PHYSICAL REVIEW D 90, 114022 (2014)
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We report on a calculation of the vector current contributions to the electroweak production of top quark
pairs in e e~ annihilation at next-to-next-to-leading order in quantum chromodynamics. Our setup is fully
differential and can be used to calculate any infrared-safe observable. The real emission contributions are
handled by a next-to-next-to-leading order generalization of the phase-space slicing method. We
demonstrate the power of our technique by considering its application to various inclusive and exclusive

observables.
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I. INTRODUCTION

Continuum electroweak production of top quark pairs at
future linear colliders is of considerable interest because it
allows for a precise measurement of the top quark forward-
backward asymmetry. This observable is of particular
importance because it is expected to severely constrain
anomalous couplings which could potentially appear in the
top quark sector [1]. In the near future, due to the extremely
clean environment expected at proposed eTe™ colliders, it
should be possible to measure the top quark forward-
backward asymmetry to a precision of approximately
1% [2].

At an eTe™ collider, top quark pairs are primarily
produced via the electroweak process

ete” > y* /7" > 1i. (1)

In this paper, we shall only concern ourselves with the next-
to-next-to-leading order (NNLO) radiative corrections to
the above process in quantum chromodynamics (QCD)
mediated by an off-shell photon (y*). In other words, we
treat the vector current contributions to the production of a
top-antitop pair. Complete results including the axial-vector
contributions (i.e. that due to off-shell Z boson exchange)
will be presented elsewhere.

The calculation of QCD radiative corrections to heavy-
quark pair production in e'e~ annihilation has a long
history. Full next-to-leading order (NLO) QCD corrections
were first computed in Ref. [3] and, a short time later, NLO
electroweak effects were considered in Ref. [4]. NLO QCD
corrections to top quark pair production including the
subsequent top quark decays were presented in Ref. [5]
and NLO QCD corrections to top quark spin correlations
were computed in Refs. [6] and [7]. Total cross sections are
known to NNLO in the threshold expansions [8—12] and
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high-energy expansions [13—17]. Results for the forward-
backward asymmetry are also known in the small mass
approximation [18-20]. In the near future, the threshold
cross section at NNNLO will also be available [21-23].
Somewhat surprisingly, although a great deal of theoretical
progress has been made over the years, exact NNLO QCD
calculations for fully differential e™e™ — 7 observables
remain a challenge and are still missing from the literature.

A fully differential NNLO QCD calculation is naturally
split up into three distinct parts, depending on the number
of particles that appear in the final state relative to leading
order: (a) purely virtual two-loop or squared one-loop
corrections, (b) one-loop, single-emission real-virtual cor-
rections, and (c) double-emission double-real corrections.
For ete™ — 11, significant progress has been made in
recent years towards the calculation of each of these three
pieces. NLO QCD corrections to heavy quark pair pro-
duction in association with one additional jet were com-
puted in Refs. [24-28]. The two-loop heavy quark form
factor was first obtained in Refs. [29-31] and then con-
firmed some time later by an independent calculation [32].
In fact, for quite some time, the only outstanding problem
was to construct an efficient framework for the combination
of the ingredients described above into an infrared-safe
Monte Carlo event generator.

For generic processes, this is highly nontrivial due to the
fact that, in phase space regions where soft and/or collinear
limits are approached, the real-virtual and double-real
contributions develop soft and/or collinear divergences
which must be extracted before a Monte Carlo integration
over phase space can be carried out. At NLO, this is
relatively straightforward to do and both phase-space
slicing [33-39] and subtraction [40—45] techniques which
solve the problem were worked out a long time ago.
However, as is clear from the massive amount of literature
on the subject [46-101], analogous techniques at NNLO
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are considerably more complicated to develop and com-
plete solutions took much longer to emerge. For example,
in the important case of massless dijet production, it took
more than a decade for the first physical predictions to
appear [46,47] from the time that the relevant two-loop
virtual amplitudes were first calculated [102-111]. As a
result of significant theoretical efforts during the past
decade, a number of important “benchmark processes”
are now known to NNLO [46,47,86,93,94,100].

The goal of this paper is to study fully differential NNLO
QCD corrections to e"e™ — 17 using a higher-order gen-
eralization of the phase-space slicing method. While we
constrain ourselves in this paper to present results for the
vector current contributions by themselves, the formalism
developed here can, if desired, readily be used to calculate
the contributions coming from the exchange of an off-shell
Z boson. This paper is organized as follows. In Sec. II, we
describe our calculational method in detail. In Sec. III, we
present numerical results for various inclusive and differ-
ential observables and, whenever possible, compare them
to the existing literature. Finally, we conclude in Sec. IV.

II. PHASE-SPACE SLICING AT NNLO

We explain in detail our generalization of the phase-
space slicing method in dealing with the specific process
eTe™ — 1t at NNLO. As mentioned before, there are three
distinct parts that contribute to the cross section at O(a?),

0'(2) :/déﬁ,() Z [Zm(Mﬁ(i)e_—ﬂf(/\/lgr)e_—ﬂf)*)

spin,color
(1) 2
+IM ]
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is the phase space volume element in D = 4 — 2¢ dimen-
sions, divided by the flux factor and initial state spin
average factor. Here s = Q% = (p,+ + p,-)? is the center-
of-mass energy square. Mei denotes the i-loop
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amplitude for e™e™ — 17 plus zero, one, or two additional
massless partons. Note that when /s > 4m;,, the channel
for the production of 77 is open. However, these additional
contributions are themselves infrared finite due to the mass
of top quark, and can be dealt with separately. In the
following discussion, we will neglect these contributions.
Also for the vector contributions, we only consider dia-
grams with top quarks coupling directly to the photon. The
diagrams with photon coupling to a bottom or light quark
and the top quark produced via gluon splitting are numeri-
cally small [112,113], although the bottom triangle dia-
grams are needed and must be included to cancel the axial
anomaly in the axial vector case [16,31].

The first, second, and third terms on the right-hand side of
Eq. (2) represent respectively the double-virtual, real-
virtual, and double-real contributions. The double-virtual
contributions contain explicit quadratic poles in €, originat-
ing from loop corrections when the gluons are soft. Thanks
to the Bloch-Nordsieck and Kinoshita-Lee-Nauenberg
theorem, the infrared divergences will be canceled by those
in the real-virtual and double-real contributions. However,
such cancellation is nontrivial because the infrared diver-
gences in the real-virtual and double-real contributions can
only be made explicit after the phase space integral is
computed. It is therefore necessary to perform the phase
space integral in D dimensions to regulate potential infrared
divergences. This fact makes the calculation of real-virtual
and double-real contributions difficult.

The singular region in the phase space is relatively
simple for the real-virtual corrections, where the matrix
elements are singular only when the energy of the final-
state gluon approaches zero. For the double-real contribu-
tions the singular region is much more involved. First, the
matrix elements are singular in the double unresolved
region, where the energies of both the final-state partons
approach zero. Second, the matrix elements are also
singular even in the single unresolved region, where only
one of the final-state gluons is soft, or the final-state
massless partons become collinear. Fortunately, the singu-
larities due to a single unresolved region is well understood,
as they are the same that one encounters in NLO QCD
calculation. We therefore only need to deal with the
double unresolved region. To isolate the phase space
singularities in this region, we introduce a phase-space
slicing parameter z, which is proportional to the total energy
of QCD radiations in the final-state, 7 =2(\/s — (E, + E7))/
(v/s(1=4m?/s)). Physically, when 7 is nonzero, there is at
least one massless parton in the final state with finite energy.
We can divide the phase space into two slices using the theta
function,

o = o +ojf. ()

where o\ = Jdo6(8; — ) is the soft-virtual part, and
o) = [ do(z — &) is the hard part, and 5, is the cutoff
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parameter. There are still phase space singularities in both o,
and o;;. However, the phase space singularties in ¢;; belong
to the well-understood one, because there is at most one
massless parton in the final state whose energy can approach
zero. We can therefore straightforwardly calculate ¢;; using
any existing NLO infrared subtraction method. On the other
hand, the soft-virtual part, ¢;, contains a double unresolved
region, whose calculation needs additional efforts. An exact
calculation for o, is difficult. However, if we choose df to be
small and ignore terms of O(5), we can calculate o; using
matrix elements in the soft limit, and also expanding the
phase space volume in the soft limit. Such approximation
leads to enormous simplification and makes the analytical
calculation feasible. We explain in detail the calculation of
the soft-virtual part and hard part below.

A. The soft-virtual part

1. Factorization of the radiation-energy distribution

We can write the soft-virtual part as an integral over
radiation-energy distribution,

@) 5 dewde®
= dr— , 5
o1 A "z dw )

where w is twice the energy of final-state QCD radiations,
@ = 2(\/s — E, — E;). The factor of 2 here is introduced by
convention. Ignoring power suppressed terms in w/m;, we
can write the distribution for do/dw in small @ in a
factorized form using the language of effective theory.
de® /dw is simply the O(a?) corrections to this distribu-
tion. We start from the full distribution in QCD,

d
- = ;@”)45«0 (Q = pi = pi = px)d(® = 2E(X))L,,
x ) (014" |12X) (12X ].7%|0). (6)

ij

where X denotes gluons and light quarks in the final state,
and E(X) denotes the energy of X. We do not include
additional top-quark states in X because they give rise to
finite corrections and can be incorporated into our numeri-
cal results separately in a simple way. The summation over
final states in Eq. (6) becomes integral over D-dimensional
phase space measure in dimensional regularization. For
example, for two-gluon final-state X = gg, we have

digreg
> @) (Q - p, - pi - px) — / d®;,. (7)

t.1.99

where d®;, is defined in Eq. (3). The lepton tensor
includes only vector contributions from virtual photon
exchange,
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_2_62 _2(p;+ps— +p§+Pf,_) (8)
s \7" s ’

L, =

where e is the QED coupling, and pz+ and py, are the four
momentum of the positron and electron. The production of
a top-quark pair via virtual photon exchange is described by
two QCD currents,

Ty = —=ieQ,¥(p,)r" ¥ (ps),
eQ,

T = 2, U(pi)o(p; + pi), P (). ©)

where Q, = 2/3 is the electric charge number of the top
quark, and ¢ = £[y#*,y*]. Note that Eq. (6) is exact to
leading order in electroweak interaction, and all orders in
QCD interactions. It is also an exact distributions for w.
Calculation of Eq. (6) in perturbative QCD requires the
calculation of both virtual corrections and the phase space
integral. Unfortunately, exact calculation of the phase space
integral is difficult beyond NLO. Certain approximation is
needed in order to proceed. Since we are only interested in
the energy distribution in the soft region, we can expand
Eq. (6) to leading power in w/m,. Then the momentum
conservation delta function factorizes as

> (@n)*6*(Q = p: = pi — px)
t.1.X

=>_@a)'s9(Q~p,~p)) (10)

X

in the region where Agcp << @ < m,. The physics of such
factorization is that as long as the energy of QCD radiations
is small, they can hardly change the trajectory of the heavy
quark. The short-distance reaction which produces the top-
quark pair cannot resolve the activities of soft QCD
radiations, and therefore has tree-level-like kinematics.
We can describe the top quark and antitop quark by heavy
quark fields 4,(y) and h;(y), labeled by the velocity of the
heavy quarks, p, = m,v, p; = m,v. The QCD currents in
Eq. (9) can then be matched to currents in heavy quark
effective theory (HQET),

T = =ieQ,Cy (v, 9)h,y* hy,

Th= oo b0 ot i)y (1)
where the corresponding Wilson coefficients C; (v, 7) and
C,(v, D) can be obtained from the calculation of the QCD
form factor for heavy quark pair production. At leading
power in HQET, the heavy quark field only interacts with
gluons via eikonal interaction,

Line=h,(y)gv-A;(y) 1, (y) + 1 (y)g0-Ag(y)hs (y).  (12)
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Such eikonal interactions can be absorbed into Wilson lines
by a field redefinition [114],

(o)) = (B ()T (Y, ()",
ha(y) = Y5 ()R (y), (13)

where
(Y,(»)" =Pexp (ingo dz-A(vz +y)>,
Y (y) = Pexp (—ingo dz - A7z +y)> (14)

are the path-ordered and antipath-ordered Wilson lines.
The decoupled heavy quark field B (x) no longer interacts
with the gluon, but still annihilates the top-quark field.

The hadronic tensor now has a factorized form,

> 8w = 2E(x)) > (0|74 |2X) (12X| 7%|0)
X ij
= H™S (0]Y1Y41X)8(w - 2E(X))(X|Y1Y,]0),  (15)

where the summation is over all unrestricted massless
final states. For example, for a two-gluon final state with
momentum p; and p,, we have

dD—l P

Zdig_r)eg/ dD_lpl / (16)
2E1 (27[)0_1 2E2(271')D_1 '

X

H" is the hard function,

2
me =370 @7y, (17)

ij=1

and J 50)’” is the decoupled HQET current, with £, ;(y)

replaced by h(volz(y) Summing over the top quark spin and

color," the hard function can be evaluated explicitly,

2
H"™ =N, Ci(v.9)Ci(v, DR, (18)
i,j=1
with
Wi = Q7 (=2s¢™ +4(pi p¥ + pipY)), (19)

Wy =y =2e*Q(=sg™ + (pi + P (pi + P7)).  (20)

"It should be noted that our formalism also allows full spin
dependence for heavy quark, since the eikonal approximation
preserves spin.
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v w s v v
Wy, = e*07 (—ZSQ’ + (2 - —2m2> (Pt + pipY)
t

N
+ (245t + i), o)

t

The matrix element of the Wilson lines defines the soft
function for #7 production,

§ = 1 SOV X3~ 2E(0) (XYY [0).  (22)

¢ X

The summation is over all possible QCD final states.
We have chosen the normalization such that at LO the
soft function is §(w). The calculation for soft function is
much easier than the exact phase space integral, thanks to
the eikonal approximation.

We can now write down a factorized formula for the
radiation-energy distribution in top-quark pair production,

3 3,
das.v. _ L d P: 3/ d D7 . (271_)45(4)
do  8s ) 2E,2n) ) 2E;(2x)
X (Q —DPr— p?)L;wH/wS(xv w)’ (23)

where we have also included the initial-state flux and spin
average factor. The variable x is defined as

x=— YV 5 (24)
1+4/1-

For fixed m;, x — 0 is the high-energy limit, while x — 1 is
the threshold limit. Equation (23) is only valid at leading
power in w. The soft function is fully differential in the top
and antitop momentum, but inclusive in the QCD radia-
tions. This is not a problem as we will use this formula only
in the limit of small @, where the QCD radiations cannot be
resolved by any reasonable experimental measurement.

The phase space integral in Eq. (23) becomes trivial.
Integrating out the azimuthal angle dependence of the top
quark, we obtain

dzasv
W = 'H(COSQ,,mt,s)S(x,a)), (25)

where

1 d3pr d3p;
6 5 ) =g.
H(cos 0, m,, s) 83/2Et(2n’)3/2E?(2”)3

x (27)*8"(Q - p, — p1)

) (cos 0, — |II))Z |.|ll))e|> L, H". (26)
t e
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The soft function is a distribution in w. It is often
convenient to perform a Laplace transformation,

/md . ® d’o,,
= wexp | — —_—
0 P etk ) dwd cos 6,

= H(cos 0,, m,, s)5(x, L,),

&5,

dxd cos 0,

(27)

where L, =In(x/u). The renormalized soft function
depends on k only through terms of the form L}, where
n is a positive integer. It is therefore possible to invert the
Laplace transformation in close form [115],

d20g v,

—4m?/s)\"
dzdcosé,

="H(cosO,,m,,s )111%[5(x,8,7) (\/_( -

<t

where we recall that 7= w/(1/s(1 —4m?/s)). Equation (28)
is interpreted as first expanding in # as a taylor series within
the square bracket, using the well-known plus-distribution
expansion

(28)

180, 1 Fq++ow% (29)

T

then taking the # — 0 limit.

2. Hard function from QCD heavy quark form factor

The Wilson coefficients defined in Eq. (11) can be
obtained from the QCD heavy quark form factor. The latter
has been computed for the vector contributions, axial
contributions, and anomaly contributions by Bernreuther
et al. [29-31]. The vector contributions have been com-
puted independently later in Ref. [32], confirming previous
results.

In Ref. [29], the vector contributions to heavy quark form
factor are given to two loops in QCD. The results are
expressed in terms of two dimensionless scalar form
factors, F,(x) and F,(x),

1
ieui(p) (i + o B0 (0 + 1) ) ().
(30)
Here the scalar form factors are related to those computed

in Egs. (57) and (58) of Ref. [29] by an additional
renormalization,

Fi(x,ad") = Fi(x, aiv"'((xﬁv[)), i=1,2, (31)

where
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(N Ni 8 a‘l‘yl 1
a (a )—(Zy 1+§TRNhE —ELH
Li 1o\ L€ (a5 4000 o
+€<4 +24”>>+12<4n Po x|
(32)
with Ny = N; + Nj. N; =5 is the number of light quark

flavor, and N, = 1 is the number of heavy quark flavor.
Tg =1/2 in QCD, Ly = In(m?/u*). The QCD beta
function for N, quark flavor is given by

N 11 4
PV = 22 Cy = STR(N, + Ny,

3 3 (33)

where Cy = 3 in QCD. Unless otherwise specified, we will

denote a)' as a, below. Note that £;(x) and F;(x) only
differ starting from two loops. The origin for such a
difference is that in Ref. [29], the renormalization of strong
coupling is performed in the MS scheme, running with N [
flavors. Also the authors of Ref. [29] include a factor
I'(1 4 €) exp(eyg) in the coupling renormalization, where
I'(z) is Euler’s gamma function, and yz = 0.577216....
However, we choose to perform the calculation with a
running with N, flavors, and also without the additional
factor I'(1 + €) exp(eyg). The decoupling of heavy quark
flavor is realized by the second term on the right-hand side of
Eq. (32) [116-119], while the third factor gets rid of the
additional factor I'(1 + €) exp(eyy) through to O(a?) [120].

The scalar form factors are functions of x. Writing them
as an expansion in a; = a,(u)/(4x),

Fix) = F () + a B () + 2F (x) + O(ad),  (34)
we have at LO in QCD
Fx =1, F%x) =o. (35)

Using the additional renormalization relation in Eq. (31),
the one-loop and two-loop form factors can be read off
from Ref. [29]. These form factors are UV finite but IR
divergent. To calculate the Wilson coefficients defined in
Eq. (11), one needs to calculate the form factors in the
effective theory. The Wilson coefficients are simply the
differences of the form factor in QCD and the form factor in
effective theory. In dimensional regularization with external
state on shell, the form factors in the effective theory at one
loop and beyond vanish because they involve only scaleless
integral. Since the IR divergences in the QCD calculation
and effective theory calculation must match, it implies that
the UV divergences in the effective theory calculation are
exactly the negative of the IR divergence in the QCD
calculation. Therefore, renormalization of the UV diver-
gences in the effective theory simply amount to performing
an IR subtraction to the form factor in QCD,
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Ci(x) zlim[ZH.,»IA’i(x)], i=1,2, (36) below .the explicit expression for C;(x) .at one loop,
=0 as derived from the QCD form factors in Ref. [29].
We have checked that using Ref. [32], we get the same
Wilson coefficients.
The one-loop Wilson coefficients are

where the IR subtraction factor is defined such that C;(x)
is order by order finite, i.e., Zy ; absorbs only the e poles
in F;(x). For the convenience of the reader, we give
|

) 2 2 4 2
=Cr|Ly| (——- —2)H 2 - H
¢ (x) CF[ H<<x+1 . > (0,x) + )+< Py e (0,x)

2 2 4 4
- 2 |H —~ 4)H(1
+( sritiort ) (0,0,x)+< i ) (1,0, x)

88> 8¢ : 2 2
— —4(2 1 Cr|L - -2
x—1+x+1 (26 +1)| +ixCr | Ly x+1 x-1
+ : + . +2 |H(0,x) + ! + ! +4 |H(1,x)+ ’ ! +3 (37)
x+1 x-1 g x+1 x-1 RN x+1

[
S(x, L) = 14+ ay(Ly§(x) + ci(x))

#2530 ) = oo

1 1
x—1 x+1

i (x) =2C (— > (H(0.x) +iz).  (38)

where C = 4/3 in QCD. The imaginary part in the Wilson

coefficients results from analytical continuation of the form + L (c1(x)(yd(x) = 280) + 7 (x)) + cz(x)]
factors from spacelike to timelike kinematics. The function
H(w,x) is harmonic polylogarithm (HPL) introduced in +O(a?) (39)

Ref. [121]. We use HPLOG [122] for the numerical calcu-
lation of HPLs in this work. The Mathematica file for the
two-loop Wilson coefficients can be found in the arXiv
submission of this paper. 11 4

Bo = ?CA - gTRNz, (40)

3. Perturba'tive. exl')ansion of the radiation-energy and y5(x) and y}(x) are the well-known cusp anomalous
distribution through to NNLO dimension [124-126]. We reproduce them here for the sake
To expand the equation for radiation-energy distribution ~ of completeness
in Eq. (28) in a,, we also need the soft function to NNLO,
which has been computed only recently [123]. The Laplace 7o(x) = —8Cr {1 +
transformed soft function has the generic form

through to O(a?), where f3, is the LO QCD beta function
with N; light flavor only,

1 + x2
1—x2

H(O,x)] (41)
|

392 1+ 9x? (1+x%)?
H(O,x)] + CuCr [_T+ 160 —— 5+ 16(1 e
1+x? 67

~ H(0.1.x)) = 4H(0.0.~1.x) +4H(0.0. 1.x) =£(3)) + 32— (H(0.x) <H(—1,x) —H(1,x) —36>

160 1 + x?
1(x) =—CpNTg|1
7i(x) g CrNilr b+

(2H(0,x)(H(0,—1,x)

322°(1 +%)

32x2
3 (1-x%)?

(1+x2)(1 4 9x?)

—H(0,-1,x) + H(0,1,x)) H3(0, x) -7 H(O,x)} (42)

H2(0,x) + 168,

The soft function is largely fixed by the renormalization group equation it obeys [124]. The genuine two-loop corrections to
the soft function are summarized by the scalar function ¢, (x), which is first computed in Ref. [1 23].> With all these results at
hand, we can write down the radiation-energy distribution through to NNLO, up to power-correction terms in 7. Writing
H(cos @, m,,s) as an expansion in a,, H(cos8,,m,,s) = Hy + a,H, + a>H, + - - -, the results are

*Note that results presented in Ref. [123] are given in terms of generalized polylogarithms, G(...;x), with weight alphabet drawn
from {—1,0, 1}. They are related to HPLs by a simple relation, G(w;x) = (—1)" H(w, x), where n; is the number of occurrences of
alphabet 1 in the weight vector w.
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26 . . 1
dedcosd, [(e1(x) + Lyyy)Ho + H,]6(z) + 27} (X)HOE (43)
d26!? 1
W = [ZHOL%H’(S)(}’E = Bo) + Lu(Ho(c1(x)rh = Poci (x) +71) + Hirg)
1 1
o (200 + 3o = 30 ) + a0 + 7 o0
, 1
+ [HoLu(2(r§)* + Ho(2¢1 (x)7§ — 2Boct (x) + 273) — 2Bors) + 2Hir{)] W
+
Int
~attoro -] (44)
T 14

This is the main result for the soft-virtual part.

B. The hard part

The hard part aﬁ) consists of the real-virtual corrections,
ete™ — rig at one loop, and the double-real corrections,
ete” — 11gg(qq) at tree level. As mentioned above, the
infrared divergences in this part only involve a single
unresolved limit, and thus can be extracted using the
standard NLO subtraction technique. In this paper we
employ the massive version of the dipole subtraction
method [127]. The one-loop real-virtual calculation is
carried out by the automated program GoOSAM2.0 [128]
with loop integral reductions from NINJA [129,130] and

scalar integrals from ONELOoOP [131,132]. Since aﬁ) is IR
finite, it can be compared directly to the NLO QCD
calculation of e*e™ — QQg, e.g. Ref. [25], and shows
very good agreements.

Once the soft-virtual part and hard part are known, the
full corrections are simply the sum of them. The soft-virtual
part has born kinematics in the final state, since the QCD
radiations are soft and have been integrated out. Its
numerical implementation is therefore trivial. The hard
part is nothing but the usual NLO QCD corrections to the
process et e” — rig, as described above. We believe this is
the most important advantage of the phase-space slicing
method, because its numerical implementation is no more
difficult than a typical NLO calculation.

However, the drawback of the phase-slicing method is
also clear. In principle, the sum of the soft-virtual part and
hard part is independent of the arbitrary cutoff parameter o
in the limit of 6; — 0. Furthermore, since we will approxi-
mate the kinematics of the soft part as born kinematics in
our numerical calculation, é; needs to be small for such
approximation to hold. In realistic calculation, such a limit
can never be reached in the hard part. Nevertheless, our
formalism is exact in the hard part, and includes all the
leading singular dependence of  in the soft-virtual part,
such that the sum only depends mildly on dg. To estimate
the form of the subleading term missing in the soft-virtual

part, we note that an exact 7 distribution in small 7z should
have the following form:

o nt x
ddr = A(x) [IT} X + 1[81_(]3 + C(x)é(7)

+ D(x) In7 + subleading terms.

(45)

Our calculation includes exact results for the first three
coefficients, A(x), B(x), and C(x), but not D(x).
Integrating over the fourth term over z gives

5
D(x) / “drlnt = D(x)8g In 6 + subleading terms in 7.
0

(46)

We therefore expect the leading missing 6 dependence in
the sum of the soft-virtual part and the hard part is
proportional to 6z In o at NNLO. To minimize the impact
of such contributions, we have to choose a very small cutoff
parameter dg. This is not a problem for the soft-virtual part,
as O dependence there is analytical. For the hard part,
choosing extremely small 65 leads to finite but very large
corrections, comparing to the corrections to the sum. Thus
there has to be delicate cancellation of large corrections
between the soft-virtual part and hard part. A possible
improvement would be including also the subleading terms
D(x)In7 in the calculation. Such “next-to-eikonal correc-
tions” have been considered before in Drell-Yan production
through to NNLO [133,134]. It would be interesting to
calculate D(x) along the same line.

III. NUMERICAL RESULTS

We present our numeric results in this section. As
mentioned before, we use two-loop running of the QCD
coupling constants with N, =5 active quark flavors and
as(Mz) =0.118. We choose the Gy parametrization
scheme [135] for the EW couplings with My =
80.385GeV, M, =91.1876 GeV, M, =173 GeV, and
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AP vs. §g, s"2=350 GeV, color: sum
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AP ys. 5g, s'2=500 GeV, color: sum
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FIG. 1 (color online).

Gr = 1.166379 x 10~ GeV~2 [136]. The renormalization
scale is set to the center-of-mass energy /s unless other-
wise specified.

The production cross sections due to virtual photon
exchange through to NNLO in QCD can be expressed as

_ 1) 2),
onnLoy = 010, (1 + ALY + ART), (47)
AP vs, §g, s2=350 GeV, color: sum
' ' ' 5A(2)'y '
0.4565 | - Fit
0.4560 | /,
0.4555 F ]
0.4550 | ]
1074 1078 1072 107"

Dependence of separate contributions to A?)7 with full colors on the cutoff for different collision energies.

where A(2)7 denote respectively the O(a;) and O(a?)

QCD corrections. The O(a?) corrections A7 can be
further decomposed according to color factors, i.e., the
Abelian contributions, the non-Abelian contributions, the
light-fermionic contributions, and the heavy-fermionic
contributions. Alternative notation used in [8,16,17]
follows:

AP vs. §g, s'2=500 GeV, color: sum

0.0060 oA®Y 4
0.0050
0.0040
0.0030
0.0020
0.0010
0.0000

~0.0010 £u . .
107 1073 1072 107"

SAP7 vs, §g, s'2=1000 GeV, color: sum
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FIG. 2 (color online).

1072 107"

Dependence of A with full colors on the cutoff and the fitted curves for different collision energies.
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A®7 ys. s'2[GeV], 6=0.0002, color: sum

A@Y
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FIG. 3 (color online).
absolute values and ratios.

2 21\ 2
as\H a5 (K
ONNLOy = Optpy (R(O) +%CFR<1) + (%) R(2)>,

(48)

with ,,+,,- , the cross section of muon pair production, and

R(z) = C%Rgz) =+ CACFR](\?A + CFTRNZREIZJ‘) + CFTRRI(?F)"
(49)

which depends only on r = 2m,/+/s. The four contribu-
tions in Eq. (49) are denoted by Cp, C4, N;, and N,
respectively, in the following figures and discussions.
Analytical results for R are presented for production
near threshold [8,9] or in the high-energy expansions

ratio(R) vs. r, §=0.0002, color: Cr
1.3 r r .

RYIRY
- 2 2
12 — = Al

11 Ribol RS

09f / : ]
08f 4 ]

0.7

02 03 04 05 06 07
ratio(R) vs. r, §=0.0002, color: N,
1.3

RE/RE
12¢ —- — ABAY

11F B

1.0 e . —

09| B

0.8 | B

0782 " 03 02 05 06 07

FIG. 4 (color online). Comparison of different color structures of R with the high-energy expansion R

R ,,2D in the high-energy region.

Comparison of A®)7 with the threshold results Ay,

PHYSICAL REVIEW D 90, 114022 (2014)

ratio(A) vs. s”z[GeV], 6£=0.0002, color: sum

A(Q)A//A(ZW '
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""""" NN
11F ]
/ \‘ B
10 L e ]
."’ ‘\
ool i %
T
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2)r 2)

and high-energy expansion results AP in terms of their

he

[16,17] with which we compare our numerical results.
Note that for the O(a?) results on inclusive cross sections
or R® below, we include the real corrections with four
top-quark final states, which are also present in the above
calculations of high-energy expansions. We do not include
those four top contributions in the differential distribu-
tions since they could be measured separately.

A. Inclusive cross sections

As usual in the phase-space slicing method, A®?)7
depends only weakly on the cutoff parameter 6 and
approaches the genuine O(a?) corrections when & is small
enough. Figure 1 shows A(®)7 as functions of & for different
collision energies. For each of the energy choices, A7

ratio(R) vs. r, 6=0.0002, color: C,4

1.3 '
RARS
121 - — ARAD T
P Riaro/Pia ]
10— T -
-
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ratio(R) vs. r, 6e=0.0002, color: Ny
1.3
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09} 9

0.8 | 9

07 8203 02 05 06 07
(2)

he

and Padé approximation
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ratio(R) vs. r, 5£=0.0002, color: Cr
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FIG. 5 (color online). Comparison of different color structures of R®) with the threshold results Rﬂf ) and Padé approximation Ry, in

the threshold region.

receives contributions from below the cutoff AEZ),J/ (soft-
virtual part), and above the cutoff Agz/é‘y (hard parts). Each of
the three parts depends strongly on 6y with variations as
large as 30% for example for /s = 500 GeV. However,
their sum, A®7 remains almost unchanged when Jg
varies between 1072 and 10~* as demonstrated in Fig. 1.

AP vs. u,/s"?, s'2=350 GeV, 6= 0.001

For production near the threshold, e.g., /s = 350 GeV, the
dominant contribution to the O(a?) corrections is from
the two-loop virtual corrections as included in A(lz)'y. The
remaining dependences of A on &, are further plotted in

Fig. 2. Here in SA(®)" we have subtracted the high-energy
expansion results [16,17] from our numerical results for

AP vs. p,/s"2, s12=500 GeV, 5= 0.001
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FIG. 6 (color online).

04 060.81 2 4

Scale dependence of A7 and AW 4 A@7 for different collision energies.
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A vs. cos 6, 5'2=350 GeV, §¢= 0.001
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FIG. 7 (color online).
different 65 choices.

comparison. The solid lines are scattering plots and the
dashed lines are fitted curves assuming SAZ)7 = f +
f10eInég + f,0F, where f; are constants independent
of &g. The fitted coefficients are f(;, = {0.4555,
—0.00025,0.0037},  {0.00005, —0.0050,0.044}, and
{-0.00003,0.016,0.066} for the three collision energies
respectively. Note that the f, term represents the difference
of our numerical results in the limit of 6z — O [genuine
O(a?) corrections] with the high-energy expansion results.
f1 and f, terms are the systematic errors due to finite g
choices. Assuming 5 = 2 x 1074, the f, and f, terms are
estimated to be less than 10~ for above collision energies.
Thus choosing 8z = 2 x 107 should be sufficient for a
realistic calculation. The smallness of f for /s = 500 and
1000 GeV indicates a very good agreement of our numerical
results with the high-energy expansion ones.

Figure 3 shows a detailed comparison of our numerical
results with the threshold [8,9] and high-energy expansion
results [16,17] in a wide range of energy. The cutoff
parameter is chosen as dp =2 x 10™*. We present the
comparisons both for the O(a?) corrections as well as their

O(ay) and O(a?) corrections in different cos 6, bins, A7 and AL

PHYSICAL REVIEW D 90, 114022 (2014)
A7 vs. cos 6y, s'2=350 GeV, 5g= 0.0005
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27 for different collision energies and

ratios. It can be seen that our full results works well in the
entire energy region considered, i.e., approaching the
threshold results for lower energies and the high-energy
expansions on the other end. However, one may notice the
differences between the high-energy expansion results and
ours for /s > 1000 GeV in the ratio plot. The differences
are due to the power corrections we mentioned earlier.
For /s > 1000 GeV, the O(a?) corrections are at per mile
level as a result of large cancellation between soft-virtual
part and hard part. However, no such large cancellation
exists for the power correction terms. This is because we are
only neglecting power correction terms in the soft-virtual
part, not in the hard part. Therefore, in general, the power
corrections are proportional to the LO cross sections and
depend on threshold behaviors of do®)/dr as shown in
Eq. (45). Furthermore, the power corrections contain
logarithmic terms of the form In(s/m?), which become
large as s increases. For /s < 1000 GeV, which is
the energy range phenomenologically that is important,
the power corrections are negligibly small for the
chosen cutoff parameter and our results are accurate.
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FIG. 8 (color online). NLO and NNLO corrections in different py., bins, All7 and A

O choices.

For /s > 1000 GeV, power corrections become important
and a smaller cutoff parameter is needed to suppress them.
That requires much more CPU times in order to control the
MC integration errors, and it is not worth considering the
smallness of the absolute corrections.

Further comparisons for the ratios are presented in
Figs. 4 and 5 as functions of r for different color
structures. The left end of each plot, with r~0.17,
corresponds to a collision energy of 2 TeV. Besides the
high-energy and threshold expansions, we also include
into comparison results from Padé approximation for
which the analytical expressions are available for

Abelian Rf) and non-Abelian Rz(\ﬂ pieces in Ref. [137].
The Padé approximation is an interpolation based on the
existed results in different limits and works for the entire
energy range. Again we can see good agreement of our
results with the high-energy and threshold expansions in
the corresponding limit, and also the Padé approximation
in the entire energy region for r > 0.4. The kinks in the
Abelian contributions are due to the fact that R>) crosses
zero at that point. The deviation of our results for r < 0.4

PHYSICAL REVIEW D 90, 114022 (2014)
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n”, for different collision energies and different

again are due to the power corrections. It is understood
that the power corrections are different for different color
structures. Especially, they are negligible for the “N,” part
since there is no logarithmic enhancement as seen in
Eq. (44). We have checked that if we choose larger or
smaller values of 6z, our curves do get farther or closer to
the high-energy expansion or Padé approximation curves
for r < 0.4. The small differences between the Padé
approximation [137] and high-energy expansion results
[16,17] are due to the fact that the former one is based on
expansion with less terms in m?/s.

We further show reduction of the scale variations by
including the O(a?) corrections in Fig. 6. We vary the
renormalization scale y, around the nominal choice u, =
\/s by a factor of 10 downward and 4 upward. The scale
dependence has been reduced significantly for /s = 500
and 1000 GeV, e.g., from 6% at the NLO to 1% at the
NNLO for a collision energy of 500 GeV. The NNLO
results still show a large scale dependence near production
threshold due to the large corrections and require resum-
mations for further improvements.
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FIG. 9 (color online).
(multiplied by 10).

B. Differential distributions

We can calculate fully differential distributions up to
NNLO in QCD based on the phase-space slicing method.
At LO, there is only one nontrivial kinematic variable,
which we can choose either as cosine of the scattering angle
between the final-state top quark and the initial-state
electron cos @,, or transverse momentum of the top quark
with respect to the beam py,. Similar as the inclusive cross
section, we can define the O(a;) and O(a?) corrections for
each kinematic bin, A7 and {27, in analogy to Eq. (47).
The results are shown in Fig. 7 for cos 8, and Fig. 8 for pr,
distributions with collision energies of 350, 500, and
1000 GeV. For each of them we plot the O(a?) corrections
with two different 65 choices, 1073 and 5 x 10™*. By
comparing those two results we can see very good
stabilities of the O(a?) distributions for 65 small enough
~ a few 1074, similar as the inclusive cross sections.

As can be seen from Fig. 7, both the O(ay) and O(a?)
corrections are flat for /s =350 GeV where they are
dominated by virtual corrections. The cos @, distribution is
symmetric in the forward and backward region for pure
photon contributions. For /s = 500 GeV, the O(a?)
corrections are slightly larger in the region of |cos6,| ~
1 than in the central region, and are about 13% of the O(«)
corrections in size. The O(a?) corrections for cos®),
distribution are totally negligible comparing to the O(a,)
ones for /s = 1000 GeV.

The transverse momentum distributions in Fig. 8 show a
different feature comparing to the angular distribution since
they are also affected by the energy spectrum of the top
quark. The real corrections pull the energy spectrum to the
lower end and thus the py, distribution as well. As shown
in Fig. 8, both the O(a,) and O(a?) corrections start as
positive in low p; and then decrease to negative values near
the kinematic limits. The O(a2) corrections show a
relatively larger impact in the pr, distribution.

Besides, we can also investigate distributions like, A¢,
difference of azimuthal angles of top and antitop quark, and
their invariant mass, m;. Since they are both a delta
function at the LO, our O(a?) corrections are effectively

PHYSICAL REVIEW D 90, 114022 (2014)
da/dAg, [fb], s'?=500 GeV, 6= 0.0005
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Differential distribution, do/dm,; on left, do/d¢,; on right, at the LO, O(a,) (multiplied by 4), and O(a?)

NLO for those observables. We plot the LO distributions
together with the O(a,) and O(a?) corrections in Fig. 9.
The corrections have been rescaled for comparison. For
bins with vanishing cross sections at the LO, we have
compared our O(a,) and O(a?) corrections with the

calculations of QQ + jet production up to NLO in [25]
and found very good agreement.

IV. CONCLUSION

To conclude, we have presented a fully differential
NNLO QCD calculation for the photon exchange contri-
butions to electroweak top quark pairs production at
eTe™ colliders. Our calculations are based on a NNLO
generalization of the phase-space slicing method. Similar
methods were introduced some time ago to compute the
N;-dependent contributions to the total cross sec-
tion [138,139]. To the best of our knowledge, the results
presented in this paper for the rest of the color structures are
new. Let us emphasize that we present various differential
distributions as well at NNLO for the first time. Whenever
possible, we have compared our results to existing analytical
calculations. We find complete agreement with the known
results, both in the threshold [8—11] and in the high-energy
regimes [13—17]. Although their calculation was beyond the
scope of this work, the Z exchange contributions can be
straightforwardly derived using the phase-space slicing
technique discussed in this paper. The Z exchange contri-
butions are of fundamental phenomenological importance
and will be treated in a future publication.

Inspired by the successful application of the g; sub-
traction method of Catani and Grazzini [62], recently there
has been some interest and progress in applying the phase-
space slicing method to NNLO QCD calculations. For
instance, top quark decay [89], Drell-Yan production [140],
and Higgs production [141] have all been studied in
schemes very similar to the one described in this work.
This paper demonstrates that phase-space slicing can also
be used to calculate top-quark production processes, albeit
at ete™ colliders. Our calculation shows that fully differ-
ential NNLO corrections in e e~ annihilation are not much
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harder to obtain than typical NLO corrections to QCD
processes once a good IR-safe observable has been defined
and the corresponding hard and soft functions are known.
In future work, it would be interesting to apply the phase-
space slicing method to other NNLO QCD calculations
relevant to the physics of future linear colliders and to
generalize the method to allow for the treatment of parton-
initiated processes.
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