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We use Schwinger bosons as prepotentials for lattice gauge theory to define local linking operators and
calculate their action on linking states for (2þ 1)-dimensional SU(2) lattice gauge theory. We develop a
diagrammatic technique and associate a set of rules (lattice Feynman rules) to compute the entire loop
dynamics diagrammatically. The physical loop space is shown to contain only nonintersecting loop
configurations after solving the Mandelstam constraint. The smallest plaquette loops are contained in the
physical loop space, and other configurations are generated by the action of a set of fusion operators on
these basic loop states.
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I. INTRODUCTION

Lattice gauge theories, originally defined [1] within the
Euclidean framework, have found profound applicability for
performing numerical computations using Monte Carlo
simulation. The Hamiltonian approach [2], although much
less studied, has several important advantages over the
Euclidean one. Both the Hamiltonian and path integral
approach of lattice gauge theories are mostly studied in
the strong coupling limit, albeit the physical or continuum
limit exists at weak coupling. Moreover, the most economic
and physical description of any gauge theory can only be in
terms of gauge-invariant degrees of freedom. Reformulation
of gauge theories in terms of gauge-invariant Wilson loops
and strings carrying fluxes is an old problem in physics [3,4].
Formulation of gauge field theories on a lattice [1] is indeed
an important step towards the loop formulation, as here one
directly works with the link variables or holonomies (instead
of the gauge field for continuum theories) which are gauge-
covariant objects and are the fundamental building blocks of
gauge-invariant Wilson loops. However, the gauge-invariant
Wilson loops and strings form an overcomplete basis for the
physical Hilbert space of the theory. Mandelstam constraints
[5] indeed restrict the overcomplete Wilson loops to minimal
loops which are also sufficiently complete to describe the
physical Hilbert space. But that is not a trivial task mostly
because of the nonlocality of the Wilson loop states and their
dynamics. This problem becomes more and more tedious
when one approaches the weak coupling limit of lattice
gauge theory, where all possible loops of arbitrary shapes
and sizes start contributing. However, in the context of
duality transformation [6], the electric flux loop and their
dynamics have been shown to be manifestly local in the
continuum limit even for non-Abelian lattice gauge theories.
Moreover, a recent development in the formulation of

Hamiltonian lattice gauge theory, namely, the prepotential
formulation [4,7], has shown a way to get rid of the problem
of nonlocality and proliferation of loop states for any SUðNÞ
gauge theory in arbitrary dimensions.
The prepotential formulation is basically a reformulation

of Hamiltonian lattice gauge theory in terms of SUðNÞ
Schwinger bosons in which the loop operators and loop
states are defined locally at each site, which cuts down the
level of complications to a great extent. The Mandelstam
constraints are also local in this formulation, which one can
solve to find the exact and local loop basis at each site.
Thus, this new local description of lattice gauge theory
seems to provide the best framework for any practical
computation in the field of lattice gauge theory. Besides
strong coupling calculations, the weak coupling regime
becomes much more amenable and easy to handle in terms
of prepotentials.
By using the Schwinger boson representation of the gauge

group at each lattice site, the original Kogut-Susskind
Hamiltonian [2] and its canonical conjugate variables are
reconstructed. In terms of Schwinger bosons, the non-
Abelian gauge group becomes ultralocal at each site, and
the fluxes along neighboring sites flow following the new
Abelian constraint, which is easy to handle. However, the
full Hamiltonian, even in terms of a local gauge-invariant
operator, is complicated enough while acting on an arbitrary
loop state. In this work, exploiting the local description of
loops in terms of Schwinger bosons, we calculate all possible
action of local gauge-invariant operators on any local gauge-
invariant state of the theory with explicit realization for
SU(2) lattice gauge theory defined on a (2þ 1)-dimensional
lattice. Moreover, to realize the complicated actions and to
perform computations (both analytical and numerical) easily,
we develop a diagrammatic calculational technique. We
describe the local gauge-invariant state as well as the actions
of the gauge-invariant operators on those states by diagrams.
Each diagram denotes the states together with a numerical
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coefficient, which can be read off from it by a set of “lattice
Feynman rules.” We utilize this diagrammatic technique to
compute the action of the full Kogut-Susskind Hamiltonian
within loop states which is again expressed diagrammati-
cally. Moreover, we improve the loop descriptions given in
terms of local linking numbers in prepotential formulation to
a description in terms of fusion variables. The Abelian Gauss
laws are solved by these fusion variables by construction.
The electric part of the Hamiltonian is simple in terms of the
fusion variables, which counts the units of flux flowing
throughout the lattice and becomes dominant in the strong
coupling limit. The magnetic part of the Hamiltonian which
is dominant in the weak coupling regime of the theory is
quite complicated but has been written down entirely in
terms of the shift operators corresponding to fusion varia-
bles. Both the diagrammatic representation as well as
analytic expression are given.
The plan of the paper is as follows: We start with a brief

review of the prepotential formulation and relate it to the
Kogut-Susskind Hamiltonian formulation in Sec. II. In
Sec. III, we discuss all possible loop operators in prepo-
tential formulation defined locally at each site and calculate
their action individually on any loop state characterized by
prepotential linking numbers. In this section, we develop
the diagrammatic technique to handle loops. Next, in
Sec. IV, we shift from linking numbers to fusion variables
to characterize any arbitrary loop states within the theory.
We also introduce the shift operators corresponding to
fusion variables which are responsible for loop dynamics.
The associated constraints on the states characterized by
fusion quantum numbers are also discussed which are
there to define the loop states with only physical degrees
of freedom. In Sec. V, we calculate the action of the full
Kogut-Susskind Hamiltonian in terms of diagrams as
well as the fusion variables. In Sec. VI, we briefly
illustrate how to compute strong coupling perturbation
expansion within our formulation and compare our results
for the first few orders with available results. Finally, we
summarize our results in Sec. VI and also discuss future
directions.

II. PREPOTENTIAL FORMULATION:
A BRIEF REVIEW

The prepotential formulation of lattice gauge theory [7]
provides us with a platform to work with gauge-invariant
operators and states defined locally at each site of the
lattice. We briefly review this particular formulation in this
section for the sake of completeness. Note that we keep
ourselves confined to the gauge group SU(2) and
(2þ 1)-dimensional lattice in this work, although each
of these ideas can be generalized to an arbitrary gauge
group and arbitrary dimensions as well.
In the Kogut-Susskind [2] formulation, the canonical

conjugate variables in the theory are color electric fields
Ea
L=Rðx; eiÞ defined at each site x, for a ¼ 1; 2; 3, the L=R

denotes that the left electric field is located at the starting
end of the link starting from x along ei, and R denotes the
electric field attached at the ending point terminating at
xþ ei. The link operator Uðx; eiÞ’s are defined on a link
originating from site x along the ei direction. The
Hamiltonian of the theory is given by

H ¼ g2
X
x

X3
a¼1

Eaðx; eiÞEaðx; eiÞ

−
1

g2
X

plaquette

TrðUplaquette þ U†
plaquetteÞ; ð1Þ

where g2 is the coupling constant. In (1), Uplaquette ¼
Uðx; e1ÞUðx þ e1; e2ÞU†ðx þ e1 þ e2; e1ÞU†ðx þ e2; e1Þ
is the product over links around the smallest closed loop on
a lattice, i.e., a plaquette, and að¼ 1; 2; 3Þ is the color index
for SU(2). Note that, for the SU(2) case, TrUplaquette ¼
TrU†

plaquette.
The canonical conjugate variables, namely, the color

electric fields and the link operators, satisfy the commu-
tation relation:

½Ea
Lðx; eiÞ; Uα

βðx; eiÞ� ¼ −
�
σa

2
Uðx; eiÞ

�
α

β

;

½Ea
Rðxþ eiÞ; Uα

βðx; eiÞ� ¼
�
Uðx; eiÞ

σa

2

�
α

β

: ð2Þ

In (2), σ
a

2
are the Pauli matrices, satisfying ½σa

2
; σ

b

2
� ¼ iϵabc σ

c

2
.

The left and right electric fields are generators of the gauge
transformation and hence follow SU(2) algebra:

½Ea
Lðx; eiÞ; Eb

Lðx; eiÞ� ¼ iϵabcEc
Lðx; eiÞ;

½Ea
Rðx; eiÞ; Eb

Rðx; eiÞ� ¼ iϵabcEc
Rðx; eiÞ;

½Ea
Lðx; eiÞ; Eb

Rðx; eiÞ� ¼ 0: ð3Þ

Note that the left and right generators Ea
Lðx; eiÞ and Ea

Rðxþ
ei; eiÞ on the link ðx; eiÞ are the parallel transport of each
other, i.e., ERðxþ ei; eiÞ ¼ −U†ðx; eiÞELðx; eiÞUðx; eiÞ,
implying,

X3
a¼1

Eaðx; eiÞEaðx; eiÞ≡
X3
a¼1

Ea
Lðx; eiÞEa

Lðx; eiÞ

¼
X3
a¼1

Ea
Rðxþ ei; eiÞEa

Rðxþ ei; eiÞ:

ð4Þ
Hence the electric part of the Hamiltonian (1) contains
either of the electric fields, and we choose it to be the left
electric field. Under gauge transformation, the left electric
field and the link operator transform as
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Uðx; eiÞ → ΛðxÞUðx; eiÞΛ†ðxþ eiÞ;
ELðx; eiÞ → Λðx; eiÞELðx; eiÞΛ†ðx; eiÞ;

ERðxþ ei; eiÞ → Λðxþ eiÞERðxþ ei; eiÞΛ†ðxþ eiÞ: ð5Þ

Also note that, from (5), the SU(2) Gauss law constraint at
every lattice site n is

GðnÞ ¼
Xd
i¼1

ðEa
Lðx; eiÞ þ Ea

Rðxþ ei; eiÞÞ ¼ 0; ∀ x: ð6Þ

In the next subsection, we briefly review how the SU(2)
Hamiltonian lattice gauge theory is reformulated in terms of
prepotentials.

A. Schwinger bosons

Instead of associating electric fields and link operators to
each link of the lattice as discussed before, let us associate a
set of harmonic oscillator doublets (as shown in Fig. 1)
acting as Schwinger bosons aαðx; ei; lÞ and a†αðx; ei; lÞ with
l ¼ L;R; α ¼ 1; 2. We call these oscillators prepotentials,
since the electric field operators as well as the link operators
can be reconstructed solely in terms of these. By using the
Schwinger boson construction of the angular momentum
algebra (3), the left and right electric fields on a link ðx; eiÞ
can be written as

left electric fields∶ Ea
Lðx; eiÞ≡ a†ðx; ei;LÞ

σa

2
aðx; ei;LÞ;

right electric fields∶ Ea
Rðxþ ei; eiÞ

≡ a†ðxþ ei; ei;RÞ
σa

2
aðxþ ei; ei;RÞ: ð7Þ

From now on, we will suppress the index ðx; eiÞ with the
prepotential operators whenever we consider one single
link at a time.
By using (7), the electric field constraint (4) on any link

becomes the following number operator constraints in
terms of the prepotential operators:

n̂ðLÞ≡ a†ðLÞ · aðLÞ ¼ n̂ðRÞ≡ a†ðRÞ · aðRÞ≡ n̂: ð8Þ
In (8), n̂≡ n̂ðx; eiÞ. Note that this is indeed the most novel
feature of prepotential formulation, where the non-Abelian
fluxes can be absorbed locally at a site and the Abelian
fluxes spread along the links. Both the gauge symmetries
together lead to nonlocal (involving at least a plaquette)
Wilson loop states.
In order to construct the Wilson loop states in terms of

prepotentials, it is first necessary to construct link operators
on each link in terms of Schwinger bosons. From SU(2)
gauge transformations of the link operator in (5) and
SUð2Þ ⊗ Uð1Þ gauge transformation properties of the
Schwinger bosons, we write the link operator of the form

Uα
β ¼

1ffiffiffiffiffiffiffiffiffiffi
n̂þ1

p ð ~a†αðLÞa†βðRÞþaαðLÞ ~aβðRÞÞ
1ffiffiffiffiffiffiffiffiffiffi
n̂þ1

p : ð9Þ

The above link operators and electric field satisfy the same
canonical commutation relations (3) and (2) together with
the property

UU† ¼ U†U ¼ 1; DetU ¼ 1: ð10Þ

The loop operators for a gauge theory are constructed by
taking the trace of the path-ordered product of link
operators around any closed curve. Loop operators acting
on a strong coupling vacuum create the loop states of the
theory. The novel feature of the prepotential formulation is
that the loop operators around any closed path, when
reexpressed in terms of Schwinger bosons, turn out to
be the direct product of gauge-invariant operators at each
site. We call those local gauge-invariant operators the local
linking operators of the theory, and linking states are
created by the action of linking operators on a strong
coupling vacuum. The linking variables together with the
Abelian Gauss law constitute the loop variables of the
theory.

III. LINKING OPERATORS, LINKING STATES,
AND THE DIAGRAMMATICA

In this section, we explicitly illustrate all possible linking
operators and linking states present at each site of a two-
dimensional spatial lattice. We also develop a diagrammatic
prescription to illustrate the linking operators and their
actions on an arbitrary linking state, which turns out to be
extremely useful in the study of the Hamiltonian and its
dynamics in later sections.
We first concentrate at a particular site of a two-

dimensional spatial lattice, where four links meet; each
link carries its own link operator as given in (9). There exist
four basic local gauge-invariant operators [constructed by
Uα

βðx; eiÞUβ
γðxþ ei; ejÞ at site ðxþ eiÞ] which we list

below:

Ôiþjþ ≡ a†βðiÞ
1ffiffiffiffiffiffiffiffiffiffiffiffiffi

n̂i þ 1
p 1ffiffiffiffiffiffiffiffiffiffiffiffiffi

n̂j þ 1
p ~a†βðjÞ

¼ 1ffiffiffiffi
n̂i

p 1ffiffiffiffiffiffiffiffiffiffiffiffiffi
n̂j þ 1

p a†ðiÞ · ~a†βðjÞ

≡ 1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
n̂iðn̂j þ 1Þp kijþ; ð11Þ

FIG. 1. Prepotentials on a link.
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Ôiþj− ≡ a†βðiÞ
1ffiffiffiffiffiffiffiffiffiffiffiffiffi

n̂i þ 1
p 1ffiffiffiffiffiffiffiffiffiffiffiffiffi

n̂j þ 1
p aβðjÞ

¼ 1ffiffiffiffi
n̂i

p a†ðiÞ · aðjÞ 1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiðn̂j þ 2Þp
≡ 1ffiffiffiffi

n̂i
p κij

1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiðn̂j þ 2Þp ; ð12Þ

Ôjþi− ≡ ~aβðiÞ
1ffiffiffiffiffiffiffiffiffiffiffiffiffi

n̂i þ 1
p 1ffiffiffiffiffiffiffiffiffiffiffiffiffi

n̂j þ 1
p ~a†βðjÞ

¼ 1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiðn̂j þ 1Þp aðiÞ · a†ðjÞ 1ffiffiffiffiffiffiffiffiffiffiffiffiffi
ni þ 1

p

≡ 1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiðn̂j þ 1Þp κji
1ffiffiffiffiffiffiffiffiffiffiffiffiffi

ni þ 1
p ; ð13Þ

Ôi−j− ≡ ~aβðiÞ
1ffiffiffiffiffiffiffiffiffiffiffiffiffi

n̂i þ 1
p 1ffiffiffiffiffiffiffiffiffiffiffiffiffi

n̂j þ 1
p aβðjÞ

¼ ~aðiÞ · aðjÞ 1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiðn̂i þ 1Þðn̂j þ 2Þp
≡ kji−

1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiðn̂i þ 1Þðn̂j þ 2Þp ; ð14Þ

where the labels ði=jÞ associated with prepotential oper-
ators actually denote the prepotentials associated with the
links along the ði=jÞ directions at that site x. For d ¼ 2, i; j
can take values 1; 2; 1̄; 2̄, and each direction contains a
prepotential doublet a†ðiÞ as shown in Fig. 2. The max-
imally commuting gauge-invariant set of operators kijþ’s are
called linking operators, and kij−’s are their conjugates. The
linking states are constructed by the action of linking
operators on a strong coupling vacuum. Thus, in the
prepotential formulation, defining the linking operators
locally at each site enables us to define the linking states
also locally at each site as

jliji ¼
ðkijþÞlij
lij!

j0i: ð15Þ

In the prepotential approach, as defined in (15), the linking
states are naturally characterized by the linking quantum
numbers lij, which counts the flux along the i − j direction.

On a two-dimensional lattice, four links in direction i (with
i ¼ 1; 2; 1̄; 2̄) meet at a site, each carrying its own pre-
potential a†ðiÞ. Note that kjiþ ¼ −kijþ by construction given
in (11) makes the loop space in two spatial dimensions, to
be characterized by six linking numbers lij, for i < j with
the convention that 1 < 2 < 1̄ < 2̄. Thus, the most general
gauge-invariant states at a particular site are characterized
by the six linking quantum numbers as follows:

jl12; l11̄; l12̄; l21̄; l22̄; l1̄ 2̄i≡ jflgi

¼ ðk12þ Þl12
l12!

ðk11̄þ Þl11̄
l11̄!

ðk12̄þ Þl12̄
l12̄!

ðk21̄þ Þl21̄
l21̄!

ðk22̄þ Þl22̄
l22̄!

ðk1̄ 2̄þ Þl1̄ 2̄
l1̄ 2̄!

j0i:

ð16Þ
From the definition of the state (16), one can relate the
number of prepotential operators at each link to the linking
quantum numbers in the following way:

n1 ¼ l12 þ l11̄ þ l12̄; ð17Þ

n2 ¼ l21̄ þ l22̄ þ l12; ð18Þ

n1̄ ¼ l1̄ 2̄ þ l11̄ þ l21̄; ð19Þ
n2̄ ¼ l12̄ þ l22̄ þ l1̄ 2̄: ð20Þ

These numbers are basically eigenvalues of the operators
n̂i ≡ a†ðiÞ · aðiÞ. The linking quantum numbers are picto-
rially represented for a two-dimensional lattice in Fig. 3.
We now illustrate the action of the linking operators

defined in (11), (12), and (14) on the linking states defined
in (16). We also prescribe a diagrammatic realization of
these actions, which seems to be much more convenient
than dealing with long mathematical expressions. The
mathematical expression can be read off from the diagrams
by a set of rules given later in this section.
The basic local gauge-invariant operators arising at a

particular site as given in (11)–(14) are Ôiþjþ , Ôiþj− , and
Ôi−j− . The first one acts trivially on the states (16) and
increases the flux along the i − j direction by one unit.
With proper factors in the definition of the state in (16) as

FIG. 2. A particular site on a two-dimensional lattice and
associated prepotentials.

FIG. 3. SU(2) fluxes: all possible linking at a site of a
two-dimensional lattice.
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well as the linking operators in (11), the explicit action is
obtained as

Ôiþjþjflgi≡ ðlij þ 1Þffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiðni þ 1Þðnj þ 2Þp jlij þ 1i: ð21Þ

Pictorially, (21) is represented in Fig. 4. Note that, in Fig. 4,
the left-hand side contains solid dots on a solid line. The
solid dot denotes the operators acting on a state; more
specifically, a dot on a solid line represents the prepotential
creation operator corresponding to that direction acts on a
general state. The right-hand side of the equation does not
contain any dot and represents the state created. Any solid
linking line passing through the i − j direction at a site
denotes that in the new state the flux along that particular
direction has increased by one unit. Note that in the pictures
we are suppressing the symbols for the state for brevity.
The coefficients in (21) are all subsumed in Fig. 4. The
algebra towards (21) is given in Appendix A.
Next, we consider the action of (12) on a general linking

state. This action is a bit complicated, as one needs to use
all the commutation relations between different kijþ, kij− , and
κij to move the annihilation operator towards the right.
However, after the algebraic simplification (as shown in
Appendix A), the action of the operators defined in (12) on
any arbitrary linking state is obtained as

Ôiþj− jflgi≡ 1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiðni þ 1Þðnj þ 2Þp
×
X
k≠i;j

ð−1ÞSikðlik þ 1Þjljk − 1; lik þ 1i; ð22Þ

where, in any of the lij’s in the above equation (and also in
any equation throughout the paper), the indices are by
default considered to be rearranged in such a way that the
first index is always less than the second one in accordance
with the ordering convention 1 < 2 < 1̄ < 2̄. The factor Sik
is calculated as

Sik ¼ 1 if i > k and Sik ¼ 0 if i < k: ð23Þ
We represent the action of the gauge-invariant operator in
(22) pictorially in Fig. 5. In the left-hand side of Fig. 5, a
solid dot on a solid line denotes the prepotential creation
operator along that direction, and a solid dot on a dashed
line denotes the annihilation operator along that direction
acts on the state. In the right-hand side, the dashed line
represents that the corresponding solid line in the state is
removed if it was already present in the state and it is zero if

there were none already present. Note that, as given in (22),
each term comes with a particular coefficient which we
absorb in the diagram itself. This is possible by providing a
set of rules (similar to the Feynman rules) for associating
each diagram with the coefficient. Having exhausted all
possible linking actions on general linking states, we will
state all of the rules at the end of this section. These new
lattice Feynman rules will enable us to do any loop
computation diagrammatically.
Let us next consider the remaining local gauge-invariant

operator Ôi−j− and its action on a general linking state. This
action is the most complicated one to calculate, as both the
annihilation operators are needed to move to the right by
using the commutation relations. A long calculation given
in Appendix A finally yields the following action:

Ôi−j− jflgi ¼ 1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiðni þ 1Þðnj þ 2Þp
×
h
ðni þ nj − lij þ 1Þjlij − 1i

þ
X

i0;j0f≠i;jg
ðli0j0 þ 1Þð−1ÞSi0j0

× jlii0 − 1; ljj0 − 1; li0j0 þ 1i
i
: ð24Þ

To realize the action better, one can find its pictorial
representation as in Fig. 6. The first term on the right-
hand side of (24) is the simplest one and is given by the first
diagram in the right-hand side of Fig. 6. However, the terms
within the summation in (24) give rise to two terms for a
two-dimensional spatial lattice as shown in Fig. 6.
The actions of local gauge-invariant operators (con-

structed out of prepotential operators) on the linking states
characterized by linking quantum numbers in (16) are
obtained in (21), (22), and (24) and pictorially represented
in Figs. 4–6. Note that the pictorial representations of the
states contain the particular coefficients appearing before
the states in any of (21), (22), and (24) along with the states
produced characterized by the linking numbers. Hereby we
prescribe a set of rules to read off the coefficient as well as
the state by just looking at a particular diagram. Hence, a
particular diagram would correspond to a state character-
ized by linking numbers with a coefficient sitting in front of
it as shown in the table in Fig. 7.

FIG. 4. The left- and right-hand sides of¼ denote the respective
sides of Eq. (21) with all the coefficients.

FIG. 5. The left- and right-hand sides of¼ denote the respective
sides of Eq. (22) with all the coefficients.
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Now, from the coefficients given above and the diagrams
in Fig. 7, we can spell out the “lattice Feynman rules” as
follows:

(i) Any diagram with net flux increasing or decreasing
along the i − j direction (or increasing along the i
and decreasing along the j directions together)
contribute a factor of 1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

ðniþ1Þðnjþ2Þ
p , where ni; nj

counts the flux of the state on which the loop
operator has acted.

(ii) Each solid line crossing the site from direction i − j
will contribute a factor of lij þ 1.

(iii) Each dotted line crossing the site from direction
i − j, without having any overlap with any solid line
on any of its arms, will contribute a factor of
ðni þ nj − lij þ 1Þ.

(iv) Each solid flux line along the i − k direction with the
link at the k direction, having overlap with a dotted

link along the k − j direction, will contribute a factor
of ð−1ÞSik defined in (23).

(v) Each solid flux line along the i − j direction with the
link at the i direction, having overlap with a dotted
link along the i − i0 direction, and the link at the j
direction, having overlap with a dotted link along the
j − j0 direction, will contribute a factor of ð−1ÞSij
defined in (23), where i0 < j0.

To make the above diagrammatic rules more clear, we
tabulate all possible loop configurations that can occur at
each of the four vertices (namely, a; b; c; d) of a plaquette,
by the action of local gauge-invariant operators at the same
in the following table. Note that these loop configurations
are obtained in the dynamics of loops under the magnetic
Hamiltonian, as discussed in detail in the next section.

Vertex Coefficient Vertex Coefficient

d1: C1þ2̄þ ¼ l12̄þ1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðn1þ1Þðn2̄þ2Þ

p a1: C1þ2þ ¼ l12þ1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðn1þ1Þðn2þ2Þ

p

d2: C1−2̄− ¼ ðn1þn2̄−l12̄þ1Þffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðn1þ1Þðn2̄þ2Þ

p a2: C1−2− ¼ ðn1þn2−l12þ1Þffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðn1þ1Þðn2þ2Þ

p

d3: ðC2̄þ1−Þ1̄ ¼ − l1̄ 2̄þ1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðn2̄þ1Þðn1þ2Þ

p a3: ðC2þ1−Þ1̄ ¼ l21̄þ1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðn2þ1Þðn1þ2Þ

p

d4: ðC2̄þ1−Þ2 ¼ − l22̄þ1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðn2̄þ1Þðn1þ2Þ

p a4: ðC2þ1−Þ2̄ ¼ l22̄þ1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðn2þ1Þðn1þ2Þ

p

d5: ðC1þ 2̄−Þ1̄ ¼ l11̄þ1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðn1þ1Þðn2̄þ2Þ

p a5: ðC1þ2−Þ1̄ ¼ l11̄þ1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðn1þ1Þðn2þ2Þ

p

d6: ðC1þ 2̄−Þ2 ¼ l12þ1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðn1þ1Þðn2̄þ2Þ

p a6: ðC1þ2−Þ2̄ ¼ l12̄þ1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðn1þ1Þðn2þ2Þ

p

d7: Cð1−Þ2ð2̄−Þ1̄ ¼ l21̄þ1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðn1þ1Þðn2̄þ2Þ

p a7: Cð1−Þ2̄ð2−Þ1̄ ¼ − l1̄ 2̄þ1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðn1þ1Þðn2þ2Þ

p

d8: Cð1−Þ1̄ð2̄−Þ2 ¼ − l21̄þ1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðn1þ1Þðn2̄þ2Þ

p a8: Cð1−Þ1̄ð2−Þ2̄ ¼ l1̄ 2̄þ1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðn1þ1Þðn2þ2Þ

p

b1: C1̄þ2þ ¼ l1̄2þ1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðn1̄þ1Þðn2þ2Þ

p c1: C1̄þ2̄þ ¼ l1̄ 2̄þ1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðn1̄þ1Þðn2̄þ2Þ

p

(Table continued)

FIG. 6. The left- and right-hand sides of¼ denote the respective
sides of Eq. (24) with all the coefficients. Note that the usual
vertex symbol denotes the unusual coefficient for the first term of
the decomposition.

FIG. 7. The coefficients are explicitly given in the last column.

RAMESH ANISHETTY AND INDRAKSHI RAYCHOWDHURY PHYSICAL REVIEW D 90, 114503 (2014)

114503-6



Vertex Coefficient Vertex Coefficient

b2: C1̄−2− ¼ ðn1̄þn2−l1̄2þ1Þffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðn1̄þ1Þðn2þ2Þ

p c2: C1̄−2̄− ¼ ðn1̄þn2̄−l1̄ 2̄þ1Þffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðn1̄þ1Þðn2̄þ2Þ

p

b3: ðC2þ 1̄−Þ1 ¼ − l12þ1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðn2þ1Þðn1̄þ2Þ

p c3: ðC2̄þ 1̄−Þ1 ¼ − l12̄þ1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðn2̄þ1Þðn1̄þ2Þ

p

b4: ðC2þ 1̄−Þ2̄ ¼ l22̄þ1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðn2þ1Þðn1̄þ2Þ

p c4: ðC2̄þ 1̄−Þ2 ¼ − l22̄þ1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðn2̄þ1Þðn1̄þ2Þ

p

b5: ðC1̄þ2−Þ1 ¼ − l11̄þ1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðn1̄þ1Þðn2þ2Þ

p c5: ðC1̄þ 2̄−Þ1 ¼ − l11̄þ1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðn1̄þ1Þðn2̄þ2Þ

p

b6: ðC1̄þ2−Þ2̄ ¼ l1̄ 2̄þ1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðn1̄þ1Þðn2þ2Þ

p c6: ðC1̄þ 2̄−Þ2 ¼ − l21̄þ1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðn1̄þ1Þðn2̄þ2Þ

p

b7: Cð2−Þ1ð1̄−Þ2̄ ¼ l12̄þ1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðn1̄þ1Þðn2þ2Þ

p c7: Cð1̄−Þ2ð2̄−Þ1 ¼ − l12þ1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðn1̄þ1Þðn2̄þ2Þ

p

b8: Cð2−Þ2̄ð1̄−Þ1 ¼ − l12̄þ1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðn1̄þ1Þðn2þ2Þ

p c8: Cð1̄−Þ1ð2̄−Þ2 ¼ l12þ1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðn1̄þ1Þðn2̄þ2Þ

p

At this point, we discuss the overcompleteness in the
loop basis characterized by linking numbers in the next
subsection.

A. Physical degrees of freedom

We have already discussed that we can describe the local
linking states on a two-dimensional lattice, by a set of six
linking numbers defined locally at each site. This set of
linking variables forms an overcomplete basis of the theory,
as the physical degrees of freedom for SU(2) gauge theory
on a (2þ 1)-dimensional lattice is only three per lattice site.
Hence, there must be three constraints at each lattice site
among the linking number variables, to obtain the exact
physical degrees of freedom of the theory. Among these
three constraints, two are the number operator constraints
arising because of the fact that E2

L ¼ E2
R at each site [as

given in (4)] and is realized in terms of prepotentials in (8).
On two spatial dimensions, this constraint [U(1) constraint]
reads as

n1ðxÞ ¼ n1̄ðxþ e1Þ;
n2ðxÞ ¼ n2̄ðxþ e2Þ; ð25Þ

where n1, n2, n1̄, and n2̄ are defined in (17)–(20) and e1 and
e2 are unit vectors (in lattice units) along the two directions.
In terms of linking numbers, the two number operator
constraints read as

l12ðxÞ þ l11̄ðxÞ þ l12̄ðxÞ
¼ l11̄ðxþ e1Þ þ l21̄ðxþ e1Þ þ l1̄ 2̄ðxþ e1Þ;
l12ðxÞ þ l21̄ðxÞ þ l22̄ðxÞ

¼ l12̄ðxþ e2Þ þ l22̄ðxþ e2Þ þ l1̄ 2̄ðxþ e2Þ: ð26Þ

The other constraint in 2þ 1 dimensions is the Mandelstam
constraint, which in prepotential formulation at a particular
site of a two-dimensional lattice reads as the operator
relation:

k11̄þ k22̄þ ¼ k12̄þ k21̄þ − k12þ k1̄ 2̄þ : ð27Þ

Using the definitions (21) and (11), we can write (27) as

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðn1 þ 1Þðn1̄ þ 2Þ

p
Ô1þ1̄þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðn2 þ 1Þðn2̄ þ 2Þ

p
Ô2þ2̄þ

¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðn1 þ 1Þðn2̄ þ 2Þ

p
Ô1þ2̄þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðn2 þ 1Þðn1̄ þ 2Þ

p
Ô2þ1̄þ

−
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðn1 þ 1Þðn2 þ 2Þ

p
Ô1þ2þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðn1̄ þ 1Þðn2̄ þ 2Þ

p
Ô1̄þ2̄þ

⇒ Ô1þ1̄þÔ2þ2̄þ

¼
�
Ô1þ2̄þÔ2þ1̄þ −

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðn1̄ þ 1Þðn2 þ 2Þ
ðn2 þ 1Þðn1̄ þ 2Þ

s
Ô1þ2þÔ1̄þ2̄þ

�
:

ð28Þ

The Mandelstam constraint is pictorially represented in
Fig. 8, from which we clearly find that the linking states
with two vertical and horizontal flux lines crossing each
other at a particular lattice site are actually not independent
states but are a combination of two different states where the

FIG. 8. Pictorial representation of the Mandelstam constraint in
terms of prepotentials as given in (27).
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flux lines touch each other at that site itself. Another useful
way of solving theMandelstam constraints is to note that any
local state generated by the combination k11̄þ k22̄þ can be
replaced by the right-hand side of (27). That is, in terms of
linking numbers without any loss of generality, this amounts
to choosing l11̄ and l22̄ linking numbers at any site, such that

l11̄ðxÞ · l22̄ðxÞ ¼ 0: ð29Þ

The Mandelstam constraint in terms of linking variables is
given in (29). The U(1) constraints (26) and (29) define our
physical space completely. More specifically, the Abelian
U(1) constraint (26) implies that the physical states are
closed electric flux loops, while constraint (29) implies that
these flux loops cannot intersect at any site while they can
overlap over lines. Hence, our physical states are made of
nested electric flux loops which can overlap over portions
but can never intersect. An example set of physically allowed
loops is given in Fig. 9.
From our construction of physical states of gauge theory,

we have a norm on the states which is not trivial, and indeed
our choices of basis states are not even orthogonal to each
other. This norm is explicitly spelled out in Appendix B.

IV. LOOP STATES AND FUSION OPERATORS

In this section, we discuss enumeration of all physical
loop states on the entire lattice. Naively, these nested loops
can be of arbitrary size and shape; therefore, their descrip-
tions are nonlocal as well. We will show that, by defining the
fusion operators, the description does become local and
complete. The key idea follows from the fact that, on a single
plaquette, any arbitrary number of electric flux plaquette
loops are allowed in the physical space. Larger loops can be
formed by a suitable fusion of such basic plaquette loops,
where the newly invented fusion operators play their roles.
The simplest way of explaining this construction is by

working with the diagrammatic technique as given in
Fig. 10. In each of the diagrams in Fig. 10, there is an
explicit meaning in terms of the linking operators and the
corresponding linking states. To illustrate that clearly, let us
understand the following facts:
(1) The basic plaquette, the first diagram (a) in Fig. 10,

is the basic electric flux plaquette loop, and this can

be constructed by the action of four linking operators
kijþ at the four vertices around the plaquette on the
strong coupling vacuum j0i, which we denote as the
creation operatorΠþ

L ð~xÞ acting on j0i and the inverse
action, i.e., annihilation of a plaquette loop by
Π−

Lð~xÞ. Lð~xÞ defines the number of such plaquette
loops at the dual sites ~x of the lattice.

(2) Then we define the fusion operators Π�
N1
, Π�

N2
, Π�

D1
,

andΠ�
D2

and the corresponding numbersN1, N2,D1,
and D2 which construct larger loops by combining
neighboring smaller ones. These fusion variables can
be thought of as some operators which either merge
two smaller loops to a bigger one or annihilate the
state if no such neighboring loops are present. In
explicit operator form, every solid line in these
fusion operators is the kijþ type of inking operator,
while the dashed line is its pseudoinverse in the
sense that, when there is some nonzero flux (denoted
by nonzero lij) or solid line already present, the
dashed line decreases that by one unit, and if none
were present, it annihilates.

(3) To realize the action of the fusion operators in
Fig. 10, let us consider the following examples:
(a) If there exists a loop state with Lð~xÞ ¼ 1;

Lð~xþ e1Þ ¼ 1, then there can exist another
loop state with Lð~xÞ ¼ 1, Lð~xþ e1Þ ¼ 1, and
N2ð~xþ e1

2
Þ ¼ 1, which is basically a rectangular

loop with a horizontal length of two lattice units
as shown in Fig. 11. Here, the second state can be
thought of as created by the fusion operator
Πþ

N2
ð~xþ e1

2
Þ on the first state. However, applying

the fusion operator once again would annihilate

FIG. 9. Physical loops: nested and overlapped but noninter-
secting ones.

FIG. 10. Variables defined locally at dual site ð~xÞ, on a two-
dimensional lattice spanned by basis vectors e1 along theþX axis
and e2 along the þY axis.
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the state, implying no state to exist with
Lð~xÞ ¼ 1, Lð~xþ e1Þ ¼ 1, and N2ð~xþ e1

2
Þ ¼ 2.

(b) Similarly, the fusion operator Πþ
N1
ð~x − e2

2
Þ com-

bines vertical neighboring plaquettes if they are
present.

(c) The inverse action, i.e., decoupling a bigger loop
to two smaller loops with an overlap along a
vertical or horizontal link, is performed by the
fusion operators Π−

N2
ð~xþ e1

2
Þ and Π−

N1
ð~x − e2

2
Þ,

respectively.
(d) The other two fusion operators Π�

D1ð2Þ ð~x − e1
2
−

e2
2
Þ combine the diagonal ones as shown in

Fig. 12. Note that the individual Π�
D1ð2Þ ð~x − e1

2
−

e2
2
Þ operators contain intersecting horizontal and

vertical flux lines which are not a part of the
physical loop space. Hence, these particular
fusion operators should always come in a certain
combination (like the Πþ

D1
Π−

D2
) with other fusion

variables such that there exist no intersecting
flux lines for the final loop state produced.

(4) The quantum number L counts the flux around a
plaquette; hence, it is natural to assign the variable L

at the center of each plaquette, i.e., at each dual site,
by defining Lð~xÞ, where ~x ¼ xþ e1

2
þ e2

2
. Similarly,

as shown in Fig. 10, we can naturally assign the
variable N2 to the midpoint of each for the vertical
links, i.e., N2ð~x − e1

2
Þ, and the variable N1 to the

midpoint of each for the horizontal links, i.e.,
N1ð~x − e2

2
Þ. The variables D1ð2Þ are naturally as-

signed to each original lattice site, i.e.,
D1ð2Þð~x − e1

2
− e2

2
Þ. This particular set of quantum

numbers defined at and around a dual lattice site is
sufficient to characterize any loops in the theory, or,
in other words, each and every loop of the theory can
be uniquely specified by specifying a set of fusion
quantum numbers locally throughout the lattice.

(5) We have already seen in the above example that the
basic loop variable L can take any positive value and
is independent of others. However, the other vari-
ables can be both positive and negative but are
defined within a finite range. These new sets of
fusion variables are related to the linking quantum
numbers in the following way:

l12ðxÞ ¼ Lð~xÞ − N2

�
~x −

e1
2

�
− N1

�
~x −

e2
2

�
þD1

�
~x −

e1
2
−
e2
2

�
≥ 0; ð30Þ

l11̄ðxÞ ¼ N2

�
~x −

e1
2

�
þ N2

�
~x −

e1
2
− e2

�
−D1

�
~x −

e1
2
−
e2
2

�
−D2

�
~x −

e1
2
−
e2
2

�
≥ 0; ð31Þ

l12̄ðxÞ ¼ Lð~x − e2Þ − N2

�
~x −

e1
2
− e2

�
− N1

�
~x −

e2
2

�
þD2

�
~x −

e1
2
−
e2
2

�
≥ 0; ð32Þ

FIG. 11. Πþ
N2
ð~xþ e1

2
ÞjLð~xÞ ¼ 1; Lð~xþ e1Þ ¼ 1i ¼ jLð~xÞ ¼ 1, Lð~xþ e1Þ ¼ 1; N2ð~xþ e1

2
Þ ¼ 1i.

FIG. 12. Π−
D2
Πþ

D1
ð~x − e1

2
þ e2

2
ÞjLð~xÞ ¼ 1; Lð~xe1 þ e2Þ ¼ 1i ¼ jLð~xÞ ¼ 1; Lð~xþ e1Þ ¼ 1; D1ð~x − e1

2
Þ ¼ 1; D2ð~x − e1

2
Þ ¼ −1i.
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l21̄ðxÞ ¼ Lð~x − e1Þ − N2

�
~x −

e1
2

�
− N1

�
~x − e1 −

e2
2

�
þD2

�
~x −

e1
2
−
e2
2

�
≥ 0; ð33Þ

l22̄ðxÞ ¼ N1

�
~x −

e2
2

�
þ N1

�
~x − e1 −

e2
2

�
−D1

�
~x −

e1
2
−
e2
2

�
−D2

�
~x −

e1
2
−
e2
2

�
≥ 0; ð34Þ

l1̄ 2̄ðxÞ ¼ Lð~x − e1 − e2Þ − N2

�
~x −

e1
2
− e2

�
− N1

�
~x − e1 −

e2
2

�
þD1

�
~x −

e1
2
−
e2
2

�
≥ 0. ð35Þ

The above set of relations can be realized easily from
Fig. 10. The fusion quantum numbers can take any
positive or negative value over the lattice, but the
right-hand sides of the set of equations (30)–(35),
i.e., the linking quantum numbers, must always be
positive semidefinite. This imposes a quite nontrivial
boundary condition for the allowed range of fusion
quantum numbers.

(6) For any arbitrary loop, the number of prepotentials
on each link of the lattice is counted by following
(17)–(20) as

n1ðxÞ ¼ Lð~xÞ þ Lð~x − e2Þ − 2N1

�
~x −

e2
2

�
¼ n1̄ðxþ e1Þ; ð36Þ

n2ðxÞ ¼ Lð~xÞ þ Lð~x − e1Þ − 2N2

�
~x −

e1
2

�
¼ n2̄ðxþ e2Þ: ð37Þ

Note that the U(1) constraints are automatically
satisfied in (36) and (37).

(7) Note that the description of local linking states in
terms of five linking numbers provides a complete
description of loop states corresponding to only the
physical degrees of freedom of the theory subject to
the Mandelstam constraint together with the two
U(1) constraints. The equivalent descriptions of loop
states in terms of five fusion loop numbers are again
complete. Here, the U(1) constraints are solved
trivially by construction; hence, after solving the
Mandelstam constraint, one is left with four degrees
of freedom implying that there exists another con-
straint in these variables which needs to be imposed
to get the exact and complete loop basis. We will
discuss that extra constraint later in this section.

From these constructions, we can label the loop states as
jL;N1; N2; D1; D2i, which are eigenstates of the following
operators with the corresponding eigenvalues:

L̂ð~xÞjL;N1; N2; D1; D2i ¼ Lð~xÞjL;N1; N2; D1; D2i;

N̂1

�
~x −

e2
2

�
jL;N1; N2; D1; D2i ¼ N1

�
~x −

e2
2

�
jL;N1; N2; D1; D2i;

N̂2

�
~x −

e1
2

�
jL;N1; N2; D1; D2i ¼ N2

�
~x −

e1
2

�
jL;N1; N2; D1; D2i;

D̂1

�
~x −

e1
2
−
e2
2

�
jL;N1; N2; D1; D2i ¼ D1

�
~x −

e1
2
−
e2
2

�
jL;N1; N2; D1; D2i;

D̂2

�
~x −

e1
2
−
e2
2

�
jL;N1; N2; D1; D2i ¼ D2

�
~x −

e1
2
−
e2
2

�
jL;N1; N2; D1; D2i; ð38Þ

and the shift operators Π� corresponding to each of the fusion variables are defined by

L̂ð~xÞΠ�
L ð~xÞjL;N1; N2; D1; D2i ¼ ðLð~xÞ � 1ÞjL;N1; N2; D1; D2i;

N̂1

�
~x −

e2
2

�
Π�

N1

�
~x −

e2
2

�
jL;N1; N2; D1; D2i ¼

�
N1

�
~x −

e2
2

�
� 1

�
jL;N1; N2; D1; D2i;

N̂2

�
~x −

e1
2

�
Π�

N2

�
~x −

e1
2

�
jL;N1; N2; D1; D2i ¼

�
N2

�
~x −

e1
2

�
� 1

�
jL;N1; N2; D1; D2i;

D̂1

�
~x −

e1
2
−
e2
2

�
Π�

D1

�
~x −

e1
2
−
e2
2

�
jL;N1; N2; D1; D2i ¼

�
D1

�
~x −

e1
2
−
e2
2

�
� 1

�
jL;N1; N2; D1; D2i;

D̂2

�
~x −

e1
2
−
e2
2

�
Π�

D2

�
~x −

e1
2
−
e2
2

�
jL;N1; N2; D1; D2i ¼

�
D2

�
~x −

e1
2
−
e2
2

�
� 1

�
jL;N1; N2; D1; D2i: ð39Þ
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It is evident from (36) and (37) that the number operator
constraints (8) present in the prepotential formulation are
already solved by the fusion variables. However, the fusion
variables are five in number in contrast to only three
physical degrees of freedom. This implies that there still
exist two constraints to be imposed on the Hilbert space of

states characterized by fusion variables to obtain the
physical loop space. We will discuss those constraints in
the next section.
The Mandelstam constraints are already solved when we

consider our loop Hilbert space consisting of only non-
intersecting loops by explicitly imposing

l11̄ðxÞl22̄ðxÞ≡
�
N2

�
~x −

e1
2

�
þ N2

�
~x −

e1
2
− e2

�
−D1

�
~x −

e1
2
−
e2
2

�
−D2

�
~x −

e1
2
−
e2
2

��

×

�
N1

�
~x −

e2
2

�
þ N1

�
~x − e1 −

e2
2

�
−D1

�
~x −

e1
2
−
e2
2

�
−D2

�
~x −

e1
2
−
e2
2

��
¼ 0: ð40Þ

As stated earlier, apart from the constraint (40), there still exists another constraint in the fusion quantum number
characterization of loop state in order to obtain three physical degrees of freedom. This additional constraint, which we
name the “fusion constraint,” is given by

Πþ
D2

�
~x −

e1
2
−
e2
2

�
Πþ

D2

�
~xþ e1

2
þ e2

2

�
Πþ

D1

�
~x −

e1
2
þ e2

2

�
Π−

D1

�
~xþ e1

2
−
e2
2

�
Πþ

N1

�
~x −

e2
2

�

× Πþ
N1

�
~xþ e2

2

�
Πþ

N2

�
~x −

e1
2

�
Πþ

N2

�
~xþ e1

2

�
ðΠþ

L ð~xÞÞ2 ¼ 1 ð41Þ

This fusion constraint is shown diagrammatically in Fig. 13.
Note that the fusion constraint and the Mandelstam con-
straint discussed earlier are independent of each other and
hence commute among themselves.
In the next section, we write the Hamiltonian in terms of

the fusion variables.

V. HAMILTONIAN DYNAMICS

The dynamics of loop states under the Kogut-Susskind
Hamiltonian given in (1) can be realized in terms of fusion

variables as well as the corresponding shift operators we
have defined earlier. In this section, we consider the
Hamiltonian operator and its action on loop states charac-
terized by fusion variables. The Hamiltonian for lattice
gauge theory given in (1) consists of two parts. The electric
part of the Hamiltonian, which becomes dominant in the
strong coupling limit of the theory, measures the flux along
all the links of the lattice, whereas the magnetic part of the
Hamiltonian, which is dominant in the weak coupling limit
of the theory, is responsible for the dynamics of the loop
states.
The electric part of the Hamiltonian counts the total

SU(2) flux on all the links of the lattice, which in terms of
the prepotential number operator is given by

Ĥe ¼ g2
X
links

E2
links

¼ g2
X
x

�
n1ðxÞ
2

�
n1ðxÞ
2

þ 1

�
þ n2ðxÞ

2

�
n2ðxÞ
2

þ 1

��
;

ð42Þ

where n1ðxÞ and n2ðxÞ are the eigenvalues of the total
number operator n̂ counting the number of prepotentials
(left or right) on the links along one and two directions
originating at the site x. In terms of fusion operators, the
total fluxes along the two links at each site are counted as
given in (36) and (37). By using that, the electric part of the
Hamiltonian is given by

FIG. 13. Pictorial representation of the fusion constraint as
given in (41).
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Ĥe ¼ g2
X
~x

��
Lð~xÞ þ Lð~x − e2Þ − 2N1ð~x − e2

2
Þ

2

��
Lð~xÞ þ Lð~x − e2Þ − 2N1ð~x − e2

2
Þ

2
þ 1

�

þ
�
Lð~xÞ þ Lð~x − e1Þ − 2N2ð~x − e1

2
Þ

2

��
Lð~xÞ þ Lð~x − e1Þ − 2N2ð~x − e1

2
Þ

2
þ 1

��
: ð43Þ

Now we concentrate on the magnetic part given by

Hmag ¼
1

g2
ðTrUplaquette þ TrU†

plaquetteÞ: ð44Þ

This is not as simple as the electric part even in terms of
prepotentials or fusion variables. The magnetic Hamil-
tonian contains the gauge-invariant loop operators. In
previous sections, we have already studied the actions of
loop operators on loop states and have developed a
diagrammatic technique to realize these actions which
we will utilize now to find the action of the magnetic part
of the Hamiltonian on any arbitrary loop state. Note that
we will consider the loop Hilbert space to contain only
those states which solve the Mandelstam constraint, i.e.,
satisfy (29).
In terms of prepotentials, each link operator breaks into

two parts as given in (9). One of these two parts contains
only the creation operator and the other only annihilation,
making U ≡Uþ þ U−. Hence, the prepotential formu-
lation enables us to write down the gauge-invariant pla-
quette operator, which is the trace of the products of four
link operators around a plaquette, as a sum of 24 ¼ 16

operators as shown in Fig. 14. The constituent operators fall
among different classes. We analyze each class separately
and calculate the dynamics of physical loop states in each
case. Each of these plaquette operators is basically the
product of four different local gauge-invariant operators at
the four vertices. We have already studied these individual
loop operators and have found their actions in (21), (22),
and (24). Now we exploit those calculations to compute the
combinations of loop states produced by the action of the
Hamiltonian.
Mandelstam constraint (29) implies that in the action of

the loop operatorOi−j−, as shown in Fig. 6, the last diagram
of the right-hand side would vanish. Hence, within the loop
space we consider, we will have the reduced action for the
loop operators. Let us now consider the actions of each
plaquette operator individually.
(1) The operator in Fig. 14(a) is Hþþþþ. The local loop

operators at each vertex are Oiþjþ , which acts
according to Fig. 4, yielding only one loop state
as shown in Fig. 15.

(2) The operator of type (b) is Hþþþ−, where at two
adjacent vertices the loop operators are Oiþjþ giving
rise to only one state, and at the opposite two they

FIG. 14. The Hamiltonian operator in terms of prepotential becomes a sum of 16 operators as shown above diagrammatically. The
solid line along a link denotes the presence of a prepotential creation operator on that link, whereas a dotted line denotes the
annihilation operators on that. Clearly, the whole set is rotationally symmetric and Hermitian. These sets of operators again can be
subdivided in six classes of operators as shown in (a)–(f) denoted by (a) ≡Hþþþþ, (b) ≡Hþþþ−, (c) ≡Hþþ−−, (d) ≡Hþ−þ−,
(e) ≡Hþ−−−, and (f) ≡H−−−−.
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are of the type Oiþj− giving rise to 2 × 2 states
following Fig. 5. Hence, each plaquette operator of
type (b) deforms the loop states on which it acts in
1 × 1 × 2 × 2 ¼ 4 possibleways as shown in Fig. 16.
There are four such operators in type (b), which
gives a total of 16 loop states.

(3) The (c) type operator is Hþþ−−, where at one vertex
the loop operator is Oiþjþ and at the diagonally
opposite vertex it is Oi−j− . The first one gives only
one loop state, whereas the second one generates
two, following Fig. 6 (not three for loops which
satisfy the Mandelstam constraint). The other two
vertices are of the type Oiþj− giving rise to 2 × 2
states following Fig. 5. Hence, each plaquette
operator of type (c) deforms the loop states on
which it acts in 1 × 2 × 2 × 2 ¼ 8 possible ways as

shown in Fig. 17, and there are four such plaquette
operators present.

(4) The action of operators of type (d), i.e., Hþ−þ−, is
obtained by using Fig. 5 for the operators of type
Oiþj− at all four vertices, yielding a total of 24 ¼ 16
terms for each of the two such operators present in
the class. The explicit states are given in Fig. 18.

(5) The operator of type (e) is Hþ−−−, where at two
adjacent vertices the loop operators are Oi−j− giving
rise to two states each following Fig. 6, and the
opposite two are of the type Oiþj− again giving rise
to two states each following Fig. 5. Hence, each
plaquette operator of type (e) deforms the loop states
on which it acts in 24 ¼ 16 possible ways as shown
in Fig. 19. There are four such operators in type (e),
which gives a total of 64 loop states.

(6) Finally, for type (f), i.e., H−−−−, at all the four
vertices the loop operators are Oi−j− giving rise to
two states each following Fig. 6, yielding 24 ¼ 16
loop states as shown in Fig. 20.

The loop states produced by the action of the magnetic part
of the Hamiltonian as discussed so far can also be realized
to be created by the actions of the shift operators Π�

FIG. 15. Explicit action of type (a) or Hþþþþ.

FIG. 16. Explicit action of type (b) or Hþþþ−.

FIG. 17. Explicit action of type (c) or Hþþ−−.
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corresponding to the fusion variables as given in (39)
together with a particular coefficient associated and fixed
by each diagram. The action of the Hamiltonian on loop
states has been described in Figs. 15–20. These diagrams
denote that, for each loop state created, the fusion new state
can be realized by a new set of fusion quantum numbers.
Or, in other words, the Hamiltonian can be represented by
shift operators in fusion variables together with a certain

coefficient which describes the new state created. Using the
diagrammatic rules provided in Fig. 7 and the equations
thereafter, we can calculate that coefficient. Now, from each
diagram in Figs. 15–20, one can read the constant coef-
ficient in front of it and the change in fusion quantum
numbers for each term. The action of the magnetic
Hamiltonian on loop states jL;N1; N2; D1; D2i is thus
obtained as

Type ðaÞ∶
H1 ¼ C1þ2þ

a C2þ1̄þ
b C1̄þ2̄þ

c C1þ2̄þ
d Πþ

L ð~xÞ: ð45Þ
Type ðbÞ∶

H2 ¼ C1þ2þ
a C1þ2̄þ

d

�
ðC1̄þ2̄−

c Þ1 þ ðC1̄þ2̄−
c Þ2Πþ

D2

�
~xþ e1

2
þ e2

2

���
ðC2−1̄þ

b Þ1 þ ðC2−1̄þ
b Þ2̄Πþ

D1

�
~xþ e1

2
−
e2
2

��

× Πþ
N2

�
~xþ e1

2

�
Πþ

L ð~xÞ; ð46Þ

H3 ¼ C1̄þ2̄þ
c C1þ2̄þ

d

�
ðC1−2þ

a Þ2̄ þ ðC1−2þ
a Þ1̄Πþ

D2

�
~x −

e1
2
−
e2
2

���
ðC2þ1̄−

b Þ2̄ þ ðC2þ1̄−
b Þ1Πþ

D1

�
~xþ e1

2
−
e2
2

��

× Πþ
N1

�
~x −

e2
2

�
Πþ

L ð~xÞ; ð47Þ

FIG. 18. Explicit action of type (d) or Hþ−þ−.

RAMESH ANISHETTY AND INDRAKSHI RAYCHOWDHURY PHYSICAL REVIEW D 90, 114503 (2014)

114503-14



H4 ¼ C2þ1̄þ
b C1̄þ2̄þ

c

�
ðC1þ2−

a Þ1̄ þ ðC1þ2−
a Þ2̄Πþ

D2

�
~x −

e1
2
−
e2
2

���
ðC1þ2̄−

d Þ1̄ þ ðC1þ2̄−
d Þ2Πþ

D1

�
~x −

e1
2
þ e2

2

��

× Πþ
N2

�
~x −

e1
2

�
Πþ

L ð~xÞ; ð48Þ

H5 ¼ C1þ2þ
a C2þ1̄þ

b

�
ðC1̄−2̄þ

c Þ2 þ ðC1̄−2̄þ
c Þ1Πþ

D2

�
~xþ e1

2
þ e2

2

���
ðC1−2̄þ

d Þ2 þ ðC1−2̄þ
d Þ1̄Πþ

D1

�
~x −

e1
2
þ e2

2

��

× Πþ
N1

�
~xþ e2

2

�
Πþ

L ð~xÞ: ð49Þ

Type ðcÞ∶

H6 ¼
�
C1þ2̄þ
d Π−

D1

�
~x −

e1
2
þ e2

2

���
ðC1̄þ2̄−

c Þ1 þ ðC1̄þ2̄−
c Þ2Π−

D2

�
~xþ e1

2
þ e2

2

���
ðC1−2þ

a Þ2̄ þ ðC1−2þ
a Þ1̄Π−

D2

�
~x −

e1
2
−
e2
2

��

×

�
C2−1̄−
b þ Cð2−Þ1ð1̄−Þ2̄

b Πþ
D2

�
~xþ e1

2
−
e2
2

�
Π−

D1

�
~xþ e1

2
−
e2
2

��
Π−

N2

�
~x −

e1
2

�
Π−

N1

�
~xþ e2

2

�
Π−

Lð~xÞ; ð50Þ

FIG. 19. Explicit action of type (e) or Hþ−−−.
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H7 ¼
�
C1̄þ2̄þ
c Π−

D2

�
~xþ e1

2
þ e2

2

���
ðC2þ1̄−

b Þ2̄ þ ðC2þ1̄−
b Þ1Π−

D1

�
~xþ e1

2
−
e2
2

���
ðC1þ2̄−

d Þ1̄ þ ðC1þ2̄−
d Þ2Π−

D1

�
~x −

e1
2
þ e2

2

��

×

�
C1−2−
a þ Cð1−Þ2̄ð2−Þ1̄

a Πþ
D1

�
~x −

e1
2
−
e2
2

�
Π−

D2

�
~x −

e1
2
−
e2
2

��
Π−

N2

�
~xþ e1

2

�
Π−

N1

�
~xþ e2

2

�
Π−

Lð~xÞ; ð51Þ

H8 ¼
�
C2þ1̄þ
b Π−

D1

�
~xþ e1

2
−
e2
2

���
ðC1̄þ2̄−

c Þ1 þ ðC1̄þ2̄−
c Þ2Π−

D2

�
~xþ e1

2
þ e2

2

���
ðC1−2þ

a Þ2̄ þ ðC1−2þ
a Þ1̄Π−

D2

�
~x −

e1
2
−
e2
2

��

×

�
C1−2̄−
d þ Cð1−Þ2ð2̄−Þ1̄

d Πþ
D2

�
~x −

e1
2
þ e2

2

�
Π−

D1

�
~x −

e1
2
þ e2

2

��
Π−

N2

�
~xþ e1

2

�
Π−

N1

�
~x −

e2
2

�
Π−

Lð~xÞ; ð52Þ

H9 ¼
�
C1þ2þ
a Π−

D2

�
~x −

e1
2
−
e2
2

���
ðC1þ2̄−

d Þ1̄ þ ðC1þ2̄−
d Þ2Π−

D1

�
~x −

e1
2
þ e2

2

���
ðC2þ1̄−

b Þ2̄ þ ðC2þ1̄−
b Þ1Π−

D1

�
~xþ e1

2
−
e2
2

��

×

�
C1̄−2̄−
c þ Cð1̄−Þ2ð2̄−Þ1

c Πþ
D1

�
~xþ e1

2
þ e2

2

�
Π−

D2

�
~xþ e1

2
þ e2

2

��
Π−

N2

�
~x −

e1
2

�
Π−

N1

�
~x −

e2
2

�
Π−

Lð~xÞ: ð53Þ

FIG. 20. Explicit action of type (f) or H−−−−.
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Type ðdÞ∶

H10 ¼
�
ðC1̄þ2̄−

c Þ1 þ ðC1̄þ2̄−
c Þ2Πþ

D2

�
~xþ e1

2
þ e2

2

���
ðC2−1̄þ

b Þ1 þ ðC2−1̄þ
b Þ2̄Πþ

D1

�
~xþ e1

2
−
e2
2

��

×
�
ðC1þ2−

a Þ1̄ þ ðC1þ2−
a Þ2̄Πþ

D2

�
~x −

e1
2
−
e2
2

���
ðC1þ2̄−

d Þ1̄ þ ðC1þ2̄−
d Þ2Πþ

D1

�
~x −

e1
2
þ e2

2

��

× Πþ
N2

�
~xþ e1

2

�
Πþ

N2

�
~x −

e1
2

�
Πþ

L ð~xÞ; ð54Þ

H11 ¼
�
ðC1−2þ

a Þ2̄ þ ðC1−2þ
a Þ1̄Πþ

D2

�
~x −

e1
2
−
e2
2

���
ðC2þ1̄−

b Þ2̄ þ ðC2þ1̄−
b Þ1Πþ

D1

�
~xþ e1

2
−
e2
2

��

×
�
ðC1̄−2̄þ

c Þ2 þ ðC1̄−2̄þ
c Þ1Πþ

D2

�
~xþ e1

2
þ e2

2

���
ðC1−2̄þ

d Þ2 þ ðC1−2̄þ
d Þ1̄Πþ

D1

�
~x −

e1
2
þ e2

2

��

× Πþ
N1

�
~xþ e2

2

�
Πþ

N1

�
~x −

e2
2

�
Πþ

L ð~xÞ: ð55Þ

Type ðeÞ∶

H12 ¼
�
ðC1̄þ2̄−

c Þ1 þ ðC1̄þ2̄−
c Þ2Π−

D2

�
~xþ e1

2
þ e2

2

���
ðC2þ1̄−

b Þ2̄ þ ðC2þ1̄−
b Þ1Π−

D1

�
~xþ e1

2
−
e2
2

��

×

�
C1−2−
a þ Cð1−Þ2̄ð2−Þ1̄

a Πþ
D1

�
~x −

e1
2
−
e2
2

�
Π−

D2

�
~x −

e1
2
−
e2
2

��

×

�
C1−2̄−
d þ Cð1−Þ2ð2̄−Þ1̄

d Πþ
D2

�
~x −

e1
2
þ e2

2

�
Π−

D1

�
~x −

e1
2
þ e2

2

��
Π−

N2

�
~xþ e1

2

�
Π−

Lð~xÞ; ð56Þ

H13 ¼
�
ðC1−2þ

a Þ2̄ þ ðC1−2þ
a Þ1̄Π−

D2

�
~x −

e1
2
−
e2
2

���
ðC2þ1̄−

b Þ2̄ þ ðC2þ1̄−
b Þ1Π−

D1

�
~xþ e1

2
−
e2
2

��

×

�
C1̄−2̄−
c þ Cð1̄−Þ2ð2̄−Þ1

c Πþ
D1

�
~xþ e1

2
þ e2

2

�
Π−

D2

�
~xþ e1

2
þ e2

2

��

×

�
C1−2̄−
d þ Cð1−Þ2ð2̄−Þ1̄

d Πþ
D2

�
~x −

e1
2
þ e2

2

�
Π−

D1

�
~x −

e1
2
þ e2

2

��
Π−

N1

�
~x −

e2
2

�
Π−

Lð~xÞ; ð57Þ

H14 ¼
�
ðC1−2þ

a Þ2̄ þ ðC1−2þ
a Þ1̄Π−

D2

�
~x −

e1
2
−
e2
2

���
ðC1þ2̄−

d Þ1̄ þ ðC1þ2̄−
d Þ2Π−

D1

�
~x −

e1
2
þ e2

2

��

×

�
C2−1̄−
b þ Cð2−Þ1ð1̄−Þ2̄

b Πþ
D2

�
~xþ e1

2
−
e2
2

�
Π−

D1

�
~xþ e1

2
−
e2
2

��

×

�
C1̄−2̄−
c þ Cð1̄−Þ2ð2̄−Þ1

c Πþ
D1

�
~xþ e1

2
þ e2

2

�
Π−

D2

�
~x −

e1
2
þ e2

2

��
Π−

N2

�
~x −

e1
2

�
Π−

Lð~xÞ; ð58Þ

H15 ¼
�
ðC1̄þ2̄−

c Þ1 þ ðC1̄þ2̄−
c Þ2Π−

D2

�
~xþ e1

2
þ e2

2

���
ðC1þ2̄−

d Þ1̄ þ ðC1þ2̄−
d Þ2Π−

D1

�
~x −

e1
2
þ e2

2

��

×

�
C1−2−
a þ Cð1−Þ2̄ð2−Þ1̄

a Πþ
D1

�
~x −

e1
2
−
e2
2

�
Π−

D2

�
~x −

e1
2
−
e2
2

��

×

�
C2−1̄−
b þ Cð2−Þ1ð1̄−Þ2̄

b Πþ
D2

�
~xþ e1

2
−
e2
2

�
Π−

D1

�
~xþ e1

2
−
e2
2

��
Π−

N1

�
~xþ e2

2

�
Π−

Lð~xÞ: ð59Þ
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Type ðfÞ∶

H16 ¼
�
C1−2−
a þ Cð1−Þ2̄ð2−Þ1̄

a Πþ
D1

�
~x −

e1
2
−
e2
2

�
Π−

D2

�
~x −

e1
2
−
e2
2

��

×

�
C2−1̄−
b þ Cð2−Þ1ð1̄−Þ2̄

b Πþ
D2

�
~xþ e1

2
−
e2
2

�
Π−

D1

�
~xþ e1

2
−
e2
2

��

×

�
C1̄−2̄−
c þ Cð1̄−Þ2ð2̄−Þ1

c Πþ
D1

�
~xþ e1

2
þ e2

2

�
Π−

D2

�
~xþ e1

2
þ e2

2

��

×
�
C1−2̄−
d þ Cð1−Þ2ð2̄−Þ1̄

d Πþ
D2

�
~x −

e1
2
þ e2

2

�
Π−

D1

�
~x −

e1
2
þ e2

2

��
Π−

Lð~xÞ: ð60Þ

In all 16 terms of the Hamiltonian, the coefficient C’s with
suffixes a; b; c; d denote them to be defined at points
ð~x − e1

2
− e2

2
Þ, ð~xþ e1

2
− e2

2
Þ, ð~xþ e1

2
þ e2

2
Þ, and ð~x − e1

2
þ e2

2
Þ,

respectively.
The matrix elements of this magnetic Hamiltonian within

the loop states can be calculated by following Appendix B.
In Appendix B, we compute the norm of loop states by
noticing that this is itself a product of four norms defined at
the four corner sites of a plaquette. In Appendix C, we
briefly illustrate how the strong coupling series in this new
formalism, using the lattice Feynman rules prescribed in
this work, matches exactly with the conventional approach
[8]. Note that our formulation is much more simple, as there
is no need to deal with any complex 6j coefficient [6,8] and
is well suited for numerical computation.

VI. SUMMARY AND CONCLUSIONS

In this work, we have used the local loop description in
prepotential formulation of lattice gauge theory to construct
all possible local gauge-invariant operators or linking
operators and found their explicit action on all possible
local linking states defined locally at each lattice site. We
develop a set of lattice Feynman rules and hence a complete
diagrammatic scheme to perform all computations dia-
grammatically bypassing long and tedious algebraic
calculations.
The linking number description of local gauge-invariant

operator and states is overcomplete, as there exists the
Mandelstam constraint. We have solved this constraint
explicitly to find all the physical loop configurations
consisting of nonintersecting electric flux loops. The
physical loop configurations contain nested loops (all
nonintersecting) which can overlap with neighboring loops
in one or more segments as shown in Fig. 9. In order to
characterize the physical loop Hilbert space, we define a
basic loop operator, i.e., the smallest plaquette ones which
solve the Mandelstam constraint and are a part of the
physical loop configuration. We further show that other
configurations can be generated from the basic plaquette

loops by applying a set of fusion operators defined on the
lattice locally. In fact, arbitrary large loops can be generated
by local action of these fusion operators. As a consequence
of this, the full lattice Hamiltonian is explicitly written in
terms of the fusion operators. The complete dynamics of
arbitrary nonintersecting loops under this Hamiltonian is
thus obtained.
This diagrammatic tool to handle lattice gauge theo-

ries is extremely useful to proceed with lattice calcu-
lations analytically in both the strong and weak coupling
limit of the theory. Work in these directions, specifically
towards the analytic weak coupling expansion, is in
progress and will be reported shortly. Moreover, these
techniques can also find application in a numerical
simulation of Hamiltonian lattice gauge theories, as
one can enumerate the complete and physical loop
configurations by just specifying a set of integers locally
throughout the lattice without any redundant degrees of
freedom, and their complete dynamics is already
obtained in this work.
The most novel feature of this approach is that all the

steps computed in this work can be performed in any
arbitrary dimension, more specifically, for 3þ 1 dimen-
sions which is of physical interest. Addition of fermions to
the theory enlarges the physical configuration space with
more local gauge-invariant states or linking states, but
qualitatively the construction steps remain the same. This
will be enumerated in a future publication. The recently
developed tensor network approach to Hamiltonian lattice
gauge theory [9,10] should find this loop formulation
most suitable to proceed with for non-Abelian gauge
theories. This loop formulation and diagrammatic tech-
niques should also be extremely useful towards the aim of
the construction of quantum simulations [11] for lattice
gauge theories.
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APPENDIX A: EXPLICIT ACTION OF LOOP
OPERATORS ON LOOP STATES

The basic local loop operators arising at a particular
site are

Ôiþjþ ≡ 1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiðni þ 1Þðnj þ 2Þp kijþ; ðA1Þ

Ôiþj− ≡ 1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiðni þ 1Þðnj þ 2Þp κij; ðA2Þ

Ôi−j− ≡ 1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiðni þ 1Þðnj þ 2Þp kij− : ðA3Þ

We now compute the action of these operators on a most
general loop state locally characterized by linking numbers
as given in (16). Let us first consider the following action:

Ôiþjþjflgi≡ 1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiðni þ 1Þðnj þ 2Þp kijþjflgi

¼ ðlij þ 1Þffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiðni þ 1Þðnj þ 2Þp jlij þ 1i; ðA4Þ

where jlij þ 1i denotes the state in (16) with the particular
quantum number lij increased by 1. This action is simple
and straightforward besides being applicable for any i; j.
We represent the above action pictorially in Fig. 4.

Next, we consider

Ô1þ2− jflgi≡ 1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiðn1 þ 1Þðn2 þ 2Þp κ21jflgi

¼ 1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiðn1 þ 1Þðn2 þ 2Þp �ðk12þ Þl12ðk11̄þ Þl11̄ðk12̄þ Þl12̄ ½κ21; ðk21̄þ Þl21̄ �ðk22̄þ Þl22̄ðk1̄ 2̄þ Þl1̄ 2̄
l12!l11̄!l12̄!l21̄!l22̄!l1̄ 2̄!

j0i

þ ðk12þ Þl12ðk11̄þ Þl11̄ðk12̄þ Þl12̄ðk21̄þ Þl21̄ ½κ21; ðk22̄þ Þl22̄ �ðk1̄ 2̄þ Þl1̄ 2̄
l12!l11̄!l12̄!l21̄!l22̄!l1̄ 2̄!

j0i
�

ðA5Þ

¼ 1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiðn1 þ 1Þðn2 þ 2Þp ½ðl11̄ þ 1Þjl21̄ − 1; l11̄ þ 1i þ ðl12̄ þ 1Þjl22̄ − 1; l12̄ þ 1i�: ðA6Þ

In the above calculation we have used the relation

k−ðkþÞpj0i ¼ ½k−; ðkþÞp�j0i
¼ ½½k−; kþ�ðkþÞp−1 þ kþ½k−; kþ�ðkþÞp−2 þ ðkþÞ2½k−; kþ�ðkþÞp−3 þ � � � þ ðkþÞp−1½k−; kþ��j0i
¼ ½ðn̂a þ n̂b þ 2ÞðkþÞp−1 þ ðn̂a þ n̂b þ 2 − 2ÞðkþÞp−1 þ ðn̂a þ n̂b þ 2 − 4ÞðkþÞp−1 þ � � �
þ ðn̂a þ n̂b þ 2 − 2ðp − 1ÞÞðkþÞp−1�j0i

¼ ½ðn̂a þ n̂b − 2pþ 4Þ þ ðn̂a þ n̂b − 2pþ 6Þ þ � � � þ ðn̂a þ n̂b þ 2Þ�ðkþÞp−1j0i

¼ 1

2
pð2n̂a þ 2n̂b þ 6 − 2pÞðkþÞp−1j0i

¼ pðn̂a þ n̂b þ 3 − pÞðkþÞp−1j0i≡ pðpþ 1ÞðkþÞp−1j0i: ðA7Þ

In general, the Ôiþj− operator acts in the following way:

Ôiþj− jflgi≡ 1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiðni þ 1Þðnj þ 2Þp κijjflgi

¼ 1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiðni þ 1Þðnj þ 2Þp X
k≠i;j

ð−1ÞSikðlik þ 1Þjljk − 1; lik þ 1i; ðA8Þ

where in any lij the indices are always ordered in a way such that the first index is always less than the first one, and

Sik ¼ 1 if i > k and Sik ¼ 0 if i < k:

We represent the above action pictorially in Fig. 5.
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The last but not the least complicated type of vertex operator is Ôi−j− , which we calculate by using (A7). Let us consider
the action of the following operator on the loop state:

Ô1−2− jflgi≡ 1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiðn̂1 þ 2Þðn̂2 þ 1Þp k12− jflgi

¼ 1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiðn̂1 þ 2Þðn̂2 þ 1Þp �f½k12− ; ðk12þ Þl12 � þ ðk12þ Þl12k12− gðk11̄þ Þl11̄ðk12̄þ Þl12̄ðk21̄þ Þl21̄ðk22̄þ Þl22̄ðk1̄ 2̄þ Þl1̄ 2̄
l12!l11̄!l12̄!l21̄!l22̄!l1̄ 2̄!

j0i
�

¼ 1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiðn̂1 þ 2Þðn̂2 þ 1Þp �
l12ðn1 þ n2 − l12 þ 1Þðk12þ Þl12−1ðk11̄þ Þl11̄ðk12̄þ Þl12̄ðk21̄þ Þl21̄ðk22̄þ Þl22̄ðk1̄ 2̄þ Þl1̄ 2̄

l12!l11̄!l12̄!l21̄!l22̄!l1̄ 2̄!
j0i

þ ðk12þ Þl12ð½k12− ; ðk11̄þ Þl11̄ � þ ðk11̄þ Þl11̄k12− Þðk12̄þ Þl12̄ðk21̄þ Þl21̄ðk22̄þ Þl22̄ðk1̄ 2̄þ Þl1̄ 2̄
l12!l11̄!l12̄!l21̄!l22̄!l1̄ 2̄!

j0i
�

¼ 1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiðn̂1 þ 2Þðn̂2 þ 1Þp �
ðn1 þ n2 − l12 þ 1Þjl12 − 1i þ ðk12þ Þl12l11̄ðk11̄þ Þl11̄−1κ21̄ðk12̄þ Þl12̄ðk21̄þ Þl21̄ðk22̄þ Þl22̄ðk1̄ 2̄þ Þl1̄ 2̄

l12!l11̄!l12̄!l21̄!l22̄!l1̄ 2̄!
j0i

þ ðk12þ Þl12ðk11̄þ Þl11̄ð½k12− ; ðk12̄þ Þl12̄ � þ ðk12̄þ Þl12̄k12− Þðk21̄þ Þl21̄ðk22̄þ Þl22̄ðk1̄ 2̄þ Þl1̄ 2̄
l12!l11̄!l12̄!l21̄!l22̄!l1̄ 2̄!

j0i
�

¼ 1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiðn̂1 þ 2Þðn̂2 þ 1Þp �
ðn1 þ n2 − l12 þ 1Þjl12 − 1i þ ðk12þ Þl12l11̄ðk11̄þ Þl11̄−1ðk12̄þ Þl12̄ðk21̄þ Þl21̄ ½κ21̄; ðk22̄þ Þl22̄ �ðk1̄ 2̄þ Þl1̄ 2̄

l12!l11̄!l12̄!l21̄!l22̄!l1̄ 2̄!
j0i

þ ðk12þ Þl12ðk11̄þ Þl11̄l12̄ðk12̄þ Þl12̄−1κ22̄ðk21̄þ Þl21̄ðk22̄þ Þl22̄ðk1̄ 2̄þ Þl1̄ 2̄
l12!l11̄!l12̄!l21̄!l22̄!l1̄ 2̄!

j0i
�

¼ 1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiðn̂1 þ 2Þðn̂2 þ 1Þp ½ðn1 þ n2 − l12 þ 1Þjl12 − 1i þ ðl1̄ 2̄ þ 1Þð−1ÞS1̄ 2̄ jl11̄ − 1; l22̄ − 1; l1̄ 2̄ þ 1i

þ ðl1̄ 2̄ þ 1Þð−1ÞS2̄ 1̄ jl12̄ − 1; l21̄ − 1; l1̄ 2̄ þ 1i� ðA9Þ

with

Sik ¼ 1 if i > k and Sik ¼ 0 if i < k:

Hence, for a general Ôi−j− operator, the action is

Ôi−j− jflgi ¼ 1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiðn̂i þ 2Þðn̂j þ 1Þp �
ðni þ nj − lij þ 1Þjlij − 1i þ

X
ī;j̄f≠i;jg

ðlī j̄ þ 1Þð−1ÞSī j̄ jliī − 1; ljj̄ − 1; lī j̄ þ 1i
�
: ðA10Þ

We represent the above action pictorially in Fig. 6.

APPENDIX B: NORMALIZATION OF THE
LOOP STATES

The linking states at a particular site of a two-
dimensional spatial lattice are characterized by six linking
numbers l12, l11̄, l12̄, l21̄, l22̄, and l1̄ 2̄. The SU(2) flux along
each direction at a particular site is counted as in (17)–(20).
Moreover, there exists the Mandelstam constraint given in
(29), which must be solved in order to get independent loop
states implying that, at each site x, at least either of the two
quantum numbers l11̄ or l22̄ must be zero. Hence, after
solving the Mandelstam constraint, only five nonzero

linking quantum number together with the two Abelian
constraints are present at each site.
Any linking state characterized by five nonzero linking

number is always orthogonal with respect to the four
number operators defined in (17)–(20), but there exists a
fifth quantum number which makes the orthogonality
nontrivial as given below:

hfl0ijgjflijgi ¼
Y

i¼1;2;1̄ 2̄

δn0i;niFðfl0ijg; flijgÞ: ðB1Þ
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Before determining the complicated function
Fðfl0ijg; flijgÞ, let us first realize the orthogonality of
linking states in terms of four quantum numbers.
This can be realized trivially when one considers the

linking state which has only four nonzero linking
numbers, such as, for example, with l12 ¼ 0, besides
l11̄ðxÞl22̄ðxÞ ¼ 0. The orthonormality of such states is
obtained as

hl012 ¼ 0jl12 ¼ 0i ¼ hl0
12̄
; l0

21̄
; l0̄

1 2̄
; l0

11̄
; l0

22̄
jl12̄; l21̄; l1̄ 2̄; l11̄; l22̄i

¼ ðl12̄ þ l21̄ þ l1̄ 2̄ þ l11̄ þ l22̄ þ 1Þ!
l12̄!ðl21̄ þ l1̄ 2̄ þ l11̄ þ l22̄ þ 1Þ! δl0

12̄
;l12̄

ðl21̄ þ l1̄ 2̄ þ l11̄ þ l22̄ þ 1Þ!
l21̄!ðl1̄ 2̄ þ l11̄ þ l22̄ þ 1Þ! δl0

21̄
;l21̄

ðl1̄ 2̄ þ l11̄ þ l22̄ þ 1Þ!
l1̄ 2̄!ðl11̄ þ l22̄ þ 1Þ! δl0

1̄ 2̄
;l1̄ 2̄

× ðl11̄ þ 1Þðl22̄ þ 1Þδl0
11̄
;l11̄δl022̄;l22̄

≡ Bpδl0
12̄
;l12̄δl021̄;l21̄δl

0
1̄ 2̄
;l1̄ 2̄δl011̄;l11̄δl

0
22̄
;l22̄ : ðB2Þ

Equation (B2) is obtained by extracting the kijþ operator from the bra state and acting that on the ket state following (24) until
it reaches l0ij ¼ 0 for all nonzero lij, considering one by one.
The next complicated orthogonality arises when either of the bra and ket states has five nonzero linking numbers and the

other one has only four. For example, consider the following case:

hl012 ¼ 0jflijgi ¼
1

l12
hl012 ¼ 0jk12þ jl12 − 1i

¼ 1

l12ðl12 − 1Þ ½0 − ðl0̄
1 2̄

þ 1Þhl012 ¼ 0; l0
12̄
− 1; l0

21̄
− 1; l0̄

1 2̄
þ 1jk12þ jl12 − 2i�

¼ A0ð1Þ
1 hl012 ¼ 0; l0

12̄
− 1; l0

21̄
− 1; l0̄

1 2̄
þ 1jk12þ jl12 − 2i

¼ ..
.

..

.

¼ A0ð1Þ
1 A0ð2Þ

1 …A0ðl12Þ
1 hl012 ¼ 0; l0

12̄
− l12; l021̄ − l12; l0̄1 2̄ þ l12jl12 ¼ 0i; ðB3Þ

where

A0ðiÞ
1 ¼ −

l0̄
1 2̄

þ i

l12 þ i − 1
: ðB4Þ

Equation (B3) is also obtained by extracting the k12þ
operator from the ket state and acting that on the bra state
following (24) until it reaches l12 ¼ 0. The orthogonality of
the final state in (B3) is already given in (B2).
Now moving further towards the most complicated and

general situation where both the bra and ket states have five
nonzero linking numbers, the orthogonality of that state is
again obtained in terms of the already calculated ortho-
normal states in (B3) and (B2). Let us consider the
orthogonal linking loop state defined at a site x, charac-
terized by the set of five linking numbers as follows:

jl12; l12̄; l21̄; l1̄ 2̄; ðl11̄=l22̄Þi: ðB5Þ

These loop states are trivially orthogonal with respect to
ni’s for i ¼ 1; 2; 1̄; 2̄, but nontrivial orthonormality exists in

terms of the linking quantum number. To calculate the
orthogonality of loop states in terms of the linking
numbers, we take an iterative approach as discussed below.
Let us consider the following arbitrary overlap of the states:

hfl0ijgjflijgi ¼
1

l012
hl012 − 1jk12− jflijgi: ðB6Þ

Note that, in the right-hand side of the above equation, in
both the bra and ket states we have mentioned the linking
number, only which has been changed. We will maintain
this approach in the later part of this section as well by
characterizing a newly produced state by the changed
linking numbers only. Whenever none of the linking
numbers do change, we will characterize the state by the
whole set of linking numbers flijg. Now from the action
given in (24) on the loop states which satisfies Mandelstam
constraint (29), one obtains

k12− jflijgi ¼ ðn1 þ n2 − l12 þ 1Þjl12 − 1i
− ðl1̄ 2̄þ1Þjl12̄ − 1; l21̄ − 1; l1̄ 2̄ þ 1i ðB7Þ

SU(2) LATTICE GAUGE THEORY: LOCAL DYNAMICS ON … PHYSICAL REVIEW D 90, 114503 (2014)

114503-21



with n1 ¼ l12 þ l11̄ þ l12̄ and n2 ¼ l12 þ l21̄ þ l22̄. Note
that, in the right-hand side of the above equation, we have
suppressed the quantum numbers which remain un-
changed. In this way, as done in (B6), one can extract
out a particular k−ij operator from the bra state or kþij
from the ket state and act that on the corresponding ket or
bra state to increase or decrease the lij quantum numbers by
one unit until that particular lij or l0ij is exhausted. Or, in

other way, the iteration can stop at a certain value of lij (for
example, l12̄ and l21̄ as shown in the above example) which
is being decreased by one unit for each step of the
iterations. Hence, clearly iteration will continue p times,
where p ¼ min ðl12; l12̄; l21̄; l1̄ 2̄; l012; l012̄; l021̄; l0̄1 2̄Þ. Continu-
ing with the example discussed above in (B6) and con-
sidering the Mandelstam constraint at that particular site by
putting l11̄ ¼ 0, we finally get

hfl0ijgjflijgi

¼ ðl12 þ l12̄ þ l21̄ þ l11̄ þ l22̄ þ 1Þ
l012

hl012 − 1jl12 − 1i − ðl1̄ 2̄ þ 1Þ
l012

hl012 − 1jl12̄ − 1; l21̄ − 1; l1̄ 2̄ þ 1i

≡ Að1Þ
0 hl012 − 1jl12 − 1i þ Að2Þ

1 hl012 − 1jl12̄ − 1; l21̄ − 1; l1̄ 2̄ þ 1i
ðrepeating one more step of iteration for the two overlaps separatelyÞ
¼ Að1Þ

0

h
Að2Þ
0 hl012 − 2jl12 − 2i þ Að2Þ

1 hl012 − 2jl12 − 1; l12̄ − 1; l21̄ − 1; l1̄ 2̄ þ 1i
i

þ Að1Þ
1

h
Að2Þ
0 hl012 − 2jl12 − 1; l12̄ − 1; l21̄ − 1; l1̄ 2̄ þ 1i þ Að2Þ

1 hl012 − 2jl12 − 1; l12̄ − 2; l21̄ − 2; l1̄ 2̄ þ 2i
i

≡ Að1Þ
0 Að2Þ

0 hl012 − 2jl12 − 2i þ
h
Að1Þ
0 Að2Þ

1 þ Að1Þ
1 Að2Þ

0

i
hl012 − 2jl12 − 1; l12̄ − 1; l21̄ − 1; l1̄ 2̄ þ 1i

þ Að0Þ
1 Að1Þ

1 hl012 − 2jl12 − 1; l12̄ − 2; l21̄ − 2; l1̄ 2̄ þ 2i

¼ ..
.

..

.

ðafter thep th iteration; for example; if p ¼ l012Þ

≡Xp
q¼0

�X0

fsigq
ðAð1Þ

s1 A
ð2Þ
s2 …AðpÞ

sp Þhl012 ¼ 0jl12 − pþ q; l12̄ − q; l21̄ − q; l1̄ 2̄ þ qi
�
; ðB8Þ

where each si can take values of either 1 or 0 and the
P0

fsigq denotes that the sum is over all permutations of the set

fsigq ≡ P

0
B@1; 1;…; 1|fflfflfflfflffl{zfflfflfflfflffl}

q times

; 0; 0;…; 0|fflfflfflfflffl{zfflfflfflfflffl}
p−q times

1
CA:

The coefficient AðiÞ
si ’s are given by

Að1Þ
0 ¼ ðl12 þ l12̄ þ l21̄ þ l11̄ þ l22̄ þ 1Þ

l012
; Að1Þ

1 ¼ −
ðl1̄ 2̄ þ 1Þ

l012
;

Að2Þ
0 ¼ ðl12 þ l12̄ þ l21̄ þ l11̄ þ l22̄Þ

ðl012 − 1Þ ; Að2Þ
1 ¼ −

ðl1̄ 2̄ þ 2Þ
ðl012 − 1Þ ;

..

.

AðpÞ
0 ¼ ðl12 þ l12̄ þ l21̄ þ l11̄ þ l22̄ þ 2 − pÞ

ðl012 − pþ 1Þ ; AðpÞ
1 ¼ −

ðl1̄ 2̄ þ pÞ
ðl012 − pþ 1Þ : ðB9Þ

In this particular example, the iteration stops at the pth level as those at the final step contain the overlap given below:

hl012 ¼ 0jl12 − pþ q; l12̄ − q; l21̄ − q; l1̄ 2̄ þ qi: ðB10Þ
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Clearly, the ket state contain four nonzero l0ij’s whereas the
bra state has five, the norm of which is given in (B3) in
terms of the norm given in (B2). Using these, for our
example case, after a few steps of algebra we have

hl012 ¼ 0jl12 − pþ q; l12̄ − q; l21̄ − q; l1̄ 2̄ þ qi
¼ ~A0ð1Þ

q
~A0ð2Þ
q … ~A

0ðl12−l012Þ
q ~Bq

l12
δl0

12̄
þl0

12
;l12̄þl12

× δl0
21̄
þl0

12
;l21̄þl12δl01̄ 2̄−l

0
12
;l12̄−l12δl011̄;l11̄δl

0
22̄
;l22̄ ; ðB11Þ

where

~A0i
q ¼ −

l0̄
1 2̄

þ i

l12 − l012 þ qþ i − 1
;

for i ¼ 1; 2;…; l12 − l012 þ q ðB12Þ

is obtained by using (B4) and

~Bq
l12

¼ ðl12̄ þ l21̄ þ l1̄ 2̄ þ l11̄ þ l22̄ þ 1 − qÞ!
ðl12̄ − qÞ!ðl21̄ þ l1̄ 2̄ þ l11̄ þ l22̄ þ 1Þ!

×
ðl21̄ þ l1̄ 2̄ þ l11̄ þ l22̄ þ 1Þ!

ðl21̄ − qÞ!ðl1̄ 2̄ þ l11̄ þ l22̄ þ 1þ qÞ!

×
ðl1̄ 2̄ þ l11̄ þ l22̄ þ 1þ qÞ!
ðl1̄ 2̄ þ qÞ!ðl11̄ þ l22̄ þ 1Þ! × ðl11̄ þ 1Þðl22̄ þ 1Þ

ðB13Þ

is obtained by using (B2) for our case.
Hence, the complete orthonormality relation of the states

jflijgi as our example with p ¼ l012 can be obtained by
combining (B8) and (B12) as

Xp
q¼0

""X0

fsigq
ðAð1Þ

s1 A
ð2Þ
s2 …AðpÞ

sp Þ
#
ð−1Þl12−pþqðl0̄

1 2̄
þ l12 − pþ qÞ!

l0̄
1 2̄
!ðl12 − pþ qÞ!

~Bq
p

#
δl0

12̄
þp;l12̄þl12δl021̄þp;l21̄þl12δl01̄ 2̄−p;l1̄ 2̄−l12δl

0
11̄
;l11̄δl022̄;l22̄ ; ðB14Þ

where ~Bq
p are defined in (B13).

Moving away from this particular example, the most
general case can have any of the lij’s as a minimum and the
same calculation will go through. The final expression of
any arbitrary case (i.e., for any arbitrary p) can be easily
read off from the expression derived above just by replacing
the role of l12=l012 by the corresponding p.

APPENDIX C: STRONG COUPLING
PERTURBATION EXPANSION

The unperturbed Hamiltonian in the limit g → 0 is the
electric part of the Hamiltonian He given in (42). He is
solved exactly yielding the loop states as the strong
coupling eigenstates with eigenvalues measuring the total
flux around the loop. The strong coupling vacuum satisfy-
ing Hej0i ¼ 0 is the state with no loop present and has an
unperturbed energy eigenvalue or the unperturbed vacuum
energy Eð0Þ

0 ¼ 0. We now calculate perturbative corrections
to this vacuum energy for the first couple of orders
analytically. Rayleigh-Schrödinger perturbation theory
gives the corrections to the vacuum energy as

E0 ¼ Eð0Þ
0 þ 1

g2
Eð1Þ
0 þ 1

g4
Eð2Þ
0 þ 1

g6
Eð3Þ
0 þ 1

g8
Eð4Þ
0 þ � � � :

ðC1Þ
The first-order correction is given by h0jHIj0i ¼ 0 for
HI ¼ Hmag. Similarly, all odd orders of corrections to
vacuum energy do vanish, implying the full correction to
come only from even orders. The lowest-order correction is

of second order and is given by

Eð2Þ
0 ¼

X
n1≠0

h0jHIjn1ihn1jHIj0i
hn1jn1iðE0 − En1

0 Þ ¼
X
n1≠0

jhn1jHIj0ij2
hn1jn1iðE0 − En1

0 Þ ;

ðC2Þ

where HI ≡Hmag ¼ 2TrUplaquette for the SU(2) case. In
(C2), jn1i is always the state created by a single action of
TrUplaquette on j0i, and it can only be a single-plaquette state
created by the first term H1 of the 16 terms in Fig. 14 on a
vacuum. Obviously, for a lattice consisting of N number of
plaquettes, there exists N such jn1i states which contribute
to the perturbation expansion of vacuum energy. Note that
each of the loops contributing to the perturbation expansion
which are eigenstates of the unperturbed Hamiltonian has
its unperturbed energy given by

Heljnii ¼
X
links

E2
linksjnii ¼

X
links

n
2

�
n
2
þ 1

�
jnii ∀ i ðC3Þ

for a loop state with n units of flux along a particular link.
For example, the single-plaquette states jn1i will have
En1
0 ¼ 4 × 3

4
¼ 3. Hence, the second-order correction is

finally obtained as

Eð2Þ
0 ¼N

jhLð~xÞ¼ 1j2TrUplaquettej0ij2
hLð~xÞ¼ 1jLð~xÞ¼ 1i ×

1

ð−4× 3
4
Þ¼N×

22

−3
:

ðC4Þ
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Note that this final result is obtained after using the action ofHmag as obtained in the earlier sections, and the normalization
of the state is obtained by using Appendix B. This correction matches exactly1 to the correction in [8] for this order. To
confirm the viability of our formulation, we further proceed to calculate the next-order correction given by

Eð4Þ
0 ¼

X
fnig≠0

h0jHIjn1ihn1jHIjn2ihn2jHIjn3ihn3jHIj0i
hn1jn1ihn2jn2ihn3jn3iðE0 − En1

0 ÞðE0 − En2
0 ÞðE0 − En3

0 Þ − Eð2Þ
0

X
fn1g≠0

h0jHIjn1ihn1jHIj0i
hn1jn1iðE0 − En1

0 Þ2 : ðC5Þ

Note that in the fourth-order corrections jn1i as well as the
jn3i are the single-plaquette states, located anywhere on the
lattice. Eð4Þ

0 involves another intermediate state jn2i which
is a two-plaquette state. Now there exists the following
possibility for the two-plaquette states:
(1) jn2i ¼ H1jn1i≡ jLð~x1Þ ¼ 1; Lð~x2Þ ¼ 1i, i.e., two

decoupled plaquette loops located anywhere in the
lattice without any overlap or touch with the first
plaquette. Clearly, for each jn1i, there are N − 9

possible jn2i with En2
0 ¼ 8 × 1

2
ð1
2
þ 1Þ ¼ 6.

(2) The second plaquette can be created by the action
of H1 but with complete overlap with the first
one, i.e., jn2i≡ jLð~xÞ ¼ 2i. In this case, En2

0 ¼
4 × 2

2
ð2
2
þ 1Þ ¼ 8. The norm of such a state can be

calculated from Appendix B.
(3) There exist four possibilities of the two-plaquette

state to be two separate plaquettes with overlap
along any of the links, i.e., jn2i ¼ H1jn1i≡
jLð~x1Þ ¼ 1; Lð~x1 � e1ð�e2ÞÞ ¼ 1i with En2

0 ¼
2
2
ð2
2
þ 1Þ þ 6 × 1

2
ð1
2
þ 1Þ ¼ 13

2
and respective norms.

(4) The second plaquette can again be created by H1 in
four other possible ways, where the two plaquettes
are touching each other at one of its four corners, i.e.,
jn2i ¼ H1jn1i≡ jLð~x1Þ ¼ 1; Lð~x1 � e1 � e2Þ ¼ 1i.
For those states En2

0 ¼ 6, but the norm is different
and can be calculated easily.

(5) By the action of type (b) terms in the Hamiltonian,
the two-plaquette state can be a loop carrying unit
flux with vertical extension of two lattice units and
horizontal extension of one, i.e., jn2i ¼H3=5jn1i≡

jLð~x1Þ ¼ 1;Lð~x1� e2Þ ¼ 1;N1ð~x� e2
2
Þ ¼ 1i. These

two states are with En2
0 ¼ 6 × 1

2
ð1
2
þ 1Þ ¼ 9

2
and with

a certain norm.
(6) Similarly, by the action of type (b) terms in the

Hamiltonian, the two-plaquette state can be a
loop carrying unit flux with vertical extension of
one lattice units and horizontal extension of two,
i.e., jn2i ¼ H2=4jn1i≡ jLð~x1Þ ¼ 1; Lð~x1 � e1Þ ¼ 1;
N2ð~x� e1

2
Þ ¼ 1i with En2

0 ¼ 9
2
and a norm to be

calculated from Appendix B.
With explicit calculation incorporating all the coefficients
given in the table for the Hamiltonian actions and the norm
of each state calculated by using Appendix B, we finally
obtain

Eð4Þ
0 ¼ N

2 × 163

34 × 13
≡ N × 24 ×

163

8424
: ðC6Þ

At this order also the result matches exactly (i.e., up to the
twelfth decimal place)2 with [8]. In the same way, the
strong coupling perturbation correction to any loop state
can be performed within this scheme, and note that this
scheme is independent of any cluster size or lattice size.
Besides making strong coupling perturbation expansion

viable up to any arbitrary order, our formulation is also
suitable to approach towards the weak coupling limit. It
seems that the fusion variables become extremely important
to work with in this regime. Work in this direction is in
progress and will be reported shortly.

[1] K. Wilson, Phys. Rev. D 10, 2445 (1974).
[2] J. Kogut and L. Susskind, Phys. Rev. D 11, 395 (1975).
[3] D. Robson and D. M. Webber, Z. Phys. C 15, 199 (1982);

W. Furmanski and A. Kolawa, Nucl. Phys. B291, 594
(1987); B. Brügmann, Phys. Rev. D 43, 566 (1991); R.
Gambini and J. Pullin, Loops, Knots, Gauge Theories and
Quantum Gravity (Cambridge University Press, Cambridge,
England, 2000); R. Gambini, L. Leal, and A. Trias, Phys.
Rev. D 39, 3127 (1989); C. Bartolo, R. Gambini, and L.

Leal, Phys. Rev. D 39, 1756 (1989); N. J. Watson, Phys.
Lett. B 323, 385 (1994); C. Hamer, A. Irving, and T. Preece,
Nucl. Phys. B270, 536 (1986); B270, 553 (1986); D.
Schütte, Z. Weihong, and C. J. Hamer, Phys. Rev. D 55,
2974 (1997); S.-H. Guo, Q.-Z. Chen, and L. Li, Phys. Rev.
D 49, 507 (1994); A. Ashtekar and J. Lewandowski,
Classical Quantum Gravity 21, R53 (2004); C. Rovelli,
Quantum Gravity (Cambridge University Press, Cambridge,
England, 2004); T. Thiemann,Modern Canonical Quantum

2Up to a factor of 24, which is due to the mismatch of the
Hamiltonian in (42) and that in [8].

1Up to a factor of 22, which is due to the mismatch of the
Hamiltonian in (42) and that in [8].

RAMESH ANISHETTY AND INDRAKSHI RAYCHOWDHURY PHYSICAL REVIEW D 90, 114503 (2014)

114503-24

http://dx.doi.org/10.1103/PhysRevD.10.2445
http://dx.doi.org/10.1103/PhysRevD.11.395
http://dx.doi.org/10.1007/BF01475006
http://dx.doi.org/10.1016/0550-3213(87)90487-1
http://dx.doi.org/10.1016/0550-3213(87)90487-1
http://dx.doi.org/10.1103/PhysRevD.43.566
http://dx.doi.org/10.1103/PhysRevD.39.3127
http://dx.doi.org/10.1103/PhysRevD.39.3127
http://dx.doi.org/10.1103/PhysRevD.39.1756
http://dx.doi.org/10.1016/0370-2693(94)91236-X
http://dx.doi.org/10.1016/0370-2693(94)91236-X
http://dx.doi.org/10.1016/0550-3213(86)90567-5
http://dx.doi.org/10.1016/0550-3213(86)90568-7
http://dx.doi.org/10.1103/PhysRevD.55.2974
http://dx.doi.org/10.1103/PhysRevD.55.2974
http://dx.doi.org/10.1103/PhysRevD.49.507
http://dx.doi.org/10.1103/PhysRevD.49.507
http://dx.doi.org/10.1088/0264-9381/21/15/R01


General Relativity (Cambridge University Press,
Cambridge, England, 2007); R. Loll, Nucl. Phys. B368,
121 (1992); B400, 126 (1993); R. Anishetty, Phys. Rev. D
44, 1895 (1991).

[4] M. Mathur, Nucl. Phys. B779, 32 (2007); Phys. Lett. B 640,
292 (2006).

[5] S. Mandelstam, Ann. Phys. (N.Y.) 19, 1 (1962); Phys. Rev.
175, 1580 (1968); Phys. Rev. D 19, 2391 (1979).

[6] R. Anishetty and H. S. Sharatchandra, Phys. Rev. Lett. 65,
813 (1990).

[7] M. Mathur, J. Phys. A 38, 10015 (2005); R. Anishetty, M.
Mathur, and I. Raychowdhury, J. Math. Phys. (N.Y.) 50,

053503 (2009); M. Mathur, I. Raychowdhury, and
R. Anishetty, J. Math. Phys. (N.Y.) 51, 093504
(2010); R. Anishetty, M. Mathur, and I. Raychowdhury,
J. Phys. A 43, 035403 (2010); I. Raychowdhury, Ph.D.
thesis, University of Calcutta, 2014.

[8] C. J. Hamer and A. C. Irving, Z. Phys. C 27, 307 (1985).
[9] E. Rico, T. Pichler, M. Dalmonte, P. Zoller, and S.

Montangero, Phys. Rev. Lett. 112, 201601 (2014).
[10] P. Silvi, E. Rico, T. Calarco, and S. Montangero, New J.

Phys. 16, 103015 (2014).
[11] E. Zohar, J. I. Cirac, and B. Reznik, Phys. Rev. A 88,

023617 (2013).

SU(2) LATTICE GAUGE THEORY: LOCAL DYNAMICS ON … PHYSICAL REVIEW D 90, 114503 (2014)

114503-25

http://dx.doi.org/10.1016/0550-3213(92)90200-U
http://dx.doi.org/10.1016/0550-3213(92)90200-U
http://dx.doi.org/10.1016/0550-3213(93)90400-J
http://dx.doi.org/10.1103/PhysRevD.44.1895
http://dx.doi.org/10.1103/PhysRevD.44.1895
http://dx.doi.org/10.1016/j.nuclphysb.2007.04.031
http://dx.doi.org/10.1016/j.physletb.2006.08.022
http://dx.doi.org/10.1016/j.physletb.2006.08.022
http://dx.doi.org/10.1016/0003-4916(62)90232-4
http://dx.doi.org/10.1103/PhysRev.175.1580
http://dx.doi.org/10.1103/PhysRev.175.1580
http://dx.doi.org/10.1103/PhysRevD.19.2391
http://dx.doi.org/10.1103/PhysRevLett.65.813
http://dx.doi.org/10.1103/PhysRevLett.65.813
http://dx.doi.org/10.1088/0305-4470/38/46/008
http://dx.doi.org/10.1063/1.3122666
http://dx.doi.org/10.1063/1.3122666
http://dx.doi.org/10.1063/1.3464267
http://dx.doi.org/10.1063/1.3464267
http://dx.doi.org/10.1088/1751-8113/43/3/035403
http://dx.doi.org/10.1007/BF01556621
http://dx.doi.org/10.1103/PhysRevLett.112.201601
http://dx.doi.org/10.1088/1367-2630/16/10/103015
http://dx.doi.org/10.1088/1367-2630/16/10/103015
http://dx.doi.org/10.1103/PhysRevA.88.023617
http://dx.doi.org/10.1103/PhysRevA.88.023617

