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Since the baryon-number susceptibilities are correlated with the cumulant of baryon-number fluctuations
in experiments, we do calculations of the susceptibilities and compare them with the experimental
fluctuation data under the framework of the Dyson-Schwinger equations (DSEs) approach. We compare
our results with lattice QCD and experimental data at RHIC. The fitness of the results indicates that under
the framework of DSEs, we can deal with the problems of heavy ion collisions properly.
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I. INTRODUCTION

For a long time people believed that quark-number
(or baryon-number) susceptibility (the second order)
should develop some singularity [1,2] near the critical
end point (CEP) [3] of the quantum chromodynamics
(QCD) phase transitions [4,5] from hadronic matter to
the quark-gluon plasma (QGP). To determine the location
of the CEP, a lot of phenomenological models [6–14] and
lattice QCD [15–17] calculations are carried out.
It is well known that the nth cumulant of baryon-number

fluctuations is proportional to the nth order of baryon-
number susceptibilities [18–20]. The baryon-number fluc-
tuations, especially the variance, the skewness, and the
kurtosis, are experimental observables (in this paper, the
experimental data come from the STAR experiment at
RHIC [21]). When studying the quark numbers at finite
chemical potential by the fundamental theories of QCD, it
is found that the quark-number density is determined by the
corresponding dressed quark propagator only [22]. Then by
generalizing this conclusion to the most universal situation
of finite temperature and chemical potential [23], we can
calculate the nth order susceptibilities at finite temperature
and chemical potential, and compare them with the
experimental data from RHIC. Here, the crucial factor
of getting a reasonable result from the susceptibilities
is to adopt a reliable dressed quark propagator at finite
temperature and chemical potential. In this paper, we
obtain the dressed quark propagator under the framework
of the Dyson-Schwinger equations (DSEs) approach. The
advantage of the DSEs approach [24–26] is to provide a
nonperturbative method to deal with dynamical chiral

symmetry breaking and confinement at the same time.
Therefore, it is thought to be suitable to explore the QCD
phase transition from hadronic matter to quark-gluon
plasma [27].

II. NONLINEAR SUSCEPTIBILITIES IN
THE DSES FRAMEWORK

From the first principle of QCD theory at zero temper-
ature and finite chemical potential, the quark-number
density is determined by the dressed quark propagator at
finite chemical potential only [22],

ρðμÞ ¼ ð−ÞNcNfZ2

Z
d4p
ð2πÞ4 trγ½G½μ�ðpÞγ4�; ð1Þ

where Nc and Nf represent the number of colors and
flavors, respectively, and G½μ�ðpÞ is the quark propagator;
furthermore, under the rainbow approximation of the
Dyson-Schwinger equations, if we ignore the μ dependence
of the dressed gluon propagator and assume that the dressed
quark propagator at finite μ is analytic in the neighborhood
of μ ¼ 0, then we can obtain the following expression
[28,29]:

G−1½μ�ðpÞ ¼ G−1ð ~pÞ; ð2Þ

where ~p ¼ ð~p; p4 þ iμÞ, μ is the quark chemical potential,
and Z2 ¼ Z2ðζ2;Λ2Þ is the quark wave-function renorm-
alization constant (ζ is the renormalization point and Λ is
the regularization mass scale).
By replacing the integration over the fourth component

of momentum with explicit summation over Matsubara
frequencies, this conclusion is generalized to the situation
at finite temperature [23],
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ρðT; μÞ ¼ ð−ÞNcNfT
Xþ∞

i¼−∞

Z
d3p
ð2πÞ3 trγ½Gð ~pnÞγ4�; ð3Þ

where p4 ¼ ωn þ iμ with fermion frequencies ωn ¼
ð2nþ 1ÞπT, and in this study we put the regularization
mass scale at infinity so that all renormalization constants
including Z2 are 1.
The relation between the baryon-number density and the

quark-number density is that ρB ¼ 1
3
ρðT; μÞ. Then the (n-1)

th derivatives of ρB, by the baryon chemical potential μB,
are defined as the nonlinear susceptibilities of baryons of
order n [30].

χðnÞB ¼ ∂n−1

∂μn−1B
ρB ¼ ∂n−1

3n∂μn−1 ρðT; μÞ

¼ ð−ÞNcNfT

3n

Xþ∞

i¼−∞

Z
d3p
ð2πÞ3 trγ

�∂n−1Gð ~pnÞ
∂μn−1 γ4

�
: ð4Þ

In dealing with the derivatives of the dressed quark
propagator, we adopt the following identity:

∂Gð ~pnÞ
∂μ ¼ −Gð ~pnÞ

∂G−1ð ~pnÞ
∂μ Gð ~pnÞ: ð5Þ

According to the Ward identity, we can get the
expression [23]

Γð1Þ
4 ð ~pn; 0Þ ¼ −

∂G−1ð ~pnÞ
∂μ ; ð6Þ

then

∂Gð ~pnÞ
∂μ ¼ Gð ~pnÞΓð1Þ

4 ð ~pn; 0ÞGð ~pnÞ: ð7Þ

Similarly, we get the following expressions:

∂2Gð ~pnÞ
∂μ2 ¼ Gð ~pnÞ½2Γð1Þ

4 ð ~pn; 0ÞGð ~pnÞΓð1Þ
4 ð ~pn; 0Þ

þ Γð2Þ
4 ð ~pn; 0Þ�Gð ~pnÞ; ð8Þ

∂3Gð ~pnÞ
∂μ3 ¼ Gð ~pnÞ½6Γð1Þ

4 ð ~pn; 0ÞGð ~pnÞΓð1Þ
4 ð ~pn; 0ÞGð ~pnÞ

× Γð1Þ
4 ð ~pn; 0Þ þ 3Γð1Þ

4 ð ~pn; 0ÞGð ~pnÞΓð2Þ
4 ð ~pn; 0Þ

þ 3Γð2Þ
4 ð ~pn; 0ÞGð ~pnÞΓð1Þ

4 ð ~pn; 0Þ
þ Γð3Þ

4 ð ~pn; 0Þ�Gð ~pnÞ; ð9Þ

where

Γð2Þ
4 ð ~pn; 0Þ ¼

Γð1Þ
4 ð ~pn; 0Þ

∂μ ¼ −
∂2G−1ð ~pnÞ

∂μ2 ;

Γð3Þ
4 ð ~pn; 0Þ ¼

Γð2Þ
4 ð ~pn; 0Þ

∂μ ¼ −
∂3G−1ð ~pnÞ

∂μ3 : ð10Þ

In order to get a reasonable dressed quark propagator
at finite temperature and chemical potential, we turn to the
rainbow approximation of the Dyson-Schwinger equations,
as mentioned in Ref. [23],

Gð ~pkÞ−1 ¼ iγ · ~pk þm

þ 4

3
T

Xþ∞

i¼−∞

Z
d3q
ð2πÞ3 g

2Deff
μν ð ~pk − ~qnÞγμGð ~qnÞγν;

ð11Þ

and here we adopt the rank-1 separable model, in which the
gluon propagator is proposed in Refs. [31,32] as

g2Deff
μν ð ~pk − ~qnÞ ¼ δμνD0f0ð ~p2

kÞf0ð ~q2nÞ; ð12Þ

where f0ð ~p2
nÞ ¼ expð− ~p2

n=Λ2Þ, with Λ ¼ 0.678 GeV,
D0Λ2 ¼ 128.0, and the degenerated light quark mass m ¼
6.6 MeV [32]; these parameters are found to be successful
in describing light flavor pseudoscalar and vector meson
observables.
At the same time, the quark propagator is generally

decomposed as

G−1ð ~pkÞ ¼ i~γ · ~pAð ~p2
kÞ þ iγ4 ~ωkCð ~p2

kÞ þ Bð ~p2
kÞ: ð13Þ

For the rank-1 separable model, the rainbow-
DSEs solution is Að ~p2

kÞ ¼ Cð ~p2
kÞ ¼ 1 and Bð ~p2

kÞ ¼ mþ
bðT; μÞf0ð ~p2

kÞ. Then the propagator is finally read as

G−1ð ~pkÞ ¼ i~γ · ~pþ iγ4 ~ωk þmþ bðT; μÞf0ð ~p2
kÞ: ð14Þ

Following the expression above, we get the conclusion
that

∂G−1ð ~pnÞ
∂μ ¼−γ4þbð1ÞðT;μÞf0ð ~p2

kÞþbðT;μÞfð1Þ0 ð ~p2
kÞ;

∂2G−1ð ~pnÞ
∂μ2 ¼bð2ÞðT;μÞf0ð ~p2

kÞþ2bð1ÞðT;μÞfð1Þ0 ð ~p2
kÞ

þbðT;μÞfð2Þ0 ð ~p2
kÞ;

∂3G−1ð ~pnÞ
∂μ3 ¼bð3ÞðT;μÞf0ð ~p2

kÞþ3bð2ÞðT;μÞfð1Þ0 ð ~p2
kÞ

þ3bð1ÞðT;μÞfð2Þ0 ð ~p2
kÞþbðT;μÞfð3Þ0 ð ~p2

kÞ; ð15Þ

where fðnÞ0 ð ~p2
kÞ is the nth derivatives of f0ð ~p2

kÞ by μ, and
bðnÞðT; μÞ is the nth derivative of bðT; μÞ by μ similarly.
bðT; μÞ and bðnÞðT; μÞ are solved numerically, which is
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shown in the appendix in detail. Then substituting
Eqs. (7)–(9) and Eqs. (14)–(15) into Eq. (4), we can get
the results of χðnÞB .

III. RESULTS

Our interest in the nonlinear susceptibilities comes from
the fact that they are related to cumulants of the baryon-
number fluctuations in a grand canonical ensemble [19,33].
And the details of the correlation are [18]

Sσ ¼ Tχð3ÞB

χð2ÞB

;

κσ2 ¼ T2χð4ÞB

χð2ÞB

;

κσ

S
¼ Tχð4ÞB

χð3ÞB

; ð16Þ

where σ2 is the variance, S is the skewness, and κ is the
kurtosis.
In Fig. 1, Sσ, κσ2, and κσ

S are shown as a function offfiffiffiffiffiffiffiffi
SNN

p
for Auþ Au collisions at RHIC. The corresponding

freeze-out chemical potential μB to
ffiffiffiffiffiffiffiffi
SNN

p
is also shown on

the top of the picture. The correlations between
ffiffiffiffiffiffiffiffi
SNN

p
and

the bulk properties (μB and T) of chemical freeze-out are
discussed in Refs. [34–37]. Here, we adopt that

TðμBÞ ¼ a − bμ2B − cμ4B;

μBð
ffiffiffiffiffiffiffiffi
SNN

p
Þ ¼ d

1þ e
ffiffiffiffiffiffiffiffi
SNN

p ; ð17Þ

where a¼0.166�0.002GeV, b ¼ 0.139� 0.016 GeV−1,
c ¼ 0.053� 0.021 GeV−3, d ¼ 1.308� 0.028 GeV, and
e ¼ 0.273� 0.008 GeV−1 [36]. In Table I, the correspond-
ing T, μB, and μ to

ffiffiffiffiffiffiffiffi
SNN

p ¼ 19.6, 62.4, 200 GeV are
calculated by Eq. (17), respectively. The results that we
obtain under the framework of Dyson-Schwinger equations
are compared with lattice QCD and experimental data. The
lattice QCD calculations, with a cutoff of 1=a ≅ 960 to
1000 MeV, was carried out by using two flavors of quark
[38]. The experimental data come from Auþ Au collisions
at RHIC, in which impact parameter values are less than
3fm [21].
In Fig. 1, it is shown that, comparing with the lattice data,

our DSE results demonstrate less fitness with the exper-
imental data on the top two plots. Conversely, as to the
value of κσ

S , our results fit better to the experimental data
than the lattice. To explore what makes this difference, we
fix the value of quark chemical potential μ at 77, 28, and
9 MeV, and calculate Sσ, κσ2, and κσ

S by changing the
temperature T from 100 to 160 MeV. And the results are
shown in Fig. 2.
The motivation of our exploration of the temperature

region smaller than 160 MeV comes from the conclusion
obtained in Ref. [23], which adopts similar approximations
as ours. In that paper, it is concluded that while the
chemical potential of the CEP obtaining from the rank-1
separable model (μCEP ¼ 164 MeV) is located in the region
of the experimental estimate(μCEP ∼ 150–180 MeV) [39],
which is obtained by extracting η=s from an elliptic flow
excitation function, the CEP temperature TCEP ¼ 117 MeV
is smaller than its corresponding experimental estimated
results TCEP ∼ 165–170 MeV [39]. Besides, Ref. [23] gives
the pseudocritical temperature at Tc ¼ 150 MeV; it is also
smaller than the value of Tc ¼ 175 MeV [18], which is
obtained through a comparison of thermodynamic fluctua-
tions predicted in lattice with the experimental data. This
characteristic of μ and T inspires us to study the temper-
atures smaller than those in Table I and at the same time fix
the chemical potentials unchanged as in Table I.
In Fig. 2 the results of Sσ, κσ2, and κσ

S (three curves) are
shown as a function of T at μ ¼ 77, 28 and 9 MeV,

FIG. 1. Comparison of the DSE results, lattice QCD, and
experimental data for Sσ, κσ2, and κσ

S at
ffiffiffiffiffiffiffiffi
SNN

p ¼ 19.6, 62.4,
200 GeV. The black boxes are the experimental data and the stars
are the lattice results. Our DSE results are shown by the circles.

TABLE I. Correlation between
ffiffiffiffiffiffiffiffi
SNN

p
, temperature, baryon,

and quark chemical potential.
ffiffiffiffiffiffiffiffi
SNN

p
(GeV) T (MeV) μB (MeV) μ (MeV)

19.6 159 229 77
62.4 165 82 28
200 166 27 9
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respectively. The three horizontal lines in each plot of Fig. 2
represent the corresponding results of Sσ, κσ2, and κσ

S at
RHIC experiments. Inside the region of the circle in each
plot, the three experimental data (horizontal lines) all have
an intersection with the corresponding DSE result curves.
That is to say, in this region the DSE results fit the
experimental data completely. And the region, shown in
the three plots, is during the value of T from 138 to
145 MeV, which is approximately 20 MeV smaller than the
temperature given in Table I. The reduction of temperature
is consistent with the conclusion of Ref. [23]. Combining
the results obtained in Ref. [23] and this paper, it indicates
that if we adopt the rank-1 separable model of DSEs,
Eq. (17) is not suitable to determine the freeze-out temper-
ature correlated to a certain

ffiffiffiffiffiffiffiffi
SNN

p
.

Finally, as a supplement to Fig. 2, we fix T at 160 and
166 MeV, and calculate Sσ, κσ2, and κσ

S as a function of μ.
The results of Sσ and κσ2 are shown in Fig. 3. The curves in
each plot represent our results and the horizontal line
represents the smallest one of the corresponding exper-
imental data at

ffiffiffiffiffiffiffiffi
SNN

p ¼ 19.6, 62.4 and 200 GeV. In Fig. 3,

we can see that the DSE results are all too small to compare
with the experimental data. It indicates once more that
while the chemical potential determined by Eq. (17) is
acceptable, the temperature value determined is inadequate
for the rank-1 separable model of DSEs. That the reason
causing this T reduction comes from whether our simpli-
fication of the dressed quark propagator or the approx-
imations of the rank-1 separable model is one aspect of our
further study, since the rank-1 separable model is in some
sense a big approximation of the gluon propagator.
Actually, in order to draw some more reliable conclusions,
some further studies by us, adopting more elegant gluon
models (such as Refs. [13,14]), are on the road [40].
According to the three figures above, it can be concluded

that following the values of T and μ shown in Table I, which
are determined by Eq. (17), our results of Sσ and κσ2 cannot
fit the experimental data well; if we fix μ at 77, 28 and
9 MeV and show Sσ, κσ2, and κσ

S as a function of T, it is
found that the DSE results fit the experimental results
completely well when T changes from 138 to 145 MeV; no
matter what value of μ is chosen, our results are much
smaller than the experimental data during the region of
temperature given by Table I (from 159 to 166 MeV).

IV. SUMMARY

Except the singularity near the CEP of QCD phase
transition, the baryon-number susceptibilities are also
correlated with the cumulant of baryon-number fluctua-
tions. Therefore, we can get the fluctuations by the
calculation of the susceptibilities and compare them with
the experimental data. According to the QCD theories the

FIG. 2 (color online). The results of Sσ, κσ2, and κσ
S are shown in

three curves as a function of T in each plot. The three horizontal
lines in each plot represent the corresponding experimental
results of Sσ, κσ2, and κσ

S at RHIC. And the circle in each plot
demonstrates the region where the three experimental data
(horizontal lines) all have an intersection with the corresponding
DSE result curves.

FIG. 3 (color online). Sσ and κσ2 are shown as a function of μ in
each plot. And the horizontal line represents the smallest one of
the corresponding experimental data at

ffiffiffiffiffiffiffiffi
SNN

p ¼ 19.6, 62.4, and
200 GeV.

A-MENG ZHAO et al. PHYSICAL REVIEW D 90, 114031 (2014)

114031-4



quark-number density is determined by the dressed quark
propagator only, since then the problem is covert to find
a reliable dressed quark propagator. Here, we adopt the
dressed quark propagator under the framework of the DSE
approach, which is thought to be suitable to study the QCD
phase transitions.
We compare our results obtained under the DSEs

framework with lattice QCD and experimental data at
RHIC. The DSE results can fit the experimental data of
κσ
S well. But if the region of T is moved from 159–166 MeV
to 138–145 MeV, the DSE results fit the experimental data
completely well. The fitness indicates that the method of
Dyson-Schwinger equations is reliable and productive in
dealing with the relativistic heavy ion collisions. To solve
the Dyson-Schwinger equations, we adopt the rank-1
separable model, which makes a simplification to the gluon
propagator. Actually, in order to draw some more reliable
conclusions, some further studies by us, adopting more
elegant gluon models (such as Refs. [13,14]), are already
on the road. At the same time, we do not take into account

the influence of the magnetic field that was probably
created in QGP. And these two aspects are the directions
for our further studies.
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APPENDIX: bðT; μÞ AND ITS nTH DERIVATIVES

For the rank-1 separable model, the rainbow-
DSEs solution is Að ~p2

kÞ ¼ Cð ~p2
kÞ ¼ 1 and Bð ~p2

kÞ ¼
mþ bðT; μÞf0ð ~p2

kÞ, where bðT; μÞ satisfies the following
equation:

bðT; μÞ ¼ 16

3
D0T

Xþ∞

i¼−∞

Z
d3q
ð2πÞ3

f0ð ~q2nÞ½mþ bðT; μÞf0ð ~q2nÞ�
½ ~q2n þ ðmþ bðT; μÞf0ð ~q2nÞÞ2�

: ðA1Þ

we can obtain the value of bðT; μÞ by solving Eq. (A1) numerically.
We define that

w1 ¼ f0ð ~q2nÞ½mþ bðT; μÞf0ð ~q2nÞ�; w2 ¼ ½ ~q2n þ ðmþ bðT; μÞf0ð ~q2nÞÞ2�; ðA2Þ

then by taking derivatives of Eq. (A1), we get a new equation of bð1Þðμ; TÞ,

bð1Þðμ; TÞ ¼ ∂bðT; μÞ
∂μ ¼ 16

3
D0T

Xþ∞

i¼−∞

Z
d3q
ð2πÞ3

wð1Þ
1 w2 − w1w

ð1Þ
2

w2
2

; ðA3Þ

where

wð1Þ
1 ¼ ∂w1

∂μ ¼ fð1Þ0 ð ~q2nÞðmþ bðT; μÞf0ð ~q2nÞÞ þ f0ð ~q2nÞðbðT; μÞfð1Þ0 ð ~q2nÞ þ bð1ÞðT; μÞf0ð ~q2nÞÞ;

wð1Þ
2 ¼ ∂w2

∂μ ¼ 2ðmþ bðT; μÞf0ð ~q2nÞÞðbðT; μÞfð1Þ0 ð ~q2nÞ þ bð1ÞðT; μÞf0ð ~q2nÞÞ þ 2i ~ωn;

fð1Þ0 ð ~q2nÞ ¼
∂
∂μ f0ð ~q

2
nÞ ¼ −

2i ~ωn

Λ2
f0ð ~q2nÞ; ðA4Þ

then, similarly, we can get bð1Þðμ; TÞ by solving Eq. (A3).
Then, by the same way, we obtain the second and third derivatives of bðT; μÞ:

bð2Þðμ; TÞ ¼ ∂2bðT; μÞ
∂μ2 ¼ 16

3
D0T

Xþ∞

i¼−∞

Z
d3q
ð2πÞ3

ðwð2Þ
1 w2 − w1w

ð2Þ
2 Þw2 − 2wð1Þ

2 ðwð1Þ
1 w2 − w1w

ð1Þ
2 Þ

w3
2

; ðA5Þ

where
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wð2Þ
1 ¼ fð2Þ0 ð ~q2nÞðmþ bðT; μÞf0ð ~q2nÞÞ þ 2fð1Þ0 ð ~q2nÞðbðT; μÞfð1Þ0 þ bð1ÞðT; μÞf0ð ~q2nÞÞ þ f0ð ~q2nÞðbðT; μÞfð2Þ0 ð ~q2nÞ

þ 2bð2ÞðT; μÞfð1Þ0 ð ~q2nÞ þ bð2ÞðT; μÞf0ð ~q2nÞÞ;
wð2Þ
2 ¼ −2þ 2ðbðT; μÞfð1Þ0 ð ~q2nÞ þ bð1ÞðT; μÞf0ð ~q2nÞÞ2 þ 2ðmþ bðT; μÞf0ð ~q2nÞÞðbðT; μÞfð2Þ0 ð ~q2nÞ þ 2bð1ÞðT; μÞfð1Þ0 ð ~q2nÞ

þ bð2ÞðT; μÞf0ð ~q2nÞÞ

fð2Þ0 ð ~q2nÞ ¼
∂2

∂μ2 f0ð ~q
2
nÞ ¼

2

Λ2
f0ð ~q2nÞ −

2i ~ωn

Λ2
fð1Þ0 ð ~q2nÞ; ðA6Þ

and

bð3Þðμ; TÞ ¼ ∂3bðT; μÞ
∂μ3 ¼ 16

3
D0T

Xþ∞

i¼−∞

Z
d3q
ð2πÞ3

�
wð3Þ
1 w2 − 3wð2Þ

1 wð1Þ
2 − 3wð1Þ

1 wð2Þ
2 − w1w

ð3Þ
2

w2
2

− 6
w1w2w

ð1Þ
2 wð2Þ

2 þ wð1Þ
1 w2ðwð1Þ

2 Þ2 − w1ðwð1Þ
2 Þ3

w4
2

�
; ðA7Þ

where

wð3Þ
1 ¼ fð3Þ0 ð ~q2nÞðmþ bðT; μÞf0ð ~q2nÞÞ þ 3fð2Þ0 ð ~q2nÞðbðT; μÞfð1Þ0 ð ~q2nÞ þ bð1ÞðT; μÞf0ð ~q2nÞÞ

þ 3fð1Þ0 ð ~q2nÞðbðT; μÞfð2Þ0 ð ~q2nÞ þ 2bð1ÞðT; μÞfð1Þ0 ð ~q2nÞ þ bð2ÞðT; μÞf0ð ~q2nÞÞ
þ f0ð ~q2nÞðbðT; μÞfð3Þ0 ð ~q2nÞ þ 3bð1ÞðT; μÞfð2Þ0 ð ~q2nÞ þ 3bð2ÞðT; μÞfð1Þ0 ð ~q2nÞ þ bð3ÞðT; μÞf0ð ~q2nÞÞ;

wð3Þ
2 ¼ 6ðbðT; μÞfð1Þ0 ð ~q2nÞ þ bð1ÞðT; μÞf0ð ~q2nÞÞðbðT; μÞfð2Þ0 ð ~q2nÞ þ 2bð1ÞðT; μÞfð1Þ0 ð ~q2nÞ þ bð2ÞðT; μÞf0ð ~q2nÞÞ

þ 2ðmþ bðT; μÞf0ð ~q2nÞÞ � ðbðT; μÞfð3Þ0 ð ~q2nÞ þ 3bð1ÞðT; μÞfð2Þ0 ð ~q2nÞ þ 3bð2ÞðT; μÞfð1Þ0 ð ~q2nÞ þ bð3ÞðT; μÞf0ð ~q2nÞÞ;
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