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I. INTRODUCTION

This paper is a continuation of a feasibility study [1]
carried out with Brower and Fleming, where we put the
path integral corresponding to the radially quantized
version of a putative conformal field theory (CFT) on
the lattice and then calculated numerically some eigenval-
ues of the transfer matrix, T , in the t ¼ log r direction.
Here r is the flat Euclidean distance from a selected point,
the origin. The units of r are irrelevant. The spectrum of
log T contains the scaling dimensions of the scaling fields.
We were mainly motivated by the work of Cardy [2]. The
main observation of [1] was that spectral regularities
characteristic of a CFT could be used to determine
nonuniversal scale factors.
Some couplings need to be adjusted in order that the IR

regime fall into a desired universality class. In radial
quantization one needs to employ a variation on classical
flat space methods to tune into criticality. The numerical
application of [1] was to a piecewise flat deformation of the
sphere and classical flat space methods could be used.
Radial quantization sacrifices d-component translations in
exchange to preserving dilatation at the UV-cutoff level.
The role of the flat space mass term is taken by a “mass”
term that now explicitly breaks translational invariance but
preserves dilatations.
Infinite towers of equally spaced levels permeating the

spectrum are the most prominent spectral regularity of a
CFT. The spacing is the same for all towers. I restrict my
attention to CFT’s with an energy-momentum tensor.
Spectrally, this means that there exists a state transforming
as a traceless symmetric second rank tensor whose dimen-
sion is known in advance to be d times the universal level
spacing in the towers. The lowest level in a tower is called
“primary” and the higher members are its “descendants”.
The subspace spanned by the tower is invariant under the
conformal group. Larger irreducible multiplets of OðdÞ,
where d is the dimension of spacetime, appear at higher
levels in the tower, sharing average spectral weight between
distinct towers. Exponentially growing degeneracies appear
asymptotically.

Any discretization of the sphere will break continuum
OðdÞ to a finite group Q0. I am only considering non-
AbelianQ0’s and focus on the largest ones. Each element of
Q0 can be written as the product of an element of a Z2 and
an element of Q where Q is a non-Abelian subgroup of
SOðdÞ and the nontrivial element of Z2 takes a point on the
sphere to its diametrical image. I assume d ≥ 3. Then, the
number of elements in Q, jQj, is bounded. In d ¼ 3 we
shall work with Q ¼ I, the largest finite non-Abelian
discrete subgroup of SOð3Þ. Q has 60 elements and Q0 ¼
Q × Z2 is the 120 element group Ih. I is isomorphic to A5

the group of even permutations of 5 objects. A5 is a
subgroup of S5, the group of all permutations of 5 objects
and S5 ¼ Z2⋉A5. So, Ih is not isomorphic to S5. I and Ih
are Icosahedral groups. The double Icosahedral group is not
needed for scalar fields.
The breaking of SOðdÞ splits multiplets of higher

multiplicity but maintains a few small ones. A few low
rungs of ladders making up the towers corresponding to
low-scaling dimension primaries can be identified. Small
dimensions are at the bottom of the entire spectrum where
average degeneracy is low, facilitating identification. One
can imagine a sequence of adjustments on the action that
zero out the splits of larger SOðdÞ multiplets one by one as
one ascends in level. I shall later show a way to do this.
Eliminating these splits restores continuum rotational
invariance at the spectral level. This is not “fine tuning”,
but rather “improvement”. (The restoration of rotational
invariance in a stochastic way has been a topic in lattice
field theory in the eighties [3]; this is an option I ignore in
this work.) Eliminating the splits does not produce equal
spacings. Fine tuning to criticality is the adjustment needed
to get a few low lying spacings equal to each other and
similarly correct dimensions for the energy-momentum
tensor. The equal spacing property should spread upwards
into the spectrum as the lattice is refined. It is not clear in
advance how much tuning is required to achieve this.
I would like to define a transformation and a space of

Hamiltonians acting on a common Hilbert space which
would produce the right value for the energy-momentum
state dimension in units of tower spacings upon infinite
iteration if the initial Hamiltonian is tuned. This*neuberg@physics.rutgers.edu
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transformation would be an analogue of the RG trans-
formation in flat space. In flat space dilatation invariance
gets restored at the fixed points. In radial quantization
translations do; this is why tower spacings and the dimen-
sion of the energy-momentum tensor get tied together. It
may turn out that there are some differences between this
analogue and the standard RG. This might be of interest in
Particle Physics by expanding the concept of “fine tuning”.
In practice, my program is anchored on the existence of

an action and the “elementary” fields which make it up. The
concept of “elementary field”, to say nothing about
“action”, is not fundamental. But, so long as one works
within a framework that provides in principle a constructive
approach to the final continuum quantum system one needs
to start at some corner which is under control, albeit devoid
of fundamental significance. My corner is a well defined
replacement of the formal path integral. It has an integration
measure, and the integrals of a wide class of functionals of
the elementary field exist.
Much of the subsequent discussion and all the examples

are in d ¼ 3. The way rotational invariance is violated
differs from flat space, where translations play a funda-
mental role and the spacetime group is a semidirect product
of translations and Q. Lattice translational invariance
guarantees that the specific Q associated with the grid
choice acts as a symmetry with respect to any vertex
chosen as origin. Local lattice densities fall into multiplets
under Q. In radial quantization the origin is fixed once
and for all. Densities localized at few selected points on
the sphere might fall into multiplets of some subgroup
of Q. The number of points this can happen at is a divisor
of jQj. The eigenstates of the transfer matrix T do fall into
Q-multiplets but correspond to global states w.r.t. the
sphere. The CFT state-operator correspondence depends
crucially on translational invariance.
Understanding the difficulty with rotational invariance,

we identified two options to choose from. The first, adopted
in [1], is to replace the continuum field theory on the sphere
by the same continuum field theory on another space.
Intuition and evidence from previous numerical work,
indicated that low lying spectral properties of the deformed
theory match closely those expected in the radial case. In
some sense the two theories seem connectible in a way
expressible by a converging perturbative expansion. In the
deformed theory the sphere Sd−1 gets replaced by an almost
everywhere flat manifold, with flat simplicial patches glued
to each other to make up a space of spherical topology. For
clarity, I now set d ¼ 3. Imagining a paper model of some
polyhedron with triangular faces one recognizes singular-
ities at the vertices, points where more than 2 triangles
meet. The induced metric is now flat everywhere except at
the vertices. There are no singularities away from the
vertices even on the edges, because the paper can be
flattened out at the fold. The singularity is a cone
singularity; one can cut out a vertex and glue back

smoothly a paper cone in its stead. The cones have angle
deficits that add up to the area of the sphere. The group Q
acts transitively on the cones.
It was natural to explore this option first even if we

ultimately insisted to work on the sphere. The most natural
choice on the sphere is to model the action on the finite
elements method (FEM) [4]. In FEM one is working on a
space as above, only the number of cones increases with the
number of vertices. One can ensure thatQ still permutes the
cones, but the action would not be transitive. One does not
really escape conical singularities in FEM. One needs to
show that their effect becomes sub-leading as the number of
vertices increases in a chosen specific prescription. This is
plausible and progress in that direction has been described in
lattice conference contributions in 2013 [5] and 2014 [6]. It
seems to me unlikely that sub-leading corrections would
organize themselves by scaling dimensions of irrelevant
scaling fields like on flat lattices. Piecewise flat spaces do
approximate smoothmanifolds in awell definedmanner [7],
but the issue is subtle [8]. Subtleties were identified a long
time ago [9]. Similar problems, in particular for the case of
the two sphere, appear for example in applications to climate
control, medical imaging and fluid dynamics [10,11].
The continuum formulation of [1] has the advantage that

keeping the number of conical singularities fixed preserves
as much rotational symmetry as possible and simultane-
ously preserves infinitesimal translational symmetry away
from the singularities. In turn, this gives an energy-
momentum tensor whose divergence is zero except on
the cone lines (traced out in t by the vertices), where
singular sources reside. It is plausible that for appropriate
bulk quantities the contribution of the cone singularities are
sub-dominant in the IR. Having large swaths of flat space
makes it possible to use well tried methods to tune into
criticality. This separates the problem of using expected
spectral regularities for establishing criticality from exploit-
ing them for numerical determination of critical exponents
when criticality is assured independently. Criticality was
determined in [1] by numerically studying how the prob-
ability distribution of the order parameter behaved as the
number of vertices increased with the help of Binder’s
cumulant [12]. The results verified that indeed the cones
made no contribution because the powers involved matched
well against known values from conventional flat space
studies [13]. These findings confirmed earlier work with
cubic symmetry [14]. No attempt was made to tune the
strength of the singularities. I do not know whether it would
have been possible to tune the couplings attached to the
lattice vertices at the cone singularities to values that would
have zeroed out the lowest SOðdÞ multiplet split we found
in the odd sector of the model at l ¼ 3 [1]. Studies of cone
singularities in other contexts indicate that one parameter
should suffice because this is the freedom one has when
extending the Laplacian action to the singularities [15].
Symmetrical arrangements of cones also appear in classical
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general relativity in the context of symmetrical arrange-
ments of cosmic strings [16].
The obvious disadvantage of the option chosen in [1] is

that the connection to the spherical case needs to be fully
understood. I think this will happen. How well this would
work quantitatively is premature to speculate. The numeri-
cal indication from [1] is that it should work well in the 3d
Ising model.
I believe that learning how to deal nonperturbatively with

field theory on classical curved backgrounds is a promising
research direction for non-QCD oriented lattice field theory.
Lattice radial quantization is one example. The present paper
is both elementary and detailed. The intent is to make it
easily accessible specifically to lattice theorists among other
readers. Subsequent results from this programwill hopefully
be less elementary and more succinctly presented.
In the next section I shall describe the application of the

cubature framework to constructing lattices and actions.
Cubature is the higher dimension generalization of
Gaussian quadrature. The cubature framework is intro-
duced as an alternative to FEM, the natural first choice.
I shall get back to compare these two viewpoints later in the
paper. I have no information enabling me to compare the
effectiveness of these two viewpoints.
The cubature section is followed by a section in which

the transfer matrix is constructed. This makes it clear that
one has reflection positivity and also prepares the ground
for working out a toy example exactly, that is, without any
stochastic element in the method of solution.
Rotation symmetry is then taken up in quite great detail

in the section that follows. Simple examples comprise the
last proper section, coming before the summary.

II. LATTICE ACTION BY CUBATURE.

In this work I shall look for an alternative to FEM while
working directly on the sphere. Since any discretization is
comparable to any other this distinction may turn out to be
just semantics. Be that as it may, I think this alternate way
of thinking will provide a procedure which differs sub-
stantially in details from the FEM route.
Special properties of the spectrum in the continuum

theory will tell us how to tune the system so that its IR
behavior falls into the desired universality class. Relatively
to [1] I add the requirement that the energy momentum
tensor state be identified and that its energy be compatible
with the spacing between the primary and descendants for
various primaries.
I shall look at the discretization problem from the

viewpoint of cubature on the round sphere. The basic
problem of cubature on the sphere [17] deals with is
constructing good approximations of the form

Z
fðω̂Þdω ≈

XN
i¼1

wifðω̂iÞ: ð1Þ

ω̂ is a point of Sd−1 represented as unit vector in Rd, where
d is the spacetime dimension. dω is the measure on the
sphere, normalized in the standard manner. The wi’s are
weights, preferably all positive. The points ω̂i reside on the
sphere. For a given N we require the above approximation
to be exact for eigenfunctions of the spherical Laplacian
−∂2

ω from the lowest level to a maximal level λN . As N
increases, λN increases. The ω̂i’s are required to fall into
complete orbits under the action of Q. In the simplest case,
one views the ω̂i’s as fixed and solves a linear equation for
the wi’s, looking for the largest λN that can be achieved.
Alternatively, one may consider also the ω̂i’s as variables
(subjected to Q-symmetry) and then one has to solve a
nonlinear system [18]. This extra work is compensated by a
larger λN attainable at fixed N.
In our application fðω̂Þ is the continuum action density at

a fixed t. The t direction is discretized in equal intervals in
the standardway. Since this discretizes log r, the expectation
in [1] was that this approach treats the degrees of freedom in
a way commensurate with their contribution to the path
integral at criticality. Therefore, this regularization would
eventually turn out to be more effective than the flat space
one. In the following the ω̂i’s are chosen first and theweights
are found from linear equations. The continuum limit is
expected to emerge asN → ∞. I leave issues of efficiency of
the implementation for the future, after enough testing is
carried out to gain trust in the strategy.
The composite fields, including the action density, will

be constructed out of one elementary scalar field ϕwhich is
defined at the points ðtn; ω̂iÞ, tn ¼ nδ, n ∈ Z. Where
possible, I shall suppress the t-coordinate for simplicity.
Reintroducing the t dependence is a trivial matter.
Accordingly, the variables of integration in the path integral
are the ϕðω̂iÞ. They are thought of as coming from a
function ϕðω̂Þ, where ω̂ is continuous. The action density is
a nonlinear functional of ϕ. The weights are fixed to
reproduce exactly the integrals of the action density when it
is limited to a finite number of low l spherical waves. One
needs to work out what this means in terms of the spherical
wave content of ϕ.
The continuum action is written in the form

A ¼
Z

dωdω0ϕðω̂ÞKðω̂; ω̂0Þϕðω̂0Þ þ
Z

dωVðϕðω̂ÞÞ ð2Þ

The kernel Kðω̂; ω̂0Þ is the matrix element of an operator
K ¼ fð∂2

ωÞ. For scalar field theory a smooth UV cutoff can
be introduced in the continuum action directly by imple-
menting smearing [19]. (For gauge theories, smearing
requires a nonlinear PDE, and is therefore introduced only
at the level of observables.)

K ¼ ð1 − es∂2ωÞ=s ð3Þ

The appearance of es∂2ω is familiar to field theorists from
rigorous studies of the RG [20]. K → −∂2

ω as s → 0. K is
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very popular in quite disparate fields of science [21]. The
UV cutoff is 1=

ffiffiffi
s

p
. After discretization yet another UV

cutoff enters, given by
ffiffiffiffi
N

p
. One should choose s ¼ c=N

with a constant c of order of the area of Sd−1; convergence
can be tuned by adjusting this constant. K is chosen as
essentially an exponential because this produces a simple
expression for the Kðω̂; ω̂0Þ in any dimension. Explicitly,
for d ¼ 3,

hω̂jes∂2ω jω̂0i ¼
X∞
l¼1

lðlþ 1Þ
4π

e−slðlþ1ÞPlðcosðω̂ · ω̂0ÞÞ; ð4Þ

where Pl is a Legendre polynomial in standard normali-
zation. The extra factor of s in Eq. (3) is irrelevant since we
shall introduce an overall coupling βω > 0 in the integrand,
expð−βωAÞ, of the path integral for the partition function.
The discretized version of A is

A ¼
X
i;j

wiϕðω̂iÞKðω̂i; ω̂jÞwjϕðω̂jÞ þ
X
i

wiVðϕðω̂iÞÞ: ð5Þ

The weights wi depend only on the vertices ω̂i and not on
the form of the action. The discretized action can be
rewritten in shorter form:

A ¼
X
i;j

wiϕiKi;jwjϕj þ
X
i

wiVðϕiÞ: ð6Þ

The role of the unit operator in Eq. (3) is to ensure that the
kernel has zero as its lowest energy, with constant eigen-
function. All other eigenvalues are positive. This will hold
for any symmetric matrix K∘ with positive off-diagonal
terms and diagonal terms determined by them.

K∘
i;j ¼

8<
:

wiKi;jwj if i ≠ j

−
P
k≠i

wiKi;kwk if i ¼ j: ð7Þ

Thus, only matrix elements of the heat kernel between
unequal positions enter the discrete action. These terms
are all finite and have simple approximate expressions for
s → 0 [22].
The discrete version of the action is no longer exactly

equal to its continuum version even if the decomposition of
ϕ contains only spherical wave functions with l smaller
than some constant. We can arrange for the discrete and
continuum version to be numerically close to each other for
a range of angular momenta in the decomposition of ϕ,
l ≤ ζλN , (0 < ζ < 1 does not depend on N) if the non-
linearity of the potential term is polynomial.
First consider the quadratic term in the continuous

action. It is obvious that

Kðω̂1; ω̂2Þ ¼
X∞
l¼0

Xl

m¼−l
Ylmðω̂1Y�

lmðω̂2Þ
1 − e−slðlþ1Þ

s
; ð8Þ

where the Ylm are standard spherical harmonics. I already
explained that in Eq. (3) the discretization takes care of the

1 exactly and that the 1=s-factor is irrelevant. Hence the
quadratic piece of the action can be taken as

Q½ϕ� ¼ −
X
l;m

jLlm½ϕ�j2e−slðlþ1Þ with

Llm½ϕ� ¼
Z

Ylmðω̂Þϕðω̂Þdω: ð9Þ

If ϕ decomposes into a sum of l ≤ λN spherical waves, the
linear functional Llm½ϕ� will be exactly given by its discrete
counterpart for l ≤ λN=2 by the rules of addition of angular
momenta. The contribution to the sum giving the quadratic
functionalQ½ϕ� from terms with l > λN=2will be relatively
suppressed by ∼e−sðlðlþ1ÞÞ. Choosing a sizeable value for c
in s ¼ c=N we can arrange for this correction to be small.
Now consider the potential term in the action. As long as V
is a polynomial of finite degree, the continuum would agree
with a discretized version exactly with a ζ as above given
by ζ ¼ 1= degðVÞ.
Note that there is no sharp cutoff in angular momentum;

such a sharp cutoff, while acceptable in principle, will have
qualitative nonuniversal impact on the form of subleading
power corrections in the IR. I do not know what the
structure of these would be for radial quantization.
However, it is well known that the effective Lagrangian
treatment of subleading corrections in the approach to
continuum in flat space breaks down if one uses a sharp
momentum cutoff.
In the above construction, unlike in the FEM case, the

gradients of ϕ are not individually discretized; only the
Laplacian is. In the case of FEM, the main step was to go
from the Laplace equation to a minimization problem
which required expressing the Laplacian as a sum of
squares involving only first order derivatives obtained after
an integration by parts in the action (the domain is finite).
The search for the minimum is carried out in the larger
space of functions that have piecewise continuous first
order derivatives. The jumps in the first order derivatives
are integrable. (In the form of the action employing the
Laplacian, this would require dealing with δ-function
singularities in the integrand that need to be discretized.)
The domain is decomposed into flat pieces which become
smaller and smaller and one can prove that the solution to
the minimization problem converges to the regular solution
of the second order PDE one started from [23]. In the path
integral, it is not that important to have convergence of
solutions of the discrete variational problem to solutions of
the continuum PDE. We want the correlation functions to
converge, but the ϕ integration variables themselves are
typically quite rough.
Discretizing the entire Laplacian at once, rather than

decomposing it as in continuum and discretizing the
individual terms clearly is a more general approach as
the discretized kernel no longer is constrained to admit any
decomposition. An analogue strategy provides the single
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way known to date to discretize the exactly massless Dirac
equation in the background of an arbitrary lattice gauge
field [24].
This concludes the general description of how the path

integral is defined by discretization.

III. TRANSFER MATRIX

In the continuum the action is symmetric underOðdÞ and
D which consist of proper and improper rotations and
dilatations. Up to a shift by the vacuum energy and an
overall scale the scaling dimensions under D are the
spectrum of the transfer matrix T . Another important
symmetry is I∘, inversion. It reverses the sign of t. (The
word inversion is also used for the Z2 generator extendingQ
to Q0. Which is meant will be clear from the context.) This
gives reflection positivity in the Euclidean formulation and,
therefore, unitary time evolution in Minkowski space [25].
The lattice action preserves Q0, an infinite discrete

subgroup of D, and I∘. The lattice action is

A½ϕ� ¼ δ
XN
i¼1

XN
j¼1

X∞
n¼−∞

wiwj½ϕn;iKi;jϕn;j�

þ βt
2δβω

XN
i¼1

X∞
n¼−∞

wiðϕn;i − ϕn−1;iÞ2

þ κδ

2βω

XN
i¼1

X∞
n¼−∞

wiVðϕn;iÞ: ð10Þ

V is an even polynomial of degree 2 or higher. By
convention, the coefficient of the lowest degree term is
set to unity.
As the lattice gets finer the matrix Ki;j should reproduce

accurately more and more eigenvalues of the continuum
−∂2

ω. Define the matrix Qi;j by

Qi;j ¼
�
wiKi;jwj if i ≠ j
−
P

k≠i wiwkKi;k if i ¼ j: ð11Þ

Let μk be the solutions to the generalized eigenvalue
problem

det
i;j
½Qi;j þ ð1 − μkÞwiδi;j� ¼ 0: ð12Þ

Here, μ0 ¼ 1 and μk > μkþ1 > 0, k ¼ 0; 1; 2…. Then the
low eigenvalues of −∂2

ω are approximated by

λk ≡ − logðμkÞ=s: ð13Þ

For well chosen weights, we expect λk ≈ kðkþ 1Þ with
k ≥ 0 and multiplicity 2kþ 1.
The path integral for the partition function is

Z ¼
Z Y

dϕn;ie−βωA½ϕ�: ð14Þ

One can change variables of integration ϕn;i → wiϕn;i. This
maysimplify the formof theaction.Onecannot forget though
that the weights wi are essential in correctly matching
representation of Q0 to those of OðdÞ. If I put in periodic
boundary conditions with 0 ≤ n ≤ M, Z ¼ TrT M. T is the
transfer matrix and it is M-independent. It is an integral
operator on functions of fixed n fields, ϕj, j ¼ 1; N. The
kernel is symmetric and positive definite:

D½fϕig�
≡ e−

1
2
βω
P

N
i¼1

P
N
j¼1

wiwj½ϕiKi;jϕj�−βt
4

P
N
i¼1

wiϕ
2
i−

κ
4

P
N
i¼1

wiVðϕn;iÞ

ð15Þ

hfϕ0
igjT jfϕigi ¼ D½fϕ0

ig�eβt
P

N
i¼1

wiϕ
0
iϕiD½fϕig� ð16Þ

The objective is to find the spectrum of T and the symmetry
properties of the eigenstates, namely the irreducible repre-
sentation of the fixed n symmetry Q0 and also the quantum
numberassociatedwith the fixedn symmetrywhichswitches
simultaneously the sign of all fieldsϕi,ϕ0

i. States even under
the latter symmetrymake up the “even sector” and states odd
under it make up the “odd sector”. For finiteN, this is a well
posed problem.
I now add a technical remark about the evaluation of the

matrix elements of the heat kernel. Although the heat kernel
matrix is evaluated only once for a simulation, employing
Eq. (4) might give negative results at small s > 0 and large
separations on the sphere as round-off errors accumulate.
One might set to zero entries in the matrix of the quadratic
kernel of the spherical kinetic energy which correspond to
separations larger than some fixed bound, for example,
require ω̂ · ω̂0 > 0. Then one can replace the right-hand side
of Eq. (4) by the leading term in an asymptotic expansion as
s → 0þ.

hω̂jes∂2ω jω̂0i ∼ 1

4πs
e−

dðω̂;ω̂0Þ2
4s

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
dðω̂; ω̂0Þ

sinðdðω̂; ω̂0ÞÞ

s
: ð17Þ

Here

dðω̂; ω̂0Þ ¼ arcsin½
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − ðω̂ · ω̂0Þ2

q
�: ð18Þ

One never has ω̂ ¼ ω̂0 but ω̂ ¼ −ω̂0 does occur unless one
puts a bound as above. So far, the action is not ultralocal,
but local. This is costly for simulations. One can put more
stringent bounds, ω̂ · ω̂0 > α, where 1 > α > 0, and even
take α to 1 as the lattice is getting refined. This would
produce an ultralocal action.
Equation (17) holds for any pair of points ω̂, ω̂0 for which

ω̂ · ω̂0 > −1, in other words when ω̂0 is not on the cut locus
of ω̂. However, Varadhan’s asymptotic formula

lim
s→0þ

s log½hω̂jes∂2ω jω̂0i� ¼ −
1

4
dðω̂; ω̂0Þ2; ð19Þ
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holds without restrictions [26]. In practice, using this
formula for all s is probably adequate when the number
of vertices is large. By itself, it does not violate OðdÞ (only
the lattice does) and employing it should not obstruct
approaching the target theory in the IR as the lattice is
refined.

IV. ROTATIONAL SYMMETRY

I restrict myself to d ¼ 3 andQ ¼ I,Q0 ¼ Ih. To preserve
Ih I need first to determine an appropriate set of vertices.
I first choose a Cartesian frame in three-space and use the
unit sphere around its origin to label the vertices by points on
it, which, in turn are labelled by unit vectors ω̂i. Using the
same frame, the I group elements are labelled byh, where the
h’s are three by three orthogonal matrices of determinant
one. Z2 is generated by minus the identity matrix.
The set ω̂i is required to contain only pairs fω̂i;−ω̂ig and

only complete orbits under I, that is, only sets of the form
fhω̂i; h ∈ Ig. These sets have a number of elements which
is a divisor of Ih. Including the opposite sign pairs, the
largest orbits have 120 elements each. The symmetry
requirement now means that the weights assigned to the
vertices are constant on Q × Z2 orbits. The action of the
elements g ∈ Ih, labelled by orthogonal three by three
matrices, on the states the transfer matrix acts on is

gjfϕðω̂iÞgi ¼ jfϕðgω̂iÞgi ð20Þ
The spectrum of T will decompose into irreducible

representation of Ih. I has 5 irreducible representations [27]
and Ih ¼ Z2 × I then obviously has 10. The dimensions of
the representations of I are 1,3,3,4,5 and the set doubles for
Ih. The irreducible representations of Ih are labelled Ag,
F1g, F2g, Gg, Hg, Au, F1u, F2u, Gu, Hu. Labels with a g
subscript are even under ω̂ → −ω̂ and those with a u
subscript are odd. A is for singlet, F for triplet, G for
quadruplet and H for quintuplet. The decomposition of
irreducible representations of SOð3Þ into irreducible rep-
resentations of Ih can be found in [28] (where T is used
instead of F).
In the continuum, rotations act on the states jfϕðω̂Þgi by

acting on the field argument via the 3 × 3 matrices and
treating ϕ as a scalar. The irreducible representations are
obtained from decomposing ϕðω̂Þ into spherical harmonics
ψðω̂Þ. The ψ ’s are obtained by restricting harmonic
homogeneous polynomials in the three components of ~ω
to the unit sphere. The representation is identified by the
degree. The degree of homogeneity, l ¼ 0; 1; 2…. also
determines whether ψ switches sign under ω̂ → −ω̂ or not.
ψ’s with even l are invariant and those with odd l switch
sign. The dimension of the lth representation is given by
2lþ 1. They provide representations of Ih, not just I. As
representations of Ih they decompose in general into
combinations of the 10 irreducible representations of Ih.
The low-dimensional irreducible representations of SOð3Þ

corresponding to l ≤ 2 remain irreducible also under
Ih: l ¼ 0 → Ag, l ¼ 1 → F1u, l ¼ 2 → Hg. Some further
cases of interest are l ¼ 3 → F2u⊕Gu, l ¼ 4 → Gg⊕Hg

and l ¼ 5 → F1u⊕F2u⊕Hu. A singlet of Ih appears for the
first time in l ¼ 6 → Ag⊕F1g⊕Gg⊕Hg.
For 1 ≤ l ≤ 5 and jmj ≤ l,

P
g∈Ih ψ

m
l ðgω̂Þ ¼ 0, where ω̂

is an arbitrary point on the sphere. Hence, if the set of
vertices consists of complete orbits, choosing the weights
constant on orbits ensures that integrals are exactly repro-
duced by their corresponding sums on the 36-dimensional
linear space l ≤ 5; this can be achieved by a 12-vertex orbit
on the sphere. To push the upper bound on l higher we need
several orbits. Distinct orbits come with distinct weights,
which can be adjusted to zero out discrete counterparts to
integrals of ψ ’s containing higher l’s than 5. For example,
using two orbits only, one can zero out the l ¼ 6 case. The
next time a singlet shows up in the decomposition of a
spherical wave is at l ¼ 10 → Ag⊕F1g⊕F2g⊕Gg⊕2Hg.
Thus, with two orbits the upper limit on l giving exact
equality for integrals and sums is pushed to l ¼ 9.
Evidently, this process can be continued. These facts can
be learned from [29].
The appearance of singlets in the decompositions reflects

the existence of primitive homogeneous polynomials in the
three components of ω which are invariant under the action
of Ih. They are primitive in the sense that they cannot be
expressed in terms of other primitives. All Ih-invariant
polynomials are polynomials in three primitives of degrees
2,6,10 [30]. The first is an invariant of OðdÞ and restricts
to a constant on the sphere. The next two primitive
polynomials associated with Ih are primary objects in
the process of understanding how full SOð3Þ is violated.
The group Ih is generated by reflections in 3 planes

through the origin of three space. Ih contains more pure
reflections, corresponding to 15 mirror symmetry planes in
total. All finite groups of this type are classified [31]. One
good place to learn the subject from is [32]. Specifically
focused on the Icosahedron is the classic [33].
Particle Physicists are more familiar with crystallo-

graphic Coxeter groups because of their connection to
the representation theory of Lie Algebras. Exceptional
Weyl groups in this category have already been exploited
for Particle Physics related problems as they provide
enhanced rotational invariance in specific dimensions.
Specific Particle Physics applications can be found in
[34]. Radial quantization does not require a crystallo-
graphic group. There are few noncrystallographic groups
and the ones of interest are denoted by H3 and H4,
respectively. H3 is Ih and has 15 reflections, as mentioned
already. H4 has 60 reflections and 1202 elements. H3 and
H4 provide enhanced rotational invariance in dimensions
three and four, respectively.
The structure of a reflection group is quite simple

geometrically. One has on the sphere a fundamental region
bounded by three basic planes. The group acts on this
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fundamental region producing new ones and tessellates the
sphere by 2jQj such spherical triangles. The entire spheres
gets fully covered exactly once. One can pick one funda-
mental region, label it as the unit element of the group and
label all its images by the connecting group element. The
covering is bipartite, according to the Z2 factor in the
reflection group. Once a fundamental region is chosen, any
point inside it (that is not on any boundary component) has
an orbit consisting of a number of points equal to the group
order. Points on the boundary will generate orbits of lower
multiplicity. All multiplicities are divisors of the number of
group elements. From the point of view of “vertex
economy” one likes smallish orbits since they allow an
independent weight parameter with whose help one can
zero out more and more SOð3Þ irreducible representations
in the cubature formula. It is not clear that the principle of
“vertex economy” really needs to be taken seriously when
designing a large scale simulation, but it certainly is useful
in finding easily manageable test cases.
The spectrum of the transfer matrix will decompose into

many copies of each of the 10 irreducible representations.
In general, it will be difficult to disentangle this structure
for many reasons. This should be substantially easier close
to the bottom of the spectrum, where the lowest-dimension
scaling fields have their corresponding states. Numerical
simulations cannot access regions of high energy states
anyhow.

V. SIMPLE EXAMPLES

The aim of this section is to investigate simple cases
where various ingredients of the cubature approach can be
tested.

A. Spectrum of quadratic kernel

One criterion to determine how well Eq. (10) works is to
work out the spectrum as described by Eqs. (11), (12), (13)
on coarse lattices.
The coarsest lattice on the two sphere I consider consists

of the corners of a regular Icosahedron in Fig. 1. This lattice
has 12 vertices. The 120 elements of Ih permute the vertices
in various ways. The matrix Kij is invariant under con-
jugation by elements of Ih acting on the vertices. K acts on
a 12-dimensional space. This space decomposes into
Ag⊕F1u⊕F2u⊕Hg.
Taking s ¼ 0.7 for the spherical heat kernel and w1 ¼

1=12 I found for the λk of Eq. (13) the following values:
λ0 ¼ 0., λ1 ¼ 2., λ2 ¼ 5.9999, λ3 ¼ 10.7896 with multi-
plicities 1,3,5,3 respectively. Thus, the l ¼ 0; 1; 2 eigen-
values and multiplicities are well reproduced, but l ¼ 3 not.
With only 12 dimensions available, there are not enough
states to provide for a full set of states descending from
the full l ¼ 3 multiplet. The l ¼ 3 multiplet is expected to
split, and the quadruplet is missing. It is not possible to
estimate the split. Nevertheless, the numerical value of the

eigenvalue is not outrageously far from the correct value of
12. We see that even a small orbit does as good a job as one
might reasonably expect in terms of what can be read off
the action.
Having seen how a very small orbit performs, I turn to a

maximally large orbit, taking a lattice with 120 vertices. I
choose the great rhombicosidodecahedron of Fig. 2 for this
purpose. Each vertex, X, lies at the intersection of the
spherical bisectors of the spherical triangles making up the
fundamental region. The fundamental region can be con-
structed by adding the face centers and edge centers to the
icosahedral spherical tessellation. Any spherical triangle
with three vertices in the same triangular icosahedral
face, consisting of one face vertex, one center vertex and
one edge center, makes up a fundamental region. The

FIG. 1 (color online). Icosahedron

FIG. 2 (color online). Great rhombicosidodecahedron.
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Icosahedron has 20 faces and each has six fundamental
regions. Therefore there are 120 X-type vertices. If con-
nected by segments of great circles perpendicular to the
edges of the fundamental regions, all segments are of equal
length. For gaining some familiarity with these construc-
tions I recommend [35]. A glance at Fig. 2 shows that the
vertices are not distributed in a very uniform manner. It
remains to be seen to what extent this impression correctly
reflects on the usefulness of this lattice.
In this case the representation of Ih is the regular one,

that is, each of the ten irreducible representations enters
into the decomposition a number of times equal to its
dimension. Looking at the eigenvalues λk as before, I can
go higher up in level. For the l-levels that split under Ih I
take an average over the various Ih irreducible representa-
tions that contribute, weighted by their sizes. This gives me
numbers to compare to the lðlþ 1Þ values. I also take the
spread of the λk making up the contributions as a measure
of the split, Sl. In this way I found: λl¼0 ¼ 0, λl¼1 ¼ 2,
λl¼2 ¼ 5.9999, λl¼3 ¼ 12.0466, λl¼4 ¼ 20.1072, λl¼5 ¼
30.2122, λl¼6 ¼ 42.8426, with Sl ¼ 0 for l ¼ 0; 1; 2 and
S3¼0.7507, S4¼0.6882, S5¼1.3273, 1.0562, S6¼9.2407,
9.0609. Where two numbers appear, I took various combi-
nations of the multiplets into which the particular l
decomposed to get some feel. Looking at l ¼ 6 it is clear
that the level identification looses meaning after l ¼ 5.
Nevertheless, even for l ¼ 6, the average number is close to
lðlþ 1Þ. Multiplicities are always 2lþ 1. Looking at the
l ¼ 3 case, we see a much better match with the expected
value of 12 then before. The weighted average is much
closer to the expected value than the split would indicate.
This looks like an effect of symmetry breaking dominated
by a term in an expansion at first order. Perhaps the split
of the level l ¼ 3 seen in [1] is of similar origin. That is, in
the continuum limit the eigenvalues associated with the
icosahedral arrangement of conic singularities in an other-
wise flat manifold differs from the spherical, fully rota-
tionally symmetric essentially by a first order perturbation
in a symmetry breaking term. This term ought to be
predominantly proportional to the primitive Ih-invariant
of order 6.
So far I have only looked at single orbits where the

weight is fixed to be the inverse of the orbit size. It is
obvious that beyond l ¼ 2, as expected, splits will occur
and that they have a structure that looks perturbative.
More precisely, if I imagined writing a continuum

“effective theory” description of the discrete approxima-
tion, the continuumK would have corrections which would
be still continuum kernels, but break Oð3Þ to Ih. I could
order these corrections by looking at the action restricted to
field sectors spanned by low l spherical degrees. The
leading correction would be one that becomes felt at
the lowest l. The corrections, when sandwiched between
the states with lowest l’s which are going to split must
generate an invariant under Ih which is not an invariant

under Oð3Þ. The lowest degree of that integrand is 6, as
already discussed. The affected l’s of the fields would than
have to be, as expected, l ¼ 3. There is only one parameter
that enters, associated with the degree 6 invariant. To
leading order the effect cancels out in the multiplicity
weighted average. That makes the deviation of λl¼3 from 12
quite small. At l ¼ 5 the degree 10 invariant enters and a
larger split occurs, reflecting the extra coupling. I plan to
report separately on a more detailed analysis of these
breaking effects [36].
Now I wish to look at a minimal example in which I have

two orbits, and, by adjusting their weights I can eliminate
the split in the l ¼ 3 level. I take the Icosahedron and add to
it the centers of the faces. This gives me in total 32 vertices
and 2 orbits. There is one free parameter, which is the ratio
of the two weights (see Fig. 3). I want to use it in order to
zero out the split. At the level of cubature this is a well
known problem, solved long ago [29]. I require that the
weights be such that at the level of simple cubature, where
the action density (not the fields) is expanded in spherical
harmonics, there be exact agreement between the sum and
integral for l ¼ 6. In fact, I am zeroing out the coupling of
the degree 6 invariant. As explained before, this ensures
sum and integral agreement of the simple cubature formula
all the way up to l ¼ 9. If s is large enough, as I explained,
one expects no breaking effects up to and including level
l ¼ 4. That is, both the splits of l ¼ 3 and l ¼ 4 should
be small.
Picking the weights wc ¼ f

20ð1þfÞ and wv ¼ 1
12ð1þfÞ for the

orbit of triangle centers and that of original vertices
respectively, and using f ¼ 1.8, the exact value derived
from the simple cubature equation, I obtained, again with
s ¼ 0.7, λ0 ¼ 1, λ1 ¼ 2, λ2 ¼ 6, λ3 ¼ 12, λ4 ¼ 20 with
increasing deviations as l increases. The largest deviations
are of order 10−7, which is the order of the split at l ¼ 4. As
s is increased the splits drop dramatically even further, in
accordance with our analysis earlier. At l ¼ 5 the structure

FIG. 3 (color online). A 32 vertex, 2 orbits arrangement.
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has totally deteriorated: indeed up to l ¼ 4, 25 states were
accounted for. The l ¼ 5 state would add 11 states, but we
only have 32–25 ¼ 7 left. These 7 states come in two
triplets and a singlet.
The findings so far support the approach, but only at the

level of the quadratic part of the action, which, from the
point of view of field theory corresponds to free field
theory. I need to get some feel for the situation in an
interacting situation.

B. Large N

Consider the CFT generated by the continuum linear or
nonlinear OðNÞ model in three Euclidean dimensions. It is
well known that at leading order in 1=N the model can be
described by a free massless field theory for N scalar fields.
One needs to adjust one coupling to make the theory
massless, and like any free massless scalar theory it is also
a CFT.
The radial quantization of massless scalar fields and the

role of conformal invariance were exposed in [37]. [37]
derives the radially quantized version of the field theory
from the same model traditionally quantized on flat two-
dimensional subspaces of R3. In addition to changing
variables the correct cylinder structure R × S2 will hold
for the case that the scalar fields are rescaled by the
appropriate power of the radius. In three dimensions this
has the effect of replacing lðlþ 1Þ by lðlþ 1Þ þ 1=4 ¼
ðlþ 1=2Þ2. The dimensions come from taking square roots
of this factor. The 1=4 is crucial in order to get infinite
equally spaced towers in the spectrum. In his paper, Cardy
[2], also deals with the OðNÞ model and shows that the
extra 1=4 is equivalent to the condition for criticality in flat
space, obtained by solving the gap equation for the
massless case. He does this by endowing the sphere with
a radius R, and matching to flat space at large R. Another
way to get the 1=4 is to postulate conformal coupling of the
scalar to the round metric on the two-sphere.
In any case, we see in this example explicitly how the flat

space adjustment needed for criticality is equivalent to the
requirement of having states in the odd Z2 sector organize
themselves into equally spaced towers.
Working out the explicit CFT structure to higher orders

in 1=N rapidly becomes a complicated problem [38].
In [1] we showed that in two dimension the OðNÞ model

does not admit an adjustment which would make the towers
equally spaced. This is consistent with the model having to
break scaling at the quantum level.

C. A transfer matrix example

So far I have checked that the construction of an action
thinking in terms of cubature formulas has a chance to
work. Quantum mechanically however, all that was
checked was free field theory.
Now I want to work out one example which is fully

interacting. I want an example that I can do almost

analytically. By this I mean that I can, in a matter of a
few minutes on the computer, get very high accuracy results
without using anything stochastic.
The example consists of the Ising model defined on the

sphere with 12 Icosahedral vertices. The associated transfer
matrix is 212 × 212 and can be fully diagonalized with
standard routines. I am forced to use the Ising model in
order to minimize the number of values the fields can take,
while still having a global internal Z2 symmetry.
Since the heat kernel formalism has been checked

already, I am not bound to it. I only adopt the idea to
use a nonlocal interaction and am going to adjust it the best
I can.
It is well known that the Ising model can be written in

terms of continuum fields [39]. This makes the application
of mean field theory straightforward. I do not need the
explicit expressions. The main point is that there is a
quadratic kernel whose eigenvalues and behaviour under
rotations are still relevant although the original fields
were discretely valued. However, the potential is not
polynomial and therefore the symmetry analysis I presented
before does not apply. There are also other problems,
making a transfer matrix in terms of the continuous fields
untenable.
The strategy is as follows: first treat the quadratic part as

if this was a free theory with a continuously valued real
scalar field. Adjust in such a manner that it give the best
rendition of the spherical Laplacian possible. Then use it to
define the spin-spin interaction in the Ising model. The
hope is that this structure would ensure that one can find a
large region of parameter space where the order of low
states is what one expects from the model. Next, introduce
two more couplings, and search for a pseudo critical point.
This point is characterized by some CFT spectral regularity
holding there at a reasonable level of accuracy. The
criterion is that spacings between the two lowest rungs
in tentatively identified towers agree between the odd and
even sector. I also require to tentatively identify the state
corresponding to the energy momentum tensor. If all three
independent determinations of scale agree with other, I can
get rough numbers for the dimensions of some of the lowest
primaries. The main intention is to see the right structure
and numbers in the right ballpark. It would be unrealistic to
expect more from such a small system. I diagonalize the
transfer matrix to get its spectrum and symmetry properties
of the lowest states.

1. The spin-spin interaction

On each site of one spherical shell we have a spin
σi ¼ �1. The sites are labelled by 1 to 12. The labels,
according to the Icosahedral net in Fig. 4 go as follows: the
top row are all site 1. The next horizontal row has labels
2,3,4,5,6,2 left to right, followed by labels 7,8,9,10,11,7
and the bottom row are all site 12.
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The term in the action I am now focusing on is

A ¼
X
i≠j

σiCi;jσj ð21Þ

My objective is to determine the off diagonal entries in the
symmetric matrix Ci;j. I do not want this choice, in itself, to
violate Oð3Þ. So, Ci;j only depends on ω̂i · ω̂j. The
distances between nonidentical sites take only three values.
If I only made Ci;j ≠ 0 zero for the shortest nonzero
distance, there would be no indication that the sites reside
on a sphere rather than on the corners of a solid
Icosahedron. The 12-dimensional representation of Ih
provided by this set of sites decomposes into
Ag⊕F1u⊕F2u⊕Hg, as already mentioned. I can introduce
3 different parameters corresponding to the 3 values of
distances; they correspond to the 3 nontrivial irreducible
representations above.
With the above labelling the most general Ci;j

Oð3Þ-invariant matrix is

C ¼

0
BBBBBBBBBBBBBBBBBBBBBBBBB@

0 a a a a a b b b b b c

a 0 a b b a a b c b a b

a a 0 a b b a a b c b b

a b a 0 a b b a a b c b

a b b a 0 a c b a a b b

a a b b a 0 b c b a a b

b a a b c b 0 a b b a a

b b a a b c a 0 a b b a

b c b a a b b a 0 a b a

b b c b a a b b a 0 a a

b a b c b a a b b a 0 a

c b b b b b a a a a a 0

1
CCCCCCCCCCCCCCCCCCCCCCCCCA

ð22Þ

One has

C ¼ aX þ bY þ cZ; ð23Þ

and the matrices X, Y, Z commute.
Using the explicit labelling it is easy to verify that the

permutation matrix Z is the inversion.

Z ¼

0
BBBBBBBBBBBBBBBBBBBBBBBBB@

1 0 0 0 0 0 0 0 0 0 0 0

0 0 1 0 0 0 0 0 0 0 0 0

0 0 0 1 0 0 0 0 0 0 0 0

0 0 0 0 1 0 0 0 0 0 0 0

0 0 0 0 0 1 0 0 0 0 0 0

0 1 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 1 0 0 0 0

0 0 0 0 0 0 0 0 1 0 0 0

0 0 0 0 0 0 0 0 0 1 0 0

0 0 0 0 0 0 0 0 0 0 1 0

0 0 0 0 0 0 1 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 1

1
CCCCCCCCCCCCCCCCCCCCCCCCCA

ð24Þ

Projecting on the two subspaces invariant under Z, X
decomposes as X ¼ X1 þ X2 and Y decomposes as
Y ¼ Y1 þ Y2. It is easy to check that X1 ¼ Y1,
X2 ¼ −Y2. Hence we can choose X1, X2, Z as the complete
set of commuting operators for this problem.
Both X1 and X2 have six-dimensional kernels. The non-

zero spectrum of X1 consists of 5 (singlet) and −1 (quintu-
plet). The corresponding states areþ1 eigenvectors of Z. The
nonzero spectrum of X2 consists of �

ffiffiffi
5

p
, two triplets. The

corresponding states are −1 eigenvectors of Z. So, from X1

we have identified the states inAg⊕Hg and fromX2 the states

in F1u⊕F2u. In order to identify which of the�
ffiffiffi
5

p
triplets is

F1u and which is F2u we need to look at the action of a
rotation by 72° about an axis of symmetry of the Icosahedron.
For the axis connecting the top to bottom vertices in Fig. 4 the
action leaves fixed vertex 1 and vertex 12 and cyclically
permutes by one step the two remaining horizontal rows
simultaneously. The corresponding matrix, G, is

G ¼

0
BBBBBBBBBBBBBBBBBBBBBBBBB@

1 0 0 0 0 0 0 0 0 0 0 0

0 0 1 0 0 0 0 0 0 0 0 0

0 0 0 1 0 0 0 0 0 0 0 0

0 0 0 0 1 0 0 0 0 0 0 0

0 0 0 0 0 1 0 0 0 0 0 0

0 1 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 1 0 0 0 0

0 0 0 0 0 0 0 0 1 0 0 0

0 0 0 0 0 0 0 0 0 1 0 0

0 0 0 0 0 0 0 0 0 0 1 0

0 0 0 0 0 0 1 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 1

1
CCCCCCCCCCCCCCCCCCCCCCCCCA

: ð25Þ

Now, using the character table and the matrices G and G2,
one determines that the

ffiffiffi
5

p
eigenvalue corresponds to F1u

FIG. 4 (color online). Icosahedral Net
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and the−
ffiffiffi
5

p
eigenvalue corresponds toF2u. Hence the−

ffiffiffi
5

p
X2 eigenspace should be thought of as descending
from l ¼ 3.
The spectrum of C is linear in the parameters a, b, c and

we know now to which continuum l each invariant space
should be assigned. It is convenient to add a new variable,
x, which provides an overall shift of the spectrum of C.
Now, we have just enough freedom to ensure that the
spectrum of the matrix provides eigenvalues associated
with l ¼ 3; 2; 1; 0 given by −lðlþ 1Þ in ascending order
−12, −6, −2, 0. I end up with

C ¼ −6Iþ τX þ ð1 − τÞY þ Z; ð26Þ

which has a spectrum as close as possible to the continuum

Laplacian. Here τ ¼ 1þ ffiffi
5

p
2

, the golden ratio. This equation
would be directly relevant to continuously valued fields. In
the Ising case the contribution of the identity matrix is
irrelevant. One will have to rescale the matrix C by a
coupling βx. Because of the relationship to an action in
terms of a continuum field I already mentioned, all one can
expect is to get the right order and relative magnitudes of
eigenvalues. In other words, an overall scale for the
energies will have to be determined from the results.
This is something one expects. The purpose of the entire
exercise is to find a form of the spin-spin interaction that
has some likelihood of producing at least the right ordering
of states in the discretized version. Here “right” is with
respect to the group theoretical identification of the various
multiplets with their continuum “parents.”

2. The spectrum of the transfer matrix

The transfer matrix acts on a 4096-dimensional Hilbert
space. A distinct fixed time slice spin configuration fsjg
labels each element in a basis. The numbering is the same
as above, based on the Icosahedral net. The spins σj are
given by σj ¼ 2sj − 3, so sj ¼ 1; 2. Any basis element can
be labelled by J ¼ s1 þ

P
12
j¼2ðsj − 1Þ2j−1, where J ¼

1;…; 4096. The spin at vertex i in configuration J is
denoted by σiðJÞ. The inverse map is denoted by JðfσigÞ.
I define diagonal matrices D,

DJ;K ¼ e
1
2
βx
P

1≤i≠j≤12
σiðJÞCi;jσjðKÞδJ;K; ð27Þ

with C given by Eq. (26). The transfer matrix is given by

T J;K ¼ DJ;Je
βt
P

12

i¼1
σiðJÞσiðKÞDK;K: ð28Þ

The internal global Z2 symmetry acts by σi → −σi; ∀ i,
which defines the action on the configurations J; K….
Viewing the ðsi − 1Þ as bits, the action is by two’s
complement on the integer labelling the configuration.
Symmetrizing and anti-symmetrizing T with respect to

this Z2 gives two matrices of size 2048 × 2048 each, T A

and T S. Similarly, the action of the inversion Z can be
mapped into an action on the labels I; J…. I can then
decompose T A and T S separately by projecting on �1
eigenspaces of inversion.
Next the four 2048 × 2048 matrices are numerically

diagonalized. That takes little time. I collect the highest
eigenvalues of all four matrices. I then know multiplicities,
the internal Z2 sector and whether the states switch sign
under inversion or not. It is not necessary to calculate the
eigenvectors for this.
By analogy with [1], I have set βx ¼ 0.160 and varied βt

in the search for a roughly consistent scale determination. I
now present a “good” case as far as I can tell after searching
not very exhaustively. The logarithm of the highest state
energy is 9.8907388587432123. This state is the vacuum.
It resides in the even sector where it belongs. I shall subtract
from it the logarithms of all the lower energy states.
These are the excitation energies. Up to a common
rescaling they should provide dimensions of primaries
and descendants. Below are numerical results and tentative
interpretations of states for βt ¼ 0.225. I use standard
notation for the states.

Sect. Mult. Excitation Energy

Even 1 1.3142776638306035
Even 3 2.1649446841074473
Even 5 2.3932548321963418
Even 5 2.7868410430944044
Even 4 2.8973684611035200
Even 3 2.9092189893100091
Even 5 3.0638226605671877
Even 1 3.1255791565017601
Even 4 3.5269178230913276

Sect. Symbol l Energy

Even ϵ 0 1.3142776638306035
Even ϵ 1 2.1649446841074473
Even Tμν 2 2.3932548321963418
Even ϵ 2 2.7868410430944044
Even skip 12 states
Even ϵ0 0 3.1255791565017601

Sect. Mult. Excitation Energy

Odd 1 0.42744457201564146
Odd 3 1.2689723266444659
Odd 5 1.9039503886862708
Odd 3 2.3895288048861216
Odd 1 2.4721280980424005
Odd 3 3.2980151032493685
Odd 5 3.5915520069173139
Odd 4 3.6018838120548367
Odd 3 3.7001232625160938
Odd 5 3.7286936205459451
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Sect Symbol l Energy

Odd σ 0 0.42744457201564146
Odd σ 1 1.2689723266444659
Odd σ 2 1.9039503886862708
Odd σ 3 (F1u) 2.3895288048861216
Odd σ0 0 2.4721280980424005

Determining the scale from the spacings of the lowest
tower members in the even and odd sector I get ρ ¼
1.182ð6Þ and this produces the following dimensions
after division by ρ: dimðϵÞ ¼ 1.553, dimðϵ0Þ ¼ 3.694,
dimðTμνÞ ¼ 2.829, dimðσÞ ¼ 0.505 and dimðσ0Þ ¼ 2.922.
I cannot make any serious claims about the validity (to say
nothing about the accuracy) of these numbers. My point is
that they are in the right ball park. There are serious
numerical estimates in the literature to compare to [13]:
dimðϵÞ¼1.41, dimðϵ0Þ¼3.8, dimðTμνÞ¼3, dimðσÞ¼0.518,
dimðσ0Þ ∼ 4.5. It is encouraging to see that the energy
momentum tensor dimension comes out quite close to
three. One also sees how the breakup of higher l multiplets
mixes up the order of states pretty early. It would be
unrealistic to expect anything more from a spherical shell
approximated by just 12 points.

VI. SUMMARY

This paper has led me to a quite flexible procedure to set
up a Monte Carlo simulation of the radially quantized ϕ4

model in three dimensions. I have sketched how an analysis
would have to be executed. Quite a few details have been
left open, and adjustments would need to be done as more
experience is being accumulated. In broad lines, the
procedure is

(i) Define a sequence of spherical lattices with a
convenient decomposition into orbits.

(ii) Determine a set of weights, one per orbit, all
positive, such that splits of l multiplets in the kinetic
energy quadratic form are eliminated to a highest
possible level l ¼ lmax.

(iii) Define the action of a ϕ4 three-dimensional theory
using the weights and the heat kernel kinetic energy.

(iv) Experiment with the choice of s and various
approximations to the heat kernel function.

(v) Make initial Monte Carlo runs to locate consistent
level spacings, once it is determined that the actual
multiplets hold together well (small splits for a
number of l’s increasing with the number of orbits).
Eliminating splits in the quadratic form of the kinetic
energy will not exactly eliminate splits among the
actual eigenstates of the transfer matrix, as inferred
from various two point correlations.

(vi) Carry out simulations and extract correlation
functions.

(vii) Analyze results in an attempt to identify states.
Once reasonable numbers are obtained, with the accu-

mulated experience one can return to the most interesting
problem, which is to construct an explicit example of
a RG transformation restoring translational invariance at its
fixed point and clarify what type of tuning is necessary
to induce the flow in the IR to the Wilson-Fisher
fixed point.
Even if a good analogue of a Wilsonian RG is not found,

the desired continuum limit is still likely to emerge on the
basis of results obtained so far. In lieu of a good RG
analogue, the classification of corrections subleading in N,
the number of vertices on one spherical shell, needs to be
addressed directly. The natural guess is that the asymptotics
as N → ∞ can be expressed by an effective continuum
action whose leading term alone produces the continuum
radially quantized target CFT and corrections are ordered
by dimensions of scalar primaries. This can hold only up to
some nonzero fraction of N, ζN. The states with dimen-
sions lower than ζN fall into angular momentum multiplets
which stay unsplit under Ih. The assumption is that ζ stays
larger than zero as N → ∞.
At this point it is premature to present generalizations of

lattice radial quantization to nonscalar fields [36].
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