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We study the kinematic cusps and endpoints of processes with the “antler topology” as a way to measure
themasses of the parity-oddmissing particle and the intermediate parent at a high energy lepton collider. The
fixed center-of-mass energy at a lepton collider makes many new physics processes suitable for the study of
the antler decay topology. It also provides new kinematic observables with cusp structures, optimal for the
missing mass determination. We also study realistic effects on these observables, including initial state
radiation, beamstrahlung, acceptance cuts, and detector resolution.We find that the new observables, such as
the reconstructed invariant mass of invisible particles and the summed energy of the observable final state
particles, appear to be more stable than the commonly considered energy endpoints against realistic factors
and are very efficient at measuring themissing particlemass. For the sake of illustration, we study smuon pair
production and chargino pair production within the framework of the minimal supersymmetric standard
model. We adopt the log-likelihood method to optimize the analysis. We find that at the 500 GeV
international linear collider (ILC), a precision of approximately 0.5GeV can be achieved in the case of smuon
production with a leptonic final state, and approximately 2 GeV in the case of chargino production with a
hadronic final state.
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I. INTRODUCTION

With the monumental discovery of the Higgs boson
at the LHC [1], all of the fundamental particles in the
standard model (SM) have been discovered. The SM as an
effective field theory can be valid up to a very high scale.
Nevertheless, there are strong indications that the SM is
incomplete. Certain observed particle physics phenomena
cannot be accounted for within the SM. Among them, the
discovery and characterization of the dark matter (DM)
particle may be one of the most pressing issues.
The existence of dark matter has been well established

through a combination of galactic velocity rotation curves
[2], the cosmic microwave background [3], big bang
nucleosynthesis [4], gravitational lensing [5], and the bullet
cluster [6]. As a result of these observations, we know that
dark matter is nonbaryonic, electrically neutral and com-
poses roughly 23% of the energy and 83% of the matter of
the Universe.
Among the many possibilities for dark matter [7],

weakly interacting massive particles (WIMPs) are arguably
the most attractive because of the so-called WIMP miracle:
to get the relic abundance right, a WIMP mass is roughly

MWIMP ≲ g2

0.3
1.8 TeV; ð1Þ

which miraculously coincides with the new physics scale
expected from the “naturalness” argument for electroweak

physics. Therefore, there is a high hope that the search for
a dark matter particle may be intimately related to the
discovery of TeV scale new physics.
Direct searches of weak scattering of dark matter off

nuclear targets in underground labs have been making great
progress in improving the sensitivity to the DM mass
and couplings, most recently by the XENON [8], LUX [9],
and SuperCDMS [10] collaborations. WIMPs can also be
produced at colliders either directly in pairs or from cascade
decays of other heavier particles. Since a WIMP is non-
baryonic and electrically neutral, it does not leave any trace
in the detectors and thus only appears as missing energy. In
order to establish a DM candidate convincingly, it is
ultimately important to reach consistency between direct
searches and collider signals for the common parameters of
mass, spin, and coupling strength.
It is very challenging to determine the missing particle

mass at colliders due to the under-constrained kinematical
system with two missing particles in an event. It is
particularly difficult at hadron colliders because of the
unknown partonic center-of-mass (c.m.) energy and frame.
There exist many attempts to determine the missing particle
mass at the LHC, such as endpoint methods [11], poly-
nomial methods [12], MT2 methods [13], and the matrix
element method [14]. Recently, we studied the “antler
decay” diagram [15], as illustrated in Fig. 1 with a resonant
decay of a heavy particle D into two parity-odd particles
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(B1 and B2) at the first step, followed by each Bi’s decay
into a missing particle Xi and a visible particle ai. We found
that a resonant decay through the antler diagram develops
cusps in some kinematic distributions and the cusp posi-
tions along with the endpoint positions determine the
missing particle mass as well as the intermediate particle
mass [15–17].
In this article, we focus on lepton colliders [18–20], in

which the antler topology applies. The initial state is well
defined with fixed c.m. energy and c.m. frame. This allows
various antler processes without going through a resonant
decay of a heavy particle D. We consider kinematic
variables such as the angle and the energy of a visible
particle for the mass determination. We also show that the
invariant mass of two invisible particles, which can be
indirectly reconstructed using the recoil mass technique, is
crucial for the mass measurement and the SM background
suppression. The energy sum of the two visible particles or
of the two invisible particles will also be shown to be
equally powerful. At a linear eþe− collider, the available
beam polarization can additionally be used to suppress the
SM background and enhance the sensitivity of the mass
measurement.
Two common methods of the missing mass measurement

have been studied in the literature for eþe− collisions:
(1) The lepton energy endpoints in cascade decays [21].
(2) The photon energy endpoint in the direct WIMP pair

production associated with a photon [22].
In comparison, we find that our results from the antler
topology can be at least comparable to the energy endpoint
method and are much better than the single photon
approach. For the sake of illustration, we will concentrate
on the minimal supersymmetric standard model (MSSM)
and consider the scenario where the lightest neutralino ~χ01 is
the lightest supersymmetric particle (LSP) and, therefore,
stable in the framework of an R-parity conserving scenario.
We consider two MSSM processes that satisfy the antler
topology: pair production of scalar muons (smuons) and
that of charginos. In order to be as realistic as possible with
the kinematical construction, we analyze the effects of the
initial state radiation (ISR), beamstrahlung, acceptance

cuts, and detector resolutions on the observables. We adopt
the log-likelihood method based on Poisson statistics to
quantify the precision of the mass measurements. We find
that this method optimizes the sensitivity to the mass
parameters in the presence of these realistic effects.
We note that the scanning through the pair production

threshold could give a much more accurate determination
for the intermediate parent mass [23]. With this as an input,
one could improve the measurement of the missing particle
mass by the energy endpoint method or by the Antler
technique. However, the threshold scan would require
a priori knowledge of the intermediate particle mass,
and would need more integrated luminosity to reach such
a high sensitivity [23]. Our proposed method does not
assume to know any masses, and our outputs would benefit
the design of the threshold scan.
The rest of the paper is organized as follows. In Sec. II,

we review the kinematic cusps and endpoints of antler
processes. We present the analytic expressions for six
kinematic variables in terms of the masses. For a bench-
mark scenario, we first show smuon pair production as an
example of massless visible particles in Sec. III. We
reproduce the expected kinematical features numerically
and illustrate the effects of the acceptance cuts on the final
state observable particles. Other realistic effects including
full spin correlation, SM backgrounds, ISR, beamstrahlung,
and detector resolutions are considered. Adopting the log-
likelihood method based on the Poisson probability density,
we quantify the accuracy with which the missing particle
mass measurement may be determined in Sec. III D. In
Sec. IV, chargino pair production is studied, as an example of
massive visible particles with a hadronic final state. In
Sec. V, we give a summary and draw our conclusions.

II. CUSPS AND ENDPOINTS OF THE
ANTLER PROCESS

We start from a state with a fixed c.m. energy
ffiffiffi
s

p
, which

produces two massive particles B1 and B2, followed by
each B’s decay into a visible particle a and an invisible
heavy particle X, as depicted in Fig. 1. In eþe− collisions, it
is realized as

eþe− → B1 þ B2;

B1 → a1 þ X1; B2 → a2 þ X2: ð2Þ

For simplicity, we further assume that B1 and B2 (X1 and
X2) are identical particles to each other:

mB1
¼ mB2

≡mB; mX1
¼ mX2

¼ mX: ð3Þ

The kinematics is conveniently expressed by the rapiditiies
ηj (equivalent to the speed β ¼ j~pj=E), which specifies the
four-momentum of a massive particle j from a two-body
decay of i → jþ k in the rest frame of the parent particle

FIG. 1. The antler decay diagram of a heavy particleD into two
visible particles a1 and a2 and two invisible particles X1 and X2

through on-shell intermediate particles B1 and B2.
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i as pðiÞ
j ¼ mjðcosh ηj; p̂ðiÞ

j sinh ηjÞ. In general, the kin-
ematics of Eq. (2) is determined by three rapidities of the
intermediate particle B, the visible particle a, and the
missing particle X, given by

cosh ηB ¼
ffiffiffi
s

p
2mB

; cosh ηa ¼
m2

B −m2
X þm2

a

2mamB
;

cosh ηX ¼ m2
B −m2

a þm2
X

2mXmB
: ð4Þ

Note that in the massless visible particle case ðma ¼ 0Þ the
rapidity ηa goes to infinity.
We find the distributions of the following six kinematic

variables informative:

maa; mrec; cosΘ; Ea; Eaa; EXX: ð5Þ

(i) maa distribution:maa is the invariant mass of the two
visible particles. This distribution accommodates
three singular points: a minimum, a cusp, and a
maximum. Their positions are not uniquely deter-
mined by the involved masses. They differ according
to the relative scales of masses. There are three
regions [16]

R1∶ηB <
ηa
2
; R2∶

ηa
2
< ηB < ηa; R3∶ηa < ηB:

ð6Þ

The cusps and endpoints in the three regions are
given in Table I. The minimum endpoint is the
same for R1 and R2 but different for R3. The cusp
is the same for R2 and R3, which is different
for R1. The maximum endpoints are the same
for all three regions. The absence of a priori
knowledge of the masses gives us ambiguity
among R1, R2, and R3. For example we do
not know whether the measured mmin

aa is 2ma or
2ma coshðηB − ηaÞ.
In the massless visible particle case, however,

three singular positions are uniquely determined as

mmin
aa ¼ 0;

mcusp
aa ¼ mB

�
1 −

m2
X

m2
B

�
e−ηB ;

mmax
aa ¼ mB

�
1 −

m2
X

m2
B

�
eηB : ð7Þ

According to the analytic function for the maa
distribution [15], the maa cusp is sharp only when
the B pair production is near threshold, i.e.
when 0.443

ffiffiffi
s

p
< mB < 0.5

ffiffiffi
s

p
.

(ii) mrec distribution: The invariant mass of two invisible
particles, denoted by mrec, can be measured through
the relation

m2
rec ≡m2

XX ¼ s − 2
ffiffiffi
s

p ðEa1 þ Ea2Þ þm2
aa: ð8Þ

The mrec distribution is related to the invariant mass
distribution of massive visible particles because of
the symmetry of the antler decay topology. It also
has three singular points, mmin

rec , m
cusp
rec , and mmax

rec .
Their positions are as in Table I, with replacement of
ma → mX and ηa → ηX.

(iii) Ea distribution: The energy distribution of one
visible particle in the lab frame also provides
important information about the masses. If the
intermediate particle B is a scalar particle like a
slepton, its decay is isotropic and thus produces a flat
rectangular distribution. Two endpoints, Emin

a and
Emax
a , are determined by the masses:

Emax;min
a ¼

ffiffiffi
s

p
4

�
1 −

m2
X −m2

a

m2
B

�

×

0
@1� βB

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 −

4m2
am2

B

ðm2
B þm2

a −m2
XÞ2

s 1
A;

ð9Þ

where βB is defined by

βB ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 −

4m2
B

s

r
: ð10Þ

Note that if mB ≪
ffiffiffi
s

p
=2 or mX ≈mB, then Emin

a can
be very small, even below the experimental accep-
tance for observation.

(iv) Eaa distribution: The distribution of the combined
energy of the a1a2 system, Eaa ≡ Ea1 þ Ea2 , is
triangular, leading to three singular positions,
Emin
aa , Ecusp

aa , and Emax
aa , which are in terms of masses

Emax;min
aa ¼ 2ma coshðηa � ηBÞ;
Ecusp
aa ¼ 2ma cosh ηa cosh ηB: ð11Þ

TABLE I. The cusp and endpoints of the invariant mass
distributionmaa in the three regions of c.m. energy and parameter
space.

R1∶ηB < ηa
2

R2∶
ηa
2
< ηB < ηa R3∶ηa < ηB

mmin
aa 2ma 2ma coshðηB − ηaÞ

mcusp
aa 2ma coshðηB − ηaÞ 2ma cosh ηB

mmax
aa 2ma coshðηB þ ηaÞ
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For ma ¼ 0, we have simpler expressions as

Emax;min
aa jma¼0 ¼

ffiffiffi
s

p
2

�
1 −

m2
X

m2
B

�
ð1� βBÞ;

Ecusp
aa jma¼0 ¼

ffiffiffi
s

p
2

�
1 −

m2
X

m2
B

�
: ð12Þ

(v) EXX distribution: Although the energy of one
invisible particle is not possible to measure, the
sum of two invisible particle energies can be
measured through

EXX ≡ EX1
þ EX2

¼ ffiffiffi
s

p
− Eaa: ð13Þ

The distribution of EXX is a mirror image of the Eaa
distribution, which is triangular with a sharp cusp.

(vi) cosΘ distribution: Here Θ is the angle between the
momentum direction of one visible particle (say a1)
in the c.m. frame of a1 and a2 and the c.m. moving
direction of the pair in the lab frame. Forma ≠ 0, the
cosΘ distribution does not present a sharp cusp or
endpoint [16]. If ma ¼ 0, however, the distribution
has a simple functional form as

dΓ
d cosΘ

����
ma¼0

∝
� 1

sin3Θ ; for j cosΘj < βB;

0; otherwise;
ð14Þ

which accommodates two pronounced peaks where
the cusp and the maximum endpoint meet at
cosΘ ¼ �βB.

III. MASSLESS VISIBLE PARTICLE CASES:
SMUON PAIR PRODUCTION

For the massless observable particles a1 and a2, we
now present the general feature based on the previous
discussions and demonstrate the observable aspects
for the missing mass measurements at the international
linear collider (ILC). Throughout this paper, we choose to
show the results for the c.m. energyffiffiffi

s
p ¼ 500 GeV:

A. The kinematics of cusps and endpoints

A lepton collider is an ideal place to probe the charged
slepton sector of the MSSM. To illustrate the basic features
of cusps and endpoints at the ILC, we consider smuon pair
production. In principle, the scalar nature of the smuon can
be determined by the shape of the total cross section near
threshold and the angular distributions of the final muons
[24]. There are two kinds of smuons, ~μL and ~μR, scalar
partners of the left-handed and right-handed muons,
respectively. A negligibly small mass of the muon

suppresses the left-right mixing and thus makes ~μL and
~μR the mass eigenstates. The smuon pair production in
eþe− collisions is via s-channel diagrams mediated by a
photon or a Z boson. Since the exchanged particles are
vector bosons, the helicities of eþ and e− are opposite to
each other, and only two kinds of pairs, ~μþR ~μ

−
R and ~μþL ~μ

−
L, are

produced. If the lightest neutralino ~χ01 has a dominant Bino
component, ~μR predominantly decays into μ~χ01. The decay
of ~μL → μ~χ01 is also sizable. At the ILC, the process
eþe− → ~μR ~μR=~μL ~μL → μ~χ01 þ μ~χ01 has a substantial rate.
The final state we observe is

eþe− → μþμ− þE: ð15Þ

This is one good example of the antler process. However,
we note that the leading SM process, WþW− production
followed by W → μνμ, is also of the antler structure.
For illustrative purposes of the signals, we consider

two benchmark points for the MSSM parameters, called
case A and case B, as listed in Table II. These two cases
have the same mass spectra, except for the ~μL mass. In
case A, ~μL is too heavy for the pair production atffiffiffi
s

p ¼ 500 GeV. We have a simple situation where the
new physics signal for the final state in Eq. (15) involves
only ~μR ~μR production. In case B, the ~μL mass comes
down close to the ~μR mass, with a mass gap of about
10 GeV. In this case with m ~μR ≃m~μL , the cross section of
~μR ~μR production is compatible with that of ~μL ~μL pro-
duction. This is because the left-chiral and right-chiral
couplings of the smuon to the Z boson, say gL~μ ~μZ and
gR~μ ~μZ respectively, are accidentally similar in size:

gL~μ ~μZ ¼
−1þ2sin2θW
2sinθW cosθW

≈−0.64; gR~μ ~μZ ¼
sinθW
cosθW

≈0.55:

ð16Þ

In case B, three signals from ~μR ~μR, ~μL ~μL, and WþW− all
have the same antler decay topology. The goal is to
disentangle the information and achieve the mass mea-
surements of ~μR, ~μL, and ~χ01.
It is noted that the LHC searches for slepton direct

production does not reach enough sensitivity with the
current data yet [25] and would be very challenging in
Run II as well for the parameter choices under

TABLE II. Illustrative SUSY mass spectrum for case A, case B
(as introduced in Sec. III A), and case C (as introduced in
Sec. IV). All of the masses are in units of GeV.

Label ~μR ~μL ~χ01 ~χ02 ~χ03 ~χ04 ~χ�1 ~χ�2
Case A (case B) 158 636 (170) 141 529 654 679 529 679
Case C � � � � � � 139 235 504 529 235 515
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consideration, due to the small signal cross section, large
SM backgrounds, and the disfavored kinematics of the
small mass difference. On the other hand, once crossing the
kinematical threshold at a lepton collider, the slepton signal
could be readily established.
In Table III, we list the values of various kinematic

cusps and endpoints for the five variables discussed
above. The mass spectra of the ~μR ~μR antler and the
WþW− antler apply to both case A and case B, while that
of ~μL ~μL applies only to case B. With the given masses,
all of the minimum, cusp, and maximum positions are
determined. They are considerably different from each
other, indicating important complementarity of these
kinematic variables.
In Fig. 2, we show the normalized distributions of

(a) mμμ, (b) mrec, (c) cosΘ, (d) Eμ, and (e) Eμþ þ Eμ−

for ~μR ~μR, ~μL ~μL, and WþW− production at the ILC with a
c.m. energy of 500 GeV. To appreciate the striking features
of the distributions, we have only considered the kinemat-
ics here. The full results including spin correlations, initial
state radiation, beamstrahlung, and detector smearing
effects will be shown, beginning in Sec. III C. First, the
maa distributions for ~μR ~μR, ~μL ~μL, and WþW− production
do not show a clear cusp. This is because the c.m. energy is
too high compared with the intermediate mass to reveal the

maa cusp, which would become pronounced when mB >
0.44

ffiffiffi
s

p
[15]. For B ¼ ~μR, a sharp maa cusp requiresffiffiffi

s
p ≲ 360 GeV. On the contrary, the mrec distributions
for ~μR ~μR and ~μL ~μL in Fig. 2(b) are of the shape of a sharp
triangle. This is attributed to the massive X. For WþW−

production, the missing particles are massless neutrinos,
therefore, the maa distribution is the same as the mrec
distribution.
The cosΘ distributions of ~μR ~μR, ~μL ~μL, and WþW− in

Fig. 2(c) present the same functional behavior, proportional
to 1= sin3 Θ. There are two sharp points where the cusp and
the maximum merge, which correspond to �j cosΘjmax.
The ~μR ~μR and ~μL ~μL processes have similar values of
j cosΘjmax, while the WþW− process peaks at a consid-
erably larger value. Figure 2(d) shows the energy distri-
bution of one visible particle μ. The distributions for the
smuon signals are flat due to their scalar nature, while the
flat distribution for the WþW− channel is artificial due to
the neglect of spin correlation. We will include the full spin
effects from Sec. III C and on.
In principle, the two measurements of Emin

μ and Emax
μ

can determine the two unknown masses mB and mX.
However the minimum of Ea can be below the detection
threshold as in the ~μR case of Emin

μ ≃ 5.8 GeV. One may
thus need another independent observable to determine all
the masses. In addition, overconstraints on the involved
masses are very useful in establishing the new phys-
ics model.
The distribution of Eμμð≡Eμþ þ Eμ−Þ in Fig. 2(e) is

different from the individual energy distribution: the
former is triangular while the latter is rectangular. For ~μR ~μR
and ~μL ~μL, the Eaa distributions are localized so that the
pronounced cusp is easy to identify. For WþW−, however,
the Eaa distribution is widespread.
In order to further understand the singular structure, we

examine four representative configurations in terms of
ðcos θ1; cos θ2Þ, where θ1 and θ2 are the polar angle of
a1 and a2 in the rest frame of their parent particles B1 and
B2, respectively. The correspondence of each corner to a
singular point is as follows:

(17)

TABLE III. The values of various kinematic cusps and end-
points as seen in Fig. 2, for the mass parameters in Table II. All of
the masses and energies are in units of GeV.ffiffiffi
s

p
500 GeV

Production channel ~μR ~μR ~μL ~μL WþW−

Input ðmB;mXÞ (158,141) (170,141) ðmW; 0Þ
j cosΘjmax 0.77 0.73 0.95

ðmmin
μμ ; mcusp

μμ ; mmax
μμ Þ (0,12,91) (0,21,137) (0,13,487)

ðmmin
rec ; m

cusp
rec ; mmax

rec Þ (408,445,488) (363,413,479) (0,13,487)

ðEmin
μ ; Emax

μ Þ (6,46) (11,69) (7,243)

ðEmin
μμ ; Ecusp

μμ ; Emax
μμ Þ (12,52,92) (21,79,137) (13,250,487)
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B. The effects of acceptance cuts

In a realistic experimental setting, the previously dis-
cussed kinematical features may be smeared, rendering the
cusps and endpoints less effective for extracting the mass
parameters. We now study the effects of the accep-
tance cuts.
We first explore the effects due to a missing transverse

momentum (pT) cut, which is essential to suppress the
dominant SM background of eþe− → eþe−μþμ− with the
outgoing eþe− going down the beam line and not detected.
Obviously, the pT cut removes some events, reducing the
event rate. In addition, the pT cut does not apply evenly

over the distribution. The positions of the cusp and
endpoints can be shifted in some cases.
In Fig. 3, we show the effects of a pT cut on the

distributions of mμμ, mrec, cosΘ, Eμ, and Eμμ. We normal-
ize each distribution by the total cross section without
other kinematic cuts. First, the mμμ distributions with
various pT cuts are shown in Fig. 3(a) for

ffiffiffi
s

p ¼
500 GeV and in Fig. 3(f) for

ffiffiffi
s

p ¼ 350 GeV. The mμμ

cusp in the higher c.m. energy case does not present a
notable feature while the lower energy case with

ffiffiffi
s

p ¼
350 GeV has a more pronounced cusp shape. With a pT >
10 GeV cut, the maa distribution retains its triangular

FIG. 2 (color online). The normalized distributions of (a) mμμ, (b) mrec, (c) cosΘ, (d) Eμ, and (e) Eμþ þ Eμ− for the three cases in
Table III, i.e. for ~μR ~μR, ~μL ~μL andWþW− production at

ffiffiffi
s

p ¼ 500 GeV. Here we consider only the kinematics without spin correlations.
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shape, but starts to lose the true cusp and maximum
positions. The shift is a few GeV. If pT > 20 GeV, the
sharp cusp is smeared out and themmax

μμ position is shifted by
about 10 GeV. In both cases, the mmin

μμ remains intact. The
mrec distribution in Fig. 3(b), on the contrary, keeps its
triangular shape even with a high pT cut. It is interesting to
note that the pT cut shifts the mmin

rec and mmax
rec while keeping

themcusp
rec position fixed. Figure 3(e) presents the distribution

of the summed energy of the two visible particles, which are
still triangular after thepT cut. The cusp position is retained,
but the minimum and maximum positions are shifted.

We note that the pT cut does not affect the positions of
the variables mmin

μμ , mcusp
rec , and Ecusp

μμ appreciably, which all
correspond to the kinematical configurations (iii) and (iv) in
Eq. (17). Here the two visible particles (a1a2) move in the
same direction, and two invisible particles (X1X2) move
also in the same direction, opposite to the a1a2 system. A
pT cut would not change the system configuration. In
contrast, for the configurations (i) and (ii) in Eq. (17), a1
and a2 are moving in the opposite direction, and a cut on
the X1X2 system alters the individual particle as well as the
configuration appreciably.

FIG. 3 (color online). Case A for eþe− → ~μR ~μR → μþμ− þ E. Effects due to various pT cuts on (a)mμμ, (b)mrec, (c) cosΘ, (d) Eμ, and
(e) Eμþ þ Eμ− distributions without spin correlation and other realistic effects at

ffiffiffi
s

p ¼ 500 GeV. Each distribution is normalized by the
total cross section. Panel (f) for the mμμ distribution is set to 350 GeV for comparison.
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The least affected variable is the cosΘ distribution in
Fig. 3(c). The j cosΘjmax positions remain the same, and the
pT cut removes the data nearly evenly all over the
distribution. Figure 3(d) shows the Eμ distribution under
the pT cut effects. Similar to the case of cosΘ, the pT cut
reduces the whole rate roughly uniformly, and the box-
shaped distribution is still maintained.
Figure 4 presents the five kinematic distributions with

the effects of the Ea cut. The normalization is done with
the total cross section without any cut. Two mμμ distribu-
tions are presented, one for

ffiffiffi
s

p ¼ 500 GeV in Fig. 4(a) and
the other for

ffiffiffi
s

p ¼ 350 GeV in Fig. 4(f). Both retain its
maximum position after the Ea cut. However, the mμμ cusp

position is shifted by a sizeable amount, approximately
10 GeV for Ea > 15 GeV cut at

ffiffiffi
s

p ¼ 350 GeV. This
behavior is the same for the Eμμ distribution in Fig. 4(e).
The mrec distribution in Fig. 4(b) behaves oppositely: the
maximum and cusp positions are shifted while the mini-
mum position is retained. Therefore, the Ea cut does not
change the one-dimensional configuration (i) of Eq. (17).
The cosΘ distributions under the Ea cuts are shown in

Fig. 4(c). The locations of j cosΘjmax remain approximately
the same, but the sharp cusps are reduced somewhat.
Finally the Ea distribution in Fig. 4(d) shows the expected
shift of its minimum into the lower bound on Ea. Note that
some data satisfying Ea > Ecut

a are also cut off, since the Ea

FIG. 4 (color online). Case A for eþe− → ~μR ~μR → μþμ−E. Effects due to various Ea cuts on the (a)mμμ, (b)mrec, (c) cosΘ, (d) Eμ, and
(e) Eμþ þ Eμ− distributions without spin correlation and other realistic effects at

ffiffiffi
s

p ¼ 500 GeV. Each distribution is normalized by the
total cross section without any other acceptance cut. Panel (f) for the mμμ distribution is set to 350 GeV for comparison.
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cut has been applied to both of the final leptons. In
summary, the acceptance cut distorts the kinematic dis-
tributions, and shifts the singular positions. When we
extract the mass information from the endpoints, these
cut effects must be properly taken into account.

C. Mass measurements with realistic considerations

1. Backgrounds and simulation procedure

For our signal of eþe− → μþμ− þ E, there are substan-
tial SM backgrounds. The main irreducible SM background
isW boson pair production, eþe− → WþW− → μþνμμ−ν̄μ.
The next dominant mode is ZZ production, eþe− → ZZ →
μþμ−νiν̄i where νi denotes a neutrino of all three flavors.
The WþW− background is larger than the ZZ background
by a factor of about 20. In the following numerical
simulation, we include the full SM processes for the final
state μþμ−νν̄.
Another substantial SM background is from eþe− →

eþe−μþμ− where the outgoing eþ and e− go down the
beam pipe and are missed by the detectors. It is mainly
generated by Bhabha scattering with the incoming electron
and positron through a t-channel diagram. This background
could be a few orders of magnitude larger than the signal.
However, a cut on the missing transverse momentum can
effectively remove it. The maximum missing transverse
momentum in this background comes from the final
electron and positron, each of which retains the full energy
(

ffiffiffi
s

p
=2 each) and moves within an angle of 1° with respect

to the beam pipe (at the edge of the end-cap detector
coverage). As a result, most of these background events lie
within

ðpTÞbeam line eþe− ≲ 3 × 250 GeV × sinð1∘Þ≃ 15 GeV:

ð18Þ

We thus design our basic acceptance cuts for the event
selection

Basic cuts∶ Ea ≥ 10 GeV; pT ≥ 15 GeV;

j cos θcml j ≤ 0.9962; maa ≥ 1 GeV; mrec ≥ 1 GeV:

ð19Þ

The angular cut on θcml requires that the observed lepton
lies within 5° from the beam pipe. This angular acceptance
and the invariant mass cut on the lepton pair regularize the
perturbative singularities. We also find that the pT cut
removes the background from eþe− → eþe−τþτ− [26].
In principal, the full SUSY backgrounds should be

included in addition to the ~μR and ~μL signal pair production.
There are many types of SUSY backgrounds. The dom-
inant ones are the production of ~χ01 ~χ

0
j≥2 followed by the

heavier neutralino decay of ~χ0j≥2 → lþl− ~χ01. However,

their contributions are negligible with our mass point
and event selection.
At the ILC environment, it is crucial to consider the other

realistic factors in order to reliably estimate the accuracy
for the mass determination. These include the effects of
ISR, beamstrahlung [27], and detector resolutions. For
these purposes, we adopt the ILC-Whizard setup [28],
which accommodates the SGV-3.0 fast detector simulation
suitable for the ILC [29].

2. Case A: ~μR ~μR pair production

For the mass spectrum in case A, Fig. 5 presents a full
simulation of the five kinematic distributions at

ffiffiffi
s

p ¼
500 GeV with the basic cuts in Eq. (19). The solid (red)
line denotes our signal of the resonant production of a ~μR ~μR
pair. The dashed (blue) line is the total distribution
including our signal and the SM backgrounds.
Themμμ distribution from our signal in Fig. 5(a) does not

reveal the best feature of the antler process. Its cusp is not
very pronounced and its maximum is submerged under the
dominant Z pole. As discussed before, this is because the
c.m. energy of 500 GeV is too high compared with
the smuon mass. On the contrary, the mrec distribution in
Fig. 5(b) separates our signal from the SM backgrounds
well. A sharp triangular shape is clearly seen above the
SM background tail. This separation is attributed to
the weak scale mass of the missing particle X. If X were
much lighter such as MX ≃ 10 GeV, the cusp position in
the mrec distribution of the signal would be shifted to a
lower value and thus overlap with that of the large WþW−

background.
Figure 5(c) presents the cosΘ distributions with the

WþW− background and the ~μR ~μR signal. However, the
highest point of cosΘ (the cusp location) is shifted from
the location of the j cosΘjmax in Table III, by about
2% ∼ 3%. This is from the kinematical smearing due to
ISR and beamstruhlung effects.
Figure 5(d) shows the muon energy distribution, which

consists of two previously box-shaped distributions. Our
signal distribution, which is expected to be flat for a scalar
boson, is distorted by ISR. The SM background, mainly
the WþW− background, shows a more tilted distribution,
which has additional effects from spin correlation. The
reason for the tilted distribution toward higher Eμ is that
theWþW− production has the largest contribution from the
production of W−

LW
þ
R mediated by a t-channel neutrino

[30]. HereW−
L (Wþ

R ) denotes the left-handed (right-handed)
negatively (positively) charged W boson. W−

L has the left-
handed coupling of l−

L-ν̄R-W
−
L so that the decayed l−

L
moves along the parent W− direction and the ν̄ in the
opposite direction. The l− tends to have higher energy.
Even though the Eμ distribution is not flat both for the
signal and the backgrounds, their maximum positions are
the same as predicted in Table III. However, the minimum
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position for theWþW− distribution is below the acceptance
cut while the minimum for the ~μR ~μR signal is approx-
imately the same as the cut. The measurement of these
minima becomes problematic. As a result, the other
kinematic observables discussed here are essential in the
measurement of these masses.
Finally Fig. 5(e) presents the energy sum of two visible

particles. The distribution for our signal is triangular and
separated from the SM backgrounds. Even in the full and
realistic simulation, the cusps and endpoints of the signal
are very visible. In fact, the signal part of the distribution
takes a very similar form to that of mrec.
Understanding those kinematic distributions of our

signal is of great use to suppress the SM background.
For example, we apply an additional cut of

mrec > 350 GeV; ð20Þ

and present the distributions of the same five kinematic
variables in Fig. 6. Our signal, denoted by the solid (red)
lines, remains intact since mmin

rec ¼ 408 GeV for ~μR ~μR. On
the other hand, a large portion of the SM background is
excluded. The antler characteristics of our signal emerge in
the total distributions. We can identify all of the cusp
structures.

3. Case B: Production of ~μR ~μR and ~μL ~μL
We now consider the more complex case B, where three

different antler processes ( ~μR ~μR, ~μL ~μL, and WþW−) are
simultaneously involved. In Fig. 7, we present five
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FIG. 5 (color online). Case A for eþe− → ~μR ~μR → μþμ−E. Basic acceptance cut on the (a) mμμ, (b) mrec, (c) cosΘ, (d) Eμ, and
(e) Eμþ þ Eμ− distributions with spin correlation and other realistic effects. The c.m. energy is set to

ffiffiffi
s

p ¼ 500 GeV for all distributions.
The solid (red) line denotes our signal of the resonant production of a ~μR pair. The dashed (blue) line is the total event including our
signal and the SM backgrounds.
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distributions for case B at
ffiffiffi
s

p ¼ 500 GeV. Here, themrec >
350 GeV cut has been applied to suppress the main SM
backgrounds from WþW−. The solid (red) line is the ~μR ~μR
signal, the dotted (purple) line is from ~μL ~μL. Finally, the
dashed (blue) line is the total differential cross section
including our two signals and the SM backgrounds. Note
that the total rate for ~μR ~μR is compatible with that for ~μL ~μL.
In Fig. 7(a), we show the mμμ distributions. As expected

from the previous analyses, the ~μR ~μR signal leads to a cusp
structure, while ~μL ~μL andWþW− do not due to the specific
mass and energy relations. On the contrary, the mrec
distribution for ~μR ~μR denoted by the solid (red) curve
and that for ~μL ~μL by the dotted (purple) curve do show a
triangle: see Fig. 7(b). The SM background is well under
control after the stringent cuts. The challenge is to extract
the hidden mass information from the observed overall
(dashed blue) curve as a combination of the twin peaks. It is

conceivable to achieve this by a fitting procedure based on
two triangles. Instead, as done below, we demonstrate
another approach by taking advantage of the polarization of
the beams.
Figure 7(c) presents the cosΘ distribution. The visible

cosΘ cusp is usually attributed to the lighter intermediate
particles ( ~μR in our case). A larger j cosΘjmax comes from a
smaller mB with a given c.m. energy. We see that, with our
parameter choice, ~μR ~μR and ~μL ~μL lead to a similar value of
j cosΘjmax, which differ by about 5%.
TheEμ distribution, with the energy endpoint in Fig. 7(d),

is known to be one of the most robust variables. Two
box-shaped distributions are added to create a two-step
stair. Although ISR and beamstrahlung smear the sharp
edges, the observation of the two maxima should be quite
feasible. On the other hand, the determination of Emin

μ could
be more challenging if the acceptance cut for the lepton
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FIG. 6 (color online). Case A for eþe− → ~μR ~μR → μþμ−E. The effect of an additional cut ofmrec > 350 GeV on the (a)mμμ, (b)mrec,
(c) cosΘ, (d) Eμ, and (e) Eμþ þ Eμ− distributions with spin correlation and other realistic effects. The c.m. energy is set to
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s

p ¼
500 GeV for all distributions. The solid (red) line denotes our signal of the resonant production of a ~μR pair. The dashed (blue) line is the
total differential cross section including our signal and the SM backgrounds.
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lower energy threshold overwhelms Emin
μ for ~μR ~μR, and

makes it marginally visible for ~μL ~μL.
Finally, we present the energy sum distribution of two

visible particles in Fig. 7(e). The individual distribution
from ~μR ~μR and ~μL ~μL production leads to impressive sharp
triangles, as those in Fig. 7(b). The challenge is, once again,
to extract the two unknown masses from the observed
summed distribution. We next discuss beam polarization as
a way to accomplish this.
All of the distributions show that the two entangled new

physics signals as well as the SM backgrounds limit the

precise measurements of the cusps and endpoints. The
polarization of the electron and positron beams can play
a critical role in disentangling this information. The
current baseline design of the ILC anticipates at least
80% (30%) polarization of the electron (positron) beam.
By controlling the beam polarization, we can suppress
the SM backgrounds and distinguish the two different
signals. For the ~μR ~μR signal, our optimal setup is Pe− ¼
þ80% and Peþ ¼ −30%, denoted by e−Re

þ
L, while for

the ~μL ~μL signal we apply Pe− ¼ −80% and Peþ ¼
þ30% denoted by e−Le

þ
R.

FIG. 7 (color online). Case B for eþe− → ~μL ~μL; ~μR ~μR → μþμ−E. The additional cut of mrec > 350 GeV is included. We show the
(a)mμμ, (b)mrec, (c) cosΘ, (d) Eμ, and (e) Eμþ þ Eμ− distributions with spin correlation and other realistic effects. The c.m. energy is setffiffiffi
s

p ¼ 500 GeV for all distributions. The solid (red) line corresponds to ~μþR ~μ
−
R, the dotted (purple) line to ~μþL ~μ

−
L. The dashed (blue) line is

the total differential cross section including our signal and the SM backgrounds.
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Figure 8 shows how efficient the right-handed electron
beam is at picking out the ~μR ~μR signal. For the
suppression of the SM backgrounds, we apply the cut
of mrec ≥ 350 GeV. As before, the solid (red) line corre-
sponds to ~μþR ~μ

−
R; the dotted (purple) line to ~μþL ~μ

−
L. The dashed

(blue) line is the total differential cross section including our
signal and the SM backgrounds. The nearly right-handed
electron beam suppresses the SM background as well as the
~μL ~μL signal. Only the ~μR ~μR signal stands out. The main SM
background is through the resonantWþW− production. The
left-handed coupling of e-νe-W is suppressed by the right-
handed electron beam. Another interesting feature is that the

Z-pole in the mμμ distribution is also very suppressed. A
significant contribution to theZ-pole is from eþe− → νeν̄eZ
process where Z is via WW fusion. Again the left-handed
coupling of the charged current is suppressed by the right-
handed electron beam.
The advantage of the cusp is clearly shown here. Its peak

structure is not affected. However, the endpoints mmin
rec ,

Emin
μ , and Emax

μμ do overlap with the backgrounds, although
the right-handed polarization removes a large portion of the
SM backgrounds. We also observe that mmax

rec , Emax
μ , and

Emin
μμ are not contaminated. In summary, the mass

FIG. 8 (color online). Case B for eþe− → ~μL ~μL; ~μR ~μR → μþμ−E. Effects of an additional cut of mrec > 350 GeV and polarizations
Pe− ¼ þ80% and Peþ ¼ −30% on the (a) mμμ, (b) mrec, (c) cosΘ, (d) Eμ, and (e) Eμþ þ Eμ− distributions with spin correlation and
other realistic effects. The c.m. energy is set to

ffiffiffi
s

p ¼ 500 GeV for all distributions. The solid (red) line corresponds to ~μþR ~μ
−
R, the dotted

(purple) line to ~μþL ~μ
−
L. The dashed (blue) line is the total differential cross section including our signal and the SM backgrounds.
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measurement of ~μR and ~χ01 through the cusps and endpoints
is well benefitted by the right-handed polarization of the
electron beam.
The left-handed ~μL ~μL signal is more difficult to probe

since its left-handed coupling is the same as the SM
background. In Fig. 9, we set Pe− ¼ −80% and Peþ ¼
þ30% with the additional cut of mrec > 350 GeV. From
the mμμ distribution, we see that the Z-pole is still strongly
visible and the round mcusp

μμ for the ~μL ~μL signal is very

difficult to identify. The total mrec distribution in Fig. 9(b)
does not show the sharp triangular shape of the antler decay
topology either. The individual triangular shapes of the
~μR ~μR and ~μL ~μL signals along with the SM background are
combined into a rather featureless bump-shaped distribu-
tion. Although there is a peak point, it is hard to claim as a
cusp. The cosΘ distribution in Fig. 9(c) shows one of the
most characteristic features of the antler topology. Two
sharp cusps appear, which correspond to the ~μL ~μL signal.

FIG. 9 (color online). Case B for eþe− → ~μL ~μL; ~μR ~μR → μþμ−E. Effects of an additional cut of mrec > 350 GeV and polarizations
Pe− ¼ −80% and Peþ ¼ þ30% on the (a) mμμ, (b) mrec, (c) cosΘ, (d) Eμ, and (e) Eμþ þ Eμ− distributions with spin correlation and
other realistic effects. The c.m. energy is set to

ffiffiffi
s

p ¼ 500 GeV for all distributions. The solid (red) line corresponds to ~μþR ~μ
−
R, the dotted

(purple) line to ~μþL ~μ
−
L. The dashed (blue) line is the total event including our signal and the SM backgrounds.
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The total Eμ distribution in Fig. 9(d) does not provide
quite a clean series of rectangular distributions. The
mixture of different contributions from ~μR ~μR, ~μL ~μL and
WþW− along with the smearing makes reading the maxi-
mum points more difficult. The Emin

μ position of the ~μL ~μL
signal, which is near the kinematic cut, is mixed with the
SM backgrounds and the ~μR ~μR signal. Finally, the total Eμμ

distribution loses the triangular shape of the ~μL ~μL signal;
see Fig. 9(e). Nevertheless the peak position coincides with
the cusp position for both energy sum distributions. We can
identify them with the cusps.

D. The mass measurement precision

In order to estimate the achievable precision of a
measurement of the masses in the presence of realistic
effects, we analyze the distributions we have discussed here
using the log-likelihood method based on Poisson statistics.
A benefit of a log-likelihood analysis is that it compares
the full shape of the distribution, not just the position
of the cusps and endpoints which, as we have seen, can be
smeared and even moved due to realistic collider effects.
For our log-likelihood calculation, since we have shown
that the background can be almost totally removed by
appropriate cuts, we focus on comparing one signal to
another with different masses for the smuon and neutralino.
We calculate the log likelihood as

LLðN; νÞ ¼ 2
X
i

�
Ni ln

�
Ni

νi

�
þ νi − Ni

�
ð21Þ

where νi is the expected number of events in bin i with the
masses set according to case A and Ni is the number of
events expected in bin i for the alternate mass point. For
each distribution, we use 50 bins. We take the integrated
luminosity to be 100 fb−1 and find that the number of
signal events is sufficiently large that the probability
distribution of the log-likelihood approximates well a χ2

distribution. We then find that the 95% confidence level
value for each log-likelihood is LL95% ¼ 67.5. We scan
over the masses of the smuons and neutralinos in steps of
0.25 GeV, calculate the log-likelihood for each mass point,
and plot the contour where it is equal to 67.5 in Fig. 10 for
four kinematical variables assuming case A. These are the
95% confidence lines for each kinematical variable con-
sidered separately.
Considering the kinematics variables of mμμ (red), mrec

(blue), cosΘ (green), and Eμ (purple), we present the
95% C.L. allied contours in the parameter space of
ðΔm~χ0

1
;Δm~μRÞ in Fig. 10. All the variables are roughly

equally good at measuring the two masses, leading to an
accuracy of approximately �0.5 GeV (for clarity of the
presentation, we have left out the contours forEμμ andErec).
We also find that our kinematical variables are very

sensitive if we vary one mass parameter with the other
fixed. However, the determination for the two masses is

correlated, as seen from Fig. 10 with a linear band rather
than a closed ellipse in the plotted region. This is due to the
fact that the cusps and endpoints depend on the masses
mainly as a ratio rather than independently, as can be seen
in Eqs. (7), (10), and (12). The ellipse shape of the contour
will become manifest when extending to larger regions.
We have also considered the effect of combining these

measurements in a joint test statistic including a calcula-
tion of the correlation between these variables. The
magnitude of the correlation is quantified by the ratio of
the off-diagonal term to the diagonal term of the covariance
matrix. We found that the correlation among mrec, Eμ and
cosΘ was negligible (the off-diagonal terms of the covari-
ance matrix was a few percent or smaller compared to the
diagonal terms), the correlation between mrec and Eμμ was
small but non-negligible (the off-diagonal term was
approximately 8% of the diagonal terms), and Eμμ and
Erec were fully correlated as expected (the off-diagonal
term was the same size as the diagonal term). However, we
did not find appreciable improvement in the precision of the
mass measurements by combining the log likelihoods. This
is due partly to the correlation between these variables,
partly to the differences in how the log likelihood depends
on each of these variables, and partly to the properties of the
χ2 distribution when test statistics with a large number of
degrees of freedom are combined as we briefly explain in
Appendix A.

FIG. 10 (color online). For case A for eþe− → ~μR ~μR → μþμ−E,
the 95% C.L. contours for the precision of the mass measurement
in the parameter space of ðΔm~χ0

1
;Δm ~μRÞ. An additional cut of

mrec > 350 GeV on the distributions with spin correlation
and other realistic effects are included. The c.m. energy is set
to

ffiffiffi
s

p ¼ 500 GeV for all distributions and the integrated
luminosity is 100 fb−1.
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IV. MASSIVE VISIBLE PARTICLE CASE:
CHARGINO PAIR PRODUCTION

It is quite likely that the DM particles will be accom-
panied by other massive observable final states in the decay
process. Although the nature of the cusps is similar to the
previous discussions, the characteristic features and their
observability may be different. An important example of
this type of kinematics is in chargino pair production
followed by the chargino’s decay into a W and a ~χ01.
This process is a typical antler process, which is different
from the smuon pair production in that the visible particle
W is massive. In order to fully reconstruct the kinematics of
the W, we consider the case where the W boson decays
hadronically. Our signal event selection is

eþe− → ~χþ1 ~χ
−
1 → WþW− ~χ01 ~χ

0
1 → jj; jjþ ~χ01 ~χ

0
1: ð22Þ

For illustrative purposes, we consider the case C in
Table II.
For the LHC searches of gaugino production, there is no

sensitivity with the current data yet [31] for the parameter
choices under consideration, due to the disfavored kin-
ematics of the small mass difference and the large SM
backgrounds. The upcoming Run II at 13 TeV will likely
reach the sensitivity to cover this parameter region [32]. It is
thus exciting to look forward to the LHC outcome. Should
a SUSY signal be observed at the LHC, it would strongly
motivate the ILC experiment to further study the SUSY
property and to determine the missing particle mass as
proposed in this work.
The distributions of the invariant mass of WþW− and

~χ01 ~χ
0
1 follow the same characteristic function where now the

visible particle W is massive. The cusp and endpoint
positions of these distributions can be obtained from
Table I. The cosΘ distribution for the massive visible
particle case does not present a sharp cusp or endpoint. The
EW distribution has a minimum and a maximum as in the
massless visible particle case. The distribution of EWW ¼
EWþ þ EW− also accommodates the maximum, cusp and
minimum. In Table IV, we present the values of the cusps
and endpoints for case C.
The reconstruction of the variables mWW , mrec, and

EWW is straightforward in terms of the jets and the
known collision frame. In order to reconstruct EW and

cosΘ, we split the jets into two pairs and require each
pair to reconstruct an invariant mass near mW. We then
note that due to the symmetry of the antler decay
topology, the EWþ and EW− distributions are equal to
each other and the cosΘ distribution is symmetric with
respect to an interchange of Wþ and W−. As a result, the
EW and cosΘ distributions can be obtained by averaging
the distributions for each W.
In addition to our basic cuts outlined in Eq. (19), we have

applied the following cuts

ΔRjj ≡
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðΔηjjÞ2 þ ðΔϕjjÞ2

q
≥ 0.4;

jmjj −mW j < 5ΓW; mrec > 120 GeV; ð23Þ

where the jet separation ΔRjj is between all pairs of jets,
mjj is only between pairs of jets identified with the W, and
the mrec > 120 GeV cut removes most of the remaining
SM background. Again, we adopt the standard simulation
packages ILC-Whizard setup [28], including the SGV-3.0
fast detector simulation suitable for the ILC [29].
In Fig. 11, the solid (red) lines denote our chargino

signal. The dotted (blue) lines give the total differential
cross section including our signal and the SM backgrounds.
The SM backgrounds are computed through the full two-to-
six processes eþe− → jjjjνν̄ which includes the full spin
correlation.
Figures 11(a) and (b) show the invariant mass distribu-

tions of four jets and two invisible particles, respectively.
Realistic effects smear the sharpmjjjj andmrec distributions
significantly. In particular, the locations of mmin

jjjj and mmin
rec

are shifted to lower values by about 20 GeV from the
expected values with kinematics alone in Table IV. This is
mainly due to detector smearing. The mcusp

jjjj and mmax
jjjj are

respectively in agreement with themcusp
WW andmmax

WW values in
Table IV but are significantly smeared. The mcusp

rec and mmax
rec

are larger by about 10 GeV more than the expected
values. As commented earlier, the cosΘ distribution in
Fig. 11(c) does not have a sharp cusp even before including
realistic effects.
Figure 11(d) presents the Ejj distribution which is

significantly smeared and the sharp edges are no longer
visible due to jet energy resolution effects. The expected

TABLE IV. The values of various kinematic cusps and endpoints for the mass parameters in the case C. All the masses and energies are
in units of GeV.ffiffiffi
s

p
Channel ðmB;mX;maÞ ðmmin

WW;m
cusp
WW;m

max
WWÞ ðmmin

rec ; m
cusp
rec ; mmax

rec Þ

500 ~χþ1 ~χ
−
1 ð235; 139; mWÞ (161,171,221) (279,296,338)

ðEmin
W ; Emax

W Þ ðEmin
WW; E

cusp
WW; E

max
WWÞ ðEmin

XX ; E
cusp
XX ; Emax

XX Þ
(81,111) (162,190,221) (278,309,338)
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values of Emin
W and Emax

W cannot be read from this distri-
bution. In Fig. 11(e), we show the distribution of Ejjjj. The
expected triangular shapes can be seen but the sharp
features are smeared due to the realistic considerations.
Their minimum and maximum positions are moved to
approximately 10 GeV lower and higher values, respec-
tively, while the cusp position identified with the peaks
remains near the expected values.
We perform a log-likelihood analysis for the massive

visible particle case and present the 95% C.L. contours for
the mass measurement of ~χ01 and ~χ�1 in Fig. 12. Remarkable
is thatmrec leads to the most precise mass measurement, not
the commonly considered variable EW , especially on the
missing particle mass. The EW measurement leads to about
Δm~χ0

1
≃�4 GeV precision while the mrec improves into

�2 GeV. This is due to the fact that the cusp peak position

is more stable with respect to detector smearing effects,
compared with the sharp energy endpoint. The intermediate
chargino mass precision is about 2 GeV both by EW and
mrec. The mass measurement precision is not as good as that
of the smuon pair production, because of inferior hadronic
four jet measurement here.
To appreciate the improvement for the missing mass

measurement with our antler approach, we have compared
it with the standard “monophoton” signal, eþe− → γE
[22,33]. Although this is the most model-independent
method, the measurement of the endpoint in a slowly
varying Eγ spectrum results in rather poor sensitivity.
Besides the potential model dependence of the signal
cross section, we find that the background eþe− → γνν̄
is about 100 times larger than the signal for the benchmark
point of Ref. [33]. We have performed the log-likelihood
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FIG. 11 (color online). Case C for eþe− → jj; jjþ E with an additional cut ofmrec ≥ 120 GeV and jmjj −mW j < 5ΓW . We show the
(a) mjjjj, (b) mrec, (c) cosΘ, (d) Ejj, and (e) Ejjjj distributions with spin correlation and other realistic effects. The c.m. energy is set toffiffiffi
s

p ¼ 500 GeV for all distributions. The solid (red) line denotes our signal of the resonant production of a chargino pair. The dashed
(blue) line is the total differential cross section including our signal and the SM backgrounds.
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analysis and find that the best accuracy for the lightest
neutralino mass determination would be no better than
about 50 GeV.

V. SUMMARY AND CONCLUSIONS

WIMP dark matter below or near the TeV scale remains
a highly motivated option. To convincingly establish a
WIMP DM candidate, it is ultimately important to reach
consistency between direct searches and collider signals
for the common parameters of mass, spin and coupling
strength [34].
Through the processes of antler decay topology at a

lepton collider, eþe− → B1B2 → X1a1 þ X2a2, we stud-
ied a new method for measuring the missing particle
mass (mX) and the intermediate particle mass (mB): the
cusp method. With this special and yet common top-
ology, we explored six kinematic experimentally acces-
sible observables, maa, mrec ≡mXX, cosΘ, Ea, Eaa and
Erec ≡ EXX. Each of these distributions accommodates
singular structures: a minimum, a cusp, and a maximum.
Their positions are determined by the kinematics only,
i.e. the masses of B, a, X and

ffiffiffi
s

p
, providing a powerful

method to measure the particle masses mB and mX. We
presented the analytic expressions for their positions in
terms of their masses in Sec. II. We chose to study the
accuracy for the mass determination at a lepton collider
with three benchmark scenarios in the framework of the

MSSM, as listed in Table II, and named case A, case B,
and case C.
Case A is the simplest illustration where only a right-

handed smuon ( ~μR) pair is kinematically accessible. Case B
is slightly more complicated since both right-handed and
left-handed ( ~μL) smuon pairs can be produced. We consider
the clean leptonic final state of μþμ−E from the smuon
decays. By presenting the signal kinematics, we first
confirmed the analytic expressions numerically in Fig. 2.
We showed that, except for maa, due to an anticipated
kinematical reason, all the other variables yield the pro-
nounced features of a cusp distribution. Although the
SM background eþe− → WþW− → μþνμμ−ν̄μ also results
in the antler topology, the positions of the cusps are
significantly different due to the massless missing particles,
the neutrinos. This difference is used to separate the
SM background very efficiently. Furthermore, we pointed
out that the experimental acceptance cuts on the observable
leptons may change the positions and the shapes of
the cusps in a systematic and predictable way, as seen in
Figs. 3 and 4.
Through a full simulation including spin correlation, the

SM backgrounds, and other realistic effects, we studied
how much of the idealistic features of the cusps and
endpoints survive, and how well the cusp method deter-
mines the missing particle mass for a 500 GeV ILC. We
found that the inevitable experimental effects of ISR,
beamstrahlung, and detector resolutions not only distort
the characteristic distributions but also shift the cusp and
endpoint positions, as seen in Figs. 5, 6, and 7. The beam
polarization may be used to effectively separate the final
state ~μR ~μR and ~μL ~μL, as shown in Figs. 8 and 9. To optimize
our statistical treatment, we exploited the log-likelihood
method based on the Poisson probability function. The
precisions for the mass measurement with various variables
in case Awere shown in Fig. 10. The accuracy could reach
approximately �0.5 GeV for smuon pair production, and
was comparable for the muon energy endpoint Eμ and the
cusp in mrec, Eμμ, or EXX.
In case C, we studied the chargino pair production with

~χ�1 → W� ~χ01. We focused on the hadronic decayW → jj in
order to effectively reconstruct the kinematics, and to
explore the detector effects on the hadronic final state.
The poor energy resolution for the hadronic final state of
the W decay smears the cusp and endpoint quite signifi-
cantly, as shown in Fig. 11. We found that the mrec, Ejjjj,
and Erec cusps are more stable than the energy endpoint Ejj
against realistic experimental effects, and thus provided a
more robust mass determination reaching approximately
�2 GeV. In the previous section, we also made a com-
parison with the other proposed methods for determining
the missing mass at a lepton collider. We see the merits of
our approach.
Under the clean experimental environment and well-

defined kinematics, a future high energy lepton collider

FIG. 12 (color online). Case C for eþe− → jj; jjþ E, the
95% C.L. contours for the precision of the mass measurement in
the parameter space of ðΔm~χ0

1
;Δm~χ�

1
Þ. The additional cuts of

mrec ≥ 120 GeV and jmjj −mW j < 5ΓW are included in the
distributions as well as spin correlation and other realistic effects.
The c.m. energy is set to

ffiffiffi
s

p ¼ 500 GeV for all distributions and
the integrated luminosity is 100 fb−1.

CHRISTENSEN et al. PHYSICAL REVIEW D 90, 114029 (2014)

114029-18



may take advantage of the antler decay topology and
provide an accurate determination for the missing particle
mass consistent with the WIMP DM candidate.
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APPENDIX: LOG-LIKELIHOOD COMBINATION

We have found that combining the log likelihoods for our
kinematic variables did not significantly improve the
achievable accuracy of the mass measurement. The reason
for this was a combination of the correlation between the
variables, the slight differences in how the log likelihood
depended on each kinematic variable, and how the combi-
nation is affected by having a large number of bins in each
log likelihood, as we will now explain.
We have found that the log likelihood for the variables

mμμ, mrec, Eμ, Eμμ, and Erec depends approximately
quadratically on the mass difference Δm, where Δm is
defined to be along the diagonal line with negative slope in
Fig. 10,

LL ¼ αkvðΔmÞ2; ðA1Þ
where αkv is a constant to be determined for each kinematic
variable. We will consider the optimal situation where the
kinematic variables are completely uncorrelated and αkv is
the same for each kinematic variable and set αkv ¼ α. In
this case, the joint test statistic is the sum of the N
individual test statistics

tN ¼ NαðΔmÞ2: ðA2Þ
If the number of bins n is large (which is a good
approximation in our case with 50 bins for each log

likelihood), then the individual log likelihoods and the
joint test statistic are well approximated by Gaussian
distributions with mean μN ¼ Nn and standard deviation
σN ¼ ffiffiffiffiffiffiffiffiffi

2Nn
p

, where the individual log likelihoods have
μ1 ¼ n and σ1 ¼

ffiffiffiffiffiffi
2n

p
. This means that the joint test

statistic gives a 2σN measurement in the mass difference as

NαðΔmÞ22σN ¼ Nnþ 2
ffiffiffiffiffiffiffiffiffi
2Nn

p
ðA3Þ

while that for an individual log likelihood has N ¼ 1.
Solving this for Δm gives

ðΔmÞ2σN ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
n
α
þ 2

α

ffiffiffiffiffiffi
2n
N

rs
: ðA4Þ

If we take the ratio of this with an individual log-likelihood
measurement, we have

ðΔmÞ2σN
ðΔmÞ2σ1

¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
nþ 2

ffiffiffiffiffiffiffiffiffiffiffiffi
2n=N

p
nþ 2

ffiffiffiffiffiffi
2n

p
s

; ðA5Þ

where α has dropped out. We can use this formula to note
a few things. First of all, we see that the maximum
improvement in the sensitivity achievable asymptotically
approaches 0 for the large number of bin n limit, inde-
pendent of the number of log-likelihoods N combined in
this way. Second, for n ¼ 50 bins, the maximum improve-
ment in the combined measurement sensitivity is 14.5% in
the limit that the number of combined log likelihoods, N,
approaches infinity. Third, if we only combine N ¼ 2 or 3
log likelihoods, the maximum sensitivity improvement is
only 4.3% and 6.2%, respectively. This is in the best case
scenario where all the variables are uncorrelated and each
αkv is identical. In the realistic cases in this paper, the
sensitivity improvement from combination is no more than
a few percent.
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