PHYSICAL REVIEW D 90, 114508 (2014)

Extracting the electromagnetic pion form factor from QCD
in a finite volume

Hidenori Fukaya and Takashi Suzuki’

Department of Physics, Osaka University, Toyonaka, Osaka 560-0043, Japan
(Received 9 September 2014; published 24 December 2014)

We consider finite volume effects on the electromagnetic form factor of the pion. We compute the
peudoscalar-vector-pseudoscalar correlator in the € expansion of chiral perturbation theory up to the next-
to-leading order and find a way to remove the dominant part, which comes from a contribution of the pion
zero mode. Inserting nonzero momentum to relevant operators (or taking a subtraction of the correlators at
different time slices), and taking an appropriate ratio of them, one can automatically cancel the zero mode’s
contribution, which becomes nonperturbatively large, ~O(100%), in the € regime. The remaining finite
volume dependence, which comes from the nonzero momentum modes, is shown to be perturbatively small
even in such an extremal case. Since the zero mode’s dominance is universal in any finite volume scaling,
and we do not rely on any particular feature of the ¢ expansion, our method has a wide application to many

other correlators of QCD.
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I. INTRODUCTION

The electromagnetic form factor of the charged pions is
one of the fundamental low-energy quantities in quantum
chromodynamics (QCD). Experimentally, it is related to the
pion charge radius (r?), through the relation

dFV(CIZ)

dq2 qZ:O’

<72>V =6 (1)

where Fy(g*) denotes the electromagnetic form factor at
the momentum transfer ¢°. In terms of chiral perturbation
theory (ChPT), it is related to the one of the low-energy
constants (LEC's) Lo [or lg in the SU(2) case], which
appears at the next-to-leading order (NLO) in the chiral
Lagrangian [1,2].

However, it is still a nontrivial task for lattice QCD to
fully reproduce or understand the low-energy behavior of
the pion form factors. In fact, the lattice data of the pion
charge radius have been sizably lower than the experi-
mental value (r?),, = 0.452(11) fm? (see the recent review
in [3]). It is only recently that consistent values of (r?),
were reported by simulations near the physical point [4—6].
According to ChPT, it is known that the pion charge radius
shows a logarithmic divergence as the pion mass goes to
zero. Thus, we may recognize that our simulated pion
masses are too large to reproduce the logarithmic diver-
gence, unless we directly simulate QCD near the chiral
limit. Namely, in order to examine the chiral logarithm of
the pion charge radius, it is essential to simulate lattice
QCD in the very vicinity of the chiral limit.
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Although current computational resources allow us to
simulate QCD near the physical point, one should carefully
take two sources of systematic effects into account in such
simulations. One is the cutoff effects, especially those
coming from breaking of the chiral symmetry. When the
simulated quark mass is as small as the typical breaking scale
of the chiral (flavor) symmetry (it is typically ~A¢,cpa® for
the improved Wilson or staggered fermions, where Agcp is
the QCD scale and a denotes the lattice spacing), it is known
that the chiral logarithm is largely distorted. The low-lying
Dirac eigenvalue spectrum, for example, is a quantity
sensitive to such discretization effects [7].

Another source which may change the chiral behavior is
the finite size of the lattice volume. In the literature, it is
often mentioned that the lattice size L should satisfy
m,L > 4, where m, is a simulated pion mass [8], to
suppress the finite size effect at a few percent level.
Since the computational cost for inverting the Dirac
operator increases as m, decreases, it is demanding to
keep m,L to be large enough. Especially when we want to
keep a good chiral symmetry to avoid the former discre-
tization effects on the chiral logarithm, and use a fermion
formulation such as overlap or domain-wall fermions, the
available range of m,L is quite limited.

This naive criterion about m, L, however, comes from the
fact that the zero-momentum mode of pions can propagate
wrapping around the lattice volume, whose contribution is
typically given by exp(—m,L). For the excited pion states,
the finite volume effects are much smaller, since their
discrete energy satisfies E, > 2x/L in a finite volume, and
E.L > 2x. Therefore, if we can eliminate or reduce the
dominant contribution from the pion’s zero-momentum
mode, one should be able to extract the low-energy
quantities even on a small lattice.
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In this work, we consider the “worst” case, the so-called
e regime of QCD, to show that the above strategy actually
works even in such an extremal situation. In the € regime,
m,L <1, and the finite volume effects are generally
~100% and we receive a nonperturbatively large correction
from the pion zero mode. However, using the ¢ expansion
of ChPT [9], we compute the pseudoscalar-vector-
pseudoscalar three-point function, and find a way to
automatically cancel the dominant part of them. Since
the zero-mode contribution has no space-time dependence,
two simple steps are enough to achieve this:

(1) Inserting nonzero momenta to relevant operators (or
taking a subtraction of the correlators at different
source points when one or two of the inserted
momenta are zero).

(2) Taking ratios of them.

We also compute the NLO corrections and show that these
effects are actually suppressed by 1/F2L?, where F denotes
the pion decay constant. The preliminary result of this work
has already appeared in Ref. [10], and has been applied to
numerical works by JLQCD Collaboration [5,6].

Here, we would like to remark on the difference of our
new approach from the conventional ones in the ¢ regime.
In the previous works, the e expansion was used to
disentangle the low-energy constants [11-17], using a
bunch of Bessel functions, from the lattice data which
were largely contaminated by the finite volume effects. In
this work, we use (the e expansion of) ChPT in more
indirect way: just for finding the combination of the
correlators which has a small sensitivity to the volume.
As we will see in the following sections, this idea makes the
analysis in the e regime of QCD greatly simplified. In
particular, we would like to emphasize that there is
essentially no need to use Bessel functions for the compu-
tation of the pion form factor. Moreover, since the domi-
nance of the pion zero mode’s contribution (having the
longest correlation length) is universal for any finite volume
effects on any operators, we expect a wide application of
this method. It may be useful for heavier hadron form
factors, and simulations in the p regime as well.

The rest of this paper is organized as follows. In Sec. 1I,
we review the e expansion of ChPT and present how to
compute the correlators at one-loop level. In Sec. III, we
consider the two-point functions to illustrate our new
idea. Then, our main result for the pseudoscalar-vector-
pseudoscalar three-point functions is presented in Sec. IV,
including the NLO effects. In Sec. V, we show how to
extract the pion vector form factor, and estimate the
remaining finite volume effects numerically: we find that
it is a few percent level already at L = 3 fm. A summary
and conclusion are given in Sec. VI.

II. THE ¢ EXPANSION OF CHPT

In this section, we review the e expansion of ChPT, and
show how to perform the one-loop level calculation of the
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correlators. First, we give the counting rule of the e
expansion. Second, we write down the chiral Lagrangian
with pseudoscalar and vector source terms, and explain a
general procedure to calculate correlators from a partition
function. Finally, we give the technical details of this study
at the end of this section.

A. The chiral Lagrangian

We consider N -flavor ChPT in an Euclidean finite
volume V = TL? with the periodic boundary condition
in every direction. The Lagrangian [1,2] is given by

F? ,
Lener = - Tt(9,U(x))"(8,U(x))]

—%Tr[MTU(x) UM+, (2)

where U(x) denote the chiral field which is an element of
the group SU(N). X is the chiral condensate and F is the
pion decay constant both in the chiral limit. The terms
omitted by ellipses are the ones at the higher orders. For
simplicity, we take the quark mass matrix M degenerate
and diagonal: M = diag(m,m,m, ...).

In the € regime [9], the vacuum is not fixed but has
nonperturbatively large fluctuations. Namely, the zero
mode of the pions must be integrated exactly. Thus, we
separate it from the nonzero momentum modes and para-
metrize the chiral field as

U(x) = Upexp <¥5<x>>,

where U, denotes the zero modes. The nonzero momentum
mode is decomposed as &(x) = T9¢%(x) with SU(Ny)
generators 7%, for which we use the normalization of
Tr[T°T"] = ;6°°. Since the constant modes are separated
from &(x) fields as Uy, a constraint

Us € SUN;), (3)

/ dxE(x) = 0, @)

must be satisfied to avoid the double-counting of the
zero modes.

Now, we rewrite the chiral Lagrangian Eq. (2) with the e
expansion, whose counting rule is given by

as
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+ Ivjo,e0,8(0)

z f
Lenpr = —ETr[M*UO + UyM] 5

)
+ mTr[(MTUO + U M)E)(x) + -+

(6)
From this Lagrangian, one can recognize that we are
treating a hybrid system containing bosonic &(x) fields
and a matrix U,, which are weakly interacting.

For &(x) fields, one can perform the Gaussian integrals
without difficulty. In this work, we use the correlator in a
quark-line basis,

(EC 60V e = 500, B(x = ) = 3603~ Alx =),
f

(7)
where the second term comes from the constraint Tré = 0,
and

eipx

Vi

g (8)
describes the propagation of the massless bosons. Here, the
summation is taken over the nonzero 4-momentum
p =2x(n,/T.n,/L,n,/L,n./L), with integers n,, except
for p = (0,0,0,0), because of the constraint Eq. (4).

While &(x) fields are treated perturbatively, the zero
mode denoted by U has to be nonperturbatively integrated
(we will denote it by (- - ), ). It is known that these matrix
integrals are expressed by the Bessel functions [18-20],
which is a peculiar feature of the e regime. Historically, this
special feature of the ¢ regime is used for extracting the
leading LEC’s, X and F, which are more sensitive to the
volume than others. However, for the other LEC’s at NLO,
we should take a different strategy, or we should remove the
contamination from the finite size. In this work on the
vector form factor of pions, which is related to Lo, the U,
integral plays a less important role.

2
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B. Partition function and correlators

In this subsection, we consider the partition function of
ChPT in the e regime and show how to calculate the
correlation functions. First, we introduce the relevant
source terms to the chiral Lagrangian Eq. (2). Since the
Lagrangian is invariant under the chiral rotation,

U(x) - QLU<X)9;’ gr-9r € SU(Ny), )

the vector or axial vector operators are given through the
Noether’s theorem for the vectorlike transformation
g1, = gr and the axial one g; = gje. It is easy to see that
adding these operators is equivalent to replacing the
derivatives by the “covariant” derivatives:

0, = V,U(x)=0,U(x) —i(v,(x) + a,(x))U(x)
+iU(x)(v,(x) = a,(x)), (10)

where v,(x) and a,(x) denote the vector and axial-vector
sources, respectively. Similarly, since the Lagrangian is
invariant under the Parity transformation,

U(x) = U'(x), x=(t,x,y,2) = x = (t,—x, =y, —2),

(11)

adding a scalar U(x) + U'(x) and a pseudoscalar U(x) —
U'(x) is absorbed in the mass matrix:

M = M; =M+ s(x) +ip(x), (12)
where s(x) and p(x) denote the scalar and pseudoscalar
sources, respectively. We set s(x) = a,(x) =0 in the
following.

Next, let us introduce the NLO terms of the chiral
Lagrangian. However, some of them are irrelevant to our
calculations. In this study, it is enough to consider the terms
with the low-energy constants L; (i = 4, ...9). Namely, we
consider the Lagrangian

L(s. p.vy.ay) = %Tr[vﬂm(x)vﬂu(x)] - %Trw}u(x) + UMy

n L4%Tr[(vﬂu(x))*vﬂu(x)] X Tr MU (x) + U (x) M)

F Ly 25 TH(V,U00) Y, U (MU () + UT (M) = Lg (i—z TMUG) + U <x>MA)2

F?

2

- L (22 TrM;U(x) - U uwﬂ) 1y <ﬁ> TMUWMUG) + U MU WM,

+ iLoTr[Ff, (x) VFU (x) (V¥ U (x))T + Fp, (x) (VAU (x))'VPU (x)], (13)
where
F(x) = 0,F[(x) = 0,F)(x) = i[F}(x), F,(x)],  I=R,L,
Fff(x) = v,(x) + a,(x), Fﬁ(x) = v,(x) = a,(x). (14)
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The calculation of ChPT is performed in the functional
integral formalism. The partition function is defined by

Z(s,p,vﬂ,aﬂ):/HdU(x)exp [—/d4x£(s,p,vﬂ,aﬂ)],
(15)

and the correlators are computed by differentiating it with
respect to the corresponding sources, and take their zero
limits. The pseudoscalar two-point function, for example, is
given by

(P(x)P"(y))
1 5 5
~ 2(0,0,0,0) 5p%(x) 5p°(y) Z(s.p- vy ay) N—
(16)

where p“(x) denotes the coefficient of an SU(N,) gen-
erator T¢ where we decompose the source as
p(x) = T*p“(x).

One should note that our nontrivial parametrization of
U(x) needs a nontrivial Jacobian in the functional inte-
gration measure:

[Tave = [ av[Jazrwe.e). (1)

A perturbative calculation [11,21] has shown

T8 e (- [ax i me o). (9
3F°V

which can be regarded as an additional mass term of the

£(x) fields at the one-loop level. Note that this additional

mass does not vanish even in the m — 0 limit, which keeps

the theory infrared finite.

Finally, let us consider the @ vacuum and fixing topology.
In the e regime, we often consider a fixed topological
sector, rather than the full QCD vacuum with the vacuum
angle 6 = 0. For this purpose, we encode the nonzero
vacuum angle @ to the mass term [22],

M = My = Mexp(—i0/Ny), (19)

using the axial U(1), rotation. Then we can perform a
Fourier transformation with respect to € to obtain the
partition function at fixed topology,

2d0
Z9s,p, v a,) = — [ Z(s, p,v,.a,)

0 2w |M:M9]’

(20)

where Q denotes the topological charge of the original
gauge fields. It is known that this 0 integral can be absorbed
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in the group integration of the zero mode: redefining the
zero mode,

, _ iV 2
e/ U (x) = Dyexp (TW <x>), 1)
where Uy € U(Ny), the zero-mode part of the functional
integral is modified to

do )
/exp(iHQ)/ dUF(Me®/NrUy)
2r SUWy)

= / dU()(detl_Jo)QF(MTUo), (22)
U(Ny)

where we have used the fact that the zero mode in the
Lagrangian always appears as a function of Me®/NrU,
(and its Hermitian conjugate). Fixing the topology is
technically easier since the U(N ;) group integral is simpler
than that of SU(N). It is also useful for investigating the
finite volume physics which is sensitive to the topology of
the gauge fields. It is important to note that the fixing
topology effect is totally encoded in the pion-zero mode,
and therefore, is automatically eliminated once the effect of
the latter is eliminated. Since we will be able to cancel the
effect of U, (from the LO contribution), in the following
sections, we do not distinguish U, and U, unless explicitly
stated.

We are now ready for the one-loop computations.
However, we would like to give some useful technical
details which simplify the calculations, in the next
subsection.

C. Technical details

Because of the nontrivial parametrization of the chiral
field, we have a lot of diagrams to be computed in the €
expansion of ChPT even at NLO. Here we rewrite the
Lagrangian using the nonself-contracting (NSC) vertices,
and compute some of one-loop diagrams in advance, as
corrections to the chiral Lagrangian. This reduces the
number of diagrams and simplifies our calculation.

The n-point NSC vertex is defined by

[€"(x)]NSC = £ (x) — (all possible & contractions)  (23)

and we can absorb the contracted part in the redefinition of
the lower dimensional terms in the Lagrangian. Note that
([&"(x)INS€) . = 0 by definition. For example, a term in the
Lagrangian at NLO can be reexpressed by

1
m Tr [auéé:ayéé: - 62 (8”6)2]

! 1
= 52 T0,£80,5¢ — £ (9,1 + 5 Tr(9,°)AZ¢

+ %Tr[iz]AMZ, (24)
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where

= 2
3FV (25)

can be absorbed in the redefinition of the mass term, and
N
AZE = - —LA(0) (26)

can be absorbed in the redefinition of the kinetic term.
Here, and in the following, the momentum summations
embedded in A(0) etc. are kept unperformed until the
very end of the calculation, except for the trivially clear
cases like 92A(0) = —1/V, 8,A(0) = 0. In this work, we
employ the dimensional regularization for the loop
integrals.
With the NSC vertices, the action is expanded as

SChPT - /d4)C£ - SLO + SNLO + Ssrc + Y (27)

where

Here, the source operators are given by

PHYSICAL REVIEW D 90, 114508 (2014)

>
510 — L2V iy, + UM
+ / d4x{1Tr[a,,gaﬂzg] (x)}(zf)Z,
SNLO SNLO + SNLO (28)

S = /d4xTr[p(x)P(x) + 0, (x)VA(x)],  (29)

where

SN0 = [ i g Tlo,ce0/6E - €0, (). (30)

sYo= [ a1 ( MU+ UM |
M= SR r ot Up + 5 (x).

(31)

Note that the linear term in £(x) disappears because of the
constraint Eq. (4).

. .
P(x) = iZ" S [Ug - Uj] - 27— ﬁ [Ugé + U — 2 2’F2 (U8 — EU;NSC
X - X
+ 127 MO W0 = UgITHETS + - (U8 + EUNC + 7 [Uof* = UGN
L (TH0,E0€5C) x [Uy — U}] = iLs 75 U9, 0% ~ 0,60 EUPSC + O, (32)
4! c7V2
VH(x) =~ U4V = 048] + 5 (0458 00U + (0458 — 00 )™
- ﬁ [Ug(8#£87 = 26058 + 0" UG — (68> = 2£04eE + 0 ¢) N
5 (Ug(HE8 = 36008 4 3808 = PO + (V68 = 36068 + 38085 — PO E)SC
- 2220, [Uy (004 — QU + (00— 08 + O(E), (33)
|
where _3
zP? 5 A(0), (37)
NZ—1_ 3NfF
75 1 - 1\; = A(0), (34)
f
N, _ 1
N ZP3_1—2Ff2A(0) NP (38)
78 =1-—LA(0), (35) /
6F?
2N, -
7P = 75+ O(eY), (36) 2" =1-3:540), (39)
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V2 — 1 L A(0). (40)

In the above expression, the argument (x) of &(x) is omitted
for simplicity. In this work, we do not consider contact
correlators at the same position, such as (P(x)V(x)). We
have, therefore, only collected the terms linear in the
sources p(x) and v,(x).

Here we note that except for ZV2, we can absorb all the Z
factors into the redefinition of the wave functions (¢ fields),
or the coupling constants, by defining

&' (x) = Z°¢(x), (41)
Yeir = 252, (42)
F o EF<1 —2]\;{'25(0)) (43)

Therefore, except for the fourth term in Eq. (32), the vertex
corrections of the two-point and three-point correlators can
be obtained by simply replacing the coefficients of the LO
results with the shifted ones X. and F., except for
multiplying the coefficient of the second term in V#(x),

Ny

ZV2)(Z)? =1- S A(O) (44)

and the third term in P(x),

zP3 (Feff 2

7P3 = 22(25)2 T) =1- 6]\;‘_‘2 A(O) (45)

With this action, for any operator O (as a function of &
and U,) in the e expansion,

0=00+0NO ... (46)
its expectation value is perturbatively evaluated as
fDUODf[(OLO + ONLO . ) —SLO—SNLO+~~~]

fDUODf[ —SLO SNLO+ ]
= ((0%) )y, + [{({O™0) )y, = ((OYOS™0) )y,
+ <<0LO>§>UO<<SNLO>§>UO] T+ (47)

(0) =

where we have used the following notations:

fDer ‘[zlvTr[/\/l U0+U1M]01(U0)
fDUo SV TM Ug+ UM

(0,(Uyg))y, = ., (48)

[Deem S HTERI) g 2@
[Deem S AT

(02(8))e (49)
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Note that, due to the use of NSC vertices, we do not need to
calculate the fourth term in Eq. (47) since (SN'), = 0.

In the usual & = 0 vacuum, DU, denotes a Haar measure
on SU(N), while it should be replaced by DU, (det Uy)?
on U(N/), for a fixed topological sector as discussed in the
previous subsection.

III. TWO-POINT FUNCTIONS

As we have mentioned in Sec. I, the dominant finite
volume effect on correlators comes from the pion zero
mode. Since the zero mode itself does not depend on
the space-time position x, its effect always appears as
an x-independent constant term or overall constants of
x-dependent terms. In either case, it is not difficult to
eliminate these zero-mode effects from the correlators.
In this section, we demonstrate this new idea taking the
two-point pseudoscalar correlators, as an easiest example.

A. LO calculation

Let us consider a pseudoscalar operator in the charged
pion channel,

SPWI + PR (50)

From the chiral symmetry, it is easy to confirm that its
two-point function satisfies

([P [PW)ha) =

Pl(x) =

((PXO]a1[P(Y)]21) =0, (51)

and

(P [P()]a1) = (P [PO)]12) = 2(P (x) P (y)).

(52)

The quark field basis [P(x)];; is convenient unless we
consider the neutral sector of ChPT, since ([P(x)];;[P(y)] ;)
shares the same normalization of the so-called “connected”
contribution of the conventional meson correlators in
lattice QCD. Therefore, we use [P(x)];; rather than the
original P!(x) in the following analysis.

Now we can write down the two-point function to O(e?),

22
(PP O)]2) = == (AW,
Zgﬁ BU eip(x=y)
3y B
(53)
where
A(U0) = [U = UlalUp = Ublay +5 (1V0 = Ul
45 ([Uo - Ulfar . (54)
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B(Ug) =2+ [Uo]11[Uglay + [U(T)]u[U(T)]zz
— ([Uol1n + [Ug]u)([UO]m + [U(T)]m)/Nf‘ (55)

Note that some NLO contribution is already involved in
Zegr or Fog since we have resummed the Lagrangian with
NSC vertices.

This correlator in Eq. (53) is a known result in the
literature, and one can find how to evaluate (A(Uj)),, and
(B(Uy))y, in, for example, Ref. [15]. In particular, the
x- and y-independent constant term is known as a special
feature of the € regime, and can be used for extracting X. In
this work, however, we will eliminate this constant term in
the end of the calculation. Therefore, we have to treat the
second term of Eq. (53) as the LO contribution, and the
calculation at one order higher is needed.

B. NLO calculation

Next, let us compute the NLO contribution. Here and in
the following, we simply neglect the contribution to the
constant part.

For the third term of Eq. (47), we have

— ({[P(0)]12[P()]21]OSN0) ),
= —<<[[P(x)]12[P()’)]21]LOS%LO>§>UU

32 eiP(x=y)
= 5o (D(Uo))y, (~MD) Y . (56)

2F %V 0 (r?)>? "’

where M%z = (m, + my)Zs/F?, and the dimensionless

U, integral part is given by

D(Uy) =

DY(Up) = [Ug)yy + [Ug)y + [Ug]n + [Ug]zza (58)
D! (Ug) =—d— (2= Uy Vol = (U411 [US]n).  (59)
it
D2U,) = 251‘152; ‘; 0201
[UpMUy);; —m; — 2Nj
% {[UO]'.'( my + my +ﬂ1 + p [UO]jj>
n H] , (60)
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511825 + By
D (Up) =~) ~ ij —

i.j

([Uol;; + [Ug]ij)

y [[UOM%UO]ji + [USMU(@L-,'

m1+m2

N, .
1y + o ([Wolji + [Uo]ji):|’ (61)

([Uolin + [Ug]lz)([UO]zl + [Ug]m)
Ny

DHUy) =
L hmi (Ul +[Ug)) Ny
X(_Z i ii 0lii 4 >’ (62)
Ny % my +my M1t

where p; = m;ZV. Here we have given more general
results than our setup in this work: with nondegenerate
N ¢-flavor quark masses m;’s. The degenerate results can be
obtained simply taking m; — m in the above formulas.
Note that we have neglected trivially vanishing matrix
elements like ([Uy];;)y, = 0 for i # j.

The second term of Eq. (47) is given by

(P2 [PO)]a M)y,

22 1171 y) ll’z x=y)
)u . (63)
DD P
where
4 + t
C(Uy) = N_f_ ¢ 12 =1[Uo)11[Uglay = [Ugl1 [Upln2)

2 + _ T
+(1+Nf)<wo] —(U3]1) (Uelay — [U3]ar):

(64)

To summarize our results, it is useful to define the
“massive” propagator,

- 1 eirx
A(x; M?) = —272 5 (65)
Vg p +M
and noting for M ~ O(e?)
I 1
— = o(M*), 66
7 MG T e O (¢6)

the correlator in a simple form is obtained,
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([PO)]12[P(V)ar)

2 eiP(x=y)
= const + —4— (B(U. _—
ZszfV< ( o))uo;p2+Mzzzzpt
ngf ’171 x=y) le x=y)
TR Ju Z Z ——— (67)
4FeffV Oméo p270 P2

where const denotes the constant term we have omitted (we
do not need it below), and

(D(Uo) = B(Uy))y,
(B(Uo)),

Z =1+ (68)

The above formula Eq. (67) is not completely new but
already derived for the degenerate case by Hansen [11]
(including the explicit form for the constant term, which
depends on the NLO LEC L;’s). The only difference here is
that we have resummed the mass effect using Eq. (65).
Although this resummation should have no essential
numerical difference from the original form, the results
after integrating over x in the spatial direction look quite
different: the resummed formula gives a cosh function,
while the nonresummed one gives a polynomial.

In the literature, it is often mentioned as a special feature
of the e expansion to have polynomials in the correlators.
But this is not absolutely true. Suppose that we have an
exactly massless quark theory. Even in that limit, the ¢

fields have a mass /N f/FzV, which comes from the

measure term [see Eq. (31)] and the theory describes a
system with a completely random field U, (having no
action) and massive & fields. In this extreme case, it is
obvious that the polynomial form in the ¢ expansion of the
£ propagation is just an approximation of its true expo-
nential decay. The mass resummation Eq. (65) achieves a
smooth connection to the p expansion,1 which is needed in
another special limit mXV — oo while keeping M, L < 1,
where both € and p expansions are good. In fact, we can
easily reproduce the p regime result from Eq. (67) by
taking the V — oo limit where one obtains (B(Uy))y, — 4.
(A(Uy))y, = (C(Uy))y, = 0, and ZP - 1. For these
reasons, we expect that this resummation Eq. (65) give
not only a practical advantage of equally treating the zero
and nonzero momentum modes, but also a better conver-
gence in the e expansion.

The third term of Eq. (67) is a peculiar term in the €
regime, which originally comes from a 3-pion state,
consisting of one having zero momentum and two having
nonzero momenta. At this order, it looks like a propagation
of two massless particles. But for the same reason discussed
above, these propagators should have mass corrections at
higher orders. We expect that this two-particle state cannot

'More rigorous arguments are found in Refs. [17,23].
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reach a long distance, compared to the single particle
propagation. In the following analysis, we simply neglect
this NLO term and similar terms in the three-point
functions. Of course, this neglecting the terms cannot be
justified within the e expansion of ChPT, since the
expansion in the dimensionful quantity does not know
how small the dimensionless exponential function is. This
truncation may be numerically justified by carefully check-
ing the plateau of the effective mass, when we simulate
lattice QCD [6].

C. Removing dominant finite volume
effects in the ¢ expansion

Now we are ready to cancel the dominant volume effects.

First, we insert spatial momentum to the operators. Namely,
we consider

CE(1.p) = ([P(x0: D) 2 [P (yo: =P)]a)-

P(30. )]} = / dPre®X[P(x)],; (69)

where x, is the temporal element of x, t = xy — yg, and
p = 2x(n,, n,,n,)/L is the three-dimensional momentum.
Then, the unwanted constant contribution consts. auto-
matically disappears for p # 0. It is also intuitively rea-
sonable that the higher energy states having momenta are
less sensitive to the finite volume effects. Even in the case
of p = 0, it vanishes in a simple subtraction with respect to
time: A, [P(z.p)l;; = [P(1.p)];; = [P(twer. P)];; with a refer-
ence time slice 7.

The second step is to take a ratio of the correlators with
different momenta. For example, by shifting y, — 0, and
renaming x, = f, we have

R*(1;p)
_ {[P(:p)]12[P(0;=p)]o1)
(A[P(1;0)]1,[P(0; 0)];)
_E2%(0) sinh (E2(0)T/2)
- E®\(p)sinh (E*(p)T/2)
) cosh(E(p) (1 = T/2))
cosh(E?Y(0)(t — T/2)) — cosh(E*'(0)(t; — T/2))’
(70)

where

E¥(p) = \/M2,Z2" 4 p2. (71)

The ratio R*'(¢; p) is no more dependent on (A(Uy)),, or
(B(Uy))y,- In fact, this expression is exactly the same as
the same ratio in the p expans10n except for the mass
renormalization factor Zj; 2pt . Namely, we have minimized
the features of the € regime in the two-point correlator. It is
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also important to note that R?P'(¢;p) is finite even in the
limit of E?'(0) — 0.

Since the above ratio R*'(#;p) has no dependence on
LEC’s of ChPT, it is not phenomenologically interesting.
However, it is a good test quantity for lattice QCD to check
the validity of the above arguments. Recently, JLQCD
Collaboration [6] compared the ratio R?(t;p) to the

numerical data in the both cases with M, Zi,‘,’t =0
and 100 MeV and found a fairly good agreement. The

NLO corrections in 4/ Zﬁ’t and the third term of Eq. (67) we

have neglected are actually small.

Since the x independence of the pion zero mode and its
dominance in the finite volume effects are universal and
true in any correlation functions at any sizes of the volume,
we expect wide applications of our method. Namely,
inserting momenta to the correlators and taking a ratios
of them generally makes a less sensitive quantity to the
volume than the original ones. We will see this is true for
the three-point functions in the next section.

IV. THREE-POINT FUNCTION

In this section, we calculate our main target, the
pseudoscalar-vector-pseudoscalar three-point function in
a finite volume in the e expansion of ChPT, which is
relevant for extracting the vector pion form factor.
However, we should note that the pion form factor itself
is not a quantity described within ChPT alone. In numerical
studies [24,25] it is known that the vector meson largely
contributes to the results, which cannot be explained by
ChPT. Even in such a case, we still expect that the
correction from the finite volume can be treated within
ChPT, as the heavier hadrons, including the vector mesons,
do not propagate very long. Therefore, in this section, we
compute the finite volume effects on the three-point
function within the ¢ expansion of ChPT. Once the main
part of finite volume effects are removed, the remaining
pion form factor should include the physics beyond ChPT.

A. Three-point functions and form factors

First, we briefly review how the three-point functions are
related to the pion form factors. Our main target in this
work is the vector form factor, defined by

(@ (p)IVi(x)lze(p1)) = i€ (py + pa), Fy(1).  (72)

where |7%(p)) denotes the on-shell pion state with momen-
tum p, V5 (x) is the coefficient of an SU(2) generator 7 in
the vector operator, and t = (p; — p,)°.

For lattice QCD calculations, it is convenient to take the
b = 3 component

V;(x) = %ﬁyﬂu(x) - %c_ly”d(x). (73)

PHYSICAL REVIEW D 90, 114508 (2014)

Using a conventional notation

7" () + =~ (p))
7 :
77 (p)) = 17~ (p))

V2i ’

7! (p)) =

7*(p)) =

(74)

where |7=(p)) denotes the charged pion state, and iso-spin
symmetry (we assume m, = my = m),

(@ (p) Vi)l (p1)) == (x~ (p2)IVa(x) |z~ (p1)). (75)

as well as the electric charge conservation,

(@ (p)IVi()|z= (p1)) = (=~ (p2)IVi(x)|z* (p1)) = 0,
(76)

one obtains a simpler formula,
(7 (p)IVa(xX) |2t (p1)) = (p1 + p2), Fy(1). (77)
It is also important to note for the isospin zero current,
V2 (x) = @y, u(x) + c_lyﬂd(x), (78)
that its form factor is zero:
(7 (p2)IVa(x)lz”(p1)) =0 forany a.b.  (79)

since the pions have zero Baryon charge. In ChPT, this
situation is more directly shown by V9 (x) = TrV,(x) =0
in Eq. (33). Namely, there exists no corresponding current
within ChPT. Therefore, for the electromagnetic current
defined by

1 2 _ 1-
IM = Vi) + 2 Vi) = Siru(x) - 3dy,d(x),  (80)

one can show an identity,

(@ (p)IVi@)z* (p1) = (=" (p)TM ()" (p1)). (81)

Namely, we do not have to distinguish the vector form
factor from the electromagnetic form factor of the pions.

In the literature, the finite volume correction on the
hadronic matrix elements is often computed by just
replacing the quantum loop momentum integrals by a
discrete summation. However, in such a calculation, one
assumes that one can apply the same Lehmann-Symanzik-
Zimmermann (LSZ) reduction formula as in the V — o
limit, to relate the form factor to the three-point function,
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/ d el / d*ze P ([P(x)] V30 [P(2)]ar)

_ {0I[PO)] 17" (p2)) (& (p1)][P(0)]]0)
(P1 +m )(Pz"’m )

x (@t (p)IVi )|zt (1))

In a finite volume (simulated on the lattice), this relation is
nontrivial, and one may overlook finite volume corrections
to the reduction formula itself. In this work, we work on the
finite volume correction within ChPT to

((PO]1a[Vi)ilP(2)]21)

with a general flavor index i. We will soon see that
(PO)] VWi [P(2)]21) = (8 — 5i2)<[P(x)}12V2()’)X
[P(2)]5;)- We then perform its Fourier transformation with
nonzero momenta, and show how to disentangle the pion
form factor from the correlators.

(82)

(83)

B. LO contribution

In the following, we assume x; > yy > 7o, and denote
t=xy— Yo, ' = vy — z9. We further assume that ¢, ¢/, 1 +
' < T/2 to suppress the effect of modes wrapping around
our periodic lattice. It is straightforward to compute the LO

PHYSICAL REVIEW D 90, 114508 (2014)

Here, we have neglected the ¢ and 7 independent terms
since we will automatically cancel them in the end of our
computation.

We have also neglected diagrams where &’s are con-
nected in unusual orders, like x-z-y or z-x-y, expecting the
long propagation between x and z to be exponentially
suppressed. This expectation is not true for the zero-
momentum contribution at LO. However, as mentioned
in the previous section, it is reasonable to expect that the
NLO corrections give a “mass” to the correlators and make
long-range correlation suppressed compared to the main
result. One should be able to numerically check this
expectation, since if the neglected contribution is big, it
should be detected as unexpected |x — z| dependence.

C. NLO contribution

Next, let us calculate the NLO corrections to the three-
point function. As seen in the two-point function, the
contribution from SO can be encoded as the mass
corrections: together with the LO contribution, one can
express it as

(P2 [Vu )] [P ]2 (1 = S3)e)w,

contribution to the three-point function in the same way as X2
the two-point function, b g = (8, —6,1) 4 F?fe:{/z (E(U, 0)>Uo
(PO Va0 [P(2)]ar) « il
FACAN 8 ,;ao ;;;eo (P} + MLZ30) (P} + M Z3))
~ 2= 1) (57 T Uy, o) »
x _lpl zp2 eiP1(¥=y) gira(-2) (84)
plz?;olhz?é:o P1P2 where
where
. H
E(U0) = 2+ 20l Uz + 2V Vil e e T LCL Ot
+ ol Ul + [Uo]2[Ug]22 °
~ [Uo)12[UGla1 = ol UG- (85)
|
G(Uy) E%[{([Uo]zz + (Uil = 2)2 + [Uol 1 [Uolas + U1 [Ufs)
+8([Uola + [Ugla) = 6[Uo] 11 Ul = 6[UG]11 [Ufls = 4[Ug)[Uglaa
— ([Uolaa + [Uglos = ) ([Uo]1[Udlas + [Ugl2[Uola1) = (W) 12[Uolas [Uolaa + [Ug]12[UG] [Ugla)
+2([Uolis + U1y = 2)(1 + U] [Ugl)} + ([Uolis + [Ugln) (VoM Uglpp/m — 1)
+ (U1 + [Uola) ([UgMUglop/m = 1) + 2[Ugl o ([UeM Uglyy /m = 1) + 2[Ug L ([UGMUG]y /m = 1)
~ ([Uo] 12[Uf]1 Uz + [Ug]12[Uo)a1 [Uolo2) = ([Ugla1 [UeM Ul 1a/m + [Uglyi [UgMUG] 15/ m)), (88)
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1
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[([Uoliz + [U§12) ([UoM Uglay /m + [UG MUy, /m)]. (89)

For the correction in the operators, we have a contribution from the Ly term:

52
22

(P [V W] PE)]a ) ey, = (812 = 6”)@

(W (-

2L9>
Fgff

_i[Pl : (Pl

P2)](p2)

5> ilp2- (P —pz)](pl),,2 !

170 pr#0

The correction from the SY-© term is obtained as

= (PO V)] [P0 SK) ),

.22
= (5i2 - 5i1) et

—i(p1 + p2)"L, (=P + p3.—p1 + p2)

B oip1(x=y) pip2(y=2) (90)
pPip3

eiP1(x=) gip2(y=2) (91)

N
f
2 2<5(U0)>U <_ 2 )
4F eV "\ 2Fe P1#0 pr70

where

w(q0:q) =+ ZM((]

=q+q).  (92)
Vo pla-p)

Now let us summarize all of the above results for
the 4 =0 case, inserting momenta p, and p;. Using

the notations ¢=xy—yy, t =yo—20 EP(p)=
\/M3,Z " + p?, and
cosh[E*PY(p)(t = T/2)]
C(p’ t) = 3pt 3pt ’
2E°P(p) sinh[E-P(p)T/2]
sinh[E3(p) (¢ — T/2)]
s(p.1) = (93)

2E%(p) sinh[E(p)T/2]”

one can express the result as

CPVP (1,7, py. pi)
= ([P(x0, =P )]}, V5 (o, @) [P (20, Pi)]21)
L%

3
= = 2 EV) u, S -0 ZiFv(40.0)
eff

x [iE(p,)c(py.t)s(pi. ') + iE™ (ps)s(pys. t)c(p;. 1)].

(94)

Here, as mentioned in the above calculations, we have
omitted the two-pion-like propagations, and the xy — 7y =
t+ 1 dependent long-distance correlators, as they are
expected to be exponentially small.

pip}

The vector form factor Fy(qq,q) is given by

72 2y , Ny
(25)2 F gff 2F gff

Fy(q0.9) = (1(q0-q) = o) (95)

where (g, q) is a part of 1y, (gg,q) which is proportional
to dp,- Another part proportional to gq, cannot contribute
since it is contracted with a perpendicular vector g” to g,,.
Namely, (g, q) is given by

(g0, 4q) = 10,(90-9)3"/ qo- (96)

More details are discussed in Appendix B.
Note in the above formula, the (finite) renormalization
factor

Zk - 1 N; l()o,
2Feff
1 1 2(b0)2>
logp=—— <1 - , (97)
4712;“9 2\,

where the summation is taken over the vector b, =
(noT,nL,nyL,nsL) with integers n,, is introduced so
that F(0,0) = 1 is maintained even in a finite volume.
Therefore, the finite volume effects contained in Fy (g, q)
are only those which come from the nonzero modes, vanish
in the g, — 0 limit, and are thus expected to be perturba-
tively small. We will discuss the details of the remaining
finite volume effects in the next section.

Finally, let us discuss the renormalization of the above
formula Eq. (95). Since the finite volume effects are free
from UV divergences, it is sufficient to consider the
V — oo limit of Fy(qy,q). It is not difficult to see that
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the quadratic divergence in Z"2/(Z¢)? is precisely canceled
by that in (g, q). Therefore, we only need to renormalize
the logarithmic divergence of /(q,,q) by the redefinition
of Lg.

Employing the dimensional regularization, we can easily
evaluate its logarithmic divergence as

. g° [ d'p —2pop,
lim (g, q) :_—/
Voo 10 2. (27)? p*(p—q)?

1 q* (2
:@{g <g+ 1 —yg —|—ln4zz—ln,u§ub>

2
q* q 5,
_1 2
6 18q} (98)

where € =4 — d, yp = 0.57721 - - - is the Euler’s constant,
and pg,;, denotes the subtraction scale. This divergence can
be absorbed in the renormalization of Lg:

&1(11_

Lg(ﬂsub) =Lg— 12 " 1622

+1-1In ﬂgub)) (99)

and one obtains the infinite volume limit for the vector form
factor,

2L6 (ﬂsub) 2 Nf 1

F(q0.q) =1 - -
Vv (610 (]) Fgff q Fgff 1 67‘[2
1, q° 5
X |——q ln—+— (100)
6 T 187

which agrees with the known (massless limit of) result
within ChPT. Note that we cannot expect F$S(gg,q) to
describe the lattice data well, since the physics beyond
|

CPVoP(t,¢;ps.p;)
AA,CPVP(1,750,0)

Ri(t.1;ps.p;) =

E3pt(pi)c(pf, t)s(p;, 1)

PHYSICAL REVIEW D 90, 114508 (2014)

ChPT is omitted in the ChPT expression. However,
we can still expect that the finite volume correction,
Fy(qo.q) — F(q0.9q), is well described within ChPT,
which will be discussed in the next section.

V. EXTRACTION OF THE VECTOR FORM
FACTOR OF PION

In this section, we show how to eliminate the leading
zero-momentum pion mode’s contribution from the corre-
lator, and how to extract the vector form factor of pions.
There still remain finite volume effects from nonzero
modes but they are subleading contributions. From the
one-loop calculation of the nonzero momentum modes, we
numerically estimate this remaining effect, and show they
are actually a small perturbation.

A. Removing dominant finite volume effects
from the pion zero mode

In the previous section, we have neglected the #-inde-
pendent or #'-independent terms in our calculation. In the
final form Eq. (94), if both of p; and p; are nonzero, these
terms are automatically dropped. However, if these
momenta are zero, we have to take subtraction of the
correlators at different time slices, A,f(f) = f(1) — f(#wf),
Asf(1) = f(1) — f(t), with t,¢ and tref, respectively. A
similar procedure was already shown in the two-point
correlators. To keep f,ef + ., < T/2 and 1,1 < t,¢, which
are the conditions to suppress the contribution from pions
wrapping around the periodic space-time, t,os = /., ~ T/4
would be optimal. In the following, we take 7 ; = f.¢, for
simplicity.

With the above time-slice subtraction in mind, and
noting Fy(0,0) = 1, the following ratios are useful for
extracting the vector pion form factor:

+ E(pg)s(py. 1)e(pi 1)

= Fy(q0.9q) x

A,CPVoP(£,7;0,p;)
AA,CPVP(1,750,0)

Ry(t.7;0,p;) =

E®(0)A,c(0, 1)

E®(p;)Ac(0.1)s(p;. 1) + E(0)As(0, 1)c(p;. ')

Ays(0,7) + EP(0)A,5(0,))Ayc(0,7)

= Fy(q0.9q) x

E®(0)A,c(0,2)A,5(0,7)

(101)

+ EY0)A,s(0,1)Ayc(0,7)°

Note here that the ¢ and ¢ dependences are uniquely determined once M,/ Zi},’t is given. Therefore, Fy(qq,q) can be

extracted by performing a one-parameter fit at a long distance, taking M 1,4/ Zi}” as a free parameter.

In the numerical lattice analysis, one could also try taking further ratios with two-point functions. Namely,
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A,CH(1.0)A, 0, CHA(Y.0) -

PHYSICAL REVIEW D 90, 114508 (2014)

CPVOP f, t/; .P; _
Ri(t.15ps.p:) (1.7 07 B) (

AN CPVP(1,150,0)

R/2(t’ t/; Oa pl>

( EZpt

A,CH(1,0)A,0,C (7, 0) —

AD,CRp(1,0) A, (Y, 0))
p;) + E2Pt<pf>>c%‘3£<r /) Cip(t ,pf> ’

A,CPYP(£,7;0,p;) [—
A,A,CPYP(1,150,0)

Note that E?P'(p) = E3P'(p) at LO. At NLO, their expres-
sions are different, reflecting the different zero-mode
integrals. However, they are numerically very similar to
each other with reasonable setups of the lattice simulation
parameters. In particular, they share the exactly same chiral
limit, and the infinite volume limit as seen in Fig. 1.
Therefore, these ratios R)(z,7;ps,p;) and R)(t,7;0,p;)
should cancel the r and ' dependences, and directly give the
values of Fy(qg,q).

The JLQCD Collaboration [6] has employed the latter
ratios and found a good plateau for it, extracting a pion
charge radius, which is consistent with the experiment.

0.08 |
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r - Z;,,pl/ Zilpt ]
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FIG. 1 (color onhne) Numerical estimates for the pzon mass
squared M2Z3® and M2Z)' (top) and their ratio Z'/ZM"
(bottom). Here, we use L=T/2=2fm, and F. 4 =
92.2 MeV as inputs.

Con (' pi)[~A,0,Cp(1,0) + E(pz)A czf"(t, 0)]

|
It should be noted that except for Z3P which is
essentially irrelevant in both of the above ratios, we do
not need any zero-mode integrals which could have been a
complicated combination of Bessel functions. The remain-
ing finite volume effect in Fy(qq,q) is a perturbative
correction from the nonzero modes only and thus is
expected to be small as shown in the next subsection.

B. Remaining finite volume effects from nonzero modes

After removing the dominant finite volume effect from
the zero mode, what remains in Fy(qg,q) is the effect of
the nonzero momentum modes, which is expected to be
perturbatively small. In this subsection, we compute this
nonzero-momentum effect to the pion one-loop and
numerically confirm this expectation.

To this end, all we need to evaluate is

—2p uPv

1
V2

(103)
p#0.9 P

I;w(qo’ q)

Here and in the following, we ignore the terms proportional
to q,, since they are always contracted with a perpendicular
4-momentum vector to g,,, and thus do not contribute to the
final result.

It is not difficult to decompose it as

va<q07q>: Z Iﬁv(%"l)» (104)
b,=n,L,
where
d4p ) —2p,p
1,(90.9 E/ e'rt s, 105
e D= [y g 1%

Note that 1*=°(gy.q) is the infinite volume limit of
1,,(q0- q) and thus, the finite volume correction is given by

= I

b#0

('IO7 6](), (106)

In the standard manner, each contribution 15, (go. q) can
be computed as
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o 9 (v .. d*p et
- xbq -
2 0 b A dxe / (21)* (p? + A)?

1 )
_——2/ dxeivva | O VAK,(VA|b,|)
4z Jo | /4|

I;};IJ(QO’ q) =

Muw], (107)

__H d
2
b,]
where A = x(1 — x)g?, and K;(z) denotes the ith modified
Bessel function. Here, we have neglected a term propor-
tional to g,,b,, since that term is proportional to g, after the
summation over b,

When by =0, it is straightforward to numerically
evaluate the above form. However, when b, # 0, we need
to take special care because we need to analytically
continue the results with respect to g,. Here we simplify
the situation using an inequality

| o

‘/ldxei“f(x) <
0

in Eq. (107). Namely we neglect the oscillating factor
exp(ixbyq). Then the analytic continuation of g, has no
subtlety since the Bessel functions are all vanishing in the
limit |gy| — co with any complex phase. Note here that
the real part /A is always positive. We do not think
this overestimation affects the result very much, since the
temporal direction is usually larger than the spacial
direction by a factor of 2 or 3, and therefore, the
contribution from by #0 is much smaller from the
beginning.

Taking the p = 0 direction, the finite volume correction
to Fy(qo,q) can be computed as

dX|e’“|f

(108)

AFy(q0.9) = Fy(q0.9) — F{ (q0.q)
N
= 2F§ff (Al(go,q) = loo),  (109)

— L : ix \/_
Az(qo,q)_—Mz%:/o dxe qu 5 K,(VAb,))

0 AK,(v/Alp, |>] (110)

b, |2

Note that A/(0,0) = .
Our numerical estimates for AFy(qy,q) at
L=T/2=2,3, 4 fm are presented in Fig. 2. Here, we

denote ¢° = i(/p} +M; —\/p; +M3), assuming the

dispersion relation of the pion energy, q = p; — p;, and
choose M, = 135 MeV, F 4 = 92.2 MeV as inputs. The
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FIG. 2 (color online). Numerical estimates for AFy.

zigzag behavior may be due to the lack of the rotational
symmetry on the lattice. Since F$(g?) is an O(1) quantity,
our result shows the remaining finite volume effects are
around a few percent already at L =3 fm, even
when m,L < 1.

VI. SUMMARY AND DISCUSSION

We have studied finite volume effects on the electro-
magnetic pion form factor in the ¢ regime. The pseudo-
scalar-vector-pseudoscalar three-point function has been
calculated in the e expansion of chiral perturbation theory
to the next-to-leading order.

The dominant finite volume effects, which come from
the zero mode of the pions can be removed by two simple
manipulations: by inserting nonzero momentum to relevant
operators (or making a subtraction at different time corre-
lators) and taking an appropriate ratio of them. After these
manipulations, one can safely extract the electromagnetic
pion form factor for which the remaining finite volume
correction from the nonzero modes is suppressed to a few
percent level already at L =3 fm even in the ¢ regime
(see Fig. 2).

It is important to note that our analysis has been done
without using any special features of the ¢ expansion, and
the dominance of the zero-mode contribution is expected to
be a common feature of finite volume effects in any regime
of QCD. Therefore, our method can be useful for simu-
lations in the p regime, including the ones with twisted
boundary conditions [26,27]. We also expect a wide
application to other quantities like form factors of heavier
hadrons.
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EXTRACTING THE ELECTROMAGNETIC PION FORM ...
APPENDIX A: ZERO-MODE INTEGRAL

In this appendix, we evaluate the U, 1ntegrals which are
necessary for numerical estimation of Z or Z A}"
Although our analysis in this paper is done only in the
unquenched QCD, we use the partially quenched results by
[19,20], because some expressions are simpler for the
partially quenched results, and the results would be easily
extended to the partially quenched study in these expres-
sions. The unquenched results are obtained simply by
setting the valence quark mass m, to the one of the sea
quark masses.

We start with the so-called graded partition function
which consists of n bosons and m fermions. Its non-
perturbative analytic form is given by [19,20]

-1
detb‘j jQ-w 1(/‘1)]11 1....n+m
H]>l l(lu/ ) 7:lmn+l(ﬂ] _ﬂz)

ZRn({pi}) = (A1)

in a fixed topological sector of Q. Here [J’s are defined as
Tosjo1(u) = (1)Ko ;y(u;) for i=1,..n and
jQ+j_1 (ﬂl) = IQ+]‘_1 (/’tl) for i=n + 1, ..n+ m, where
K, and I, are the modified Bessel functions. Partial
quenching is completed by taking the boson masses to
those of valence fermions.

Integrals of some diagonal matrix elements are obtained
by simply differentiating the partition function,

1
81/ = 5 <[U0] + [U$]1;1;>U0
=1 0 In 2¢
et #bl_r)l/]h a'u1 n 1 1+Nf(Mb I’luv {/’thﬂ})
1
Dv = Z <([U0]vv + [U(.UUU)2>U0
1 i
=—— lim (ﬂb Hys {/’lsea})

2§ ({ea}) 1710 Ot e,

Dvlvz E%(([UO]UIUI + [Uz)}vlvl)qUO]vzvz [UO]L7L2)>
1 . 0

D, R — lim
Zg;f ({fhsea ) Hor =Hor Ho, =He, Oty

Uy

0
X 25, (Hoy s Hbys by Py {Hsea})s (A2)
Opy,

and

1 T
TT}IUZ - 8 <([U0]1j'v' + [UO]Ulvl)z([UO]Uzvz + [U8]1121)2)>U0
1 2
=Z0 7 1 lim
ZNf({l'liea}) Hpy = Hyy Hiy = Hay aﬂbl

0
X au ZZQ,2+N/(/’£b11ﬂbz’/'lvl’/"v2’{Iusea})' (A?’)

2
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Then, U integrals for the degenerate case m; = m, can be
written as

(B(U)) = 2{1+Q—2—%D1 < A%)DH}, (A4)

Hi
(D°(Uy))y, =4S, (AS)
N 2
0O, =2 (1-20-2). (ao)
1 M
2 S, 20°
DU —(88——1—— ) A7
(D*(Uy)) P i (A7)
4 1 D 30?

R VAR TR
I o T 7 R
4 2

<D4(U0)>UO Walpl+_al‘sl
f 1
4(N; —2)
+ N% 8l’l)1j|m =my’
QZ
(W, =2(1+3D0+2), (49)
1

D D
<g<Uo>>Uo—z[Tu—‘9' '—L+<—s

—4N,+3
+7f>])11

2 2 2m
30?2 2 N
<3+ 2t Q )Sl 1-Q—<1+ f)]

i It K1

(A10)
1-Dy, 0,8, 302 ]
H(U =4 - All
(U, = =4 | gyt =22 2L ()
Here, we have used

lim S1 =52 _ d,S;. (A12)

=iy fly — Ho

Note that the derivative 0, is taken with respect to the
valence degree of freedom after the p;, = u,, limit is taken.
This partially quenched expression is simpler than that of
unquenched theory, as shown in Ref. [23].

It is also useful to note

D= lim Dy,
2=
1 0 0
= 221 v, (ot L })‘ ,
Z(?,Nf(ﬂsea)a”ba/’t” o . Hy=H,=H
(A13)
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which was shown in the appendix of Ref [17]. With this, the
following nontrivial relations are obtained:

5131 = Dl _Dn,
6%51 =0,D, - 261D12|m2:m|' (A14)
Similarly, we can use
THE hm 721
2=
1 o 07
= 22, (ot {sea})
0 a 82 LI+N, bsHvs 1 Hsea
20, (Hsea) M6 0"t Hy=Hy=H)
(A15)

APPENDIX B: LOOP MOMENTUM
SUMMATIONS

In the calculation of the one-loop diagram, we have
encountered the momentum summation:

1 p"(¢" —2p*)
L,(90.9) =< Y ———5(¢* =q5+9q*). (Bl)
e V,,;f‘q p*(q—p)? ‘

PHYSICAL REVIEW D 90, 114508 (2014)

From the symmetry, on a finite volume V = TL? we can
decompose it as

1,,(q0-9) = 8,,11(q0.9) + 6,00,012(q0.9)

+ 4,9,15(q0. Q). (B2)

Note that another possible choice 3 | 5,:5,; is not

i=1 %%
independent from the others since 6, = §,05,0+
Z?:l 514[5”"

For a vector g, which satisfies g - g = 0, we can simplify

1,,(90, )7 = q,11(90,4) + 6,09012(90.9).  (B3)
In particular, it is useful to note
10,(90-9)7" = Gol(q0.9), (B4)
where
(q0.9) = 1,(q0.9) + I2(q0. q)- (B5)
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