞL ⊗ SUð2ÞR ⊗
Uð1ÞX multiplets may not be entirely negligible and, hence,
the formula (34) may not be used directly—note that the
spectrum we are working with (see Appendix B) is, indeed,
classified with respect to the SM subgroup of the left-right
(LR) symmetry.
Hence, the classical prescription (34) should be gener-

alized for such a case. This is facilitated by the fact that the
(weighted) index S2ðRGÞ of a representation RG calculated
from the generators of a larger group G is easily decom-
posed into the sum of the (weighted) indexes S2ðRi

HÞ
of the components Ri

H of RG decomposed under its
subgroup H. In this case, all structures in (34) of the type
S2ðRGÞ logðMRG

=μÞ may be just replaced byX
i

S2ðRi
HÞ logðMRi

H
=μÞ; ð35Þ

which, in the exact degeneracy limit, reduces to the
previous form.
Nevertheless, this approach is not entirely straightfor-

ward as one also has to take into account that, in principle,
there may be significant thresholds from “off-diagonal”
vacuum polarization graphs if the SUð2ÞR is broken close
to the SOð10Þ scale and, accidentally, the different com-
ponents of some of the SUð2ÞR multiplets happen to be
significantly spread in masses (in comparison to the
“reference” scale ωBL). In such a case, the “R − X-mixing”
graphs do not drop [as it would be obviously the case in the
degenerate limit due to the zero trace of the SUð2ÞR
Cartan]. Hence, technically, one should either retain the
light members of the SUð2ÞR multiplets throughout the
effective LR stage and integrate them out only at μ01 or,
alternatively, carry on the information about the sizable off-
diagonal R − X thresholds down to the subsequent match-
ing scale (again, μ01). These approaches are technically
equivalent (up to tiny higher order effects) for the heavy
scalars; however, for the vectors, the former is not an option
as the formalism introduced in Sec. IVA 2 [in particular,
formula (23)] is suitable only for vectors in the adjoint
representation of the relevant gauge group. Therefore, we
shall adopt the latter strategy of integrating out the entire
SUð2ÞR multiplets of the relevant vectors and scalars (see
the list below) at μ2. Hence, besides the standard non-
Abelian threshold functions λcðμ2Þ and λLðμ2Þ we intro-
duce a “threshold matrix”

Λ ¼
�
λRR λRX
λXR λXX

�
; ð36Þ

that will keep track of the off-diagonal (μ-independent)
nondegeneracy effects until the subsequent μ1-scale match-
ing where these will be “collapsed” appropriately into the
SM hypercharge factor λY. The entries of Λ are given by the
general formula

ΛIJðμÞ ¼
1

48π2
QI

VQ
J
V þ 1

8π2

�
−
11

3
QI

VQ
J
V log

MV

μ

þ 4

3
κFQI

FQ
J
F log

MF

μ
þ 1

3
ηSQI

SQ
J
S log

MS

μ

�
; ð37Þ

where I and J run over R and X and QI;J denote the
relevant Cartans in play, i.e., the generators of the
Uð1ÞR ⊗ Uð1ÞX subgroup of the SUð2ÞR ⊗ Uð1ÞX gauge
symmetry.
Given this, the resulting matching conditions at μ2

read

α−1c ðμ2Þ ¼ α−1G ðμ2Þ − 4πλcðμ2Þ; ð38Þ

α−1L ðμ2Þ ¼ α−1G ðμ2Þ − 4πλLðμ2Þ; ð39Þ

A−1ðμ2Þ ¼ α−1G ðμ2Þ1 − 4πΛðμ2Þ; ð40Þ

where the diagonal entries of the Amatrix encode the initial
conditions for the SUð2ÞR ⊗ Uð1ÞX couplings αR and αX at
μ2, respectively, while its off-diagonalities serve as the
bookkeeping of the aforementioned heavy-field nondege-
neracy effects and, thus, are not subject to any RG
evolution throughout the SUð3Þc ⊗ SUð2ÞL ⊗ SUð2ÞR ⊗
Uð1ÞX stage. The explicit form of all the λ factors in
formulas (40) is written in Appendix A 1.
Let us also note that employing such a “matrix” notation

already at this level is very convenient even if there is no
genuine effective SUð3Þc ⊗ SUð2ÞL ⊗ Uð1ÞR ⊗ Uð1ÞX
stage to be considered (as, e.g., in the jσj > jωRj case)
because it simplifies the subsequent hypercharge
matching—rather than two different prescriptions there
will be a single matching formula valid for both VEV
hierarchies discussed in Sec. IVA 1 a.
Next, let us discuss the matching between the effective

LR stage and the genuine SUð3Þc ⊗ SUð2ÞL ⊗ Uð1ÞR ⊗
Uð1ÞX-symmetric effective gauge theory at the μ01 scale
if the symmetry breaking chain (20) is invoked; cf.
Sec. IVA 2 b. Here, the effective theory does feature the
dynamicalUð1Þ-mixing effects and, hence, it is mandatory4

to use the matrix arrangement of the gauge couplings in the

4Barring the alternative scheme with the Uð1Þ couplings kept
diagonal all the time and working with a noncanonical kinetic
form in the Abelian sector; cf. [50].
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Abelian sector (cf. Sect. IVA 2 b), as well as the matrix
form of the corresponding thresholds (36). The fields that
are integrated out at μ01 are, namely, the vector bosons
ð1; 1;�1; 0Þ, the corresponding Goldstone boson
ð1; 1; 0;þ2Þ and the scalars ð1; 1;þ1;þ2Þ, ð1; 2;− 1

2
; 0Þ.

Let us note that the last scalar comes (together with the SM
Higgs left doublet) from the bidoublet (1,2,2,0) and we
adjust its mass to the SUð2ÞR breaking scale by hands. In
practice, this corresponds to working with an admixed extra
10-dimensional scalar representation decoupled atMG and,
thus, mimicking the setting with a potentially realistic
Yukawa sector. For further comments on this issue the
reader is deferred to Sec. IV D 4 c.
As anticipated, thanks to the matrix form of the initial

condition (40), the matching formulas at μ01 are simply

α−1c ðμ01−Þ ¼ α−1c ðμ01þÞ − 4πλcðμ01Þ;
α−1L ðμ01−Þ ¼ α−1L ðμ01þÞ − 4πλLðμ01Þ;
A−1ðμ01−Þ ¼ A−1ðμ01þÞ − 4πΛðμ01Þ: ð41Þ

As usual, we dare to use the same symbols for the running
couplings in the SUð3Þc ⊗ SUð2ÞL ⊗ SUð2ÞR ⊗ Uð1ÞX
stage on the lhs and those of the SUð3Þc ⊗ SUð2ÞL ⊗
SUð2ÞR ⊗ Uð1ÞX on the rhs of Eqs. (41). The threshold
factors above are given in Appendix A 2.
Finally, let us consider the matching of either the

SUð3Þc ⊗ SUð2ÞL ⊗ SUð2ÞR ⊗ Uð1ÞX or the SUð3Þc ⊗
SUð2ÞL ⊗ Uð1ÞR ⊗ Uð1ÞX effective theory to the SM at
the μ1 scale. As for the former, the fields to be integrated
out at μ1 are (in the SM notation): the vector bosons
ð1; 1; 0Þ ⊕ ð1; 1;�1Þ together with the associated
Goldstones ð1; 1; 0Þ ⊕ ð1; 1;þ1Þ, the singlet real scalar
(1,1,0) and the complex scalars ð1; 1;þ2Þ and ð1; 2;− 1

2
Þ. In

the latter case, the basic set of “heavy” fields here is almost
trivial as there are only full-signet vector bosons and scalars
there. In both cases, we also integrate out the light sextet
ð6; 3;þ 1

3
Þ at μ1.

Technically, the threshold factors λc;L;Y may be again
obtained right from the formula (34); the hypercharge
matching, however, is more complicated due to the rank
reduction. Using the well-known relation for the (canoni-

cally normalized) SM hypercharge Y ¼
ffiffi
3
5

q
T3
R þ

ffiffi
2
5

q
X the

relevant matching formulas read

α−1c ðμ1−Þ ¼ α−1c ðμ1þÞ − 4πλcðμ1Þ;
α−1L ðμ1−Þ ¼ α−1L ðμ1þÞ − 4πλLðμ1Þ;
α−1Y ðμ1−Þ ¼ PYA−1ðμ1þÞPT

Y − 4πλYðμ1Þ ð42Þ

where PY ¼ ð
ffiffi
3
5

q
;
ffiffi
2
5

q
Þ is the (first row of the) correspond-

ing “hypercharge projector.” As before, we overload the
notation for the non-Abelian running couplings; the

explicit form of the threshold functions5 is given in
Appendix A 3 a and A 3 b.

B. Proton decay

1. Gauge induced d ¼ 6 proton decay

Given the generic preference of the pion decay modes in
non-SUSY GUTs which, at the same time, are in the focus
of many of the existing and future experiments, in what
follows we shall concentrate entirely on the p → π0eþ
decay channel. Assuming no extra flavor suppression in
the relevant baryon-number-violating currents6 the corre-
sponding partial decay width is, in the SOð10Þ context,
given by [23]

Γðp → π0eþÞ ¼ πmpα
2
G

4f2π
jαj2A2

LðDþ F þ 1Þ2

×

 
A2
SR

 
1

M2
ðX0;Y 0Þ

þ 1

M2
ðX;YÞ

!
2

þ 4A2
SL

M4
ðX;YÞ

!
;

ð43Þ

where mp is the proton mass, MðX;YÞ and MðX0;Y 0Þ are the
masses of the heavy vector bosons with the SM quantum
numbers ð3; 2;−5=6Þ and ð3; 2;þ1=6Þ, and αG is the
gauge coupling at the unification scale. Furthermore,
fπ ¼ 139 MeV, α ¼ 0.009 GeV3 and Dþ F ¼ 1.267
are the phenomenological factors obtained in the chiral
perturbation theory and lattice studies (their specific values
were taken from the reference [23]). The one-loop evolu-
tion of the effective four-fermion BNVoperators [24,25] in
the low-energy domain (i.e., from the proton mass to the
electroweak scale [23]) is taken care of by the coefficient
AL ≈ 1.4 while the ASLðSRÞ factors

ASLðSRÞ ¼
Y3
i¼1

YmZ≤mx<MG

x

�
αiðmxþ1Þ
αiðmxÞ

� γi
LðRÞP

MZ≤My<mP
y

Δaiy ð44Þ

contain the running effects from MZ to MG. The relevant
anomalous dimensions read γL ¼ ð23

20
; 9
4
; 2Þ and γR ¼

ð11
20
; 9
4
; 2Þ; the symbols x and y label the fields driving

the RG evolution at each stage and Δaiy is the contribution

5These, however, differ in the SUð3Þc ⊗ SUð2ÞL ⊗
SUð2ÞR ⊗ Uð1ÞX and SUð3Þc ⊗ SUð2ÞL ⊗ Uð1ÞR ⊗ Uð1ÞX
cases due to the “richer” set of dynamical fields necessary to
break the former symmetry straight to the SM and a higher
number of the associated Goldstone bosons/massive vectors in
the former case.

6Needless to say, without a detailed analysis of the flavor
structure of the model under consideration this may be seen as a
strong assumption; however, it corresponds to the rather natural
expectation of no accidental cancellation in the product of the
unitary matrices parametrizing the charged BNV currents which,
in turn, should have the relevant entries in the Oð1Þ ballpark.
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of the field y to the one-loop beta function for the ith
coupling. In what follows we shall compare the width
(43) with the existing SK proton lifetime limit (12) as
well as with the expected HK sensitivity bounds (13)
and (14).

2. Scalar induced d ¼ 6 proton decay

Since the scalar-driven d ¼ 6 amplitudes are often
suppressed by the smallness of the first-generation
Yukawa couplings, the bounds on the mass of the
“dangerous” mediators are less strict than the bounds
on the gauge bosons. We require the mass of the scalar
leptoquark with the SM quantum numbers ð3; 1;− 2

3
Þ to

exceed the (rather conservative) bound of 1014 GeV; this,
however, does not restrict the allowed parameter space
at all as this mass always turns out to be near the
GUT scale.

3. d ¼ 7 proton decay

Although the d ¼ 7 operators are usually highly sup-
pressed due to the extra inverse powers of the mediator
mass, one has to be careful when some of the fields are
pulled down far below the GUT scale [which is exactly the
case for the ð6; 3;þ 1

3
Þ scalar in our analysis]. However,

going through the potentially dangerous d ¼ 7 operators
listed, e.g., in [51], one finds that this field does not
participate in such interactions.

C. Absolute neutrino mass scale

There is one more assumption worth a comment that we
shall make in what follows; in particular, we shall impose a
lower bound on the size of the rank-breaking VEV σ. Since
this parameter, together with the Yukawa coupling of Σ,
governs the mass scale of the RH neutrinos, the seesaw-
generated light neutrino masses are inversely proportional
to σ. Assuming no accidental cancellation in the Dirac
neutrino mass matrix (thus adopting the minimal fine-
tuning policy advocated in Sec. III A 1 d in the Yukawa
sector of the model) the B − L breaking VEV σ should fall
into the 1012–14 GeV ballpark; let us note that this region is
also indicated by the existing Yukawa fits; cf. [52,53]. From
now on, we shall mostly stick to this “natural” domain for
σ; for further comments an interested reader is referred
to Sec. V.

D. Results

Let us start with the basic description of the regions of
the parameter space that turn out to be consistent with all
the “hard” constraints discussed in Sec. III, namely, the
perturbativity, unification, proton lifetime etc. Later on, we
shall comment on the important role a possible lower limit
on the seesaw scale may play in a further reduction of the
allowed domain.

1. The NLO gauge unification and proton decay
constraints

The shape of the parameter space that consistently
supports the intermediate-scale sextet solutions at the
NLO level is similar to that identified in the one-loop
analysis [31], namely ωBL > 0, β04 < 0, β4 > 0, a0 >
−0.1 and jγj < 0.6; on the other hand, all the dimensionful
parameters were shifted considerably. First, while the mass
of the sextetMð6; 3;þ 1

3
Þ was increased by a factor of about

30, the maximum NLO-allowed ωBL was lowered by a
factor of 2.5 which, in turn, reduced considerably the volume
of the parameter space consistent with the considered proton
lifetime limits. In Fig. 2 the points consistent with the two-
loop unification are plotted in three different shades of gray
distinguishing among those consistent with the three proton
decay bounds (12), (13), and (14) (black points correspond
to the strongest limit). For comparison, in the same plot, the
points consistent with the current SK proton decay limit (12)
at the LO level are shown in light gray.7

The allowed parameter space in the jωRj-jσj projection is
depicted in Fig. 3; the two qualitatively different regions
above and below the diagonal line correspond to the two
different symmetry breaking chains considered in Sec. IV
A 1. It is clear that, indeed, maxfjωRj; jσjg ≪ ωBL which
justifies the selection of the effective SUð3Þc ⊗ SUð2ÞL ⊗
SUð2ÞR ⊗ Uð1ÞX stage in Sec. IVA 1. Moreover, both the
regimes with either jωRj > jσj or jωRj < jσj do occur
among the consistent points indicating that the bifurcation
of the subsequent part of the symmetry breaking chain (17)
and (20) is meaningful. Let us note that the parameter space

FIG. 2. The points consistent with two-loop unification con-
straints and the limits (12), (13) and (14) on the proton lifetime
plotted in light gray, dark gray and black color, respectively. The
light-gray band in the background encloses the settings identified
in the previous one-loop analysis [31] that are consistent with the
current SK proton lifetime limit (12).

7Let us note that the shape of the allowed one-loop parameter
space depicted in Fig. 2 is different from that given in [31] where,
for technical simplicity, only points for which the sextet was the
lightest of the “heavy” fields were considered.
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extends rather far from the jσj ¼ jωRj diagonal since, in
both cases, the lower VEV can affect the running only
marginally; in fact, for jσj < jωRj the fields associated to
the symmetry breaking at the μ1 scale are even full SM
singlets and, as such, they leave the beta function of the
“effective hypercharge” intact; hence, the “width” of the
region under the diagonal line does not depend on μ1 (and,
hence, neither on σ). Thus, for jσj < jωRj, there is in
principle no lower limit on σ from the gauge unification
constraints; cf. [32].

2. Seesaw scale constraints

However, as anticipated in Sec. IV C, the settings with
very small σ’s suffer from the issues with the absolute

neutrino mass scale unless the Dirac neutrino mass matrix
is made artificially small. In the rest of this section we shall
adopt the extra constraint jσj ≥ 1012 GeV and illustrate its
enormous discriminative power.
To this end, let us begin with Fig. 4 which shows that the

consistent values of jσj decrease with growingMð6; 3;þ 1
3
Þ.

Recalling that ωBL and, hence, the proton lifetime also
grow along this direction it is not surprising that once
jσj ≥ 1012 GeV is required only few points consistent with
the 2045 HK limit survive. Remarkably enough, for
jσj ≥ 1013 GeV, the whole consistent domain is covered
by the Hyper-K sensitivity band. This behavior is best seen
in Fig. 5 where the parameter space from Fig. 2 is further
constrained by the requirements of jσj ≥ 1012 GeV and
jσj ≥ 1013 GeV, respectively.

3. Examples

In Table I we show two examples of the consistent
settings where the aforementioned correlations between the
dimensionful parameters can be seen explicitly. In the first
case (Point 1 in Table I), we have chosen one of the black
points in the left-hand part of Fig. 5 for which the estimated
proton lifetime reaches up to 3 × 1035 years; as expected,
the value of jσj ¼ 1.2 × 1012 GeV turns out to be rather
low. On the other hand, the mass of the sextet is just slightly
fine-tuned from its natural position at around MG:
Mð6; 3;þ 1

3
Þ ≈ 1015 GeV.8 The hierarchy of the relevant

VEVs corresponds to the breaking chain (17) and, thus,
there are two matching scales depicted in Fig. 6. Let us note
that the high mass of the sextet here leads to sizable
threshold corrections to non-Abelian couplings at μ1;
cf. Sec. IV D 4 a.

FIG. 3. The values of jωRj and jσj for the points fulfilling the
unification and proton lifetime constraints at the NLO level (color
code as in Fig. 2). The dashed line corresponds to jωRj ¼ jσj;
above and below this line different symmetry breaking chains
have been implemented; cf. Eqs. (17), (20).

FIG. 4. jσj as a function of Mð6; 3;þ 1
3
Þ for the NLO solutions

consistent with all the requirements of Sec. III (color code as in
Fig. 2). The sharp boundary in the NW direction reflects the
unification constraints in the case of jσj > jωRj; on the other
hand, the settings with jωRj > jσj stretch far from this edge since
the value of jσj does not affect the unification pattern in such
cases. The solid lines correspond to jσj ¼ 1012 GeV and jσj ¼
1013 GeV levels, respectively. Recall that σ governs the seesaw
scale as well as the amount of fine-tuning necessary to obtain a
realistic light neutrino mass spectrum and mixing.

FIG. 5. The same as in Fig. 2 with an extra assumption of
σ > 1012 GeV (on the left) and σ > 1013 GeV (on the right).
Notice that in the latter case the entire allowed parameter space
may be probed by Hyper-K by 2030; see Eq. (13).

8This, indeed, agrees with [32] where it was shown that the
model with the GUT-scale breaking driven by 45H suffers from a
very low seesaw scale if no extra fine-tuning is invoked.
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For Point 2 in Table I the proton lifetime τ ≈ 2 × 1034

years is just above the current SK limit; however, the
seesaw scale σ exceeds 1013 GeV and, hence, gives rise to a
very comfortable setting for neutrinos. However, such a
“large” σ can be achieved only for the price of a rather light
sextet: Mð6; 3;þ 1

3
Þ ≈ 2.2 × 1013 GeV. This point also

corresponds to the symmetry breaking chain (17) but, in
comparison with the former case, the 3c2L2R1X symmetry
stage is short and the threshold corrections to α−1L and α−1c at
μ1 are much smaller because the sextet is rather close to this
matching scale (see Fig. 7). For both cases, the shape of the
“heavy” spectrum is detailed in Appendix B.

4. Further remarks

a. Two-loop effects ofMð6; 3;þ 1
3
Þ It is well known that at

the NLO level the two-loop running effects are generally
comparable to the one-loop threshold corrections if the
fields that are integrated out cluster around the matching
scale. Since, however, the fine-tuned mass of the ð6; 3;þ 1

3
Þ

scalar “slides” from the vicinity of μ1 where it is integrated
out (see the dashed line in Fig. 4) to as high as μ2 there is a
danger that the threshold effects in the latter case can
become larger than expected (see Fig. 6) and, hence, the
hierarchy of the corrections may get out of control. To this
end, we checked the consistency of our calculation in the
most extreme cases by introducing yet another matching
scale at the very sextet mass Mð6; 3;þ 1

3
Þ and considering

different effective theories above and below this threshold;
in such setting, the size of the possible deviation from the
simplified treatment should mimic the possibly large two-
loop threshold corrections. However, numerically, these
effects turn out to be very small; the reason is that the
changes of the inclinations of the parameter space boun-
daries in Figs. 5 and 4 play, to a large extent, against each
other and, thus, the shape of the essential ωBL-jσj corre-
lation remains intact.

b. Choice of the matching scales The consistency of the
entire treatment of the threshold corrections can be checked
rather easily by recalling that the nth loop thresholds should
make the effective SM gauge couplings independent of the
choice of the matching scale up to the same level. Hence,
the possible residual dependence of our results on the
choice of the matching scales should correspond to the two-
loop thresholds which, in size, are comparable to three-loop
β-function effects. We checked this behavior for each of the
consistent points; the typical change in the low-scale
couplings inflicted by, e.g., increasing μ1 by a factor of
3 leads to shifts of the order of 10−2 in α−1i ðMZÞ which,
indeed, is in the right ballpark of a typical two-loop
threshold/three-loop β-function effect. Besides that, these
effects are comparable to the uncertainties in the input
data (16).

FIG. 7. The same as in Fig. 6 but for Point 2 in Table I.

TABLE I. A pair of sample points consistent, simultaneously,
with the NLO unification constraints, the SK proton lifetime limit
(12) and with the extra assumption jσj > 1012 GeV. Let us note
that Point 1 would satisfy also the expected 2045 HK limits (14)
(but it needs jσj < 1013 GeV) while Point 2 obeys the jσj >
1013 GeV constraint (but the associated proton decay signal
would then be revealed at the HK), but none of them satisfies both
these bounds.

Point 1 Point 2

ωR −5.1 × 1010 GeV −4.1 × 1012 GeV
ωBL 1.6 × 1016 GeV 8.8 × 1015 GeV
σ 1.2 × 1012 GeV 1.1 × 1013 GeV
τ −2.0 × 1016 GeV −3.2 × 1015 GeV
a0 0.07 0.92
α 0.93 0.14
β4 0.98 0.68
β04 −0.34 −0.09
γ2 0.30 0.23
λ0 0.76 −0.19
λ2 0.51 −0.68
λ4 −0.10 0.88
λ04 0.56 −0.37
Mð6; 3;þ 1

3
Þ 1.0 × 1015 GeV 2.2 × 1013 GeV

τp 3 × 1035 y 2 × 1034 y

FIG. 6. The gauge unification pattern for the sample Point 1 in
Table I; the RG evolution passes through the SOð10Þ, 3c2L2R1X
and SM stages, respectively.
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c. Effects of the 10H representation As we mentioned
above, realistic fermion masses may be obtained only if
the Higgs sector contains at least one more Yukawa-active
representation besides Σ. The most simple and popular
choice is then the 10-dimensional vector; its (1,2,2,0) part
(in the 3c2L2R1BL notation) mixes with the same multiplet
from Σ below the Pati-Salam breaking scale. The mass
matrix of the resulting four SUð2ÞL doublets must be fine-
tuned so that one of them becomes the SM Higgs with an
electroweak-scale effective mass parameter. Hence, an entire
(1,2,2,0) multiplet (i.e., an appropriate mixture of the two
relevant fields) must survive down to the SUð2ÞR symmetry
breaking scale. Since we work in a slightly simplified setting
without the extra scalar 10 in play we just mimic this
situation by putting the next-to-lightest mass eigenvalue of
the SUð2ÞL-doublet mass matrix into the SUð2ÞR-breaking
scale, i.e., Mð1; 2;þ 1

2
Þ ¼Mð1; 1;�1ÞVB, and assume that

the remaining fields in the (1,2,2,0) sector are integrated out
at exactly the GUT scale and, as such, their possible
threshold effects would be subdominant and, hence, leave
our results intact.

d. BBN constraints Unlike for the setting with the TeV-
scale octet whose late decays may be, in principle, danger-
ous for the BBN (but only if its Yukawa couplings happen
to be significantly suppressed) there is hardly any concern
like this in the sextet case; indeed, such a “light exotics”
here is so heavy that its natural decay width is parametri-
cally different from that of the octet which, in turn, makes
the sextet scenario very safe in this respect.

V. CONCLUSIONS AND OUTLOOK

In this work we have recapitulated in detail the structure
and the current status of the minimal potentially realistic
renormalizable SOð10Þ grand unified model with the high-
scale gauge symmetry broken by the adjoint representation
plus a single copy of the five-index fully antisymmetric self-
dual tensor. Unlike for most of its alternatives (e.g., models
with either 54 or 210 in the scalar sector responsible for the
GUT symmetry breaking), the absence of the leading
Planck-suppressed d ¼ 5 correction to the GUT-scale gauge
kinetic form makes this setting very robust with respect to
the quantum gravity effects; this, in turn, makes it particu-
larly suitable for the precision proton lifetime calculations.
Indeed, in the current scenario, the scale of the perturbative
baryon and lepton number violation (i.e., the GUT scale),
may be, in principle, reliably calculated to the two-loop order
in the perturbation expansion. Consequently, the correspond-
ing theoretical uncertainties in the proton lifetime estimates
are expected to be under much better control than in other
models and even comparable to the size of the sensitivity
improvement window of the upcoming megaton-scale
experiments such as the Hyper-Kamiokande.
In particular, we attempted to conclude the first step in

this program, which is the detailed two-loop determination

of the parameter space compatible with the basic phenom-
enological constraints (namely, those coming from the
gauge unification and proton lifetime) paying particular
attention to the overall dynamical consistency of the
picture. This, in fact, can be attained only at the quantum
level due to the severe tachyonic instabilities developing in
the tree-level spectrum along the physically interesting
symmetry breaking chains. Hence, the NLO approach to
the minimal SOð10Þ model under consideration is a must
rather than an option.
At the vast majority of the parameter space there turn out

to be just two classes of solutions conforming all the
requirements specified in Sec. III. The first of them, studied
in great detail in the recent work [30], is a light color octet
with hypercharge 1

2
transforming as a weak isospin doublet

with mass below about 20 TeV while the second option
consists in having an intermediate-scale color sextet with
hypercharge 1

3
transforming like an SUð2ÞL triplet.

Concerning the former, this class of solutions is very
interesting due to a clear anticorrelation between the octet
mass and the proton lifetime; remarkably enough, this
relation turns out to be so tight that it either implies the octet
to be visible at the LHC or one of its near-future successors
or the proton decay to be observable at Hyper-K (assuming
it reaches its design sensitivity). As for the sextet, the NLO
analysis also reveals an interesting though slightly more
complicated correlation among the proton longevity, the
mass of the sextet and the absolute neutrino mass scale
(barring possible multiply-fine-tuned settings with a
strongly suppressed Dirac neutrino mass matrix) which
leaves only a very little room for the sextet at around
1014 GeV if proton decay would not be seen at Hyper-K.
There is a further comment that is worthwhile at this

point: Although the existing SOð10Þ renormalizable
Yukawa sector fits (such as [52,53]) do not admit σ below
about 1012 GeV, one should refrain from arguing that the
sextet solution would be essentially ruled out if there was
no p decay seen at the Hyper-K. This is namely due to the
fact that these fits were done under the simplifying
assumption that there are just two matrices governing
the Yukawa sector of the model [as it is the case, for
instance, in the minimal supersymmetric SO(10) GUT
[54,55]]. Let us remark that, in the non-SUSY case, this
is a strong extra assumption because there are two possible
contractions of the 10S with matter (16M16M10S and/or
16M16M10

�
S) allowed due to the reality of the SO(10) vector

representation; hence, the most general renormalizable
Yukawa Lagrangian in the non-SUSY models with 10S ⊕
126S is governed by three rather than two independent
complex symmetric matrices; cf. [56]. From this point of
view, the simplified setting calls for further justification;
this is often done by invoking an extra global symmetry of
the Peccei-Quinn (PQ) type which forbids one of the two
couplings and, at the same time, serves as a means to
resolve the SM strong CP problem and provides an
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invisible axion as a dark matter candidate. However, this
general scheme is not easily implemented in the model
under consideration because, without extra structure, there
is always a global remnant of the original PQ symmetry
surviving down to the electroweak scale, in conflict with
the current axion bounds.
Hence, one should take the quoted lower bounds on σ

with a grain of salt as, in the most general case, the Yukawa
sector may be capable of accommodating an arbitrarily small
Dirac neutrino mass matrix without trouble with the charged
sector fits and, hence, yield acceptable light neutrino masses
even for σ much below its natural domain at around
1012–14 GeV. Unfortunately, this issue can be settled only
by a dedicated numerical analysis of the most general setting
which, however, is out of the scope of the current study.
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APPENDIX A: ONE-LOOP MATCHING

In this appendix we list the explicit forms of all the
matching functions defined in Sec. IVA. In order to
simplify the notation, those related to different stages of
the RG evolution of the same gauge factor are denoted by
the same functional symbol; their association to a specific
matching is indicated by the corresponding matching-scale
variables.

1. The SOð10Þ → 3c2L2R1X matching at μ2
The threshold functions associated to the “SM gauge

factors” SUð3Þc ⊗ SUð2ÞL entering the formulas
(38)–(39) read
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þ log

Mð3;2;þ7=6Þð2ÞCS

μ2

�

þ2 log
Mð3̄;3;þ1=3ÞCS

μ2
þ4

3

�
log

Mð8;2;þ1=2Þð1ÞCS

μ2
þ log

Mð8;2;þ1=2Þð2ÞCS

μ2

�

þ1

3
log

Mð1;3;0ÞRS
μ2

þ2

3
log

Mð1;3;þ1ÞCS
μ2

�
:
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Let us reiterate that due to the 3c2L1R1X classification of the heavy spectrum it is quite convenient to introduce a matrix
notation for the SUð2ÞR ⊗ Uð1ÞX couplings already at this level; cf. Sec. IVA 3. The elements of the relevant threshold
matrix Λ (36) then read

λRRðμ2Þ¼
1

8π2
þ 1

8π2

�
−11

�
log

Mð3;2;þ1=6ÞVB
μ2

þ log
Mð3;2;−5=6ÞVB

μ2

�
þ1

2

�
log

Mð3;2;þ1=6ÞGB
μ2

þ log
Mð3;2;−5=6ÞGB

μ2

�

þ1

2

�
log

Mð3;2;þ1=6Þð2ÞCS

μ2
þ log

Mð3;2;þ1=6Þð3ÞCS

μ2
þ log

Mð3;2;þ7=6Þð1ÞCS

μ2
þ log

Mð3;2;þ7=6Þð2ÞCS

μ2

�

þ
�
log

Mð3;1;−4=3ÞCS
μ2

þ log
Mð3;1;þ2=3Þð2ÞCS

μ2

�
þ2

�
log

Mð6;1;þ4=3ÞCS
μ2

þ log
Mð6;1;−2=3ÞCS

μ2

�

þ4

3

�
log

Mð8;2;þ1=2Þð1ÞCS

μ2
þ log

Mð8;2;þ1=2Þð2ÞCS

μ2

�
þ1

3
log

Mð1;1;þ1Þð2ÞCS

μ2

�

λXXðμ2Þ¼
1

6π2
þ 1

8π2

�
−
22

3

�
log

Mð3;2;þ1=6ÞVB
μ2

þ log
Mð3;2;−5=6ÞVB

μ2

�
−
44

3
log

Mð3;1;þ2=3ÞVB
μ2

þ1

3

�
log

Mð3;2;þ1=6ÞGB
μ2

þ log
Mð3;2;−5=6ÞGB

μ2

�
þ2

3
log

Mð3;1;þ2=3ÞGB
μ2

þ4

3

�
log

Mð3;2;þ1=6Þð2ÞCS

μ2
þ log

Mð3;2;þ1=6Þð3ÞCS

μ2
þ log

Mð3;2;þ7=6Þð1ÞCS

μ2
þ log

Mð3;2;þ7=6Þð2ÞCS

μ2

�

þ1

6

�
log

Mð3;1;−4=3ÞCS
μ2

þ log
Mð3;1;−1=3Þð1ÞCS

μ2
þ log

Mð3;1;þ2=3Þð2ÞCS

μ2

�

þ1

6

�
log

Mð3;1;−1=3Þð2ÞCS

μ2
þ log

Mð3;1;−1=3Þð3ÞCS

μ2

�
þ1

2
log

Mð3̄;3;þ1=3ÞCS
μ2

þ1

3

�
log

Mð6;1;þ4=3ÞCS
μ2

þ log
Mð6;1;þ1=3ÞCS

μ2
þ log

Mð6;1;−2=3ÞCS
μ2

�
þ3

2
log

Mð1;3;þ1ÞCS
μ2

�

λRXðμ2Þ¼ λXRðμ2Þ¼
1

8π2

ffiffiffi
3

8

r �
44

3
log

Mð3;2;þ1=6ÞVB
Mð3;2;−5=6ÞVB

−
2

3
log

Mð3;2;þ1=6ÞGB
Mð3;2;−5=6ÞGB

þ4

3

�
log

Mð3;2;þ7=6Þð1ÞCS

Mð3;2;þ1=6Þð2ÞCS

þ log
Mð3;2;þ7=6Þð2ÞCS

Mð3;2;þ1=6Þð3ÞCS

�
−
2

3
log

Mð3;1;þ2=3Þð2ÞCS

Mð3;1;−4=3ÞCS
þ4

3
log

Mð6;1;þ4=3ÞCS
Mð6;1;−2=3ÞCS

�
:

Note that the off-diagonal λRX;XR factors are, indeed, μ2 independent which reflects their auxiliary role; technically, this
feature is implied by the zero trace of the SUð2ÞR generators.

2. The 3c2L2R1X → 3c2L1R1X matching at μ01
In the settings where there is a clearly identifiable 3c2L1R1X stage, i.e., for those with jωRj ≫ jσj, an extra matching scale

μ01 was conveniently introduced (cf. Secs. IVA 1 and IVA 3). The relevant threshold factors are then given by

λcðμ01Þ ¼ 0

λLðμ01Þ ¼
1

48π2
log

Mð1; 2;þ1=2ÞCS
μ01

λRRðμ01Þ ¼
1

24π2
−

22

24π2
log

Mð1; 1;þ1ÞVB
μ01

þ 1

48π2
log

Mð1; 2;þ1=2ÞCS
μ01

þ 1

24π2
log

Mð1; 1;−2ÞCS
μ01

λRXðμ01Þ ¼ λXRðμ01Þ ¼
ffiffiffi
6

p

48π2
log

Mð1; 1;−2ÞCS
μ01

λXXðμ01Þ ¼
1

16π2
log

Mð1; 1;þ1ÞGB
μ01

þ 1

16π2
log

Mð1; 1;−2ÞCS
μ01

:
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3. Matching to the SM at μ1
The specific shape of the threshold factors relevant for

the final matching of the relevant effective gauge theory to
the SM depends on whether there is an intermediate

3c2L1R1X symmetry encountered along the relevant break-
ing chain or not.

a. Matching 3c2L2R1X to the SM at μ1: Chain (17)

If it is not the case, i.e., if jωRj < jσj, and it is reasonable
to reduce the intermediate 3c2L2R1X symmetry right to the
SM, the relevant threshold functions are given by

TABLE II. The shape of the “heavy spectrum” of the model
under consideration for the two sample points in the parameter
space identified in Table I (Point 1 on the left, Point 2 on the right-
hand side). For each field X we quote its contribution to the one-
loop β function that, besides formula (22), enters also the
evolution of the baryon-number violating d ¼ 6 operators of
our interest; cf. Sec. IV B.

Multiplet X Type No. ΔaX Mass (GeV)

ð1; 1;þ1Þ VB 1 ð0; 0;− 11
5
Þ 9.2 × 1011

ð1; 1;−1Þ VB 1 ð0; 0;− 11
5
Þ 9.2 × 1011

ð1; 1;þ1Þ GB 1 ð0; 0; 1
5
Þ 9.2 × 1011

ð1; 2;þ 1
2
Þ CS 1 ð0; 1

12
; 1
20
Þ 9.2 × 1011

(1,1,0) VB 1 (0,0,0) 2.0 × 1012

(1,1,0) GB 1 (0,0,0) 2.0 × 1012

ð6; 3;þ 1
3
Þ CS 1 ð5

2
; 4; 2

5
Þ 1.0 × 1015

ð3; 2;þ 1
6
Þ CS 3 ð1

3
; 1
2
; 1
30
Þ 6.6 × 1015

ð3; 2;þ 7
6
Þ CS 1 ð1

3
; 1
2
; 49
30
Þ 6.6 × 1015

(1,1,0) RS 2 (0,0,0) 6.8 × 1015

ð1; 1;−2Þ CS 1 ð0; 0; 4
5
Þ 6.8 × 1015

ð1; 1;þ1Þ CS 2 ð0; 0; 1
5
Þ 6.8 × 1015

(1,1,0) RS 3 (0,0,0) 6.8 × 1015

(8,1,0) RS 1 ð1
2
; 0; 0Þ 8.0 × 1015

(1,3,0) RS 1 ð0; 1
3
; 0Þ 8.1 × 1015

ð3; 2;þ 1
6
Þ VB 1 ð− 11

3
;− 11

2
;− 11

30
Þ 9.0 × 1015

ð3̄; 2;− 1
6
Þ VB 1 ð− 11

3
;− 11

2
;− 11

30
Þ 9.0 × 1015

ð3; 2;þ 1
6
Þ GB 1 ð1

3
; 1
2
; 1
30
Þ 9.0 × 1015

ð3; 2;− 5
6
Þ VB 1 ð− 11

3
;− 11

2
;− 55

6
Þ 9.0 × 1015

ð3̄; 2;þ 5
6
Þ VB 1 ð− 11

3
;− 11

2
;− 55

6
Þ 9.0 × 1015

ð3; 2;− 5
6
Þ GB 1 ð1

3
; 1
2
; 5
6
Þ 9.0 × 1015

ð3̄; 1;þ 1
3
Þ CS 1 ð1

6
; 0; 1

15
Þ 1.1 × 1016

ð8; 2;þ 1
2
Þ CS 1 ð2; 4

3
; 4
5
Þ 1.4 × 1016

ð3; 1;þ 2
3
Þ VB 1 ð− 11

6
; 0;− 44

15
Þ 1.8 × 1016

ð3̄; 1;− 2
3
Þ VB 1 ð− 11

6
; 0;− 44

15
Þ 1.8 × 1016

ð3; 1;þ 2
3
Þ GB 1 ð1

6
; 0; 4

15
Þ 1.8 × 1016

(1,1,0) RS 4 (0,0,0) 2.2 × 1016

ð3; 1;− 4
3
Þ CS 1 ð1

6
; 0; 16

15
Þ 2.2 × 1016

ð3̄; 1;þ 1
3
Þ CS 2 ð1

6
; 0; 1

15
Þ 2.2 × 1016

ð3; 1;þ 2
3
Þ CS 2 ð1

6
; 0; 4

15
Þ 2.2 × 1016

ð8; 2;þ 1
2
Þ CS 2 ð2; 4

3
; 4
5
Þ 2.3 × 1016

ð6; 1;− 2
3
Þ CS 1 ð5

6
; 0; 8

15
Þ 2.6 × 1016

ð6; 1;þ 1
3
Þ CS 1 ð5

6
; 0; 2

15
Þ 2.6 × 1016

ð6; 1;þ 4
3
Þ CS 1 ð5

6
; 0; 32

15
Þ 2.6 × 1016

ð3̄; 1;þ 1
3
Þ CS 3 ð1

6
; 0; 1

15
Þ 3.2 × 1016

ð3̄; 3;þ 1
3
Þ CS 1 ð1

2
; 2; 1

5
Þ 3.4 × 1016

ð3; 2;þ 1
6
Þ CS 2 ð1

3
; 1
2
; 1
30
Þ 3.7 × 1016

ð3; 2;þ 7
6
Þ CS 2 ð1

3
; 1
2
; 49
30
Þ 3.7 × 1016

ð1; 3;þ1Þ CS 1 ð0; 2
3
; 3
5
Þ 4.5 × 1016

TABLE II. (Continued)

Multiplet X Type No. ΔaX Mass (GeV)

ð1; 1;þ1Þ VB 1 ð0; 0;− 11
5
Þ 9.8 × 1012

ð1; 1;−1Þ VB 1 ð0; 0;− 11
5
Þ 9.8 × 1012

ð1; 1;þ1Þ GB 1 ð0; 0; 1
5
Þ 9.8 × 1012

ð1; 2;þ 1
2
Þ CS 1 ð0; 1

12
; 1
20
Þ 9.8 × 1012

(1,1,0) VB 1 (0,0,0) 1.9 × 1013

(1,1,0) GB 1 (0,0,0) 1.9 × 1013

ð6; 3;þ 1
3
Þ CS 1 ð5

2
; 4; 2

5
Þ 2.2 × 1013

(1,1,0) RS 2 (0,0,0) 1.1 × 1015

ð1; 1;−2Þ CS 1 ð0; 0; 4
5
Þ 1.1 × 1015

ð1; 1;þ1Þ CS 2 ð0; 0; 1
5
Þ 1.1 × 1015

(1,1,0) RS 3 (0,0,0) 1.1 × 1015

ð3̄; 1;þ 1
3
Þ CS 1 ð1

6
; 0; 1

15
Þ 1.9 × 1015

(8,1,0) RS 1 ð1
2
; 0; 0Þ 2.6 × 1015

(1,3,0) RS 1 ð0; 1
3
; 0Þ 2.7 × 1015

ð3; 2;þ 1
6
Þ CS 3 ð1

3
; 1
2
; 1
30
Þ 3.0 × 1015

ð3; 2;þ 7
6
Þ CS 1 ð1

3
; 1
2
; 49
30
Þ 3.0 × 1015

ð8; 2;þ 1
2
Þ CS 1 ð2; 4

3
; 4
5
Þ 3.4 × 1015

ð3; 2;þ 1
6
Þ VB 1 ð− 11

3
;− 11

2
;− 11

30
Þ 4.9 × 1015

ð3̄; 2;− 1
6
Þ VB 1 ð− 11

3
;− 11

2
;− 11

30
Þ 4.9 × 1015

ð3; 2;þ 1
6
Þ GB 1 ð1

3
; 1
2
; 1
30
Þ 4.9 × 1015

ð3; 2;− 5
6
Þ VB 1 ð− 11

3
;− 11

2
;− 55

6
Þ 4.9 × 1015

ð3̄; 2;þ 5
6
Þ VB 1 ð− 11

3
;− 11

2
;− 55

6
Þ 4.9 × 1015

ð3; 2;− 5
6
Þ GB 1 ð1

3
; 1
2
; 5
6
Þ 4.9 × 1015

ð6; 1;− 2
3
Þ CS 1 ð5

6
; 0; 8

15
Þ 7.5 × 1015

ð6; 1;þ 1
3
Þ CS 1 ð5

6
; 0; 2

15
Þ 7.5 × 1015

ð6; 1;þ 4
3
Þ CS 1 ð5

6
; 0; 32

15
Þ 7.5 × 1015

ð8; 2;þ 1
2
Þ CS 2 ð2; 4

3
; 4
5
Þ 9.1 × 1015

ð3; 1;þ 2
3
Þ VB 1 ð− 11

6
; 0;− 44

15
Þ 9.8 × 1015

ð3̄; 1;− 2
3
Þ VB 1 ð− 11

6
; 0;− 44

15
Þ 9.8 × 1015

ð3; 1;þ 2
3
Þ GB 1 ð1

6
; 0; 4

15
Þ 9.8 × 1015

ð3; 1;− 4
3
Þ CS 1 ð1

6
; 0; 16

15
Þ 1.0 × 1016

ð3̄; 1;þ 1
3
Þ CS 2 ð1

6
; 0; 1

15
Þ 1.0 × 1016

ð3; 1;þ 2
3
Þ CS 2 ð1

6
; 0; 4

15
Þ 1.0 × 1016

ð3; 2;þ 1
6
Þ CS 2 ð1

3
; 1
2
; 1
30
Þ 1.2 × 1016

ð3; 2;þ 7
6
Þ CS 2 ð1

3
; 1
2
; 49
30
Þ 1.2 × 1016

ð3̄; 1;þ 1
3
Þ CS 3 ð1

6
; 0; 1

15
Þ 1.3 × 1016

ð3̄; 3;þ 1
3
Þ CS 1 ð1

2
; 2; 1

5
Þ 1.3 × 1016

ð1; 3;þ1Þ CS 1 ð0; 2
3
; 3
5
Þ 1.3 × 1016

(1,1,0) RS 4 (0,0,0) 4.1 × 1016
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λcðμ1Þ ¼
5

16π2
log

Mð6; 3;þ1=3ÞCS
μ1

λLðμ1Þ ¼
1

48π2
log

Mð1; 2;þ1=2ÞCS
μ1

þ 1

2π2
log

Mð6; 3;þ1=3ÞCS
μ1

λYðμ1Þ ¼
1

40π2
−

11

20π2
log

Mð1; 1;þ1ÞVB
μ1

þ 1

80π2
log

Mð1; 2;þ1=2ÞCS
μ1

þ 1

10π2
log

Mð1; 1;−2ÞCS
μ1

þ 1

20π2
log

Mð6; 3;þ1=3ÞCS
μ1

:

b. Matching 3c2L1R1X to the SM
at μ1: Chain (20)

In this mode the situation is even simpler than in the
previous case because, besides the full SM singlets (that do
not contribute to the matching factors at all) there is only

the sextet to be integrated out at μ1; the relevant formulas
read

λcðμ1Þ ¼
5

16π2
log

Mð6; 3;þ1=3ÞCS
μ1

λLðμ1Þ ¼
1

2π2
log

Mð6; 3;þ1=3ÞCS
μ1

λYðμ1Þ ¼
1

20π2
log

Mð6; 3;þ1=3ÞCS
μ1

:

APPENDIX B: SAMPLE SCALAR SPECTRUM

In Table II we present the spectrum of the heavy vectors
and scalars for the two sample points specified in Table I.
The relevant fields are classified with respect to the SM
gauge group. Notice the difference in the position of the
ð6; 3;þ 1

3
Þ scalar field and in the masses of the vector

bosons associated to different symmetry breaking scales [in
particular, the ð3; 2;− 5

6
Þ and ð3; 2;þ 1

6
Þ vectors responsible

for the d ¼ 6 proton decay] between the left and right
panels. Notice also that for both points one has jωRj < jσj
and, thus, the mass of the ð1; 1;�1ÞVB vector boson is
lower than that of ð1; 1; 0ÞVB.
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