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The complete expression of the heavy quark-antiquark potential up to order 1/m? is known from QCD in
terms of Wilson loop expectation values. We use that expression and a mapping, assumed to be valid at
large distances, between Wilson loop expectation values and correlators evaluated in the effective string
theory, to compute the potential. We obtain previously unknown results for the spin- and momentum-
independent parts of the potential. These are linearly rising with the distance and may be interpreted as
relativistic corrections to the string tension. We confirm known results for the other parts of the potential.
Finally, we compute the discrete spectrum of a heavy quark-antiquark pair whose interaction is just given

by the obtained potential.
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I. INTRODUCTION

Wilson loops have been related to the heavy quark-
antiquark potential since the inception of QCD [1-7]. This
relation has been put in a systematic framework by non-
relativistic effective field theories of QCD [8-11]. In this
framework, the heavy quark-antiquark potential is organ-
ized as an expansion in 1/m, where m is the generic heavy-
quark mass, while nonanalytic terms in 1/m factorize.
Nonanalytic terms may be identified with the Wilson
coefficients of nonrelativistic QCD (NRQCD), which is
the effective field theory that follows from QCD by
integrating out modes that scale like m [12,13]. The order
1/m® potential is the static potential. It is related to the
expectation value of a rectangular Wilson loop stretching
over time and over the distance between the heavy quark
and antiquark. Contributions to the potential of higher
orders in 1/m are expressed in terms of expectation values
of chromoelectric and chromomagnetic field insertions
on a rectangular Wilson loop. These, as well as the
Wilson loop, are gauge invariant. At order 1/m?, the
potential is momentum and spin dependent.

The heavy quark-antiquark potential is a function of r,
the distance between the heavy quark and antiquark,
and Agcp. the typical hadronic scale. The potential may
be evaluated perturbatively for rAgcp < 1, but it cannot be
for rAgep 2 1. The situation rAgep 2 1 is particularly
relevant for excited charmonium and bottomonium states
and for this reason has been extensively studied in lattice
QCD [14-23]. The most recent determinations are in
[24-28]. However, not all the long-range contributions
to the heavy quark-antiquark potential have been computed
on the lattice. While the order 1/m° and 1/m contributions
have been computed, as well as at order 1/m? the spin- and
momentum-dependent potentials, an evaluation of the spin-
and momentum-independent 1/m? potentials in the long
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range is still missing. The reason is that they involve Wilson
loops with three or four field insertions, whose lattice
determination is difficult.

The static potential measured by (quenched) lattice
simulations exhibits a typical Cornell-potential-type
behavior with a Coulombic short-range part and a linear-
rising long-range tail. In the long range, rAgcp > 1, a
linear potential is predicted by the effective string theory
(EST) [29]. Long-range corrections to the linear potential
have been calculated in the EST and confirmed by lattice
simulations [30-33]. In [34] a one-to-one correspondence
between correlators of string coordinates and field inser-
tions on a rectangular Wilson loop was suggested and
used to evaluate the spin-spin potential. Following that
approach, in [35] the 1/m potential as well as all momen-
tum and spin-dependent 1/m? potentials were evaluated in
the EST. Remarkably, in all the available cases the long-
range behavior of the (quenched) lattice data agrees with
the EST determination.’ This suggests that the EST may
serve to evaluate the long-range behavior of the still
unknown spin- and momentum-independent 1/m? poten-
tials, providing at the same time a nontrivial prediction for
future lattice determinations and the missing ingredient
needed to include all 1/m? potentials in the computation of
the quarkonium spectrum. The aim of this work is to
address such an evaluation.

The paper is organized in the following way. In Sec. II,
we establish our notation and write the heavy quark-
antiquark potential in terms of Wilson loop expectation
values. In Sec. III, we review the EST. In Sec. IV, we derive

'For the spin- and momentum-dependent 1/m?> potentials
these results were known for a long time in an equivalent
approach to the EST that consists in approximating the Wilson
loop with the exponential of its rectangular area [7,36-39]. See
also [22].
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the potential up to order 1/m? in terms of EST correlators
and in Sec. V we look at the impact of the different parts of
the 1/m? potential on the spectrum in a model that includes
only the long-range tail of the potential. Finally, in Sec. VI,
we draw some conclusions.

II. RELATIVISTIC CORRECTIONS TO THE
STATIC POTENTIAL

The complete heavy quark-antiquark potential up to
order 1/m? has been written in terms of Wilson loop
expectation values in [8,9]. We will use here the same
notations and expressions, which we recall shortly in the
next two sections.

A. The structure of the potential

We consider a heavy quark of mass m; located at x;
and a heavy antiquark of mass m, located at x,. The spin
and momentum operators of the two particles are respec-
tively Sy =6,/2 and p, =—-iV,, and S, =0,/2 and
p> = —iVy,. The distance between the quark and the
antiquark is r =x; — x,. Up to order 1/m? the quark-
antiquark potential can be written as the sum of three terms,

V= v y/m) 4 y/m) (1)

where V(%) (r) is the static potential,

y(1.0) y0.1)
yosm () = L) V20 2)
m m;
the 1/m potential and
V(Z,O) V(O,Z) V(l.l)
VI = e (3)
1 2 1M

the 1/m? potential. Invariance under charge conjugation
and particle interchange implies V(19 (r) = V0D (7). It is
useful to separate in the 1/m? potential a spin-dependent
(SD) from a spin-independent (S/) part:

2.0 2.0
Vo — V.(S‘D) + V.(S‘I )v (4)
V(O,Z) — V(ODZ) 4 Vg(;’z), (5)
where
(2,0)
20 1 2.0 V5a(r) 2.0
V" = VR (0} + L V0. (6)
(0,2)
02) 1 02 Vi (r) 02
Ve =5 3V )+ L V). ()

and L; = r x p; with i = 1,2. Also in this case invariance
under charge conjugation and particle interchange yields
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VE)ZZ'O)(F) _ Vl(gz)v)’ (8)
2,0 02

V(L2 )( ) = Viz )(I”), 9)

VeI () = VO (1 my & my). (10)

For the spin-dependent part we have

vy = v (L, -8, (11)
vy = -V (nL, - S,. (12)

Charge conjugation and particle interchange invariance
imply V(LZS’O)(r) = V(Los’z)(r; m, <> m;). One proceeds sim-
ilarly for the V(") potential:

vin = v 4 v, (13)
where
1
Vglfl) = _E{pl P2 Vi,lz’l)(”)}
(1.1
Vv r
O L Ly V), (14)
and

Vi) = v (L, -8, = VI (ML, -8

+ Ve (818, 4+ Vs (NSp(®).  (15)
with
Si»(r) =3r-6,f 6, — 6, - 6,, (16)
and V(Ll]’;i(r) = V(le'él)(r;ml < my).
B. The potential in QCD

In the following, we list the potentials V() (r) written in
terms of operator insertions on a rectangular Wilson loop.
We refer the reader to [8,9] for the derivation of these
expressions and for further details.

The static potential is given by

VO(r) = Jim %ln(W[j), (17)

where (W) is the expectation value of the rectangular
Wilson loop,

Wpg = Pexp{—ig% dz”A,,(z)},
rxT

and P stands for the path ordering of the color matrices [4].
We also define (...)) = (...Wq)/(Wp) and the connected
correlators

(18)
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(O01(11)O2(12)Ne = O (11)0x(12) ) = €O, (1) )0 (12) ), (19)

(O01(11)0,(12) O5(13) e = O, (1) 02(1,) O3(13) ) = O, (1) )02 (12) O3(13) ).
= {01(11) O1(12) D403 (13) ) — €O (1) DL 02 (2) DK O3 (13) ) (20)

€O01(11)0:(12) O5(13) O4(ts) e = (O1(21) 02(12) O3(13) O4(14) ) — O1(11)DO2(12) O3(13) Ou(ts) ).
= €0, (1)) 02(12) DL O03(13) O4(12) e — €O1(11) O2(12) O3(13) N Ou(24) )
= (0,1 (t)NKO02(12) DK O03(13) O (t2) N — KO1(11) DK O2(12) O3(13) N K O (22) )
= €01 (1) 02(12) D LO3(13) DL O4(14) ) — €O1 (1) DK O2(12) N L O3 (13) D (O (24) ),

(1)
|
where Ql(tl), 0,(ty), ..., Qn(tn) are operators inserted on - ‘
the Wilson loop at times ¢ >t >:-->1t,_1 >1,. V“z’l)(r) — if-if-j/ dttZ((gE‘i(t)gE’z(O)»c, (26)
Connected correlators are made of Feynman diagrams that P 0
cannot be disconnected by cutting once the heavy-quark
and antiquark lines. (L O ; i
The 1/m potential is given by Vi '(r) = 5(5 —3r'r)) A dir*(gE} (1)gE3(0))..
1 [ 27
VOO ) = = [ angam, (o) g0, (22) o
where E,(7) [and later B;(¢)] stands for E(z, x;) (B(7,x;)) (L C;l) ) o
with i = 1,2. The 1/m? potentials are’ Vi (r) = T 'A dit{{gB, (1) x gE»(0)),  (28)
veO ) = L [ a2 (gE (1)gEI (0 23
p? (r) 2rr A (9E| (1)gE1(0)).. (23) 2 @) -
o . | V) =25 [ gm0 - 9B (0)
VSV (r) = = (89 = 3rid / dt*{gE! (1)gE’ (0)))..
L2 ( ) 4( ) 0 1() 1( ) —4(dm+dWCf)5<3)(r)’ (29)
(24)
@2
V(2~O)< _ CE:I) : 0 d B E V(l-l) _ C;)C%) Y ® d B! Bj 0
Ls () =——gir: ; 1(gB, (1) x gE1(0)) s, (1) =——"—iF'F o (9B (1)gB3(0))
C(Sl) S
+oar (V,v), (25) - ?((gBl(t) -gB2(0)) |, (30)
|
(1)
Cra
VEO ) =TS 5
icl('?l)z « L g2y20
4 df«gBl(f)'931(0)>>c+§(vrvpz )
0
i [ 0 53
—5/0 dll/o dfz/o ds3(ty = 13)*(9Eq1(11) - gE1(12)gE 1 (13) - gE1(0)).
1 . © I .
by (v [Tan [t - 0GB )08 ) - 1 O
= fuse [ Jim g5 ) L (00, (1)

*We have dropped terms proportional to ViV() in the expressions of V(,Z’O)(r) and Vﬁl’l) (r) because they are suppressed in the

nonrelativistic power counting (see Sec. VI of [9]).
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- i/ dt, / dn, /’2 ds(t, — 13)*(9E (11) - g (12) 9B (13) - gE2(0)),

(V’/ dh/ diy (1) — 1,)*(gE} (1)) gEs (1) - gEz(O)»c)

(v’ [ an [ antn - rggmin)gE 1) gE1<0>>>C)

(dss + dvscf)5 )

The coefficients cg) =14+ 0O(ay), c(Si) = 2cg) -1,
=14 0(a,), dV = ay/(720) + O(a?) [40], and
dgy, dyy, dy,, d,, which are such that (d;, +d,,Cyr) =
O(a?) and (dys + d,,Cr) = O(a?) [41], are Wilson coef-
ficients of NRQCD. The natural scale of «, in these
coefficients is of the order of the heavy-quark mass, hence
we may expect a; to be a fairly small number. The constant
Cy is the Casimir of the fundamental representation of
SUQ): C; =4/3.

III. THE EFFECTIVE STRING THEORY

The effective string theory hypothesis states that in pure
gluodynamics and in the long-distance regime, rAgcp > 1,
the expectation value of the rectangular Wilson loop can be
given in terms of a string action:

lim (Wp) = / DEVDE? ¢ Ssuing( &8,

T—oco

(33)

where Z is a constant.” The string action, Syine, can be
expanded in a series whose terms involve an increasing
number of derivatives acting on the transverse string
coordinates & = £!(¢,7) (I =1,2) [31]. The coordinates
& count like 1/Aqcp, whereas derivatives in 7 and z acting
on them count like 1/r. Hence, terms in Sy, With more
derivatives are suppressed in the long range by powers of
1/(rAgcp) with respect to terms with less derivatives. Up
to terms with only two derivatives, the string action reads

o/dtdz(l —%aﬂglaﬂgd).

Studies constraining the form of the higher-order terms, also
by Lorentz invariance, are in [43,44,47]. The first next terms
in the expansion turn out to involve at least four derivatives
and are suppressed by 1/( rAQCD)2 with respect to the kinetic

Sstring == (34)

*For a general discussion about our current understanding of
the QCD vacuum as it is obtained from lattice gauge theory and
the duality to string theory we refer to [42]. For recent develop-
ments on the effective theory of long strings we refer to [43,44].
The effective string theory may also provide a long-distance
description for other models, an example being the Abrikosov-
Nielsen-Olesen vortices of the Abelian Higgs model [45,46].

(32)

term in (34). Such terms and subleading ones do not affect
the results presented in this work and will be neglected in the
rest of the paper. Since the string has fixed ends at z = —r/2
and z = r/2, the transverse coordinates & satisfy the
boundary conditions & (¢, —r/2) = &(t,r/2) = 0. The con-
stant ¢, which is of order AéCD, is the string tension. Its
numerical value is known from lattice QCD determinations.
From (17) and (33)—(34) it follows that [30,31]

(0 _ T
VO(r)=0r+u 2,0
where y is an unknown regularization-dependent constant and
the term —z/(12r) i isa universal quantum correction known
as the Liischer term.” The last approximation holds in the large
distance limit when the Liischer term may be neglected.

In [34] it was proposed that the mapping (33) could be
extended to relate Wilson loops with field strength tensor
insertions to correlators of the string fields &. This would
allow us to compute in the EST the long-range tail of the
potentials listed in Sec. II B: a program started with [34]
and expanded in [35]. We will follow this latter reference.
Requiring the same symmetry properties for the transverse
string coordinates and the operators inserted in the Wilson
loop, the following mapping between expectation values of
operators inserted in the Wilson loop and EST correlators
can be established for rAgcp > I:

(35)

CELD).) = (A28 (1 r)2)..),
(L EL().) = (A28 (. —r/2)...),
C.BL(E)..) = (... Ne™D,0.8m(t.r)2)...),
€. BLE)..Y = (... = Ne™D,d.em(t,—r/2)...),
CE3).) = (LA,
CE3()..) = (LA,
(. BI(0)..) = (. A"e™D,0.E (. r/2)D.E" (1. 1/2)...),
(B3N = (. = A"emd,0.E (1, ~r/2)
X

0.&"(t,—r/2)...), (36)

“The Liischer term does depend on the dimension of space-
time. In d dimensions it reads —z(d — 2)/(24r). Equation (35)
holds for d = 4.
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where the indices [ and m label the transverse coordinates:
I,m=1,2. The tensor €™ is such that €2 =1 and
e = —¢" In the Wilson loop part of the mapping the

heavy quark is located at x; = (0,0, r/2) and the heavy
antiquark at x, = (0,0, —r/2), which implies r = (0,0, r).
The constants A, A/, A” and A"’ are unknown constants of
mass dimension one and of order Agcp. The mapping (36)
is valid up to corrections that are subleading in the long
range in the EST counting. For the purpose of the
computation in this paper we will assume the mapping
|
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to be exact and neglect subleading corrections. We will
comment on the impact of subleading corrections at the end
of the next section and in the conclusions.

The right-hand side of (36) is made of correlators of
string coordinates &. The functional integral over the
string coordinates is Gaussian [see the string action (34)].
So we have that correlators of more than two string fields
& break up into products of two-field correlators and
derivatives of them, and that two-field correlators are
given by [35]

(&'(ir.g)gm (it 7)) =

dro

The calculation of the different possible right-hand sides
of (36)—(37) leads to the EST long-range estimate of the
potentials listed in Sec. II B.

IV. THE LONG-RANGE POTENTIAL IN THE
EFFECTIVE STRING THEORY

The mapping (36) allows us to evaluate in the long range
the Wilson loop expectation values that appear in Sec. II B.
Correlators of two string fields are given in (37).
Derivatives of two-field correlators follow from it straight-
forwardly. Correlators involving more than two string
fields, which come from mapping Wilson loops with B3
fields or more than two chromoelectric field insertions,
decompose into the product of two string field correlators
due to the Gaussian string action. Gaussianity also implies
that correlators with an odd number of string fields vanish.
Hence the Wilson loop expectation values of Sec. II B map
for rAgcp > 1 into the following expressions:

r

(Ei (inE ()»L——5U4éilmm12(;{>, (38)

(E0BL0). ~ -5 P con(2). (9

dor r

(E(it)) - E((ity)E 1 (it3) - E;(0) ) =

(E (it)) - E|(itz)Es(it3) - Eo(0) ).

sim o cosh|[(7 —
cosh|[(t —

ﬂﬂd+aﬂ@+iwﬁg
)z/r] = cos[(z = 2 )z/r] )

ZAZN t t
AN cosh [ 22 ) sinh=3 (22 ,
20712 2r 2r

(37)

r- (B, (it) xE,(0)) =

(40)
r- (B (it) x E;(0)) = % 1nh(2r> cosh™? (;—D
(41)
Z((B’ (it)BL(0)). = 3A/Zs inh™* (g—;) {2+cosh<ﬂ7t>],
(42)
22: (B (it)BL(0)). = ﬂS/::zcosh 4<2 ){2 cosh(rﬂ
(43)

A AN12
BB, =T s (T).

4 A2
BB, =T ot (5], 49

72A3 e , (w(t) — 13) ot . (w(ty—13)
302, {smh <2r>smh <T> + sinh <5> sinh (T)],

m2 A3 nty a(t, —t3) nt a(t, — t3)
= h2 p2 (2L 3 h2( 2L h2 (22 T3
8(72r {cos (2r>cos < >y > —+ cos (2r cos > ,

114032-5



BRAMBILLA et al.
where 67 =0 for i or j =3 and 6/ = &Y for i,j =1,2.
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/2_ Cg:l)ngzA/

The expressions for the Wilson loop expectation values V(2§0)(r) _ ) (51)
with two chromomagnetic or chromoelectric field inser- k r or’
tions agree with those in [34]. Terms of the type
(Ei(t;)E(t,) - E(0))), vanish after (36) regardless of the Vi)lz’l)(r) =0, (52)
quark line where the chromoelectric fields are located.
This is due to Gaussianity and to the subtraction of the W) PNy
disconnected parts; see (20).° Terms involving four chro- Vi (r) = 60 (53)
moelectric fields contribute in the EST through diagrams o
made of two two-field correlators that are connected. (1 2020
Substituting (38)—(47) in the expressions of the poten- V(l’l>(r) _ _Sr g (54)
tials, we obtain Lo ort
2 A4 3.(1) (2) 2am2
gA , 2rcy e P A
VEO(r) =5 —In(or?) + . (48) V') =T s~ 4 + d,Cp) (),
55
V¥ =o, (49) %)
3.(1) (2) 2 A2
, PN v = ECECF IR 56
sz())(r) =T 60 (50) i (1) 906> r° (56)
|
448 3 .(1)2 "2
(2.0) 2839"\°r pa  Hs  mep gA
Vi — T Ha (M5  TCp GA
(r) r’e? SR r? + rt + 6052 r°
7Cract
1 1 a C
S0 w) ~ dy fune / dPx im g(Fi, (x) Fl(x) Fio (x)). (57)
|
¢ g4 ASr correlators of two chromoelectric fields contracted withr =
3

v () =

27‘[362 + (dss + dme)é(?’)(r), (58)
where {3 = 1.2020569... is the Riemann zeta function of
argument three® and u; are renormalization constants. The
expressions for the potentials (48)—(54) agree with those in
[35]. The spin-spin potentials (55)—(56) are of order 1/7°.
The 1/7° behavior comes from the subleading correlator
(45), for the long-range leading contribution coming from
the correlator (43), which would be of order 1/r3, vanishes
in the integrals of (29)—(30) (the result is independent on
the specific form of the string action). This contrasts with
the result of [34], where the correlator (45) is not taken into
account and the leading spin-spin potentials shows up only
at order 1/m*.” The explicit expressions (55)—(56) are new.
The potentials (57)—(58) are also new. We observe that

(0,0, r) vanish because of ris" = 0, and that we do not
have a mapping prescription into the EST for the matrix
element (F4,(x)F5,(x)FS,(x)) involving three gluon
fields located at an arbitrary point x of space-time. The
expressions listed here correct some of the preliminary
findings reported in [48].

As pointed out in [35], Poincaré invariance fixes some of
the renormalization constants y; and field normalization
constants, A, A’, ..., because it requires some equations to
be exactly fulfilled by the potentials (see [49,50]). One of
these equations is the Gromes relation that relates the spin-
orbit potentials with the static potential [51]:

1 av®
2r dr

2,0 1.1
+vE—viid =o. (59)

It is also a specific feature of (E(t,)E(t,) - E(0)),, which is the only type of three-field correlator appearing in the heavy quark-
antiquark potential up to order 1/m?. For example, a term like (E/(¢,)E3(#,)E/(0)), would not vanish after (36).

®It comes from the integrals

o0 t 12}
/ dll / l dtz / ) dt3(t2 - t3)2[sinh_2128inh_2(t1 - t3) + Sinh_ztlsinh_z(tZ - t3)] =
0 0 0

o0 1 t
8/ dt, / "t / " dts(t, — t3)2[cosh=2tycosh2 (1, — t3) + cosh=2t,cosh™2 (£, — 13)] = {5
0 0 0

"The behavior of the spin-spin potentials and the disagreement with [34] has been pointed out in [35]. We thank Joan Soto for

addressing our attention to this point.
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This equation is fulfilled in the EST only if

Hy = (60)

o
3 .

Another equation relates the momentum-dependent poten-
tials with the static potential [36]8:

rdvl® e 0
3 ar +2V57 =V =0. (61)
This equation is fulfilled in the EST only if
gh\? = . (62)

A similar relation holds for A” and follows from the
equation —V,V© = (gE,)) valid for T — co derived in
[8]. The equation is fulfilled in the EST only if

g\"? = —¢. (63)
Equations (62)-(63) are remarkable, for they completely
determine the long-range mapping of the chromoelectric
field in the EST. Finally, we note that the equations induced
by Poincaré invariance would require the inclusion of
subleading corrections to the action (34) and the mapping
(36) in order to be fulfilled beyond leading order in the
long-range limit.

Taking the potentials (48)—(58) at leading order in the
long-range limit, using the constraints (60) and (62), and
dropping terms suppressed by powers of «, like the term
proportional to {F4%,(x)Fh,(x)Fg,(x)), we obtain

o
VO (r) = Zln (o7%) + uy, (64)
v () =0, (65)
or

Vi =-%. (66)

(1) Ar

(2,0) (o2 C gA
VLS ( ) - 2r_ Fr2 ’ (67)
Vi () =o. (68)

*In [36,49] also the exact relation

(0)
_u20) ) _ vy, 4V
avR? - aviit - vO 4 T =0

was derived. This relation is automatically fulfilled by the
potentials (35), (49) and (52) in the long range, i.e., neglecting
u and the Liischer term in Vv and does not provide further
constraints.
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or

L1
visl(n =" (69)
M) At
1,1 crp g\
Vi) (r) = =5, (70)
2 3.(1) (2) ZA///Z
V(i,l)(,.) _ Cp Cp' g 7 (71)
S 456257
3.1 (2) 2am2
11 e cr go A
ve(n =SS (72)
906°r
2,0 2L o’r
VIO () = - ;3 : (73)
2
i) = 877 (74)

273

We have kept the subleading term proportional to 1/r? in
(67), because (35) and (70) together with (59) guarantee
that there cannot be any other term proportional to 1/r2

contributing to V\%". Equations (64)—(74) provide the EST
expressions for the heavy quark-antiquark potential in the
long range following from the exact mapping (36). Power-
counting arguments imply that subleading corrections to
the mapping will not change the functional dependence of
the potential but may affect some of the numerical
coefficients. This can be the case for the spin-spin poten-
tials, which at order 1/r> may be affected by subleading

contributions proportional to two string fields in the
mapping of B!, and for the potentials ng,O)(r) and

V(rl’l)(r), which at order r may be affected by subleading
contributions proportional to two string fields in the
mapping of E3. In this last case, we note that all terms
proportional to A”8r°, A”6r3 and A”4(A*/c)r? vanish after
subtraction of the disconnected parts of the correlators.

V. SPECTRUM

In order to illustrate the impact on the spectrum of the
new long-range potentials derived in the previous section,
we consider the following model: a quark-antiquark pair
both of mass m bound by the potential given in (64)—(74).
In the center-of-mass frame, the Hamiltonian of the system
s H= p2 /m + V. The potential, V, reads
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TABLE I.  Spectrum in the case m = 34/6. All energies are expressed in units of y/o. The column EO lists the zeroth-order energy
levels, which for S waves are related to the zeros of the Airy function [52]. The column v(1/m) lists the matrix element of

on (6r?)/(zm). The columns

V(l/m)

2nd order?

V2, Vg and V, list the matrix elements of the second-order contribution of the 1/m potential

and the matrix elements of —oL2/(6m?r), —cL - S/(2m?r) and —9¢56%r/ (223 m?) respectively. The column E gives the total energy

levels according to (76).

Levels E® y(i/m vim Vi Vis v, E
1S 1.621 —0.007 —0.007 0 0 —0.021 1.586
1'P, 2.331 0.080 —0.005 —0.027 0 —0.030 2.349
13P, 2.331 0.080 —0.005 —0.027 0.082 —0.030 2431
1°P, 2.331 0.080 —0.005 —0.027 0.041 —0.030 2.390
1°P, 2.331 0.080 —0.005 —0.027 —0.041 —0.030 2.308
28 2.834 0.100 —0.004 0 0 —0.037 2.893
1'D, 2.946 0.134 —0.004 —0.062 0 —0.038 2.976
1°D, 2.946 0.134 —0.004 —0.062 0.093 —0.038 3.069
1°D, 2.946 0.134 —0.004 —0.062 0.031 —0.038 3.007
13D5 2.946 0.134 —0.004 —0.062 —0.062 —0.038 2914
2P, 3.387 0.147 —0.003 —0.022 0 —0.044 3.465
23P, 3.387 0.147 —0.003 —0.022 0.066 —0.044 3.531
23P, 3.387 0.147 —0.003 —0.022 0.033 —0.044 3.498
23p, 3.387 0.147 —0.003 —0.022 —0.033 —0.044 3.432
38 3.828 0.161 —0.003 0 0 —0.049 3.937
48 4.706 0.203 —0.002 0 0 —0.061 4.846
58 5.508 0.235 —0.002 0 0 —0.071 5.670
6S 6.256 0.262 —0.002 0 0 —0.081 6.435
TABLE II.  Spectrum in the case m = 10,/5; columns are like those in Table I.
Levels E® v(i/m) vl Vi Vi v, E
I 1.085 —0.028 —0.001 0 0 —0.001 1.055
1'P, 1.560 —0.0015 —0.0007 —0.004 0 —0.002 1.552
3P, 1.560 —0.0015 —0.0007 —0.004 0.011 —0.002 1.563
1P, 1.560 —0.0015 —0.0007 —0.004 0.006 —0.002 1.558
13P, 1.560 —0.0015 —0.0007 —0.004 —0.006 —0.002 1.546
28 1.897 0.004 —0.0005 0 0 —0.002 1.899
1'D, 1.972 0.015 —0.0005 —0.008 0 —0.002 1.977
13D, 1.972 0.015 —0.0005 —0.008 0.013 —0.002 1.990
1°D, 1.972 0.015 —0.0005 —0.008 0.004 —0.002 1.981
13D, 1.972 0.015 —0.0005 —0.008 —0.008 —0.002 1.969
2P, 2.267 0.019 —0.0005 —0.003 0 —0.003 2.280
23P, 2.267 0.019 —0.0005 —0.003 0.009 —0.003 2.289
23p, 2.267 0.019 —0.0005 —0.003 0.004 —0.003 2.284
23p, 2.267 0.019 —0.0005 —0.003 —0.004 —0.003 2.276
3S 2.562 0.023 —0.0004 0 0 —0.003 2.582
48 3.150 0.035 —0.0003 0 0 —0.004 3.181
58 3.687 0.045 —0.0002 0 0 —0.004 3.728
6S 4.188 0.053 —0.0002 0 0 —0.005 4.236
(2.0) (L.1)
V(r) _ V(O)(r) + E V(I.O)(r) + % { |:2 VLz 2(1’) i VLz 2(">:| L2
m m r r
(2.0) (1.1) (1.1) S? 3 (1.1) A
FVE0) + VOIS + Ve 0 (5 - ) + V08
+2v20 () + VSI*”(;»)}
N lo 5 1 6., © 9&56°r
~ar+mﬂln(0r)—|—m2< 6rL 2rL S 53 ), (75)
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FIG. 1 (color online).

left plots refer to the case m = 3./o, the right ones to the case m = 10+/0. The leading order (LO) levels correspond to EY
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Energy level 1S, m=10vo
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Energy levels for the states 1S, 13P; and 23 P, normalized with respect to EY EY) and E) respectively. The

15> L1p 2P
the next-to-

nl °

leading-order (NLO) corrections to (nl|V(!/™|nl) and the next-to-next-to-leading-order (NNLO) ones to the remaining two terms

shown in the right-hand side of (76).

where L = r x p and S is the total spin of the system. In
the last line we have dropped contributions to the static and
spin-orbit potentials that are subleading in the long range,
and the spin-spin potentials, which fall off sharply like
1/7°. The constants in the static and 1/m potentials do not
contribute to the energy level splittings; hence we do not
display them. The model has the advantage of depending
only on two parameters: the mass m and the string
tension o.

We compute the energy levels by including contributions
from the potential that are first order in 1/m? and up to

second order in 1/m. We call Efg) the eigenvalues of the
zeroth-order Hamiltonian p?/m + or. The eigenstates of
the zeroth-order Hamiltonian, |nljs), may be chosen to be
simultaneously eigenstates of the angular momenta and
spin. They are labeled by n, [, j and s, which are the
principal, orbital angular momentum, total angular momen-
tum and spin quantum numbers. The state |n/) stands for
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Spectrum for m=3vo
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FIG. 2 (color online). Spectrum of all states up to n = 3 and of
all S-wave states up to n = 6 in the case m = 3./c. Energies are
expressed in units of /.

|nljs) when acting on an operator that does not depend on
spin. The energy levels read’

Eyijs = EW + (nl|V/m |nl)

nl|V Vm n'I'))?
+
WZ y E9-EY)

nl —Ear

+ (nljs|VA/™)|nljs). (76)

The results for the spectrum are summarized in Tables I
and 1I, Wthh refer to the cases m = 3/6 and m = 10,/o
respectlvely ° The tables show all levels up ton = 3 and all
S-wave levels up to n = 6. S-wave levels are degenerate
in spin because the last line of (75) does not contain a

“Kinetic energy, static potential and Eff;) are related by the
virial theorem:

2 (0) 2/3
p 1 _E) o
<nl|;|nl> = 5(nl|ar|nl> = ; N

where the last relation shows the dependence of E<O) on the
parameters m and o [52]. From this it follows that
1/{nl|r|nl) ~ (6m)'/3. One might therefore expect corrections
of relative order 6/m? to be parametrically suppressed by a factor

m?)'/3 with respect to corrections of relative order
1/(m{nl|r|nl))?, if m> \/c. Corrections of relative order

o/m? are those associated with the 1/m? potentials V> (r)

and V(rl‘l)(r). Corrections of relative order 1/(m(nl|r|nl))?* are
those associated with the other 1/m? potentials and with the
second-order quantum-mechanical corrections induced by the
y(1/m) potential. As we will see, however, for the range of masses
considered here, the contributions to the spectrum turn out to be
numencally comparable for all the 1/m? potentials.

"If \/6 =457 MeV [53], then m =3,/ corresponds ap-
proximately to the charm mass and m = 10/c to the bottom
mass.

PHYSICAL REVIEW D 90, 114032 (2014)

spin-spin interaction. For some states the 1/m potential
turns out to give a smaller contribution than the 1/m?
potentials. It happens when /o (nl|r|nl) is close to 1, and
the logarithm in the 1/m potential vanishes. This is the case
for the 1§ state when m = 3./5: /o(1S|r|1S) ~ 1.08, and
for the 1P states when m = 10y/o: \/o(1P|r|1P) =~ 1.04.
For the other states and in particular for higher states the
contributions of the different potentials scale naturally.
All 1/m? corrections are of similar size. This holds also for
the newly calculated corrections, which are listed in the
column labeled V,, showing the relevance of the spin- and
momentum-independent potentials.

In Fig. 1 we show graphically the effects of the
relativistic corrections to the energy levels for the 18,
1°P, and 2°P, states in the cases m = 3,/c and
m = 104/0. In Fig. 2 we summarize in one plot the effect
of these corrections on the whole spectrum for the

case m = 3./o.
VI. CONCLUSIONS

The effective string theory provides an economical way
to parametrize the long-range behavior of the heavy quark-
antiquark potential in the absence of available lattice data.
Whenever lattice data are available they compare favorably
with the EST predictions. This is the case for the static
potential that has been tested also at the level of quantum
fluctuations of order 1/r, the 1/m potential and the 1/m?
spin-orbit and momentum-dependent potentials. These
successful comparisons support the assumption of a one-
to-one mapping in the long range between Wilson loop
expectation values and correlators of string coordinates;
see (36).

Existing lattice data for the spin-spin potentials are so far
consistent with zero in the long range [25]. It would be
interesting to produce more accurate data able to detect a
long-distance signal, for the EST predicts a sharp falloff
proportional to 1/7°.

In this paper, we have computed in the EST the
momentum- and spin-independent 1/m? potentials. They
show a linearly rising behavior with the distance and may
be interpreted as a sort of relativistic correction to the static
potential. This is again a sharp prediction of the EST that
can be checked against data from lattice, once calculations
of Wilson loop expectation values with four chromoelectric
field insertions are performed. Under the assumption of the
exact mapping (36) the expressions of the potentials are
given in (73)—(74). The net effect of these potentials in the
equal mass case is to reduce the string tension by an
amount 9502/ (273 m?)."

"It is interesting to notice that an effective reduction in the
string tension due to relativistic effects may be observed in some
plots of [54]. We thank Shoichi Sasaki for communications on
this point.
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One may argue that the newly computed potentials are of
phenomenological relevance in quarkonium physics
[55,56] since their contribution to the spectrum, at least
when the short-distance part of the potentials is neglected,
is comparable in size to that of the other 1/m? potentials.
A realistic description of quarkonium requires, however,
the inclusion of the short-distance parts of the potentials.
These are known from perturbation theory. Spectroscopy
studies that use lattice data to parametrize the long-distance
parts of the potentials and perturbation theory for the short-
distance parts are for instance in [22,53,57,58]. However,
such studies are unavoidably incomplete insofar as not all
potentials have been computed yet on the lattice. The core
message of this work is that the EST may provide the
missing information through the long-distance expression
of the potential. In the model defined by Eq. (75), that
expression depends on just two parameters: the heavy-
quark mass and the string tension. It therefore provides a

PHYSICAL REVIEW D 90, 114032 (2014)

simple infrared completion of the heavy quark-antiquark
potential valuable for future quarkonium studies [59].
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