
Electroweak production of top-quark pairs in eþe− annihilation at NNLO
in QCD: The vector current contributions

Jun Gao
Department of Physics, Southern Methodist University, Dallas, Texas 75275-0181, USA

Hua Xing Zhu
SLAC National Accelerator Laboratory, Stanford University, Stanford, California 94309, USA

(Received 11 September 2014; published 17 December 2014)

We report on a calculation of the vector current contributions to the electroweak production of top quark
pairs in eþe− annihilation at next-to-next-to-leading order in quantum chromodynamics. Our setup is fully
differential and can be used to calculate any infrared-safe observable. The real emission contributions are
handled by a next-to-next-to-leading order generalization of the phase-space slicing method. We
demonstrate the power of our technique by considering its application to various inclusive and exclusive
observables.
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I. INTRODUCTION

Continuum electroweak production of top quark pairs at
future linear colliders is of considerable interest because it
allows for a precise measurement of the top quark forward-
backward asymmetry. This observable is of particular
importance because it is expected to severely constrain
anomalous couplings which could potentially appear in the
top quark sector [1]. In the near future, due to the extremely
clean environment expected at proposed eþe− colliders, it
should be possible to measure the top quark forward-
backward asymmetry to a precision of approximately
1% [2].
At an eþe− collider, top quark pairs are primarily

produced via the electroweak process

eþe− → γ�=Z� → tt̄: ð1Þ

In this paper, we shall only concern ourselves with the next-
to-next-to-leading order (NNLO) radiative corrections to
the above process in quantum chromodynamics (QCD)
mediated by an off-shell photon (γ�). In other words, we
treat the vector current contributions to the production of a
top-antitop pair. Complete results including the axial-vector
contributions (i.e. that due to off-shell Z boson exchange)
will be presented elsewhere.
The calculation of QCD radiative corrections to heavy-

quark pair production in eþe− annihilation has a long
history. Full next-to-leading order (NLO) QCD corrections
were first computed in Ref. [3] and, a short time later, NLO
electroweak effects were considered in Ref. [4]. NLO QCD
corrections to top quark pair production including the
subsequent top quark decays were presented in Ref. [5]
and NLO QCD corrections to top quark spin correlations
were computed in Refs. [6] and [7]. Total cross sections are
known to NNLO in the threshold expansions [8–12] and

high-energy expansions [13–17]. Results for the forward-
backward asymmetry are also known in the small mass
approximation [18–20]. In the near future, the threshold
cross section at NNNLO will also be available [21–23].
Somewhat surprisingly, although a great deal of theoretical
progress has been made over the years, exact NNLO QCD
calculations for fully differential eþe− → tt̄ observables
remain a challenge and are still missing from the literature.
A fully differential NNLO QCD calculation is naturally

split up into three distinct parts, depending on the number
of particles that appear in the final state relative to leading
order: (a) purely virtual two-loop or squared one-loop
corrections, (b) one-loop, single-emission real-virtual cor-
rections, and (c) double-emission double-real corrections.
For eþe− → tt̄, significant progress has been made in
recent years towards the calculation of each of these three
pieces. NLO QCD corrections to heavy quark pair pro-
duction in association with one additional jet were com-
puted in Refs. [24–28]. The two-loop heavy quark form
factor was first obtained in Refs. [29–31] and then con-
firmed some time later by an independent calculation [32].
In fact, for quite some time, the only outstanding problem
was to construct an efficient framework for the combination
of the ingredients described above into an infrared-safe
Monte Carlo event generator.
For generic processes, this is highly nontrivial due to the

fact that, in phase space regions where soft and/or collinear
limits are approached, the real-virtual and double-real
contributions develop soft and/or collinear divergences
which must be extracted before a Monte Carlo integration
over phase space can be carried out. At NLO, this is
relatively straightforward to do and both phase-space
slicing [33–39] and subtraction [40–45] techniques which
solve the problem were worked out a long time ago.
However, as is clear from the massive amount of literature
on the subject [46–101], analogous techniques at NNLO
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are considerably more complicated to develop and com-
plete solutions took much longer to emerge. For example,
in the important case of massless dijet production, it took
more than a decade for the first physical predictions to
appear [46,47] from the time that the relevant two-loop
virtual amplitudes were first calculated [102–111]. As a
result of significant theoretical efforts during the past
decade, a number of important “benchmark processes”
are now known to NNLO [46,47,86,93,94,100].
The goal of this paper is to study fully differential NNLO

QCD corrections to eþe− → tt̄ using a higher-order gen-
eralization of the phase-space slicing method. While we
constrain ourselves in this paper to present results for the
vector current contributions by themselves, the formalism
developed here can, if desired, readily be used to calculate
the contributions coming from the exchange of an off-shell
Z boson. This paper is organized as follows. In Sec. II, we
describe our calculational method in detail. In Sec. III, we
present numerical results for various inclusive and differ-
ential observables and, whenever possible, compare them
to the existing literature. Finally, we conclude in Sec. IV.

II. PHASE-SPACE SLICING AT NNLO

We explain in detail our generalization of the phase-
space slicing method in dealing with the specific process
eþe− → tt̄ at NNLO. As mentioned before, there are three
distinct parts that contribute to the cross section at Oðα2sÞ,

σð2Þ ¼
Z

dΦtt̄;0

X
spin;color

½2ℜðMð0Þ
eþe−→tt̄ðM

ð2Þ
eþe−→tt̄Þ

�Þ

þ jMð1Þ
eþe−→tt̄j

2�

þ
Z

dΦtt̄;1

X
spin;color

½2ℜðMð0Þ
eþe−→tt̄gðM

ð1Þ
eþe−→tt̄gÞ

�Þ�

þ
Z

dΦtt̄;2

X
spin;color

½jMð0Þ
eþe−→tt̄ggj

2þjMð0Þ
eþe−→tt̄qq̄j

2�;

ð2Þ

where

dΦtt̄;n ¼
1

2s × 22

�
dD−1pt

2Etð2πÞD−1

��
dD−1pt̄

2Et̄ð2πÞD−1

�

×
Yn
i¼1

�
dD−1pi

2Eið2πÞD−1

�
ð2πÞDδðDÞ

×

�
Q − pt − pt̄ −

Xn
i¼1

pi

�
ð3Þ

is the phase space volume element in D ¼ 4 − 2ϵ dimen-
sions, divided by the flux factor and initial state spin
average factor. Here s ¼ Q2 ¼ ðpeþ þ pe−Þ2 is the center-
of-mass energy square. MðiÞ

eþe−→tt̄… denotes the i-loop

amplitude for eþe− → tt̄ plus zero, one, or two additional
massless partons. Note that when

ffiffiffi
s

p
> 4mt, the channel

for the production of tt̄tt̄ is open. However, these additional
contributions are themselves infrared finite due to the mass
of top quark, and can be dealt with separately. In the
following discussion, we will neglect these contributions.
Also for the vector contributions, we only consider dia-
grams with top quarks coupling directly to the photon. The
diagrams with photon coupling to a bottom or light quark
and the top quark produced via gluon splitting are numeri-
cally small [112,113], although the bottom triangle dia-
grams are needed and must be included to cancel the axial
anomaly in the axial vector case [16,31].
The first, second, and third terms on the right-hand side of

Eq. (2) represent respectively the double-virtual, real-
virtual, and double-real contributions. The double-virtual
contributions contain explicit quadratic poles in ϵ, originat-
ing from loop corrections when the gluons are soft. Thanks
to the Bloch-Nordsieck and Kinoshita-Lee-Nauenberg
theorem, the infrared divergences will be canceled by those
in the real-virtual and double-real contributions. However,
such cancellation is nontrivial because the infrared diver-
gences in the real-virtual and double-real contributions can
only be made explicit after the phase space integral is
computed. It is therefore necessary to perform the phase
space integral inD dimensions to regulate potential infrared
divergences. This fact makes the calculation of real-virtual
and double-real contributions difficult.
The singular region in the phase space is relatively

simple for the real-virtual corrections, where the matrix
elements are singular only when the energy of the final-
state gluon approaches zero. For the double-real contribu-
tions the singular region is much more involved. First, the
matrix elements are singular in the double unresolved
region, where the energies of both the final-state partons
approach zero. Second, the matrix elements are also
singular even in the single unresolved region, where only
one of the final-state gluons is soft, or the final-state
massless partons become collinear. Fortunately, the singu-
larities due to a single unresolved region is well understood,
as they are the same that one encounters in NLO QCD
calculation. We therefore only need to deal with the
double unresolved region. To isolate the phase space
singularities in this region, we introduce a phase-space
slicing parameter τ, which is proportional to the total energy
of QCD radiations in the final-state, τ¼ 2ð ffiffiffi

s
p

− ðEtþEt̄ÞÞ=
ð ffiffiffi

s
p ð1−4m2

t =sÞÞ. Physically, when τ is nonzero, there is at
least one massless parton in the final state with finite energy.
We can divide the phase space into two slices using the theta
function,

σð2Þ ¼ σð2ÞI þ σð2ÞII ; ð4Þ

where σð2ÞI ¼ R
dσθðδE − τÞ is the soft-virtual part, and

σð2ÞII ¼ R
dσθðτ − δEÞ is the hard part, and δE is the cutoff
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parameter. There are still phase space singularities in both σI
and σII . However, the phase space singularties in σII belong
to the well-understood one, because there is at most one
massless parton in the final statewhose energy can approach
zero. We can therefore straightforwardly calculate σII using
any existing NLO infrared subtraction method. On the other
hand, the soft-virtual part, σI, contains a double unresolved
region, whose calculation needs additional efforts. An exact
calculation for σI is difficult. However, if we choose δE to be
small and ignore terms of OðδEÞ, we can calculate σI using
matrix elements in the soft limit, and also expanding the
phase space volume in the soft limit. Such approximation
leads to enormous simplification and makes the analytical
calculation feasible. We explain in detail the calculation of
the soft-virtual part and hard part below.

A. The soft-virtual part

1. Factorization of the radiation-energy distribution

We can write the soft-virtual part as an integral over
radiation-energy distribution,

σð2ÞI ¼
Z

δE

0

dτ
dω
dτ

dσð2Þ

dω
; ð5Þ

where ω is twice the energy of final-state QCD radiations,
ω ¼ 2ð ffiffiffi

s
p

− Et − Et̄Þ. The factor of 2 here is introduced by
convention. Ignoring power suppressed terms in ω=mt, we
can write the distribution for dσ=dω in small ω in a
factorized form using the language of effective theory.
dσð2Þ=dω is simply the Oðα2sÞ corrections to this distribu-
tion. We start from the full distribution in QCD,

dσ
dω

¼
X
t;t̄;X

ð2πÞ4δð4ÞðQ − pt − pt̄ − pXÞδðω − 2EðXÞÞLμν

×
X
ij

h0jJμ†i jtt̄Xihtt̄XjJνj j0i; ð6Þ

where X denotes gluons and light quarks in the final state,
and EðXÞ denotes the energy of X. We do not include
additional top-quark states in X because they give rise to
finite corrections and can be incorporated into our numeri-
cal results separately in a simple way. The summation over
final states in Eq. (6) becomes integral over D-dimensional
phase space measure in dimensional regularization. For
example, for two-gluon final-state X ¼ gg, we have

X
t;t̄;gg

ð2πÞ4δð4ÞðQ − pt − pt̄ − pXÞ →
dig reg

Z
dΦtt̄;2; ð7Þ

where dΦtt̄;2 is defined in Eq. (3). The lepton tensor
includes only vector contributions from virtual photon
exchange,

Lμν ¼ −
2e2

s

�
gμν −

2ðpeþ
μ pe−

ν þ peþ
ν pe−

μ Þ
s

�
; ð8Þ

where e is the QED coupling, and peþ
μ and pe−

μ are the four
momentum of the positron and electron. The production of
a top-quark pair via virtual photon exchange is described by
two QCD currents,

Jμ1 ¼ −ieQtΨ̄ðptÞγμΨðpt̄Þ;

Jμ2 ¼
eQt

2mt
Ψ̄ðptÞσμνðpt þ pt̄ÞνΨðpt̄Þ; ð9Þ

where Qt ¼ 2=3 is the electric charge number of the top
quark, and σμν ¼ i

2
½γμ; γν�. Note that Eq. (6) is exact to

leading order in electroweak interaction, and all orders in
QCD interactions. It is also an exact distributions for ω.
Calculation of Eq. (6) in perturbative QCD requires the
calculation of both virtual corrections and the phase space
integral. Unfortunately, exact calculation of the phase space
integral is difficult beyond NLO. Certain approximation is
needed in order to proceed. Since we are only interested in
the energy distribution in the soft region, we can expand
Eq. (6) to leading power in ω=mt. Then the momentum
conservation delta function factorizes as

X
t;t̄;X

ð2πÞ4δð4ÞðQ − pt − pt̄ − pXÞ

≃X
t;t̄

ð2πÞ4δð4ÞðQ − pt − pt̄Þ
X
X

ð10Þ

in the region where ΛQCD ≪ ω ≪ mt. The physics of such
factorization is that as long as the energy of QCD radiations
is small, they can hardly change the trajectory of the heavy
quark. The short-distance reaction which produces the top-
quark pair cannot resolve the activities of soft QCD
radiations, and therefore has tree-level-like kinematics.
We can describe the top quark and antitop quark by heavy
quark fields hvðyÞ and hv̄ðyÞ, labeled by the velocity of the
heavy quarks, pt ¼ mtv, pt̄ ¼ mtv̄. The QCD currents in
Eq. (9) can then be matched to currents in heavy quark
effective theory (HQET),

J μ
1 ¼ −ieQtC1ðv; v̄Þh̄vγμhv̄;

J μ
2 ¼

eQt

2
C2ðv; v̄Þh̄vσμνðvþ v̄Þνhv̄; ð11Þ

where the corresponding Wilson coefficients C1ðv; v̄Þ and
C2ðv; v̄Þ can be obtained from the calculation of the QCD
form factor for heavy quark pair production. At leading
power in HQET, the heavy quark field only interacts with
gluons via eikonal interaction,

Lint¼ h̄vðyÞgv ·AsðyÞhvðyÞþ h̄v̄ðyÞgv̄ ·AsðyÞhv̄ðyÞ: ð12Þ
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Such eikonal interactions can be absorbed into Wilson lines
by a field redefinition [114],

ðhvðyÞÞ† ¼ ðhð0Þv ðyÞÞ†ðYvðyÞÞ†;
hv̄ðyÞ ¼ Yv̄ðyÞhð0Þv̄ ðyÞ; ð13Þ

where

ðYvðyÞÞ† ¼ P exp

�
ig
Z

∞

0

dz · Aðvzþ yÞ
�
;

Yv̄ðyÞ ¼ P̄ exp
�
−ig

Z
∞

0

dz · Aðv̄zþ yÞ
�

ð14Þ

are the path-ordered and antipath-ordered Wilson lines.

The decoupled heavy quark field hð0Þv ðxÞ no longer interacts
with the gluon, but still annihilates the top-quark field.
The hadronic tensor now has a factorized form,

X
X

δðω − 2EðXÞÞ
X
ij

h0jJ μ†
i jtt̄Xihtt̄XjJ ν

j j0i

¼ Hμν
X
X

h0jY†
vYv̄jXiδðω − 2EðXÞÞhXjY†

v̄Yvj0i; ð15Þ

where the summation is over all unrestricted massless
final states. For example, for a two-gluon final state with
momentum p1 and p2, we have

X
X

→
dig reg

Z
dD−1p1

2E1ð2πÞD−1

Z
dD−1p2

2E2ð2πÞD−1 : ð16Þ

Hμν is the hard function,

Hμν ¼
X2
i;j¼1

h0jJ ð0Þ;μ†
i jtt̄ihtt̄jJ ð0Þ;ν

j j0i; ð17Þ

and J ð0Þ;μ
i is the decoupled HQET current, with hv;v̄ðyÞ

replaced by hð0Þv;v̄ðyÞ. Summing over the top quark spin and
color,1 the hard function can be evaluated explicitly,

Hμν ¼ Nc

X2
i;j¼1

Ciðv; v̄ÞC�
jðv; v̄Þhμνij ; ð18Þ

with

hμν11 ¼ e2Q2
t ð−2sgμν þ 4ðpμ

t pν
t̄ þ pν

t p
μ
t̄ ÞÞ; ð19Þ

hμν12 ¼ hμν21 ¼ 2e2Q2
t ð−sgμν þ ðpμ

t þ pμ
t̄ Þðpν

t þ pν
t̄ ÞÞ; ð20Þ

hμν22 ¼ e2Q2
t

�
−2sgμν þ

�
2 −

s
2m2

t

�
ðpμ

t pν
t̄ þ pν

t p
μ
t̄ Þ

þ
�
2þ s

2m2
t

�
ðpμ

t pν
t þ pμ

t̄ p
ν
t̄ Þ
�
: ð21Þ

The matrix element of the Wilson lines defines the soft
function for tt̄ production,

S ¼ 1

Nc

X
X

h0jY†
vYv̄jXiδðω − 2EðXÞÞhXjY†

v̄Yvj0i: ð22Þ

The summation is over all possible QCD final states.
We have chosen the normalization such that at LO the
soft function is δðωÞ. The calculation for soft function is
much easier than the exact phase space integral, thanks to
the eikonal approximation.
We can now write down a factorized formula for the

radiation-energy distribution in top-quark pair production,

dσs:v:
dω

¼ 1

8s

Z
d3pt

2Etð2πÞ3
Z

d3pt̄

2Et̄ð2πÞ3
ð2πÞ4δð4Þ

× ðQ − pt − pt̄ÞLμνHμνSðx;ωÞ; ð23Þ

where we have also included the initial-state flux and spin
average factor. The variable x is defined as

x ¼
1 −

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − 4m2

t
s

q

1þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − 4m2

t
s

q : ð24Þ

For fixedmt, x → 0 is the high-energy limit, while x → 1 is
the threshold limit. Equation (23) is only valid at leading
power in ω. The soft function is fully differential in the top
and antitop momentum, but inclusive in the QCD radia-
tions. This is not a problem as we will use this formula only
in the limit of small ω, where the QCD radiations cannot be
resolved by any reasonable experimental measurement.
The phase space integral in Eq. (23) becomes trivial.

Integrating out the azimuthal angle dependence of the top
quark, we obtain

d2σs:v:
dωd cos θt

¼ Hðcos θt; mt; sÞSðx;ωÞ; ð25Þ

where

Hðcos θt; mt; sÞ ¼
1

8s

Z
d3pt

2Etð2πÞ3
Z

d3pt̄

2Et̄ð2πÞ3
× ð2πÞ4δð4ÞðQ − pt − pt̄Þ

× δ

�
cos θt −

pt · pe

jpt∥pej
�
LμνHμν: ð26Þ

1It should be noted that our formalism also allows full spin
dependence for heavy quark, since the eikonal approximation
preserves spin.
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The soft function is a distribution in ω. It is often
convenient to perform a Laplace transformation,

d2 ~σs:v:
dκd cos θt

¼
Z

∞

0

dω exp

�
−

ω

eγEκ

�
d2σs:v:

dωd cos θt
≡Hðcos θt; mt; sÞ~sðx; LκÞ; ð27Þ

where Lκ ¼ lnðκ=μÞ. The renormalized soft function
depends on κ only through terms of the form Ln

κ , where
n is a positive integer. It is therefore possible to invert the
Laplace transformation in close form [115],

d2σs:v:
dτdcosθt

¼Hðcosθt;mt;sÞlim
η→0

�
~sðx;∂ηÞ

� ffiffiffi
s

p ð1−4m2
t =sÞ

μ

�
η

×
1

τ1−η
expð−γEηÞ

ΓðηÞ
�
; ð28Þ

where we recall that τ¼ω=ð ffiffiffi
s

p ð1−4m2
t =sÞÞ. Equation (28)

is interpreted as first expanding in η as a taylor series within
the square bracket, using the well-known plus-distribution
expansion

1

τ1−η
¼ δðτÞ

η
þ 1

½τ�þ
þ η

�
ln τ
τ

�
þ
þOðη2Þ; ð29Þ

then taking the η → 0 limit.

2. Hard function from QCD heavy quark form factor

The Wilson coefficients defined in Eq. (11) can be
obtained from the QCD heavy quark form factor. The latter
has been computed for the vector contributions, axial
contributions, and anomaly contributions by Bernreuther
et al. [29–31]. The vector contributions have been com-
puted independently later in Ref. [32], confirming previous
results.
In Ref. [29], the vector contributions to heavy quark form

factor are given to two loops in QCD. The results are
expressed in terms of two dimensionless scalar form
factors, F̂1ðxÞ and F̂2ðxÞ,

−ieQtūðptÞ
�
F̂1ðxÞγμ þ

1

2mt
F̂2ðxÞiσμνðpt

ν þ pt̄
νÞ
�
vðpt̄Þ:

ð30Þ

Here the scalar form factors are related to those computed
in Eqs. (57) and (58) of Ref. [29] by an additional
renormalization,

F̂iðx; αNl
s Þ ¼ Fiðx; αNf

s ðαNl
s ÞÞ; i ¼ 1; 2; ð31Þ

where

α
Nf
s ðαNl

s Þ ¼ αNl
s

�
1þ 8

3
TRNh

αNl
s

4π

�
−
1

2
LH

þ ϵ

�
L2
H

4
þ 1

24
π2
��

þ ϵ

12

�
αNl
s

4π

�
β
ðNfÞ
0 π2

�
;

ð32Þ

with Nf ¼ Nl þ Nh. Nl ¼ 5 is the number of light quark
flavor, and Nh ¼ 1 is the number of heavy quark flavor.
TR ¼ 1=2 in QCD, LH ¼ lnðm2

t =μ2Þ. The QCD beta
function for Nf quark flavor is given by

β
ðNfÞ
0 ¼ 11

3
CA −

4

3
TRðNl þ NhÞ; ð33Þ

where CA ¼ 3 in QCD. Unless otherwise specified, we will
denote αNl

s as αs below. Note that F̂iðxÞ and FiðxÞ only
differ starting from two loops. The origin for such a
difference is that in Ref. [29], the renormalization of strong
coupling is performed in the MS scheme, running with Nf

flavors. Also the authors of Ref. [29] include a factor
Γð1þ ϵÞ expðϵγEÞ in the coupling renormalization, where
ΓðzÞ is Euler’s gamma function, and γE ¼ 0.577216….
However, we choose to perform the calculation with αs
running with Nl flavors, and also without the additional
factor Γð1þ ϵÞ expðϵγEÞ. The decoupling of heavy quark
flavor is realized by the second term on the right-hand side of
Eq. (32) [116–119], while the third factor gets rid of the
additional factor Γð1þ ϵÞ expðϵγEÞ through toOðα2sÞ [120].
The scalar form factors are functions of x. Writing them

as an expansion in as ¼ αsðμÞ=ð4πÞ,

F̂iðxÞ¼ F̂ð0lÞ
i ðxÞþasF̂

ð1lÞ
i ðxÞþa2sF̂

ð2lÞ
i ðxÞþOða3sÞ; ð34Þ

we have at LO in QCD

F̂ð0lÞ
1 ðxÞ ¼ 1; F̂ð0lÞ

2 ðxÞ ¼ 0: ð35Þ

Using the additional renormalization relation in Eq. (31),
the one-loop and two-loop form factors can be read off
from Ref. [29]. These form factors are UV finite but IR
divergent. To calculate the Wilson coefficients defined in
Eq. (11), one needs to calculate the form factors in the
effective theory. The Wilson coefficients are simply the
differences of the form factor in QCD and the form factor in
effective theory. In dimensional regularization with external
state on shell, the form factors in the effective theory at one
loop and beyond vanish because they involve only scaleless
integral. Since the IR divergences in the QCD calculation
and effective theory calculation must match, it implies that
the UV divergences in the effective theory calculation are
exactly the negative of the IR divergence in the QCD
calculation. Therefore, renormalization of the UV diver-
gences in the effective theory simply amount to performing
an IR subtraction to the form factor in QCD,
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CiðxÞ ¼ lim
ϵ→0

½ZH;iF̂iðxÞ�; i ¼ 1; 2; ð36Þ

where the IR subtraction factor is defined such that CiðxÞ
is order by order finite, i.e., ZH;i absorbs only the ϵ poles
in F̂iðxÞ. For the convenience of the reader, we give

below the explicit expression for CiðxÞ at one loop,
as derived from the QCD form factors in Ref. [29].
We have checked that using Ref. [32], we get the same
Wilson coefficients.
The one-loop Wilson coefficients are

Cð1lÞ
1 ðxÞ ¼ CF

�
LH

��
2

xþ 1
−

2

x − 1
− 2

�
Hð0; xÞ þ 2

�
þ
�
−

4

xþ 1
þ 2

x − 1
þ 3

�
Hð0; xÞ

þ
�
−

2

xþ 1
þ 2

x − 1
þ 2

�
Hð0; 0; xÞ þ

�
−

4

xþ 1
þ 4

x − 1
þ 4

�
Hð1; 0; xÞ

−
8ζ2
x − 1

þ 8ζ2
xþ 1

− 4ð2ζ2 þ 1Þ
�
þ iπCF

�
LH

�
2

xþ 1
−

2

x − 1
− 2

�

þ
�
−

2

xþ 1
þ 2

x − 1
þ 2

�
Hð0; xÞ þ

�
−

4

xþ 1
þ 4

x − 1
þ 4

�
Hð1; xÞþ 2

x − 1
−

4

xþ 1
þ 3

�
ð37Þ

Cð1lÞ
2 ðxÞ ¼ 2CF

�
−

1

x − 1
−

1

xþ 1

�
ðHð0; xÞ þ iπÞ; ð38Þ

where CF ¼ 4=3 in QCD. The imaginary part in the Wilson
coefficients results from analytical continuation of the form
factors from spacelike to timelike kinematics. The function
Hð~w; xÞ is harmonic polylogarithm (HPL) introduced in
Ref. [121]. We use HPLOG [122] for the numerical calcu-
lation of HPLs in this work. The Mathematica file for the
two-loop Wilson coefficients can be found in the arXiv
submission of this paper.

3. Perturbative expansion of the radiation-energy
distribution through to NNLO

To expand the equation for radiation-energy distribution
in Eq. (28) in αs, we also need the soft function to NNLO,
which has been computed only recently [123]. The Laplace
transformed soft function has the generic form

~sðx; LκÞ ¼ 1þ asðLκγ
s
0ðxÞ þ c1ðxÞÞ

þ a2s

�
L2
κ

�
1

2
ðγs0ðxÞ

�
2

− β0γ
s
0ðxÞÞ

þ Lκðc1ðxÞðγs0ðxÞ − 2β0Þ þ γs1ðxÞÞ þ c2ðxÞ
�

þOða3sÞ ð39Þ
through to Oðα2sÞ, where β0 is the LO QCD beta function
with Nl light flavor only,

β0 ¼
11

3
CA −

4

3
TRNl; ð40Þ

and γs0ðxÞ and γs1ðxÞ are the well-known cusp anomalous
dimension [124–126]. We reproduce them here for the sake
of completeness

γs0ðxÞ ¼ −8CF

�
1þ 1þ x2

1 − x2
Hð0; xÞ

�
ð41Þ

γs1ðxÞ ¼
160

9
CFNlTR

�
1þ 1þ x2

1− x2
Hð0; xÞ

�
þCACF

�
−
392

9
þ 16ζ2

1þ 9x2

1− x2
þ 16

ð1þ x2Þ2
ð1− x2Þ2 ð2Hð0; xÞðHð0;−1; xÞ

−Hð0; 1; xÞÞ− 4Hð0; 0;−1; xÞ þ 4Hð0;0; 1; xÞ − ζð3ÞÞ þ 32
1þ x2

1− x2
ðHð0; xÞ

�
Hð−1; xÞ−Hð1; xÞ− 67

36

�

−Hð0;−1; xÞ þHð0; 1; xÞÞ− 32

3

x2ð1þ x2Þ
ð1− x2Þ2 H3ð0; xÞ − 32x2

1− x2
H2ð0; xÞ þ 16ζ2

ð1þ x2Þð1þ 9x2Þ
ð1− x2Þ2 Hð0; xÞ

�
: ð42Þ

The soft function is largely fixed by the renormalization group equation it obeys [124]. The genuine two-loop corrections to
the soft function are summarized by the scalar function c2ðxÞ, which is first computed in Ref. [123].2 With all these results at
hand, we can write down the radiation-energy distribution through to NNLO, up to power-correction terms in τ. Writing
Hðcos θt; mt; sÞ as an expansion in as, Hðcos θt; mt; sÞ ¼ H0 þ asH1 þ a2sH2 þ � � �, the results are

2Note that results presented in Ref. [123] are given in terms of generalized polylogarithms, Gð…; xÞ, with weight alphabet drawn
from f−1; 0; 1g. They are related to HPLs by a simple relation, Gð~w; xÞ ¼ ð−1Þn1Hð~w; xÞ, where n1 is the number of occurrences of
alphabet 1 in the weight vector ~w.
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d2σð1lÞs:v:

dτd cos θt
¼ ½ðc1ðxÞ þ LHγ

s
0ÞH0 þH1�δðτÞ þ 2γs1ðxÞH0

1

½τ�þ
ð43Þ

d2σð2lÞs:v:

dτd cos θt
¼

�
1

2
H0L2

Hγ
s
0ðγs0 − β0Þ þ LHðH0ðc1ðxÞγs0 − β0c1ðxÞ þ γs1Þ þH1γ

s
0Þ

þH0

�
c2ðxÞ þ

1

3
π2β0γ

s
0 −

1

3
π2ðγs0Þ2

�
þH1c1ðxÞ þH2

�
δðτÞ

þ ½H0LHð2ðγs0Þ2 þH0ð2c1ðxÞγs0 − 2β0c1ðxÞ þ 2γs1Þ − 2β0γ
s
0Þ þ 2H1γ

s
0�

1

½τ�þ
− 4H0γ

s
0ðβ0 − γs0Þ

�
ln τ
τ

�
þ
: ð44Þ

This is the main result for the soft-virtual part.

B. The hard part

The hard part σð2ÞII consists of the real-virtual corrections,
eþe− → tt̄g at one loop, and the double-real corrections,
eþe− → tt̄ggðqq̄Þ at tree level. As mentioned above, the
infrared divergences in this part only involve a single
unresolved limit, and thus can be extracted using the
standard NLO subtraction technique. In this paper we
employ the massive version of the dipole subtraction
method [127]. The one-loop real-virtual calculation is
carried out by the automated program GOSAM2.0 [128]
with loop integral reductions from NINJA [129,130] and

scalar integrals from ONELOOP [131,132]. Since σð2ÞII is IR
finite, it can be compared directly to the NLO QCD
calculation of eþe− → QQ̄g, e.g. Ref. [25], and shows
very good agreements.
Once the soft-virtual part and hard part are known, the

full corrections are simply the sum of them. The soft-virtual
part has born kinematics in the final state, since the QCD
radiations are soft and have been integrated out. Its
numerical implementation is therefore trivial. The hard
part is nothing but the usual NLO QCD corrections to the
process eþe− → tt̄g, as described above. We believe this is
the most important advantage of the phase-space slicing
method, because its numerical implementation is no more
difficult than a typical NLO calculation.
However, the drawback of the phase-slicing method is

also clear. In principle, the sum of the soft-virtual part and
hard part is independent of the arbitrary cutoff parameter δE
in the limit of δE → 0. Furthermore, since we will approxi-
mate the kinematics of the soft part as born kinematics in
our numerical calculation, δE needs to be small for such
approximation to hold. In realistic calculation, such a limit
can never be reached in the hard part. Nevertheless, our
formalism is exact in the hard part, and includes all the
leading singular dependence of δE in the soft-virtual part,
such that the sum only depends mildly on δE. To estimate
the form of the subleading term missing in the soft-virtual

part, we note that an exact τ distribution in small τ should
have the following form:

dσð2Þ

dτ
¼ AðxÞ

�
ln τ
τ

�
þ
þ BðxÞ

½τ�þ
þ CðxÞδðτÞ

þDðxÞ ln τ þ subleading terms: ð45Þ
Our calculation includes exact results for the first three
coefficients, AðxÞ, BðxÞ, and CðxÞ, but not DðxÞ.
Integrating over the fourth term over τ gives

DðxÞ
Z

δE

0

dτ ln τ ≃DðxÞδE ln δE þ subleading terms in τ:

ð46Þ
We therefore expect the leading missing δE dependence in
the sum of the soft-virtual part and the hard part is
proportional to δE ln δE at NNLO. To minimize the impact
of such contributions, we have to choose a very small cutoff
parameter δE. This is not a problem for the soft-virtual part,
as δE dependence there is analytical. For the hard part,
choosing extremely small δE leads to finite but very large
corrections, comparing to the corrections to the sum. Thus
there has to be delicate cancellation of large corrections
between the soft-virtual part and hard part. A possible
improvement would be including also the subleading terms
DðxÞ ln τ in the calculation. Such “next-to-eikonal correc-
tions” have been considered before in Drell-Yan production
through to NNLO [133,134]. It would be interesting to
calculate DðxÞ along the same line.

III. NUMERICAL RESULTS

We present our numeric results in this section. As
mentioned before, we use two-loop running of the QCD
coupling constants with Nl ¼ 5 active quark flavors and
αsðMZÞ ¼ 0.118. We choose the GF parametrization
scheme [135] for the EW couplings with MW ¼
80.385GeV, MZ ¼ 91.1876 GeV, Mt ¼ 173 GeV, and
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GF ¼ 1.166379 × 10−5 GeV−2 [136]. The renormalization
scale is set to the center-of-mass energy

ffiffiffi
s

p
unless other-

wise specified.
The production cross sections due to virtual photon

exchange through to NNLO in QCD can be expressed as

σNNLO;γ ¼ σLO;γð1þ Δð1Þ;γ þ Δð2Þ;γÞ; ð47Þ

where Δð1;2Þ;γ denote respectively the OðαsÞ and Oðα2sÞ
QCD corrections. The Oðα2sÞ corrections Δð2Þ;γ can be
further decomposed according to color factors, i.e., the
Abelian contributions, the non-Abelian contributions, the
light-fermionic contributions, and the heavy-fermionic
contributions. Alternative notation used in [8,16,17]
follows:
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FIG. 1 (color online). Dependence of separate contributions to Δð2Þ;γ with full colors on the cutoff for different collision energies.

2 ,

Fit

10 4 10 3 10 2 10 1

2 , vs. E , s1 2 350 GeV, color: sum

2 ,

Fit

10 4 10 3 10 2 10 1
0.0010

0.0000

0.0010

0.0020

0.0030

0.0040

0.0050

0.0060

2 , vs. E , s1 2 500 GeV, color: sum

2 ,

Fit

10 4 10 3 10 2 10 1
0.0010

0.0000

0.0010

0.0020

0.0030

2 , vs. E , s1 2 1000 GeV, color: sum

0.4550

0.4555

0.4560

0.4565

FIG. 2 (color online). Dependence of δΔð2Þ;γ with full colors on the cutoff and the fitted curves for different collision energies.
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σNNLO;γ ¼ σμþμ−;γ

�
Rð0Þ þαsðμ2Þ

π
CFRð1Þ þ

�
αsðμ2Þ

π

�
2

Rð2Þ
�
;

ð48Þ
with σμþμ−;γ the cross section of muon pair production, and

Rð2Þ ¼ C2
FR

ð2Þ
A þ CACFR

ð2Þ
NA þ CFTRNlR

ð2Þ
lF þ CFTRR

ð2Þ
hF;

ð49Þ
which depends only on r ¼ 2mt=

ffiffiffi
s

p
. The four contribu-

tions in Eq. (49) are denoted by CF, CA, Nl, and Nh,
respectively, in the following figures and discussions.
Analytical results for Rð2Þ are presented for production
near threshold [8,9] or in the high-energy expansions

[16,17] with which we compare our numerical results.
Note that for the Oðα2sÞ results on inclusive cross sections
or Rð2Þ below, we include the real corrections with four
top-quark final states, which are also present in the above
calculations of high-energy expansions. We do not include
those four top contributions in the differential distribu-
tions since they could be measured separately.

A. Inclusive cross sections

As usual in the phase-space slicing method, Δð2Þ;γ
depends only weakly on the cutoff parameter δE and
approaches the genuine Oðα2sÞ corrections when δE is small
enough. Figure 1 showsΔð2Þ;γ as functions of δE for different
collision energies. For each of the energy choices, Δð2Þ;γ
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FIG. 3 (color online). Comparison of Δð2Þ;γ with the threshold results Δð2Þ;γ
th and high-energy expansion results Δð2Þ;γ

he in terms of their
absolute values and ratios.
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receives contributions from below the cutoff Δð2Þ;γ
1 (soft-

virtual part), and above the cutoff Δð2Þ;γ
2=3 (hard parts). Each of

the three parts depends strongly on δE with variations as
large as 30% for example for

ffiffiffi
s

p ¼ 500 GeV. However,
their sum, Δð2Þ;γ, remains almost unchanged when δE
varies between 10−2 and 10−4 as demonstrated in Fig. 1.

For production near the threshold, e.g.,
ffiffiffi
s

p ¼ 350 GeV, the
dominant contribution to the Oðα2sÞ corrections is from

the two-loop virtual corrections as included in Δð2Þ;γ
1 . The

remaining dependences of Δð2Þ;γ on δE are further plotted in
Fig. 2. Here in δΔð2Þ;γ we have subtracted the high-energy
expansion results [16,17] from our numerical results for
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comparison. The solid lines are scattering plots and the
dashed lines are fitted curves assuming δΔð2Þ;γ ¼ f0þ
f1δE ln δE þ f2δE, where fi are constants independent
of δE. The fitted coefficients are f0;1;2 ¼ f0.4555;
−0.00025; 0.0037g, f0.00005;−0.0050; 0.044g, and
f−0.00003; 0.016; 0.066g for the three collision energies
respectively. Note that the f0 term represents the difference
of our numerical results in the limit of δE → 0 [genuine
Oðα2sÞ corrections] with the high-energy expansion results.
f1 and f2 terms are the systematic errors due to finite δE
choices. Assuming δE ¼ 2 × 10−4, the f1 and f2 terms are
estimated to be less than 10−4 for above collision energies.
Thus choosing δE ¼ 2 × 10−4 should be sufficient for a
realistic calculation. The smallness of f0 for

ffiffiffi
s

p ¼ 500 and
1000 GeV indicates a very good agreement of our numerical
results with the high-energy expansion ones.
Figure 3 shows a detailed comparison of our numerical

results with the threshold [8,9] and high-energy expansion
results [16,17] in a wide range of energy. The cutoff
parameter is chosen as δE ¼ 2 × 10−4. We present the
comparisons both for the Oðα2sÞ corrections as well as their

ratios. It can be seen that our full results works well in the
entire energy region considered, i.e., approaching the
threshold results for lower energies and the high-energy
expansions on the other end. However, one may notice the
differences between the high-energy expansion results and
ours for

ffiffiffi
s

p
> 1000 GeV in the ratio plot. The differences

are due to the power corrections we mentioned earlier.
For

ffiffiffi
s

p
> 1000 GeV, the Oðα2sÞ corrections are at per mile

level as a result of large cancellation between soft-virtual
part and hard part. However, no such large cancellation
exists for the power correction terms. This is because we are
only neglecting power correction terms in the soft-virtual
part, not in the hard part. Therefore, in general, the power
corrections are proportional to the LO cross sections and
depend on threshold behaviors of dσð2Þ=dτ as shown in
Eq. (45). Furthermore, the power corrections contain
logarithmic terms of the form lnðs=m2

t Þ, which become
large as s increases. For

ffiffiffi
s

p
< 1000 GeV, which is

the energy range phenomenologically that is important,
the power corrections are negligibly small for the
chosen cutoff parameter and our results are accurate.
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FIG. 7 (color online). OðαsÞ and Oðα2sÞ corrections in different cos θt bins, Δ
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bin for different collision energies and
different δE choices.
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For
ffiffiffi
s

p
> 1000 GeV, power corrections become important

and a smaller cutoff parameter is needed to suppress them.
That requires much more CPU times in order to control the
MC integration errors, and it is not worth considering the
smallness of the absolute corrections.
Further comparisons for the ratios are presented in

Figs. 4 and 5 as functions of r for different color
structures. The left end of each plot, with r ∼ 0.17,
corresponds to a collision energy of 2 TeV. Besides the
high-energy and threshold expansions, we also include
into comparison results from Padé approximation for
which the analytical expressions are available for

Abelian Rð2Þ
A and non-Abelian Rð2Þ

NA pieces in Ref. [137].
The Padé approximation is an interpolation based on the
existed results in different limits and works for the entire
energy range. Again we can see good agreement of our
results with the high-energy and threshold expansions in
the corresponding limit, and also the Padé approximation
in the entire energy region for r > 0.4. The kinks in the
Abelian contributions are due to the fact that Rð2Þ crosses
zero at that point. The deviation of our results for r < 0.4

again are due to the power corrections. It is understood
that the power corrections are different for different color
structures. Especially, they are negligible for the “Nh” part
since there is no logarithmic enhancement as seen in
Eq. (44). We have checked that if we choose larger or
smaller values of δE, our curves do get farther or closer to
the high-energy expansion or Padé approximation curves
for r < 0.4. The small differences between the Padé
approximation [137] and high-energy expansion results
[16,17] are due to the fact that the former one is based on
expansion with less terms in m2=s.
We further show reduction of the scale variations by

including the Oðα2sÞ corrections in Fig. 6. We vary the
renormalization scale μr around the nominal choice μr ¼ffiffiffi
s

p
by a factor of 10 downward and 4 upward. The scale

dependence has been reduced significantly for
ffiffiffi
s

p ¼ 500
and 1000 GeV, e.g., from 6% at the NLO to 1% at the
NNLO for a collision energy of 500 GeV. The NNLO
results still show a large scale dependence near production
threshold due to the large corrections and require resum-
mations for further improvements.
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FIG. 8 (color online). NLO and NNLO corrections in different pT;t bins, Δ
ð1Þ;γ
bin and Δð2Þ;γ

bin , for different collision energies and different
δE choices.
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B. Differential distributions

We can calculate fully differential distributions up to
NNLO in QCD based on the phase-space slicing method.
At LO, there is only one nontrivial kinematic variable,
which we can choose either as cosine of the scattering angle
between the final-state top quark and the initial-state
electron cos θt, or transverse momentum of the top quark
with respect to the beam pT;t. Similar as the inclusive cross
section, we can define the OðαsÞ and Oðα2sÞ corrections for
each kinematic bin, Δð1Þ;γ

bin and Δð2Þ;γ
bin , in analogy to Eq. (47).

The results are shown in Fig. 7 for cos θt and Fig. 8 for pT;t

distributions with collision energies of 350, 500, and
1000 GeV. For each of them we plot the Oðα2sÞ corrections
with two different δE choices, 10−3 and 5 × 10−4. By
comparing those two results we can see very good
stabilities of the Oðα2sÞ distributions for δE small enough
∼ a few 10−4, similar as the inclusive cross sections.
As can be seen from Fig. 7, both the OðαsÞ and Oðα2sÞ

corrections are flat for
ffiffiffi
s

p ¼ 350 GeV where they are
dominated by virtual corrections. The cos θt distribution is
symmetric in the forward and backward region for pure
photon contributions. For

ffiffiffi
s

p ¼ 500 GeV, the Oðα2sÞ
corrections are slightly larger in the region of jcos θtj ∼
1 than in the central region, and are about 13% of theOðαsÞ
corrections in size. The Oðα2sÞ corrections for cos θt
distribution are totally negligible comparing to the OðαsÞ
ones for

ffiffiffi
s

p ¼ 1000 GeV.
The transverse momentum distributions in Fig. 8 show a

different feature comparing to the angular distribution since
they are also affected by the energy spectrum of the top
quark. The real corrections pull the energy spectrum to the
lower end and thus the pT;t distribution as well. As shown
in Fig. 8, both the OðαsÞ and Oðα2sÞ corrections start as
positive in low pT and then decrease to negative values near
the kinematic limits. The Oðα2sÞ corrections show a
relatively larger impact in the pT;t distribution.
Besides, we can also investigate distributions like, Δϕtt̄,

difference of azimuthal angles of top and antitop quark, and
their invariant mass, mtt̄. Since they are both a delta
function at the LO, our Oðα2sÞ corrections are effectively

NLO for those observables. We plot the LO distributions
together with the OðαsÞ and Oðα2sÞ corrections in Fig. 9.
The corrections have been rescaled for comparison. For
bins with vanishing cross sections at the LO, we have
compared our OðαsÞ and Oðα2sÞ corrections with the
calculations of QQ̄þ jet production up to NLO in [25]
and found very good agreement.

IV. CONCLUSION

To conclude, we have presented a fully differential
NNLO QCD calculation for the photon exchange contri-
butions to electroweak top quark pairs production at
eþe− colliders. Our calculations are based on a NNLO
generalization of the phase-space slicing method. Similar
methods were introduced some time ago to compute the
Nl-dependent contributions to the total cross sec-
tion [138,139]. To the best of our knowledge, the results
presented in this paper for the rest of the color structures are
new. Let us emphasize that we present various differential
distributions as well at NNLO for the first time. Whenever
possible, we have compared our results to existing analytical
calculations. We find complete agreement with the known
results, both in the threshold [8–11] and in the high-energy
regimes [13–17]. Although their calculation was beyond the
scope of this work, the Z exchange contributions can be
straightforwardly derived using the phase-space slicing
technique discussed in this paper. The Z exchange contri-
butions are of fundamental phenomenological importance
and will be treated in a future publication.
Inspired by the successful application of the qT sub-

traction method of Catani and Grazzini [62], recently there
has been some interest and progress in applying the phase-
space slicing method to NNLO QCD calculations. For
instance, top quark decay [89], Drell-Yan production [140],
and Higgs production [141] have all been studied in
schemes very similar to the one described in this work.
This paper demonstrates that phase-space slicing can also
be used to calculate top-quark production processes, albeit
at eþe− colliders. Our calculation shows that fully differ-
ential NNLO corrections in eþe− annihilation are not much
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FIG. 9 (color online). Differential distribution, dσ=dmtt̄ on left, dσ=dϕtt̄ on right, at the LO, OðαsÞ (multiplied by 4), and Oðα2sÞ
(multiplied by 10).
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harder to obtain than typical NLO corrections to QCD
processes once a good IR-safe observable has been defined
and the corresponding hard and soft functions are known.
In future work, it would be interesting to apply the phase-
space slicing method to other NNLO QCD calculations
relevant to the physics of future linear colliders and to
generalize the method to allow for the treatment of parton-
initiated processes.
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