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We consider finite volume effects on the electromagnetic form factor of the pion. We compute the
peudoscalar-vector-pseudoscalar correlator in the ϵ expansion of chiral perturbation theory up to the next-
to-leading order and find a way to remove the dominant part, which comes from a contribution of the pion
zero mode. Inserting nonzero momentum to relevant operators (or taking a subtraction of the correlators at
different time slices), and taking an appropriate ratio of them, one can automatically cancel the zero mode’s
contribution, which becomes nonperturbatively large, ∼Oð100%Þ, in the ϵ regime. The remaining finite
volume dependence, which comes from the nonzero momentum modes, is shown to be perturbatively small
even in such an extremal case. Since the zero mode’s dominance is universal in any finite volume scaling,
and we do not rely on any particular feature of the ϵ expansion, our method has a wide application to many
other correlators of QCD.
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I. INTRODUCTION

The electromagnetic form factor of the charged pions is
one of the fundamental low-energy quantities in quantum
chromodynamics (QCD). Experimentally, it is related to the
pion charge radius hr2iV through the relation

hr2iV ¼ 6
dFVðq2Þ
dq2

����
q2¼0

; ð1Þ

where FVðq2Þ denotes the electromagnetic form factor at
the momentum transfer q2. In terms of chiral perturbation
theory (ChPT), it is related to the one of the low-energy
constants (LEC's) L9 [or l6 in the SUð2Þ case], which
appears at the next-to-leading order (NLO) in the chiral
Lagrangian [1,2].
However, it is still a nontrivial task for lattice QCD to

fully reproduce or understand the low-energy behavior of
the pion form factors. In fact, the lattice data of the pion
charge radius have been sizably lower than the experi-
mental value hr2iV ¼ 0.452ð11Þ fm2 (see the recent review
in [3]). It is only recently that consistent values of hr2iV
were reported by simulations near the physical point [4–6].
According to ChPT, it is known that the pion charge radius
shows a logarithmic divergence as the pion mass goes to
zero. Thus, we may recognize that our simulated pion
masses are too large to reproduce the logarithmic diver-
gence, unless we directly simulate QCD near the chiral
limit. Namely, in order to examine the chiral logarithm of
the pion charge radius, it is essential to simulate lattice
QCD in the very vicinity of the chiral limit.

Although current computational resources allow us to
simulate QCD near the physical point, one should carefully
take two sources of systematic effects into account in such
simulations. One is the cutoff effects, especially those
coming from breaking of the chiral symmetry. When the
simulated quarkmass is as small as the typical breaking scale
of the chiral (flavor) symmetry (it is typically ∼Λ3

QCDa
2 for

the improved Wilson or staggered fermions, where ΛQCD is
the QCD scale and a denotes the lattice spacing), it is known
that the chiral logarithm is largely distorted. The low-lying
Dirac eigenvalue spectrum, for example, is a quantity
sensitive to such discretization effects [7].
Another source which may change the chiral behavior is

the finite size of the lattice volume. In the literature, it is
often mentioned that the lattice size L should satisfy
mπL > 4, where mπ is a simulated pion mass [8], to
suppress the finite size effect at a few percent level.
Since the computational cost for inverting the Dirac
operator increases as mπ decreases, it is demanding to
keep mπL to be large enough. Especially when we want to
keep a good chiral symmetry to avoid the former discre-
tization effects on the chiral logarithm, and use a fermion
formulation such as overlap or domain-wall fermions, the
available range of mπL is quite limited.
This naive criterion aboutmπL, however, comes from the

fact that the zero-momentum mode of pions can propagate
wrapping around the lattice volume, whose contribution is
typically given by expð−mπLÞ. For the excited pion states,
the finite volume effects are much smaller, since their
discrete energy satisfies Eπ > 2π=L in a finite volume, and
EπL > 2π. Therefore, if we can eliminate or reduce the
dominant contribution from the pion’s zero-momentum
mode, one should be able to extract the low-energy
quantities even on a small lattice.
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In this work, we consider the “worst” case, the so-called
ϵ regime of QCD, to show that the above strategy actually
works even in such an extremal situation. In the ϵ regime,
mπL < 1, and the finite volume effects are generally
∼100% and we receive a nonperturbatively large correction
from the pion zero mode. However, using the ϵ expansion
of ChPT [9], we compute the pseudoscalar-vector-
pseudoscalar three-point function, and find a way to
automatically cancel the dominant part of them. Since
the zero-mode contribution has no space-time dependence,
two simple steps are enough to achieve this:
(1) Inserting nonzero momenta to relevant operators (or

taking a subtraction of the correlators at different
source points when one or two of the inserted
momenta are zero).

(2) Taking ratios of them.
We also compute the NLO corrections and show that these
effects are actually suppressed by 1=F2L2, where F denotes
the pion decay constant. The preliminary result of this work
has already appeared in Ref. [10], and has been applied to
numerical works by JLQCD Collaboration [5,6].
Here, we would like to remark on the difference of our

new approach from the conventional ones in the ϵ regime.
In the previous works, the ϵ expansion was used to
disentangle the low-energy constants [11–17], using a
bunch of Bessel functions, from the lattice data which
were largely contaminated by the finite volume effects. In
this work, we use (the ϵ expansion of) ChPT in more
indirect way: just for finding the combination of the
correlators which has a small sensitivity to the volume.
As we will see in the following sections, this idea makes the
analysis in the ϵ regime of QCD greatly simplified. In
particular, we would like to emphasize that there is
essentially no need to use Bessel functions for the compu-
tation of the pion form factor. Moreover, since the domi-
nance of the pion zero mode’s contribution (having the
longest correlation length) is universal for any finite volume
effects on any operators, we expect a wide application of
this method. It may be useful for heavier hadron form
factors, and simulations in the p regime as well.
The rest of this paper is organized as follows. In Sec. II,

we review the ϵ expansion of ChPT and present how to
compute the correlators at one-loop level. In Sec. III, we
consider the two-point functions to illustrate our new
idea. Then, our main result for the pseudoscalar-vector-
pseudoscalar three-point functions is presented in Sec. IV,
including the NLO effects. In Sec. V, we show how to
extract the pion vector form factor, and estimate the
remaining finite volume effects numerically: we find that
it is a few percent level already at L ¼ 3 fm. A summary
and conclusion are given in Sec. VI.

II. THE ϵ EXPANSION OF CHPT

In this section, we review the ϵ expansion of ChPT, and
show how to perform the one-loop level calculation of the

correlators. First, we give the counting rule of the ϵ
expansion. Second, we write down the chiral Lagrangian
with pseudoscalar and vector source terms, and explain a
general procedure to calculate correlators from a partition
function. Finally, we give the technical details of this study
at the end of this section.

A. The chiral Lagrangian

We consider Nf-flavor ChPT in an Euclidean finite
volume V ¼ TL3 with the periodic boundary condition
in every direction. The Lagrangian [1,2] is given by

LChPT ¼ F2

4
Tr½ð∂μUðxÞÞ†ð∂μUðxÞÞ�

−
Σ
2
Tr½M†UðxÞ þU†ðxÞM� þ � � � ; ð2Þ

where UðxÞ denote the chiral field which is an element of
the group SUðNfÞ. Σ is the chiral condensate and F is the
pion decay constant both in the chiral limit. The terms
omitted by ellipses are the ones at the higher orders. For
simplicity, we take the quark mass matrix M degenerate
and diagonal: M ¼ diagðm;m;m;…Þ.
In the ϵ regime [9], the vacuum is not fixed but has

nonperturbatively large fluctuations. Namely, the zero
mode of the pions must be integrated exactly. Thus, we
separate it from the nonzero momentum modes and para-
metrize the chiral field as

UðxÞ ¼ U0 exp
�
i

ffiffiffi
2

p

F
ξðxÞ

�
; U0 ∈ SUðNfÞ; ð3Þ

whereU0 denotes the zero modes. The nonzero momentum
mode is decomposed as ξðxÞ ¼ TaξaðxÞ with SUðNfÞ
generators Ta, for which we use the normalization of
Tr½TaTb� ¼ 1

2
δab. Since the constant modes are separated

from ξðxÞ fields as U0, a constraint

Z
d4xξðxÞ ¼ 0; ð4Þ

must be satisfied to avoid the double-counting of the
zero modes.
Now, we rewrite the chiral Lagrangian Eq. (2) with the ϵ

expansion, whose counting rule is given by

U0 ∼Oð1Þ;

ϵ ∼ ∂μ ∼
1

V1=4 ∼m1=2
π ∼m1=4 ∼ ξðxÞ; ð5Þ

as
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LChPT ¼ −
Σ
2
Tr½M†U0 þ U†

0M� þ 1

2
Tr½∂μξ∂μξ�ðxÞ

þ Σ
2F2

Tr½ðM†U0 þ U†
0MÞξ2�ðxÞ þ � � � : ð6Þ

From this Lagrangian, one can recognize that we are
treating a hybrid system containing bosonic ξðxÞ fields
and a matrix U0, which are weakly interacting.
For ξðxÞ fields, one can perform the Gaussian integrals

without difficulty. In this work, we use the correlator in a
quark-line basis,

h½ξðxÞ�ij½ξðyÞ�kliξ ¼ δilδjkΔ̄ðx − yÞ − δijδkl
1

Nf
Δ̄ðx − yÞ;

ð7Þ
where the second term comes from the constraint Trξ ¼ 0,
and

Δ̄ðxÞ≡ 1

V

X
p≠0

eipx

p2
ð8Þ

describes the propagation of the massless bosons. Here, the
summation is taken over the nonzero 4-momentum
p ¼ 2πðnt=T; nx=L; ny=L; nz=LÞ, with integers nμ, except
for p ¼ ð0; 0; 0; 0Þ, because of the constraint Eq. (4).
While ξðxÞ fields are treated perturbatively, the zero

mode denoted by U0 has to be nonperturbatively integrated
(we will denote it by h� � �iU0

). It is known that these matrix
integrals are expressed by the Bessel functions [18–20],
which is a peculiar feature of the ϵ regime. Historically, this
special feature of the ϵ regime is used for extracting the
leading LEC’s, Σ and F, which are more sensitive to the
volume than others. However, for the other LEC’s at NLO,
we should take a different strategy, or we should remove the
contamination from the finite size. In this work on the
vector form factor of pions, which is related to L9, the U0

integral plays a less important role.

B. Partition function and correlators

In this subsection, we consider the partition function of
ChPT in the ϵ regime and show how to calculate the
correlation functions. First, we introduce the relevant
source terms to the chiral Lagrangian Eq. (2). Since the
Lagrangian is invariant under the chiral rotation,

UðxÞ → gLUðxÞg†R; gL; gR ∈ SUðNfÞ; ð9Þ
the vector or axial vector operators are given through the
Noether’s theorem for the vectorlike transformation
gL ¼ gR and the axial one gL ¼ g†R. It is easy to see that
adding these operators is equivalent to replacing the
derivatives by the “covariant” derivatives:

∂μ → ∇μUðxÞ≡ ∂μUðxÞ − iðvμðxÞ þ aμðxÞÞUðxÞ
þ iUðxÞðvμðxÞ − aμðxÞÞ; ð10Þ

where vμðxÞ and aμðxÞ denote the vector and axial-vector
sources, respectively. Similarly, since the Lagrangian is
invariant under the Parity transformation,

UðxÞ → U†ðxÞ; x ¼ ðt; x; y; zÞ → x ¼ ðt;−x;−y;−zÞ;
ð11Þ

adding a scalar UðxÞ þ U†ðxÞ and a pseudoscalar UðxÞ −
U†ðxÞ is absorbed in the mass matrix:

M → MJ ≡Mþ sðxÞ þ ipðxÞ; ð12Þ

where sðxÞ and pðxÞ denote the scalar and pseudoscalar
sources, respectively. We set sðxÞ ¼ aμðxÞ ¼ 0 in the
following.
Next, let us introduce the NLO terms of the chiral

Lagrangian. However, some of them are irrelevant to our
calculations. In this study, it is enough to consider the terms
with the low-energy constants Li (i ¼ 4;…9). Namely, we
consider the Lagrangian

Lðs; p; vμ; aμÞ ¼
F2

4
Tr½∇μU†ðxÞ∇μUðxÞ� − Σ

2
Tr½M†

JUðxÞ þ U†ðxÞMU�

þ L4

2Σ
F2

Tr½ð∇μUðxÞÞ†∇μUðxÞ� × Tr½M†
JUðxÞ þU†ðxÞMJ�

þ L5

2Σ
F2

Tr½ð∇μUðxÞÞ†∇μUðxÞðM†
JUðxÞ þ U†ðxÞMJÞ� − L6

�
2Σ
F2

Tr½M†
JUðxÞ þU†ðxÞMJ�

�
2

− L7

�
2Σ
F2

Tr½M†
JUðxÞ − U†ðxÞMJ�

�
2

− L8

�
2Σ
F2

�
2

Tr½M†
JUðxÞM†

JUðxÞ þU†ðxÞMJU†ðxÞMJ�

þ iL9Tr½FR
μνðxÞ∇μUðxÞð∇νUðxÞÞ† þ FL

μνðxÞð∇μUðxÞÞ†∇νUðxÞ�; ð13Þ
where

FI
μνðxÞ ¼ ∂μFI

νðxÞ − ∂νFI
μðxÞ − i½FI

μðxÞ; FI
νðxÞ�; I ¼ R;L;

FR
μ ðxÞ ¼ vμðxÞ þ aμðxÞ; FL

μ ðxÞ ¼ vμðxÞ − aμðxÞ: ð14Þ
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The calculation of ChPT is performed in the functional
integral formalism. The partition function is defined by

Zðs;p;vμ;aμÞ¼
Z Y

x

dUðxÞexp
�
−
Z

d4xLðs;p;vμ;aμÞ
�
;

ð15Þ

and the correlators are computed by differentiating it with
respect to the corresponding sources, and take their zero
limits. The pseudoscalar two-point function, for example, is
given by

hPaðxÞPbðyÞi

¼ 1

Zð0; 0; 0; 0Þ
δ

δpaðxÞ
δ

δpbðyÞZðs; p; vμ; aμÞ
����
s;p;vμ;aμ¼0

;

ð16Þ

where paðxÞ denotes the coefficient of an SUðNfÞ gen-
erator Ta, where we decompose the source as
pðxÞ ¼ TapaðxÞ.
One should note that our nontrivial parametrization of

UðxÞ needs a nontrivial Jacobian in the functional inte-
gration measure:

Z Y
x

dUðxÞ ¼
Z

dU0

Y
x

dξðxÞJ ðU0; ξÞ: ð17Þ

A perturbative calculation [11,21] has shown

J ðU0;ξÞ ¼ exp

�
−
Z

d4x
Nf

3F2V
Trξ2ðxÞþOðϵ4Þ

�
; ð18Þ

which can be regarded as an additional mass term of the
ξðxÞ fields at the one-loop level. Note that this additional
mass does not vanish even in the m → 0 limit, which keeps
the theory infrared finite.
Finally, let us consider the θ vacuum and fixing topology.

In the ϵ regime, we often consider a fixed topological
sector, rather than the full QCD vacuum with the vacuum
angle θ ¼ 0. For this purpose, we encode the nonzero
vacuum angle θ to the mass term [22],

M → Mθ ¼ M expð−iθ=NfÞ; ð19Þ

using the axial Uð1ÞA rotation. Then we can perform a
Fourier transformation with respect to θ to obtain the
partition function at fixed topology,

ZQðs; p; vμ; aμÞ≡
Z

2π

0

dθ
2π

½eiθQZðs; p; vμ; aμÞjM¼Mθ
�;

ð20Þ
where Q denotes the topological charge of the original
gauge fields. It is known that this θ integral can be absorbed

in the group integration of the zero mode: redefining the
zero mode,

eiθ=NfUðxÞ ¼ Ū0 exp

�
i

ffiffiffi
2

p

F
ξðxÞ

�
; ð21Þ

where Ū0 ∈ UðNfÞ, the zero-mode part of the functional
integral is modified to

Z
dθ
2π

expðiθQÞ
Z
SUðNfÞ

dU0FðM†eiθ=NfU0Þ

¼
Z
UðNfÞ

dŪ0ðdet Ū0ÞQFðM†Ū0Þ; ð22Þ

where we have used the fact that the zero mode in the
Lagrangian always appears as a function of M†eiθ=NfU0

(and its Hermitian conjugate). Fixing the topology is
technically easier since the UðNfÞ group integral is simpler
than that of SUðNfÞ. It is also useful for investigating the
finite volume physics which is sensitive to the topology of
the gauge fields. It is important to note that the fixing
topology effect is totally encoded in the pion-zero mode,
and therefore, is automatically eliminated once the effect of
the latter is eliminated. Since we will be able to cancel the
effect of U0 (from the LO contribution), in the following
sections, we do not distinguish U0 and Ū0 unless explicitly
stated.
We are now ready for the one-loop computations.

However, we would like to give some useful technical
details which simplify the calculations, in the next
subsection.

C. Technical details

Because of the nontrivial parametrization of the chiral
field, we have a lot of diagrams to be computed in the ϵ
expansion of ChPT even at NLO. Here we rewrite the
Lagrangian using the nonself-contracting (NSC) vertices,
and compute some of one-loop diagrams in advance, as
corrections to the chiral Lagrangian. This reduces the
number of diagrams and simplifies our calculation.
The n-point NSC vertex is defined by

½ξnðxÞ�NSC ≡ ξnðxÞ − ðall possible ξ contractionsÞ ð23Þ

and we can absorb the contracted part in the redefinition of
the lower dimensional terms in the Lagrangian. Note that
h½ξnðxÞ�NSCiξ ¼ 0 by definition. For example, a term in the
Lagrangian at NLO can be reexpressed by

1

6F2
Tr½∂μξξ∂μξξ − ξ2ð∂μξÞ2�

¼ 1

6F2
Tr½∂μξξ∂μξξ − ξ2ð∂μξÞ2�NSC þ 1

2
Tr½ð∂μξÞ2�ΔZξ

þ 1

2
Tr½ξ2�ΔM2; ð24Þ
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where

ΔM2 ¼ −
Nf

3F2
∂2
μΔ̄ð0Þ ¼

Nf

3F2V
ð25Þ

can be absorbed in the redefinition of the mass term, and

ΔZξ ¼ −
Nf

3F2
Δ̄ð0Þ ð26Þ

can be absorbed in the redefinition of the kinetic term.
Here, and in the following, the momentum summations
embedded in Δ̄ð0Þ etc. are kept unperformed until the
very end of the calculation, except for the trivially clear
cases like ∂2

μΔ̄ð0Þ ¼ −1=V, ∂μΔ̄ð0Þ ¼ 0. In this work, we
employ the dimensional regularization for the loop
integrals.
With the NSC vertices, the action is expanded as

SChPT ¼
Z

d4xL ¼ SLO þ SNLO þ Ssrc þ � � � ; ð27Þ

where

SLO ¼ −
ZΣΣV
2

Tr½M†U0 þ U†
0M�

þ
Z

d4x

�
1

2
Tr½∂μξ∂μξ�ðxÞ

	
ðZξÞ2;

SNLO ¼ SNLO
K þ SNLO

M ; ð28Þ

Ssrc ¼
Z

d4xTr½pðxÞPðxÞ þ vμðxÞVμðxÞ�; ð29Þ

where

SNLO
K ≡

Z
d4x

1

6F2
Tr½∂μξξ∂μξξ − ξ2∂μξ∂μξ�NSCðxÞ; ð30Þ

SNLO
M ≡

Z
d4x

Σ
2F2

Tr

��
M†U0þU†

0MþNf

ΣV

�
ξ2
�
NSC

ðxÞ:

ð31Þ
Note that the linear term in ξðxÞ disappears because of the
constraint Eq. (4).

Here, the source operators are given by

PðxÞ ¼ iZP1 Σ
2
½U0 −U†

0� − ZP2 Σffiffiffi
2

p
F
½U0ξþ ξU†

0� − ZP3 iΣ
2F2

½U0ξ
2 − ξ2U†

0�NSC

þ iΣ
12F4

Δ̄ð0Þ½U0 − U†
0�Tr½ξ2�NSC þ Σ

3
ffiffiffi
2

p
F3

½U0ξ
3 þ ξ3U†

0�NSC þ iΣ
12F4

½U0ξ
4 − ξ4U†

0�NSC

− iL4

4Σ
F4

ðTr½∂μξ∂μξ�NSCÞ × ½U0 −U†
0� − iL5

4Σ
F4

½U0∂μξ∂μξ − ∂μξ∂μξU†
0�NSC þOðϵ5Þ; ð32Þ

VμðxÞ ¼ −
FZV1ffiffiffi

2
p ½U0∂μξU†

0 − ∂μξ� þ iZV2

2
½U0ð∂μξξ − ξ∂μξÞU†

0 þ ð∂μξξ − ξ∂μξÞ�NSC

þ 1

3
ffiffiffi
2

p
F
½U0ð∂μξξ2 − 2ξ∂μξξþ ξ2∂μξÞU†

0 − ð∂μξξ2 − 2ξ∂μξξþ ξ2∂μξÞ�NSC

−
i

12F2
½U0ð∂μξξ3 − 3ξ∂μξξ2 þ 3ξ2∂μξξ − ξ3∂μξÞU†

0 þ ð∂μξξ3 − 3ξ∂μξξ2 þ 3ξ2∂μξξ − ξ3∂μξÞ�NSC

−
2iL9

F2
∂ν½U0ð∂νξ∂μξ − ∂μξ∂νξÞU†

0 þ ð∂νξ∂μξ − ∂μξ∂νξÞ�NSC þOðϵ6Þ; ð33Þ

where

ZΣ ¼ 1 −
N2

f − 1

NfF2
Δ̄ð0Þ; ð34Þ

Zξ ¼ 1 −
Nf

6F2
Δ̄ð0Þ; ð35Þ

ZP1 ¼ ZΣ þOðϵ4Þ; ð36Þ

ZP2 ¼ 1 −
2N2

f − 3

3NfF2
Δ̄ð0Þ; ð37Þ

ZP3 ¼ 1 −
Nf

2F2
Δ̄ð0Þ þ 1

NfF2
Δ̄ð0Þ; ð38Þ

ZV1 ¼ 1 −
2Nf

3F2
Δ̄ð0Þ; ð39Þ
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ZV2 ¼ 1 −
5Nf

6F2
Δ̄ð0Þ: ð40Þ

In the above expression, the argument (x) of ξðxÞ is omitted
for simplicity. In this work, we do not consider contact
correlators at the same position, such as hPðxÞVðxÞi. We
have, therefore, only collected the terms linear in the
sources pðxÞ and vμðxÞ.
Here we note that except for ZV2, we can absorb all the Z

factors into the redefinition of the wave functions (ξ fields),
or the coupling constants, by defining

ξ0ðxÞ≡ ZξξðxÞ; ð41Þ

Σeff ≡ ZΣΣ; ð42Þ

Feff ≡ F

�
1 −

Nf

2F2
Δ̄ð0Þ

�
: ð43Þ

Therefore, except for the fourth term in Eq. (32), the vertex
corrections of the two-point and three-point correlators can
be obtained by simply replacing the coefficients of the LO
results with the shifted ones Σeff and Feff , except for
multiplying the coefficient of the second term in VμðxÞ,

ZV2=ðZξÞ2 ¼ 1 −
Nf

2F2
Δ̄ð0Þ; ð44Þ

and the third term in PðxÞ,

ZP30 ≡ ZP3

ZΣðZξÞ2
�
Feff

F

�
2

¼ 1 −
Nf

6F2
Δ̄ð0Þ: ð45Þ

With this action, for any operator O (as a function of ξ
and U0) in the ϵ expansion,

O ¼ OLO þONLO þ � � � ; ð46Þ

its expectation value is perturbatively evaluated as

hOi≡
R
DU0Dξ½ðOLO þONLO þ � � �Þe−SLO−SNLOþ����R

DU0Dξ½e−SLO−SNLOþ����
¼ hhOLOiξiU0

þ ½hhONLOiξiU0
− hhOLOSNLOiξiU0

þ hhOLOiξiU0
hhSNLOiξiU0

� þ � � � ; ð47Þ

where we have used the following notations:

hO1ðU0ÞiU0
≡

R
DU0e

ΣeffV
2

Tr½M†U0þU†
0
M�O1ðU0ÞR

DU0e
ΣeffV

2
Tr½M†U0þU†

0
M�

; ð48Þ

hO2ðξÞiξ ≡
R
Dξe−

R
d4x1

2
Tr½ξð−∂2μÞξ�ðxÞO2ðξÞR

Dξe−
R

d4x1
2
Tr½ξð−∂2μÞξ�ðxÞ

: ð49Þ

Note that, due to the use of NSC vertices, we do not need to
calculate the fourth term in Eq. (47) since hSNLOiξ ¼ 0.
In the usual θ ¼ 0 vacuum,DU0 denotes a Haar measure

on SUðNfÞ, while it should be replaced by DU0ðdetU0ÞQ
on UðNfÞ, for a fixed topological sector as discussed in the
previous subsection.

III. TWO-POINT FUNCTIONS

As we have mentioned in Sec. I, the dominant finite
volume effect on correlators comes from the pion zero
mode. Since the zero mode itself does not depend on
the space-time position x, its effect always appears as
an x-independent constant term or overall constants of
x-dependent terms. In either case, it is not difficult to
eliminate these zero-mode effects from the correlators.
In this section, we demonstrate this new idea taking the
two-point pseudoscalar correlators, as an easiest example.

A. LO calculation

Let us consider a pseudoscalar operator in the charged
pion channel,

P1ðxÞ≡ 1

2
ð½PðxÞ�12 þ ½PðxÞ�21Þ: ð50Þ

From the chiral symmetry, it is easy to confirm that its
two-point function satisfies

h½PðxÞ�12½PðyÞ�12i ¼ h½PðxÞ�21½PðyÞ�21i ¼ 0; ð51Þ
and

h½PðxÞ�12½PðyÞ�21i ¼ h½PðxÞ�21½PðyÞ�12i ¼ 2hP1ðxÞP1ðyÞi:
ð52Þ

The quark field basis ½PðxÞ�ij is convenient unless we
consider the neutral sector of ChPT, since h½PðxÞ�ij½PðyÞ�jii
shares the same normalization of the so-called “connected”
contribution of the conventional meson correlators in
lattice QCD. Therefore, we use ½PðxÞ�ij rather than the
original P1ðxÞ in the following analysis.
Now we can write down the two-point function toOðϵ2Þ,

h½PðxÞ�12½PðyÞ�21i ¼ −
Σ2
eff

4
hAðU0ÞiU0

þ Σ2
eff

2F2
effV

hBðU0ÞiU0

X
p≠0

eipðx−yÞ

p2
;

ð53Þ
where

AðU0Þ ¼ ½U0 −U†
0�12½U0 − U†

0�21 þ
1

2
ð½U0 −U†

0�12Þ2

þ 1

2
ð½U0 −U†

0�21Þ2; ð54Þ
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BðU0Þ ¼ 2þ ½U0�11½U0�22 þ ½U†
0�11½U†

0�22
− ð½U0�12 þ ½U†

0�12Þð½U0�21 þ ½U†
0�21Þ=Nf: ð55Þ

Note that some NLO contribution is already involved in
Σeff or Feff since we have resummed the Lagrangian with
NSC vertices.
This correlator in Eq. (53) is a known result in the

literature, and one can find how to evaluate hAðU0ÞiU0
and

hBðU0ÞiU0
in, for example, Ref. [15]. In particular, the

x- and y-independent constant term is known as a special
feature of the ϵ regime, and can be used for extracting Σ. In
this work, however, we will eliminate this constant term in
the end of the calculation. Therefore, we have to treat the
second term of Eq. (53) as the LO contribution, and the
calculation at one order higher is needed.

B. NLO calculation

Next, let us compute the NLO contribution. Here and in
the following, we simply neglect the contribution to the
constant part.
For the third term of Eq. (47), we have

− hh½PðxÞ�12½PðyÞ�21�LOSNLOiξiU0

¼ −hh½½PðxÞ�12½PðyÞ�21�LOSNLO
M iξiU0

¼ Σ2
eff

2F2
effV

hDðU0ÞiU0
ð−M2

12Þ
X
p≠0

eipðx−yÞ

ðp2Þ2 ; ð56Þ

where M2
12 ≡ ðm1 þm2ÞΣeff=F2, and the dimensionless

U0 integral part is given by

DðU0Þ ¼
X4
k¼0

DkðU0Þ; ð57Þ

D0ðU0Þ ¼ ½U0�11 þ ½U0�22 þ ½U†
0�11 þ ½U†

0�22; ð58Þ

D1ðU0Þ¼
Nf

μ1þμ2
ð2− ½U0�11½U0�22− ½U†

0�11½U†
0�22Þ; ð59Þ

D2ðU0Þ ¼
X
i;j

δi1δ2j þ δi2δ1j
2

×

�
½U0�ii

�½U0M†U0�jj −mj

m1 þm2

þ 2Nf

μ1 þ μ2
½U0�jj

�

þ H:c:

�
; ð60Þ

D3ðU0Þ ¼ −
X
i;j

δi1δ2j þ δi2δ1j
Nf

ð½U0�ij þ ½U†
0�ijÞ

×

�½U0M†U0�ji þ ½U†
0MU†

0�ji
m1 þm2

þ Nf

μ1 þ μ2
ð½U0�ji þ ½U†

0�jiÞ
�
; ð61Þ

D4ðU0Þ¼
ð½U0�12þ½U†

0�12Þð½U0�21þ½U†
0�21Þ

Nf

×

�
1

Nf

XNf

i

mið½U0�iiþ½U†
0�iiÞ

m1þm2

þ Nf

μ1þμ2

�
; ð62Þ

where μi ¼ miΣeffV. Here we have given more general
results than our setup in this work: with nondegenerate
Nf-flavor quark massesmi’s. The degenerate results can be
obtained simply taking mi → m in the above formulas.
Note that we have neglected trivially vanishing matrix
elements like h½U0�ijiU0

¼ 0 for i ≠ j.
The second term of Eq. (47) is given by

hh½½PðxÞ�12½PðyÞ�21�NLOiξiU0

¼ −
Σ2
eff

4F4
effV

2
hCðU0ÞiU0

X
p1≠0

X
p2≠0

eip1ðx−yÞ

p2
1

eip2ðx−yÞ

p2
2

; ð63Þ

where

CðU0Þ ¼
�

4

Nf
− Nf

�
ð2 − ½U0�11½U0�22 − ½U†

0�11½U†
0�22Þ

þ
�
1þ 2

N2
f

�
ð½U0�12 − ½U†

0�12Þð½U0�21 − ½U†
0�21Þ:

ð64Þ

To summarize our results, it is useful to define the
“massive” propagator,

Δ̄ðx;M2Þ≡ 1

V

X
p≠0

eipx

p2 þM2
; ð65Þ

and noting for M ∼Oðϵ2Þ,

1

p2
−M2

1

ðp2Þ2 ¼
1

p2 þM2
þOðM4Þ; ð66Þ

the correlator in a simple form is obtained,
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h½PðxÞ�12½PðyÞ�21i

¼ constþ Σ2
eff

2F2
effV

hBðU0ÞiU0

X
p≠0

eipðx−yÞ

p2 þM2
12Z

2pt
M

−
Σ2
eff

4F4
effV

2
hCðU0ÞiU0

X
p1≠0

X
p2≠0

eip1ðx−yÞ

p2
1

eip2ðx−yÞ

p2
2

; ð67Þ

where const denotes the constant term we have omitted (we
do not need it below), and

Z2pt
M ¼ 1þ hDðU0Þ − BðU0ÞiU0

hBðU0ÞiU0

: ð68Þ

The above formula Eq. (67) is not completely new but
already derived for the degenerate case by Hansen [11]
(including the explicit form for the constant term, which
depends on the NLO LEC Li’s). The only difference here is
that we have resummed the mass effect using Eq. (65).
Although this resummation should have no essential
numerical difference from the original form, the results
after integrating over x in the spatial direction look quite
different: the resummed formula gives a cosh function,
while the nonresummed one gives a polynomial.
In the literature, it is often mentioned as a special feature

of the ϵ expansion to have polynomials in the correlators.
But this is not absolutely true. Suppose that we have an
exactly massless quark theory. Even in that limit, the ξ

fields have a mass
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Nf=F2V

q
, which comes from the

measure term [see Eq. (31)] and the theory describes a
system with a completely random field U0 (having no
action) and massive ξ fields. In this extreme case, it is
obvious that the polynomial form in the ϵ expansion of the
ξ propagation is just an approximation of its true expo-
nential decay. The mass resummation Eq. (65) achieves a
smooth connection to the p expansion,1 which is needed in
another special limit mΣV → ∞ while keeping MπL < 1,
where both ϵ and p expansions are good. In fact, we can
easily reproduce the p regime result from Eq. (67) by
taking the V → ∞ limit where one obtains hBðU0ÞiU0

→ 4,

hAðU0ÞiU0
¼ hCðU0ÞiU0

→ 0, and Z2pt
M → 1. For these

reasons, we expect that this resummation Eq. (65) give
not only a practical advantage of equally treating the zero
and nonzero momentum modes, but also a better conver-
gence in the ϵ expansion.
The third term of Eq. (67) is a peculiar term in the ϵ

regime, which originally comes from a 3-pion state,
consisting of one having zero momentum and two having
nonzero momenta. At this order, it looks like a propagation
of two massless particles. But for the same reason discussed
above, these propagators should have mass corrections at
higher orders. We expect that this two-particle state cannot

reach a long distance, compared to the single particle
propagation. In the following analysis, we simply neglect
this NLO term and similar terms in the three-point
functions. Of course, this neglecting the terms cannot be
justified within the ϵ expansion of ChPT, since the
expansion in the dimensionful quantity does not know
how small the dimensionless exponential function is. This
truncation may be numerically justified by carefully check-
ing the plateau of the effective mass, when we simulate
lattice QCD [6].

C. Removing dominant finite volume
effects in the ϵ expansion

Nowwe are ready to cancel the dominant volume effects.
First, we insert spatial momentum to the operators. Namely,
we consider

C2pt
PPðt;pÞ≡ h½Pðx0;pÞ�12½Pðy0;−pÞ�21i;

½Pðx0;pÞ�ij ≡
Z

d3xe−ip·x½PðxÞ�ij; ð69Þ

where x0 is the temporal element of x, t ¼ x0 − y0, and
p ¼ 2πðnx; ny; nzÞ=L is the three-dimensional momentum.
Then, the unwanted constant contribution consts. auto-
matically disappears for p ≠ 0. It is also intuitively rea-
sonable that the higher energy states having momenta are
less sensitive to the finite volume effects. Even in the case
of p ¼ 0, it vanishes in a simple subtraction with respect to
time: Δt½Pðt;pÞ�ij ≡ ½Pðt;pÞ�ij − ½Pðtref ;pÞ�ij with a refer-
ence time slice tref .
The second step is to take a ratio of the correlators with

different momenta. For example, by shifting y0 → 0, and
renaming x0 ¼ t, we have

R2ptðt;pÞ

≡ h½Pðt;pÞ�12½Pð0;−pÞ�21i
hΔt½Pðt; 0Þ�12½Pð0; 0Þ�21i

¼ E2ptð0Þ sinh ðE2ptð0ÞT=2Þ
E2ptðpÞ sinh ðE2ptðpÞT=2Þ

×
coshðE2ptðpÞðt − T=2ÞÞ

coshðE2ptð0Þðt − T=2ÞÞ − coshðE2ptð0Þðtref − T=2ÞÞ ;

ð70Þ

where

E2ptðpÞ≡
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
M2

12Z
2pt
M þ p2

q
: ð71Þ

The ratio R2ptðt;pÞ is no more dependent on hAðU0ÞiU0
or

hBðU0ÞiU0
. In fact, this expression is exactly the same as

the same ratio in the p expansion, except for the mass
renormalization factor Z2pt

M . Namely, we have minimized
the features of the ϵ regime in the two-point correlator. It is1More rigorous arguments are found in Refs. [17,23].
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also important to note that R2ptðt;pÞ is finite even in the
limit of E2ptð0Þ → 0.
Since the above ratio R2ptðt;pÞ has no dependence on

LEC’s of ChPT, it is not phenomenologically interesting.
However, it is a good test quantity for lattice QCD to check
the validity of the above arguments. Recently, JLQCD
Collaboration [6] compared the ratio R2ptðt;pÞ to the

numerical data in the both cases with M12

ffiffiffiffiffiffiffiffi
Z2pt
M

q
¼ 0

and 100 MeV and found a fairly good agreement. The

NLO corrections in
ffiffiffiffiffiffiffiffi
Z2pt
M

q
and the third term of Eq. (67) we

have neglected are actually small.
Since the x independence of the pion zero mode and its

dominance in the finite volume effects are universal and
true in any correlation functions at any sizes of the volume,
we expect wide applications of our method. Namely,
inserting momenta to the correlators and taking a ratios
of them generally makes a less sensitive quantity to the
volume than the original ones. We will see this is true for
the three-point functions in the next section.

IV. THREE-POINT FUNCTION

In this section, we calculate our main target, the
pseudoscalar-vector-pseudoscalar three-point function in
a finite volume in the ϵ expansion of ChPT, which is
relevant for extracting the vector pion form factor.
However, we should note that the pion form factor itself
is not a quantity described within ChPTalone. In numerical
studies [24,25] it is known that the vector meson largely
contributes to the results, which cannot be explained by
ChPT. Even in such a case, we still expect that the
correction from the finite volume can be treated within
ChPT, as the heavier hadrons, including the vector mesons,
do not propagate very long. Therefore, in this section, we
compute the finite volume effects on the three-point
function within the ϵ expansion of ChPT. Once the main
part of finite volume effects are removed, the remaining
pion form factor should include the physics beyond ChPT.

A. Three-point functions and form factors

First, we briefly review how the three-point functions are
related to the pion form factors. Our main target in this
work is the vector form factor, defined by

hπaðp2ÞjVb
μðxÞjπcðp1Þi ¼ iϵabcðp1 þ p2ÞμFVðtÞ; ð72Þ

where jπaðpÞi denotes the on-shell pion state with momen-
tum p, Vb

μðxÞ is the coefficient of an SUð2Þ generator τb in
the vector operator, and t ¼ ðp1 − p2Þ2.
For lattice QCD calculations, it is convenient to take the

b ¼ 3 component

V3
μðxÞ ¼

1

2
ūγμuðxÞ −

1

2
d̄γμdðxÞ: ð73Þ

Using a conventional notation

jπ1ðpÞi ¼ jπþðpÞi þ jπ−ðpÞiffiffiffi
2

p ;

jπ2ðpÞi ¼ jπþðpÞi − jπ−ðpÞiffiffiffi
2

p
i

; ð74Þ

where jπ�ðpÞi denotes the charged pion state, and iso-spin
symmetry (we assume mu ¼ md ¼ m),

hπþðp2ÞjV3
μðxÞjπþðp1Þi¼−hπ−ðp2ÞjV3

μðxÞjπ−ðp1Þi; ð75Þ

as well as the electric charge conservation,

hπþðp2ÞjV3
μðxÞjπ−ðp1Þi ¼ hπ−ðp2ÞjV3

μðxÞjπþðp1Þi ¼ 0;

ð76Þ

one obtains a simpler formula,

hπþðp2ÞjV3
μðxÞjπþðp1Þi ¼ ðp1 þ p2ÞμFVðtÞ: ð77Þ

It is also important to note for the isospin zero current,

V0
μðxÞ ¼ ūγμuðxÞ þ d̄γμdðxÞ; ð78Þ

that its form factor is zero:

hπaðp2ÞjV0
μðxÞjπbðp1Þi ¼ 0 for any a; b; ð79Þ

since the pions have zero Baryon charge. In ChPT, this
situation is more directly shown by V0

μðxÞ ¼ TrVμðxÞ ¼ 0
in Eq. (33). Namely, there exists no corresponding current
within ChPT. Therefore, for the electromagnetic current
defined by

JEMμ ≡ V3
μðxÞ þ

1

6
V0
μðxÞ ¼

2

3
ūγμuðxÞ −

1

3
d̄γμdðxÞ; ð80Þ

one can show an identity,

hπþðp2ÞjV3
μðxÞjπþðp1Þi ¼ hπþðp2ÞjJEMμ ðxÞjπþðp1Þi: ð81Þ

Namely, we do not have to distinguish the vector form
factor from the electromagnetic form factor of the pions.
In the literature, the finite volume correction on the

hadronic matrix elements is often computed by just
replacing the quantum loop momentum integrals by a
discrete summation. However, in such a calculation, one
assumes that one can apply the same Lehmann-Symanzik-
Zimmermann (LSZ) reduction formula as in the V → ∞
limit, to relate the form factor to the three-point function,
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Z
d4xeip2x

Z
d4ze−ip1zh½PðxÞ�12V3

μðyÞ½PðzÞ�21i

¼ h0j½Pð0Þ�12jπþðp2Þihπþðp1Þj½Pð0Þ�21j0i
ðp2

1 þm2
πÞðp2

2 þm2
πÞ

× hπþðp2ÞjV3
μðyÞjπþðp1Þi: ð82Þ

In a finite volume (simulated on the lattice), this relation is
nontrivial, and one may overlook finite volume corrections
to the reduction formula itself. In this work, we work on the
finite volume correction within ChPT to

h½PðxÞ�12½VμðyÞ�ii½PðzÞ�21i; ð83Þ

with a general flavor index i. We will soon see that
h½PðxÞ�12½VμðyÞ�ii½PðzÞ�21i ¼ ðδi1 − δi2Þh½PðxÞ�12V3

μðyÞ×
½PðzÞ�21i. We then perform its Fourier transformation with
nonzero momenta, and show how to disentangle the pion
form factor from the correlators.

B. LO contribution

In the following, we assume x0 > y0 > z0, and denote
t ¼ x0 − y0, t0 ¼ y0 − z0. We further assume that t, t0, tþ
t0 < T=2 to suppress the effect of modes wrapping around
our periodic lattice. It is straightforward to compute the LO
contribution to the three-point function in the same way as
the two-point function,

h½PðxÞ�12½VμðyÞ�ii½PðzÞ�21i

¼ ðδi2 − δi1Þ
�

ZV2

ðZξÞ2
�

iΣ2
eff

4F2
effV

2
hEðU0ÞiU0

×
X
p1≠0

X
p2≠0

−ipμ
1 − ipμ

2

p2
1p

2
2

eip1ðx−yÞeip2ðy−zÞ; ð84Þ

where

EðU0Þ ¼ ð2þ 2½U0�11½U0�22 þ 2½U†
0�11½U†

0�22
þ ½U0�11½U†

0�11 þ ½U0�22½U†
0�22

− ½U0�12½U†
0�21 − ½U0�21½U†

0�12Þ: ð85Þ

Here, we have neglected the t and t0 independent terms
since we will automatically cancel them in the end of our
computation.
We have also neglected diagrams where ξ’s are con-

nected in unusual orders, like x-z-y or z-x-y, expecting the
long propagation between x and z to be exponentially
suppressed. This expectation is not true for the zero-
momentum contribution at LO. However, as mentioned
in the previous section, it is reasonable to expect that the
NLO corrections give a “mass” to the correlators and make
long-range correlation suppressed compared to the main
result. One should be able to numerically check this
expectation, since if the neglected contribution is big, it
should be detected as unexpected jx − zj dependence.

C. NLO contribution

Next, let us calculate the NLO corrections to the three-
point function. As seen in the two-point function, the
contribution from SNLO

M can be encoded as the mass
corrections: together with the LO contribution, one can
express it as

hh½PðxÞ�12½VμðyÞ�ii½PðzÞ�21�LOð1 − SNLO
M ÞiξiU0

¼ ðδi2 − δi1Þ
iΣ2

eff

4F2
effV

2
hEðU0ÞiU0

×
X
p1≠0

X
p2≠0

−ipμ
1 − ipμ

2

ðp2
1 þM2

12Z
3pt
M Þðp2

2 þM2
12Z

3pt
M Þ

× eip1ðx−yÞeip2ðy−zÞ; ð86Þ

where

Z3pt
M ¼ 1þ Nf

M2
12F

2V
þ hGðU0Þ þHðU0ÞiU0

hEðU0ÞiU0

; ð87Þ

GðU0Þ≡ 1

4
½fð½U0�22 þ ½U†

0�22 − 2Þð2þ ½U0�11½U0�22 þ ½U†
0�11½U†

0�22Þ
þ 8ð½U0�22 þ ½U†

0�22Þ − 6½U0�11½U0�22 − 6½U†
0�11½U†

0�22 − 4½U0�22½U†
0�22

− ð½U0�22 þ ½U†
0�22 − 4Þð½U0�12½U†

0�21 þ ½U†
0�12½U0�21Þ − ð½U0�12½U0�21½U0�22 þ ½U†

0�12½U†
0�21½U†

0�22Þ
þ 2ð½U0�11 þ ½U†

0�11 − 2Þð1þ ½U0�22½U†
0�22Þg þ ð½U0�11 þ ½U†

0�22Þð½U0M†U0�22=m − 1Þ
þ ð½U†

0�11 þ ½U0�22Þð½U†
0MU†

0�22=m − 1Þ þ 2½U0�22ð½U0M†U0�11=m − 1Þ þ 2½U†
0�22ð½U†

0MU†
0�11=m − 1Þ

− ð½U0�12½U†
0�21½U†

0�22 þ ½U†
0�12½U0�21½U0�22Þ−ð½U†

0�21½U0M†U0�12=mþ ½U0�21½U†
0MU†

0�12=mÞ�; ð88Þ
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HðU0Þ≡ −
1

2Nf
½ð½U0�12 þ ½U†

0�12Þð½U0M†U0�21=mþ ½U†
0MU†

0�21=mÞ�: ð89Þ

For the correction in the operators, we have a contribution from the L9 term:

hh½½PðxÞ�12½VμðyÞ�ii½PðxÞ�21�L9iξiU0
¼ ðδi2 − δi1Þ

iΣ2
eff

4F2
effV

2
hEðU0ÞiU0

�
−
2L9

F2
eff

�

×
X
p1≠0

X
p2≠0

i½p2 · ðp1 − p2Þ�ðp1Þμ − i½p1 · ðp1 − p2Þ�ðp2Þμ
p2
1p

2
2

eip1ðx−yÞeip2ðy−zÞ: ð90Þ

The correction from the SNLO
K term is obtained as

− hh½PðxÞ�12½VμðyÞ�ii½PðzÞ�21�LOSNLO
K iξiU0

¼ ðδi2 − δi1Þ
iΣ2

eff

4F2
effV

2
hEðU0ÞiU0

�
−

Nf

2F2
eff

�X
p1≠0

X
p2≠0

−iðp1 þ p2ÞνIμνð−p0
1 þ p0

2;−p1 þ p2Þ
p2
1p

2
2

eip1ðx−yÞeip2ðy−zÞ; ð91Þ

where

Iμνðq0;qÞ≡ 1

V

X
p≠0;q

pμðqν − 2pνÞ
p2ðq − pÞ2 ðq2 ¼ q20 þ q2Þ: ð92Þ

Now let us summarize all of the above results for
the μ ¼ 0 case, inserting momenta pf and pi. Using
the notations t ¼ x0 − y0, t0 ¼ y0 − z0, E3ptðpÞ≡ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
M2

12Z
3pt
M þ p2

q
, and

cðp; tÞ ¼ cosh½E3ptðpÞðt − T=2Þ�
2E3ptðpÞ sinh½E3ptðpÞT=2� ;

sðp; tÞ ¼ sinh½E3ptðpÞðt − T=2Þ�
2E3ptðpÞ sinh½E3ptðpÞT=2� ; ð93Þ

one can express the result as

CPV0Pðt; t0;pf;piÞ
≡ h½Pðx0;−pfÞ�12V3

0ðy0;qÞ½Pðz0;piÞ�21i

¼ −
L3Σ2

eff

4F2
eff

hEðU0ÞiU0
δð3Þq;pf−piZkFVðq0;qÞ

× ½iE3ptðpiÞcðpf; tÞsðpi; t0Þ þ iE3ptðpfÞsðpf; tÞcðpi; t0Þ�:
ð94Þ

Here, as mentioned in the above calculations, we have
omitted the two-pion-like propagations, and the x0 − z0 ¼
tþ t0 dependent long-distance correlators, as they are
expected to be exponentially small.

The vector form factor FVðq0;qÞ is given by

FVðq0;qÞ ¼
ZV2

ðZξÞ2 −
2L9

F2
eff

q2 −
Nf

2F2
eff

ðlðq0;qÞ − l00Þ; ð95Þ

where lðq0;qÞ is a part of I0νðq0;qÞ which is proportional
to δ0ν. Another part proportional to q0qν cannot contribute
since it is contracted with a perpendicular vector q̄ν to qμ.
Namely, lðq0;qÞ is given by

lðq0;qÞ ¼ I0νðq0;qÞq̄ν=q̄0: ð96Þ

More details are discussed in Appendix B.
Note in the above formula, the (finite) renormalization

factor

Zk ¼ 1 −
Nf

2F2
eff

l00;

l00 ≡ −
1

4π2
X
b≠0

1

jbμj2
�
1 −

2ðb0Þ2
jbμj2

�
; ð97Þ

where the summation is taken over the vector bμ ¼
ðn0T; n1L; n2L; n3LÞ with integers nμ, is introduced so
that FVð0; 0Þ ¼ 1 is maintained even in a finite volume.
Therefore, the finite volume effects contained in FVðq0;qÞ
are only those which come from the nonzero modes, vanish
in the qμ → 0 limit, and are thus expected to be perturba-
tively small. We will discuss the details of the remaining
finite volume effects in the next section.
Finally, let us discuss the renormalization of the above

formula Eq. (95). Since the finite volume effects are free
from UV divergences, it is sufficient to consider the
V → ∞ limit of FVðq0;qÞ. It is not difficult to see that
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the quadratic divergence in ZV2=ðZξÞ2 is precisely canceled
by that in lðq0;qÞ. Therefore, we only need to renormalize
the logarithmic divergence of lðq0;qÞ by the redefinition
of L9.
Employing the dimensional regularization, we can easily

evaluate its logarithmic divergence as

lim
V→∞

lðq0;qÞ ¼
q̄ν

q̄0

Z
ddp
ð2πÞd

−2p0pν

p2ðp − qÞ2

¼ 1

16π2

�
q2

6

�
2

ϵ
þ 1 − γE þ ln 4π − ln μ2sub

�

−
q2

6
ln

q2

μ2sub
þ 5

18
q2
	
; ð98Þ

where ϵ ¼ 4 − d, γE ¼ 0.57721 � � � is the Euler’s constant,
and μsub denotes the subtraction scale. This divergence can
be absorbed in the renormalization of L9:

Lr
9ðμsubÞ≡ L9 −

Nf

12
×

1

16π2

�
−
1

ϵ
−
1

2
ð−γE þ ln 4π

þ 1 − ln μ2subÞ
�
; ð99Þ

and one obtains the infinite volume limit for the vector form
factor,

F∞
V ðq0;qÞ ¼ 1 −

2Lr
9ðμsubÞ
F2
eff

q2 −
Nf

2F2
eff

1

16π2

×

�
−
1

6
q2 ln

q2

μ2sub
þ 5

18
q2
�
; ð100Þ

which agrees with the known (massless limit of) result
within ChPT. Note that we cannot expect F∞

V ðq0;qÞ to
describe the lattice data well, since the physics beyond

ChPT is omitted in the ChPT expression. However,
we can still expect that the finite volume correction,
FVðq0;qÞ − F∞

V ðq0;qÞ, is well described within ChPT,
which will be discussed in the next section.

V. EXTRACTION OF THE VECTOR FORM
FACTOR OF PION

In this section, we show how to eliminate the leading
zero-momentum pion mode’s contribution from the corre-
lator, and how to extract the vector form factor of pions.
There still remain finite volume effects from nonzero
modes but they are subleading contributions. From the
one-loop calculation of the nonzero momentum modes, we
numerically estimate this remaining effect, and show they
are actually a small perturbation.

A. Removing dominant finite volume effects
from the pion zero mode

In the previous section, we have neglected the t-inde-
pendent or t0-independent terms in our calculation. In the
final form Eq. (94), if both of pi and pf are nonzero, these
terms are automatically dropped. However, if these
momenta are zero, we have to take subtraction of the
correlators at different time slices, ΔtfðtÞ≡ fðtÞ − fðtrefÞ,
Δt0fðt0Þ≡ fðt0Þ − fðt0refÞ, with tref and t0ref , respectively. A
similar procedure was already shown in the two-point
correlators. To keep tref þ t0ref < T=2 and t; t0 < tref , which
are the conditions to suppress the contribution from pions
wrapping around the periodic space-time, tref ¼ t0ref ∼ T=4
would be optimal. In the following, we take t0ref ¼ tref , for
simplicity.
With the above time-slice subtraction in mind, and

noting FVð0; 0Þ ¼ 1, the following ratios are useful for
extracting the vector pion form factor:

R1ðt; t0;pf;piÞ≡ CPV0Pðt; t0;pf;piÞ
ΔtΔt0CPV0Pðt; t0; 0; 0Þ

¼ FVðq0;qÞ ×
E3ptðpiÞcðpf; tÞsðpi; t0Þ þ E3ptðpfÞsðpf; tÞcðpi; t0Þ

E3ptð0ÞΔtcð0; tÞΔt0sð0; t0Þ þ E3ptð0ÞΔtsð0; tÞΔt0cð0; t0Þ
;

R2ðt; t0; 0;piÞ≡ ΔtCPV0Pðt; t0; 0;piÞ
ΔtΔt0CPV0Pðt; t0; 0; 0Þ

¼ FVðq0;qÞ ×
E3ptðpiÞΔtcð0; tÞsðpi; t0Þ þ E3ptð0ÞΔtsð0; tÞcðpi; t0Þ

E3ptð0ÞΔtcð0; tÞΔt0sð0; t0Þ þ E3ptð0ÞΔtsð0; tÞΔt0cð0; t0Þ
: ð101Þ

Note here that the t and t0 dependences are uniquely determined once M12

ffiffiffiffiffiffiffiffi
Z3pt
M

q
is given. Therefore, FVðq0;qÞ can be

extracted by performing a one-parameter fit at a long distance, taking M12

ffiffiffiffiffiffiffiffi
Z3pt
M

q
as a free parameter.

In the numerical lattice analysis, one could also try taking further ratios with two-point functions. Namely,
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R0
1ðt; t0;pf;piÞ≡ CPV0Pðt; t0;pf;piÞ

ΔtΔt0CPV0Pðt; t0; 0; 0Þ
�
−ΔtC

2pt
PPðt; 0ÞΔt0∂t0C

2pt
PPðt0; 0Þ − Δt∂tC

2pt
PPðt; 0ÞΔt0C

2pt
PPðt0; 0Þ

ðE2ptðpiÞ þ E2ptðpfÞÞC2pt
PPðt;piÞC2pt

PPðt0;pfÞ

�
;

R0
2ðt; t0; 0;piÞ≡ ΔtCPV0Pðt; t0; 0;piÞ

ΔtΔt0CPV0Pðt; t0; 0; 0Þ
�
−ΔtC

2pt
PPðt; 0ÞΔt0∂t0C

2pt
PPðt0; 0Þ − Δt∂tC

2pt
PPðt; 0ÞΔt0C

2pt
PPðt0; 0Þ

C2pt
PPðt0;piÞ½−Δt∂tC

2pt
PPðt; 0Þ þ EðpiÞΔtC

2pt
PPðt; 0Þ�

�
: ð102Þ

Note that E2ptðpÞ ¼ E3ptðpÞ at LO. At NLO, their expres-
sions are different, reflecting the different zero-mode
integrals. However, they are numerically very similar to
each other with reasonable setups of the lattice simulation
parameters. In particular, they share the exactly same chiral
limit, and the infinite volume limit as seen in Fig. 1.
Therefore, these ratios R0

1ðt; t0;pf;piÞ and R0
2ðt; t0; 0;piÞ

should cancel the t and t0 dependences, and directly give the
values of FVðq0;qÞ.
The JLQCD Collaboration [6] has employed the latter

ratios and found a good plateau for it, extracting a pion
charge radius, which is consistent with the experiment.

It should be noted that except for Z3pt
M , which is

essentially irrelevant in both of the above ratios, we do
not need any zero-mode integrals which could have been a
complicated combination of Bessel functions. The remain-
ing finite volume effect in FVðq0;qÞ is a perturbative
correction from the nonzero modes only and thus is
expected to be small as shown in the next subsection.

B. Remaining finite volume effects from nonzero modes

After removing the dominant finite volume effect from
the zero mode, what remains in FVðq0;qÞ is the effect of
the nonzero momentum modes, which is expected to be
perturbatively small. In this subsection, we compute this
nonzero-momentum effect to the pion one-loop and
numerically confirm this expectation.
To this end, all we need to evaluate is

Iμνðq0;qÞ ¼
1

V

X
p≠0;q

−2pμpν

p2ðp − qÞ2 : ð103Þ

Here and in the following, we ignore the terms proportional
to qν, since they are always contracted with a perpendicular
4-momentum vector to qμ, and thus do not contribute to the
final result.
It is not difficult to decompose it as

Iμνðq0;qÞ ¼
X

bμ¼nμLμ

Ibμνðq0;qÞ; ð104Þ

where

Ibμνðq0;qÞ≡
Z

d4p
ð2πÞ4 e

ipb −2pμpν

p2ðp − qÞ2 : ð105Þ

Note that Ib¼0ðq0;qÞ is the infinite volume limit of
Iμνðq0;qÞ and thus, the finite volume correction is given by

ΔIμνðq0;qÞ ¼
X
b≠0

Ibμνðq0;qÞ: ð106Þ

In the standard manner, each contribution Ibμνðq0;qÞ can
be computed as

0.00 0.02 0.04 0.06 0.08
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0.90

0.95

1.00

1.05

1.10

M2 GeV2

ZM
2 pt

ZM
3 pt

FIG. 1 (color online). Numerical estimates for the pion mass
squared M2

πZ
2pt
M and M2

πZ
3pt
M (top) and their ratio Z2pt

M =Z3pt
M

(bottom). Here, we use L ¼ T=2 ¼ 2 fm, and Feff ¼
92.2 MeV as inputs.
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Ibμνðq0;qÞ ¼ 2
∂
∂bμ

∂
∂bν

Z
1

0

dxeixbq
Z

d4p
ð2πÞ4

eipb

ðp2 þ ΔÞ2

¼ −
1

4π2

Z
1

0

dxeixbq
�
δμν
jbμj

ffiffiffiffi
Δ

p
K1ð

ffiffiffiffi
Δ

p
jbμjÞ

−
bμbν
jbμj2

ΔK2ð
ffiffiffiffi
Δ

p
jbμjÞ

�
; ð107Þ

where Δ ¼ xð1 − xÞq2, and KiðzÞ denotes the ith modified
Bessel function. Here, we have neglected a term propor-
tional to qμbν, since that term is proportional to qν after the
summation over bν.
When b0 ¼ 0, it is straightforward to numerically

evaluate the above form. However, when b0 ≠ 0, we need
to take special care because we need to analytically
continue the results with respect to q0. Here we simplify
the situation using an inequality

����
Z

1

0

dxeiαfðxÞ
���� <

����
Z

1

0

dxjeiαjfðxÞ
���� ¼

����
Z

1

0

dxfðxÞ
����;
ð108Þ

in Eq. (107). Namely we neglect the oscillating factor
expðixb0q0Þ. Then the analytic continuation of q0 has no
subtlety since the Bessel functions are all vanishing in the
limit jq0j → ∞ with any complex phase. Note here that
the real part

ffiffiffiffi
Δ

p
is always positive. We do not think

this overestimation affects the result very much, since the
temporal direction is usually larger than the spacial
direction by a factor of 2 or 3, and therefore, the
contribution from b0 ≠ 0 is much smaller from the
beginning.
Taking the μ ¼ 0 direction, the finite volume correction

to FVðq0;qÞ can be computed as

ΔFVðq0;qÞ≡ FVðq0;qÞ − F∞
V ðq0;qÞ

¼ −
Nf

2F2
eff

ðΔlðq0;qÞ − l00Þ; ð109Þ

where

Δlðq0;qÞ ¼ −
1

4π2
X
bμ

Z
1

0

dxeixb·q
� ffiffiffiffi

Δ
p

jbμj
K1ð

ffiffiffiffi
Δ

p
jbμjÞ

−
b20
jbμj2

ΔK2ð
ffiffiffiffi
Δ

p
jbμjÞ

�
: ð110Þ

Note that Δlð0; 0Þ ¼ l00.
Our numerical estimates for ΔFVðq0;qÞ at

L ¼ T=2 ¼ 2, 3, 4 fm are presented in Fig. 2. Here, we

denote q0 ¼ ið
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
p2
f þM2

π

q
−

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
p2
i þM2

π

p
Þ, assuming the

dispersion relation of the pion energy, q ¼ pf − pi, and
choose Mπ ¼ 135 MeV, Feff ¼ 92.2 MeV as inputs. The

zigzag behavior may be due to the lack of the rotational
symmetry on the lattice. Since F∞

V ðq2Þ is an Oð1Þ quantity,
our result shows the remaining finite volume effects are
around a few percent already at L ¼ 3 fm, even
when mπL < 1.

VI. SUMMARY AND DISCUSSION

We have studied finite volume effects on the electro-
magnetic pion form factor in the ϵ regime. The pseudo-
scalar-vector-pseudoscalar three-point function has been
calculated in the ϵ expansion of chiral perturbation theory
to the next-to-leading order.
The dominant finite volume effects, which come from

the zero mode of the pions can be removed by two simple
manipulations: by inserting nonzero momentum to relevant
operators (or making a subtraction at different time corre-
lators) and taking an appropriate ratio of them. After these
manipulations, one can safely extract the electromagnetic
pion form factor for which the remaining finite volume
correction from the nonzero modes is suppressed to a few
percent level already at L ¼ 3 fm even in the ϵ regime
(see Fig. 2).
It is important to note that our analysis has been done

without using any special features of the ϵ expansion, and
the dominance of the zero-mode contribution is expected to
be a common feature of finite volume effects in any regime
of QCD. Therefore, our method can be useful for simu-
lations in the p regime, including the ones with twisted
boundary conditions [26,27]. We also expect a wide
application to other quantities like form factors of heavier
hadrons.
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FIG. 2 (color online). Numerical estimates for ΔFV.
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APPENDIX A: ZERO-MODE INTEGRAL

In this appendix, we evaluate the U0 integrals which are
necessary for numerical estimation of Z2pt

M or Z3pt
M .

Although our analysis in this paper is done only in the
unquenched QCD, we use the partially quenched results by
[19,20], because some expressions are simpler for the
partially quenched results, and the results would be easily
extended to the partially quenched study in these expres-
sions. The unquenched results are obtained simply by
setting the valence quark mass mv to the one of the sea
quark masses.
We start with the so-called graded partition function

which consists of n bosons and m fermions. Its non-
perturbative analytic form is given by [19,20]

ZQ
n;mðfμigÞ ¼

det½μj−1i J Qþj−1ðμiÞ�i;j¼1;…nþmQ
n
j>i¼1ðμ2j − μ2i Þ

Qnþm
j>i¼nþ1ðμ2j − μ2i Þ

; ðA1Þ

in a fixed topological sector of Q. Here J ’s are defined as
J Qþj−1ðμiÞ≡ ð−1Þj−1KQþj−1ðμiÞ for i ¼ 1;…n and
J Qþj−1ðμiÞ≡ IQþj−1ðμiÞ for i ¼ nþ 1;…nþm, where
Kν and Iν are the modified Bessel functions. Partial
quenching is completed by taking the boson masses to
those of valence fermions.
Integrals of some diagonal matrix elements are obtained

by simply differentiating the partition function,

Sv ≡ 1

2
h½U0�vv þ ½U†

0�vviU0

¼ lim
μb→μv

∂
∂μv lnZ

Q
1;1þNf

ðμb; μv; fμseagÞ;

Dv ≡ 1

4
hð½U0�vv þ ½U†

0�vvÞ2iU0

¼ 1

ZQ
Nf
ðfμseagÞ

lim
μb→μv

∂2

∂μ2v Z
Q
1;1þNf

ðμb; μv; fμseagÞ;

Dv1v2 ≡
1

4
hð½U0�v1v1 þ ½U†

0�v1v1Þð½U0�v2v2 þ ½U†
0�v2v2ÞiU0

¼ 1

ZQ
Nf
ðfμseagÞ

lim
μb1→μv1 ;μb2→μv2

∂
∂μv1

×
∂

∂μv2
ZQ

2;2þNf
ðμb1 ; μb2 ; μv1 ; μv2 ; fμseagÞ; ðA2Þ

and

T v1v2 ≡
1

8
hð½U0�v1v1 þ ½U†

0�v1v1Þ2ð½U0�v2v2 þ ½U†
0�v2v2ÞiU0

¼ 1

ZQ
Nf
ðfμseagÞ

lim
μb1→μv1 ;μb2→μv2

∂2

∂μv1
×

∂
∂μv2

ZQ
2;2þNf

ðμb1 ; μb2 ; μv1 ; μv2 ; fμseagÞ: ðA3Þ

Then, U0 integrals for the degenerate case m1 ¼ m2 can be
written as

hBðU0Þi ¼ 2

�
1þQ2

μ1
−

2

Nf
D1 þ

�
1þ 2

Nf

�
D11

�
; ðA4Þ

hD0ðU0ÞiU0
¼ 4S1; ðA5Þ

hD1ðU0ÞiU0
¼ Nf

μ1

�
1 −D11 −

Q2

μ21

�
; ðA6Þ

hD2ðU0ÞiU0
¼ −

2

μ1

�
∂1S1 −

S1

μ1
−
2Q2

μ1
S1

�
; ðA7Þ

hD3ðU0ÞiU0
¼ −

4

μ1

�
1

Nf
−
D11

Nf
−

3Q2

Nfμ
2
1

− ∂1S1

�
; ðA8Þ

hD4ðU0ÞiU0
¼ 4

N2
f

∂1D1 þ
2

μ1
∂1S1

þ 4ðNf − 2Þ
N2

f

∂1D1jjmj¼m1
;

hEðU0ÞiU0
¼ 2

�
1þ 3D11 þ

Q2

μ21

�
; ðA9Þ

hGðU0ÞiU0
¼2

�
T 11−

∂1D1

2
−
3D1

2μ1
þ
�
−3þ−4Nfþ3

2μ1

�
D11

þ
�
3þ 3

2μ21
þ3Q2

μ21

�
S1−1−

Q2

μ21

�
1þNf

μ1

��
;

ðA10Þ

hHðU0ÞiU0
¼ −4

�
1 −D11

2Nfμ1
−
∂1S1

μ1
−

3Q2

2μ31Nf

�
: ðA11Þ

Here, we have used

lim
μ1→μ2

S1 − S2

μ1 − μ2
¼ ∂1S1: ðA12Þ

Note that the derivative ∂v is taken with respect to the
valence degree of freedom after the μb ¼ μv limit is taken.
This partially quenched expression is simpler than that of
unquenched theory, as shown in Ref. [23].
It is also useful to note

D11≡ lim
μ2→μ1

D12

¼−
1

ZQ
0;Nf

ðμseaÞ
∂
∂μb

∂
∂μvZ

Q
1;1þNf

ðμb;μv;fμseagÞ
����
μb¼μv¼μ1

;

ðA13Þ
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which was shown in the appendix of Ref [17]. With this, the
following nontrivial relations are obtained:

∂1S1 ¼ D1 −D11;

∂2
1S1 ¼ ∂1D1 − 2∂1D12jm2¼m1

: ðA14Þ

Similarly, we can use

T 11≡ lim
μ2→μ1

T 21

¼−
1

ZQ
0;Nf

ðμseaÞ
∂
∂μb

∂2

∂2μv
ZQ

1;1þNf
ðμb;μv;fμseagÞ

����
μb¼μv¼μ1

:

ðA15Þ

APPENDIX B: LOOP MOMENTUM
SUMMATIONS

In the calculation of the one-loop diagram, we have
encountered the momentum summation:

Iμνðq0;qÞ ¼
1

V

X
p≠0;q

pμðqν − 2pνÞ
p2ðq − pÞ2 ðq2 ¼ q20 þ q2Þ: ðB1Þ

From the symmetry, on a finite volume V ¼ TL3 we can
decompose it as

Iμνðq0;qÞ ¼ δμνI1ðq0;qÞ þ δμ0δν0I2ðq0;qÞ
þ qμqνI3ðq0;qÞ: ðB2Þ

Note that another possible choice
P

3
i¼1 δμiδνi is not

independent from the others since δμν ¼ δμ0δν0þP
3
i¼1 δμiδνi.
For a vector q̄μ which satisfies q · q̄ ¼ 0, we can simplify

Iμνðq0;qÞq̄ν ¼ q̄μI1ðq0;qÞ þ δμ0q̄0I2ðq0;qÞ: ðB3Þ

In particular, it is useful to note

I0νðq0;qÞq̄ν ¼ q̄0lðq0;qÞ; ðB4Þ

where

lðq0;qÞ≡ I1ðq0;qÞ þ I2ðq0;qÞ: ðB5Þ
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