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The analysis of hadronic interactions with effective field theory techniques is complicated by the
appearance of a large number of low-energy constants, which are usually fitted to data. On the other hand,
the large-Nc limit helps to impose natural short-distance constraints on these low-energy constants,
providing a parameter reduction. A Bayesian interpretation of the expected 1=Nc accuracy allows for an
easy and efficient implementation of these constraints, using an augmented χ2. We apply this approach to
the analysis of meson-meson scattering, in conjunction with chiral perturbation theory to one loop and
coupled-channel unitarity, and show that it helps to largely reduce the many existing ambiguities and
simultaneously provide an acceptable description of the available phase shifts.
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I. INTRODUCTION

While the solution of QCD remains a difficult and
challenging problem which is being progressively tackled
on the lattice, there are two limits where substantial
simplifications apply in the continuum: the chiral limit
[1] [where the current quark mass mq is set to zero (see
[2,3] for a review)] and the limit of a large number of colors
Nc [4,5] (see Ref. [6] for a recent review and references
therein), where the strong coupling constant scales as
αs ∼ 1=Nc. The main common virtue of these simplifica-
tions is that at sufficiently low energies,

ffiffiffi
s

p
≤ Λ, quark-

hadron duality and confinement require that these limits
and their corrections can be expressed in purely hadronic
terms, with no explicit reference to the underlying quark
and gluon degrees of freedom. A well-known example of
this duality is given by the Gell-Mann–Oakes–Renner
relation, 2mqjhq̄qij ¼ f2πm2

π , which isOðNcm2
πÞ and relates

the current quark mass mq and the quark condensate hq̄qi
with the pion decay constant fπ and the pion mass mπ .
Of course, none of these extreme limits is generally

expected to faithfully feature the real world. Instead, the
smallness of the quark mass as compared to ΛQCD and the
largeness of Nc ¼ 3 as compared to unity suggest a
sensible hierarchy where an expansion in the u; d; s quark
masses and a 1=Nc expansion may be combined in a
suitable way to attempt a credible description of hadron
properties and their interactions. Within an effective
Lagrangian approach [7], and using the low-energy degrees
of freedom (Goldstone bosons) of the nonlinear sigma
model [8], a chiral perturbation theory (χPT) to one loop
was thus designed [9,10]. On the other hand, the leading
tree-level structure implied by the large-Nc limit suggests
using a resonance chiral theory (RχT) to successfully

saturate the low-energy properties [11–13]. It has been
shown that resonance saturation arises quite naturally [14]
from the short-distance constraints on the effective had-
ronic theory stemming from the underlying high-energy
behavior of QCD for spacelike momenta.
This scheme is implemented in terms of chiral effective

Lagrangians displaying explicitly the relevant hadronic
degrees of freedom, characterized by (i) a finite number
of fields representing stable particles, in the large-Nc limit,
with masses MR ¼ OðN0

cÞ≲ Λ, (ii) OðmqÞ suppressed
couplings to pseudoscalar mesons, and (iii) n-mesonic

OðN1−n=2
c Þ suppressed couplings. The decay rates of these

states are suppressed, ΓR ¼ OðN−1
c Þ, and are thus reso-

nances. The calculation of quantum corrections, besides
restoring unitarity perturbatively within the relevant Λ-
truncated Hilbert space, accounts for the scale dependence
of the couplings in the Lagrangian, as they effectively and
implicitly incorporate the degrees of freedom which have
been integrated out. The number of low-energy couplings
(LECs) depends on how many independent terms can be
written in the effective Lagrangian with fields and their
derivatives, so that they naturally scale with inverse powers
of the breakdown scale Λ. As it is well known, this number
grows rapidly with the order of the expansion, and
predictive power relies heavily on having more data than
couplings. Large-Nc arguments have helped in fixing the
bulk of the scale-independent contribution for the LECs at
Oðp4Þ and Oðp6Þ [see, however, [15] for an exception
at Oðp6Þ].
In this paper we are concerned with the implications of

next-to-leading order (NLO) χPT and leading order (LO)
1=Nc corrections in the description of the interactions
among pseudoscalar mesons belonging to the flavor octet
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and below a given energy cutoff, which will be set atffiffiffiffiffiffiffiffiffi
smax

p ∼ 1.1–1.2 GeV≡ ΛR for definiteness. This energy
cutoff provides a motivation to truncate the infinite tower of
meson states to just one per quantum number (except for
the 0þþ scalar and 0−þ pseudoscalar multiplets, where
independent octet and singlet states are considered). At first
order in the 1=Nc expansion, terms with more than one
trace and loops are suppressed; therefore, we only include
tree-level resonance contributions. Moreover, we neglect
interactions between different resonance channels which,
although allowed by the theory symmetries, are not needed
in this work.
Furthermore, as argued in Ref. [16], in addition to the

tree-level meson-exchange diagrams, one should also
foresee contact pieces, which depend on the high-energy
cutoff ΛR. In that work, ΛR ∼ 700 MeV and thus only
elastic ππ scattering was possible. On the other hand, when
ΛR ∼ 1.2 GeV all pseudoscalar-pseudoscalar channels are
open; thus, coupled-channel unitarity plays a decisive role.
We use here the Bethe-Salpeter equation (BSE) approach,
within the on-shell renormalization scheme [17] conven-
iently extended to the coupled-channel case, which restores
exact two-body unitarity, thereby enlarging the scope of the
previous work [16] to include coupled channels. This BSE
on-shell scheme is characterized by the appearance of
nonperturbative subtraction constants, CIJ, and a perturba-
tive matching procedure to reproduce LO 1=Nc and NLO
χPT. In all, we need 24 independent parameters which must
be fixed from fitting scattering data or pseudodata, a rather
impractical situation. We will show how a judicious fitting
strategy, based on the natural expectation that NLO 1=Nc
corrections are at the ∼30% level, provides good fits with
reasonable parameters.
Before embarking on a more involved discussion, let us

explain the main idea behind the present work. In the chiral
limit, mπ → 0, QCD has only one dimensionful parameter
which can be chosen to be the pion weak decay constant, f.
In the large-Nc limit f ¼ Oð ffiffiffiffiffiffi

Nc
p Þ, and hence meson

masses must scale as MR ∼ f=
ffiffiffiffiffiffi
Nc

p
and meson couplings

as GR ∼ f. That means that we expect an expansion of the
form

ffiffiffiffiffiffi
Nc

p
MR

f
¼ aR

�
1þ ξR

Nc
þ � � �

�
ð1Þ

where aR and ξR are numerical dimensionless coefficients
of order one. The basic idea to be explored in the present
work is the use of this information when we have a good
estimate for the LO aR, but no information on the NLO
term ξR. Under these circumstances, we may assume that
ξR is a random variable normally distributed, hξRi ¼ 0 and
hξ2Ri ¼ Oð1Þ, in which case the variable (for simplicity,
couplings GR are omitted)

χ2th ¼
X
R

ξ2R; ξR ¼
ffiffiffiffiffiffi
Nc

p
MR=aR − f
f=Nc

ð2Þ

follows a χ2 distribution if the different ξR’s are uncorre-
lated, hξRξ0Ri ¼ δR;R0 hξ2Ri. In the absence of further infor-
mation, χ2 is minimized by our guess of the parametersMR
and GR. However, if we have further data which can be
described theoretically by these parameters, MR;GR, we
may refine our initial guess by adding to Eq. (2) the
standard χ2 term used to carry out a fit to these data. In the
first part of the paper we analyze how the LO coefficients
can be estimated. In the second part we show how to profit
from these estimates in meson-meson scattering.
The paper is organized as follows. In Sec. II we discuss

and motivate short-distance constraints in the large-Nc limit
and their consequences in the light of data and lattice
studies. In Sec. III we analyze how the naturalness of
leading-1=Nc corrections provides a sensible estimate on
the expected uncertainties of low-energy constants. The
formalism for coupled-channel unitarized meson-meson
scattering and some specific features are reviewed in
Sec. IV. Our fitting strategies and main numerical results
are presented in Sec. V. Finally, in Sec. VI we summarize
our points and come to the conclusions.

II. LARGE-Nc SHORT-DISTANCE CONSTRAINTS

A. Motivation

In this section we analyze some important conditions
which arise from imposing the best possible high-energy
behavior of field correlators in a low-energy truncated
hadronic theory, compatible with the known behavior in
QCD. This leads to a sensible parameter reduction, based
on estimates of aR in Eq. (1), which will be very helpful in
our analysis of meson-meson scattering. These short-
distance constraints are obtained within a large-Nc frame-
work and when the low-energy theory is limited to spin
0 and 1 resonances, and they allow for a complete
parameter reduction in the chiral limit; all couplings and
masses can be explicitly expressed in terms of the pion
weak decay constant and the number of colors Nc. In order
to appreciate the result, it is important to spell out which are
the main assumptions and approximations leading to it.
As already mentioned, in the large-Nc limit, interactions

among hadrons and with external currents are suppressed.
This allows us to set up a hierarchy in terms of an infinite
number of quantum hadronic fields RiðxÞ and their deriv-
atives, compatible with the symmetries at all energies, which
can be written at tree level in terms of a real local Lagrangian
with a given set of coupling constants GRi

and hadron
masses MRi

. Unitarity is recovered perturbatively by com-
puting quantum corrections in a loop expansion. As we are
interested in an intermediate-energy description, sayffiffiffi
s

p
≤ ΛR, we need only consider explicitly a finite number

of fields which are active below this cutoff scale,MRi
≲ ΛR.
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Heavier states, ΛR ≲MRi
, are included implicitly through

the couplingsGRi
ðΛ;MRi

Þ and massesMRi
ðΛ;MRi

Þ appear-
ing in the low-energy Lagrangian. In our case we will take
ΛR ∼ 1.1 GeV. This means, in practice, taking, besides the
pion, explicit Sð0þþÞ, Pð0−þÞ, Vð1−−Þ and Að1þþÞ fields
whose masses are smaller than the cutoff, mV;mS;mP;
mA ≲ ΛR.

B. Resonance Lagrangian

The RχT Lagrangian describes the dynamics of
Goldstone and massive meson multiplets of the type
Sð0þþÞ, Pð0−þÞ, Vð1−−Þ and Að1þþÞ [11–13], in terms
of a set of masses mπ; mS;mP;mV;mA and couplings
FA; FV;GV; cd; cm; dm; ~cd; ~cm; ~dm; fπ , which can be
determined phenomenologically. We will only need the
lowest-order couplings:

L2 ¼
f2

4
hDμU†DμU þ U†χ þ χ†Ui

þ
X
i

�
FVi

2
ffiffiffi
2

p hVμν
i fþμνi þ

iGViffiffiffi
2

p hVμν
i uμuνi

�

þ
X
i

FAi

2
ffiffiffi
2

p hAμν
i f−μνi þ

X
i

idmi
hPi χ−i

þ
X
i

fcdihSiuμuμi þ cmi
hSi χþig: ð3Þ

The matrix UðϕÞ ¼ uðϕÞ2 ¼ exp fi ffiffiffi
2

p
Φ=fg contains the

Goldstone fields, χ ¼ 2B0M is the explicit breaking of
chiral symmetry through the quark mass matrix M, uμ≡
iu†DμUu†, fμν� ≡ uFμν

L u† � u†Fμν
R u, χ� ≡ u†χu† � uχ†u,

and hi denotes a three-dimensional flavor trace. We refer to
Refs. [11–13] for notations and technical details.
Clearly, in the chiral limit all dimensionful quantities

should scale withΛQCD or, alternatively, with f≈fπ∼ΛQCD.
As we now discuss, it is remarkable that a combination of
the large-Nc limit with a set of short-distance constraints,
based on imposing asymptotic QCD conditions stemming
from the operator product expansion (OPE), and with a
minimal hadronic ansatz, yields quite naturally to this
scaling behavior.

C. Short-distance constraints at leading order

Two-, three- and four-point-function constraints have
been discussed in Ref. [14] for SS, VV, AA, PP, VPP and
SPP correlators. They determine the RχT couplings in
terms of the pion decay constant. For illustration purposes,
we review here some of the short-distance constraints
discussed in [14]. At leading order in 1=Nc, the two-
Goldstone matrix element of the vector current and the
matrix element of the axial current between one Goldstone
and one photon are characterized, respectively, by the
vector and axial-vector form factors:

FVðtÞ ¼ 1þ
X
i

FVi
GVi

f2π

t
m2

Vi
− t

;

GAðtÞ ¼
X
i

2FVi
GVi

− F2
Vi

m2
Vi

þ F2
Ai

m2
Ai
− t

: ð4Þ

Since they should vanish at t → ∞, the resonance
couplings should satisfy

X
i

FVi
GVi

¼ f2π;
X
i

2FVi
GVi

− F2
Vi

m2
Vi

¼ 0: ð5Þ

In the same way, the leading-1=Nc contribution to the
πK scalar form factor is given by

FS
KπðtÞ ¼ 1þ

X
i

4cmi

f2π

�
cdi þðcmi

− cdiÞ
m2

K −m2
π

m2
Si

�
t

m2
Si
− t

:

ð6Þ

Imposing again that FS
KπðtÞ should vanish when t → ∞,

we get

4
X
i

cdicmi
¼ f2π;

X
i

cmi

m2
Si

ðcmi
− cdiÞ ¼ 0: ð7Þ

Further constraints arising from the Weinberg and SS − PP
sum rules are also discussed in [14]. All these large-Nc
constraints involve an infinite tower of resonances.

D. Results with single-resonance saturation

Assuming an exact U(3) symmetry and that, at low
energies, each infinite resonance sum is dominated by the
first meson nonet with the corresponding quantum num-
bers, the short-distance constraints determine the RχT
couplings [14],

fπ ¼ FA ¼ FV=
ffiffiffi
2

p
¼

ffiffiffi
2

p
GV ¼ 2cd ¼ 2cm ¼ 2

ffiffiffi
2

p
dm

¼ 2
ffiffiffi
3

p
~cd ¼ 2

ffiffiffi
3

p
~cm ¼ 2

ffiffiffi
6

p
~dm; ð8Þ

and give the mass relations mA ¼ ffiffiffi
2

p
mV and mP ¼ ffiffiffi

2
p

mS.
Imposing, in addition, a proper short-distance behavior for
the elastic ππ scattering amplitude, it was found in Ref. [16]
that, in the absence of tensor couplings, mS ¼ mV . The
absolute mass scale can be further related to fπ by requiring
the PVV form factor to fall at large momentum as predicted
by QCD [18]. One finds1

1The same relation between mV and fπ was obtained by
identifying the quark-model one-loop pion radius [19] with
vector-meson dominance [20]. This is equivalent to identifying
the resonance-saturation prediction for the χPT LECs with the
results obtained in the chiral quark model [2,21]. Invoking quark-
hadron duality, one also obtains the relations for the other masses
within the spectral quark model [22,23].
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mS ¼ mV ¼ mPffiffiffi
2

p ¼ mAffiffiffi
2

p ¼ π

ffiffiffiffiffiffi
24

Nc

s
fπ: ð9Þ

The first relation complies with mS −mV ¼
OðN−1

c Þ þOðmπN0
cÞ, discussed in Ref. [24] and obtained

after identifying mV and mρ in the large-Nc limit. This
amounts, in particular, also to the width/mass ratios2

ΓV

mV
¼ π

4Nc
½1þOðN−1

c Þ�;
ΓS

mS
¼ 9π

8Nc
½1þOðN−1

c Þ�; ð10Þ

which compare rather well with the experimental Breit-
Wigner values for Γρ=mρ and Γσ=mσ [16]. As noted in [25],
the locations of the Breit-Wigner and pole masses differ by
OðN−2

c Þ corrections.
Although consistent with the large-Nc counting, these

relations assume that the high-energy properties can be
properly saturated with a minimal set of resonances.
Therefore, they are subject to corrections already at LO
in 1=Nc, due to the neglected higher-energy states. These
corrections are difficult to estimate when there are more
massive states than constraints. Actually, in the opposite
case, and for the single-resonance case, there may appear
contradicting constraints [26] (see the comprehensive
discussion in Ref. [27]) which provide similar relations
with different and Nc-independent numerical factors. There
is of course the pertinent question on what numerical values
should be used in the ΛR-truncated RχT effective
Lagrangian, since it is itself of LO in the 1=Nc expansion.
We note in this regard that resonances manifest as poles

of scattering amplitudes in the second Riemann sheet
(SRS),

ffiffiffiffiffi
sR

p ¼ mR − iΓR=2, and, in principle, have vanish-
ing widths in the large-Nc limit.3 The NLO corrections are
OðN−1

c Þ, corresponding to a mass shift ΔmR and the width
ΓR which are numerically alike [18]. Ultimately, QCD
determines the proper numerical factors.

E. Comparison with large-Nc lattice calculations

The large-Nc limit has recently been implemented on the
lattice by numerically changing Nc ¼ 2; 3; 4; 5; 6; 7…
[34,35] and extracting meson masses and decay widths

in the quenched approximation, since corrections
are 1=N2

c suppressed (the fermion determinant providing
the LO corrections in 1=Nc was not included). Other
studies find mρ=fπ ¼ ½7.08ð10Þ; 7.21ð10Þ�, ma1=fπ ¼
½13.16ð21Þ; 13.26ð21Þ�, mπ�=fπ ¼ ½15.61ð34Þ; 15.70ð34Þ�
and fρ=fπ ¼ ½1.861ð30Þ; 1.875ð31Þ� for mq ¼ ½0; mud�,
respectively, to be compared with Eq. (9) where one has
mV=fπ ¼ 8.89, mA=fπ ¼ 12.57, mP=fπ ¼ 12.57 and
fV=fπ ¼ 1.41 (note a

ffiffiffi
2

p
factor of difference between

the normalization for fV used here and that of Ref. [34];
regarding the decay constants, due to the lack of non-
perturbative renormalization at Nc ¼ ∞, an error of 8%
should be associated with the values quoted above and
taken from Table 4 of Ref. [34]). Unfortunately, no
predictions have been made yet for the troublesome 0þþ

scalar mesons on the lattice at large Nc. Nonetheless, the
comparison is good enough to discard a purely accidental
agreement with Eqs. (8) and (9), not only at the phenom-
enological level, but also in the large-Nc limit of QCD.
On dimensional grounds the parameter reduction in

QCD, in the chiral limit, is obvious from a large-Nc

counting point of view and the existence of a unique
dimensionful scale fπ . One could, of course, take these
exact lattice values as an initial guess for our analysis
below; they are subjected to Oð1=NcÞ and chiral correc-
tions. Unlike our estimates, they get no corrections from
higher-energy states. Unfortunately, some of the needed
parameters are still missing, so we will content ourselves
with our estimates for couplings and mass relations,
Eqs. (8) and (9), respectively, based on just one single
resonance saturation.

III. NATURAL SIZE OF 1=Nc CORRECTIONS

The structure of the chiral expansion in powers of
m2

π=ð4πfπÞ2 (up to chiral logarithms ∼ logm2
π) is well

understood and has been worked out in much detail for
many processes. Actually, the chiral-loop OðpnÞ correc-
tions are themselves of OðN−n=2

c Þ. However, much less is
known about what are the expected and genuine corrections
within a 1=Nc expansion. While at LO only tree-level
diagrams contribute, with the exchange of an infinite
number of meson resonances, quantum loops with massive
states propagating in the internal lines need to be consid-
ered at the NLO. Subleading-1=Nc quantum corrections
involving a limited number of resonances have already
been investigated [36–42]. A simple rule of thumb is that
they are naturally expected to have a 30% accuracy. One
vivid demonstration of this naive expectation is given by
the width/mass ratio for meson and baryon resonances
which scales as Γ=M ≤ OðN−1

c Þ [4,5], suggesting a relative
30% ratio, whereas the PDG [43] (spin-weighted) average
values both for mesons and baryons containing u; d; s
flavors are identical and equal to hΓ=Mi ¼ 0.12ð8Þ [44,45],

2The first relation is a direct consequence of the discussion in
Sec. V of Ref. [24] and Eq. (9), while the scalar one is deduced
from the constraint ΓS=mS ¼ 9ΓV=2mV rederived, for instance,
in Ref. [16] in the absence of tensor couplings from the Adler and
σ sum rules within the single-resonance approximation scheme.

3Even though behaviors of the poles with nonvanishing
widths in the large-Nc limit have been described in the literature
[16,28–32], it has been recently reviewed in [33] that it is not
possible to find any meson configurations in terms of quarks and
gluons with nonvanishing widths in the large-Nc limit coupled to
meson-meson channels.
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where the uncertainty itself is compatible with a
subleading-1=Nc correction.
In order to motivate our approach to meson-meson

scattering below, we illustrate the size of 1=Nc corrections
for the LECs L1;…;10. As already noted, RχT predicts their
leading-Nc value [11,12], but quite remarkably, no errors
on that estimate are ever quoted (besides the scale depend-
ence which is 1=Nc suppressed and is usually taken to
be μ ¼ mρ).
Using Eqs. (8) and (9) (see [14]), one obtains the

following set of relations among the LECs4:

2L1 ¼ L2 ¼ −
L3

2
¼ L5

2
¼ L8

3
¼ L9

4
¼ −

L10

3
¼ Nc

192π2
;

L4 ¼ L6 ¼ L7 ¼ 0; ð11Þ

which are valid up to corrections of OðN0
cÞ. A rule-of-

thumb estimate for the size of the subleading corrections is
ΔLi ¼ Li=Nc. The situation is illustrated in Table I where
we give the phenomenological values of the LECs from
Oðp4Þ and Oðp6Þ fits, compiled in Ref. [47].5 The column
labeled “RχT” shows the resonance-exchange predictions,
using input values for mV and mS [11,12,14]. Finally, the
third column collects the estimations stemming from the
short-distance constraints of Eq. (11), with an error Li=Nc.
The agreement with the Oðp4Þ phenomenological LECs is
somehow deteriorated at Oðp6Þ, when NNLO chiral
corrections are taken into account in the fits. The χPT-
loop contributions included at NLO and NNLO are
themselves of OðN−1

c Þ and OðN−2
c Þ, respectively, but the

RχT predictions refer to the large-Nc limit and, therefore,
are subject to 1=Nc corrections. Once our rule-of-thumb
expected error of about 33% is considered, the fitted values
of the LECs are consistent with the large-Nc estimates. The
differences in the values obtained when alternative short-
distance constraints are invoked are also comparable [27].
The upshot of the previous discussion is that we naturally
expect the 1=Nc corrections to the RχT parameters pi to be
of the form

pi ¼ pLarge−Nc
i

�
1þ ξi

Nc

�
; ð12Þ

where ξi is of order unity and could, in principle, be
calculated. However, if no complete information is avail-
able, we may, for the time being, assume that ξi is a random

variable, with hξii ¼ 0 and hξiξji ¼ δijhξ2i i. Of course, one
can improve the bias hξii ¼ 0 by adding chiral corrections
explicitly. The important feature is that this naturalness
assumption will impose rough but a priori expectations on
the values of the LECs. If ξi are Gaussian parameters, then

χ2th ¼
XN
i¼1

ξ2i ¼
XN
i¼1

�
pi − pLarge−Nc

i

pLarge−Nc
i =Nc

�2

ð13Þ

follows a χ2 distribution. This point of view will be very
helpful below when we analyze coupled-channel meson-
meson scattering in the pseudoscalar sector.

IV. PION-PION AND PION-KAON SCATTERING

We will analyze experimental or phenomenological data
for the ππ and Kπ scattering processes:

ππ → ππ; ππ → KK̄; Kπ → Kπ: ð14Þ
The two-body kinematics (Fig. 1) is parametrized by the
Mandelstam variables s ¼ ðk1 þ k2Þ2, t ¼ ðk1 − k3Þ2 and
u ¼ ðk1 − k4Þ2, with

ffiffiffi
s

p
the total energy in the center-of-

mass (CM) system. In our case here, we consider a CM

TABLE I. Predicted values of the χPT LECs (in units of 10−3)
obtained from RχT [11,12], i.e. the leading-1=Nc single-
resonance approximation, and from the short-distance constraints
of Eq. (11), compared with Oðp4Þ and Oðp6Þ phenomenological
determinations at μ ¼ mρ [47].

Parameter RχT Eq. (11) Oðp4Þ Oðp6Þ
L1 0.90 0.75(25) 0.70(30) 0.43(12)
L2 1.80 1.5(5) 1.3(7) 0.73(12)
L3 −4.30 −3.0ð1.0Þ −4.4ð2.5Þ −2.35ð37Þ
L4 0.00 0.0(3) −0.3ð5Þ ∼0.20
L5 2.10 3.0(1.0) 1.4(5) 0.97(11)
L6 0.00 0.0(3) −0.2ð3Þ ∼0.00
L7 −0.30 0.0(3) −0.4ð2Þ −0.31ð14Þ
L8 0.80 1.2(4) 0.9(3) 0.60(18)
L9 7.10 6.0(2.0) 6.9(7) 5.93(43)
L10 −5.40 −4.50ð1.5Þ −5.5ð7Þ −5.09ð47Þ

FIG. 1. Meson-meson scattering process Aþ B → CþD, with
incoming momenta k1, k2 and outgoing momenta k3, k4. Dashed
lines denote pseudoscalar mesons and the black dot their
interaction.

4When the η1 is integrated out, L7 receives a contribution
proportional to 1=M2

η1 ∼OðN2
cÞ [10]. However, the large-Nc

counting is no longer consistent if one takes the limit of a heavy
η1 mass (Nc small) while keeping ms small [46].

5The recent global fits of Refs. [48,49] list many results
for L1;…;8ðmρÞ. See also the recent NLO determinations:
L9ðmρÞ ¼ 7.9ð4Þ × 10−3 [41], L10ðmρÞ¼−4.06ð39Þ×10−3 [50]
and L10ðmρÞ ¼ −3.46ð32Þ × 10−3 [51].
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energy ranging from
ffiffiffi
s

p ¼ 280 MeV up to ≈1200 MeV.
At these energies the following additional channels are
open:

ππ → ηη; KK̄ → ηη; KK̄ → KK̄;

ηη → ηη; Kη → Kπ: ð15Þ

Since in all processes the isospin and strangeness is con-
served, one can write each scattering amplitude in terms of
its contributions of total isospin I, with I ¼ 0; 1

2
; 1; 3

2
; 2 the

only possible values here, and strangeness. Choosing s and
the scattering angle θ as the independent variables, each
isospin-projected amplitude TIðsÞ can be further decom-
posed into its individual contributions with total angular
momentum J (for the sake of brevity, we will not make
explicit reference to the strangeness quantum number):

TIðs; t; uÞ ¼
X∞
J¼0

ð2J þ 1ÞTIJðsÞPJðcos θÞ; ð16Þ

TIJðsÞ ¼
1

2N

Z þ1

−1
dðcos θÞPJðcos θÞTIðs; t; uÞ

¼ −16π
1

2iρðsÞ ½ηIJðsÞe
2iδIJðsÞ − 1�; ð17Þ

with PJðxÞ the Legendre polynomials and ρðsÞ a channel-
dependent kinematical factor defined below. N is a nor-
malization factor to account for identical particles, such that
N ¼ 2 if all the particles in the process are identical and
N ¼ 1 otherwise. Since we are working in the isospin limit,
we consider the three pions to be identical. Therefore, in
our case, N ¼ 2 only for ππ → ππ and ηη → ηη processes.
Explicitly, we analyze data for the three channels in
Eq. (14) that come in terms of the scattering amplitudes
TIJðsÞ, phase shifts δIJðsÞ and inelasticities ηIJðsÞ, defined
in Eq. (17). To address the resonance properties, a uni-
tarized framework is needed which leads to the inclusion of
coupled channels at higher energies. Because of this, we
need, in addition to the above three channels, a theoretical
description of the ones in Eq. (15). In that sense, the present
work is an extension of Ref. [16] to more channels and
higher scattering energies.
Meson-meson scattering within one-loop χPT was ana-

lyzed by Gómez-Nicola and Peláez in Ref. [52] where, in
addition, unitarization was implemented via the inverse
amplitude method (IAM). A naive addition of the missing
LO contributions in 1=Nc, within this scheme, would
violate either unitarity or analyticity.6 We use here a scheme

based on the Bethe-Salpeter equation (BSE) to restore two-
body unitarity. The BSE on-shell scheme for the non-
coupled channel was already described in Refs. [17,53] for
χPT and used in [16] when LO 1=Nc corrections were
further included. The generalization to the coupled-channel
situation needed here is straightforward. Let us consider the
matrix TIJðsÞ incorporating the partial-wave amplitudes of
all relevant processes AB → CD:

TIJðsÞ ¼

2
664
Tππ→ππ
IJ ðsÞ Tππ→KK̄

IJ ðsÞ Tππ→ηη
IJ ðsÞ

TKK̄→ππ
IJ ðsÞ TKK̄→KK̄

IJ ðsÞ TKK̄→ηη
IJ ðsÞ

Tηη→ππ
IJ ðsÞ Tηη→KK̄

IJ ðsÞ Tηη→ηη
IJ ðsÞ

3
775; ð18Þ

for channels ππ → ππ and ππ → KK̄, and

TIJðsÞ ¼
�
TKπ→Kπ
IJ ðsÞ TKπ→Kη

IJ ðsÞ
TKη→Kπ
IJ ðsÞ TKη→Kη

IJ ðsÞ

�
; ð19Þ

for channel Kπ → Kπ. All TAB→CD
IJ ðsÞ are defined through

Eq. (17), and the explicit form of the amplitudes
TIðs; t; uÞAB→CD is given in Appendix A. Note that some
of the above matrix elements are trivially zero from isospin
or angular momentum conservation. For instance, in
the I ¼ 2, J ¼ 0 channel, only Tππ→ππ

IJ ðsÞ is different from
zero.
Coupled-channel unitarity is most simply expressed in

terms of the inverse matrix T−1
IJ ðsÞ as

ImT−1
IJ ðsÞ ¼ −ImĪ0ðsÞ; ð20Þ

where Ī0 is a diagonal matrix of one-loop integrals
characterizing the elastic two-body rescattering:

Ī0ðsÞ ¼ diag½Īππ0 ðsÞ; ĪKK̄0 ðsÞ; Īηη0 ðsÞ� ð21Þ

or

Ī0ðsÞ ¼ diag½ĪKπ0 ðsÞ; ĪKη0 ðsÞ� ð22Þ

for the ππ and Kπ cases, respectively. With two identical
mesons,

Īϕϕ
0 ðsÞ ¼ 1

16π2
ρϕðsÞ ln

�
ρϕðsÞ þ 1

ρϕðsÞ − 1

�
; ð23Þ

where ρϕðsÞ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − 4m2

ϕ=s
q

and

ImĪϕϕ
0 ðsÞ ¼ −θðs − 4m2

ϕÞ
1

16π
ρϕðsÞ: ð24Þ

The general expression in the case of two different mesons
can be found in Eq. (A10) of Ref. [54], identifying the

function LðsÞ that appears there with Iϕϕ0
0 ðsÞ=16π2. The

6The IAM cannot be applied naively to the 1=NC expansion,
because it leads to a resummation that does not restore
two-body unitarity. Thus, if T ¼ T1=NC

þ T1=N2
C
þ � � �, TIAM ¼

T2
1=NC

=ðT1=NC
− T1=N2

C
Þ does not fulfill the two-body elastic

unitarity condition.
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definition or extension of the loop function to the SRS is
given in Eq. (A13) of the same work.
We decompose the full χPT amplitude matrix TχPT

IJ ðsÞ in
its Oðp2Þ and Oðp4Þ contributions (in matrix notation):

TχPT
IJ ðsÞ ¼ Tð2Þ

IJ ðsÞ þ Tð4Þ
IJ ðsÞ þOðp6Þ: ð25Þ

The coupled-channel unitarized amplitude is now written as

T−1
IJ ðsÞ ¼ V−1

IJ ðsÞ − Ī0ðsÞ − CIJ; ð26Þ

with CIJ a diagonal matrix of subtraction constants:

CIJ ¼ diag½Cππ
IJ ; C

KK̄
IJ ; Cηη

IJ� ð27Þ

or

CIJ ¼ diag½CKπ
IJ ; C

Kη
IJ �: ð28Þ

The matrix VIJðsÞ is defined such that a chiral expansion of
TIJðsÞ and VIJðsÞ will match the one of TχPT

IJ ðsÞ. Inverting
Eq. (26), we obtain the unitarized matrix TIJðsÞ:

TIJðsÞ ¼ ½V−1
IJ ðsÞ − Ī0ðsÞ − CIJ�−1; ð29Þ

VIJðsÞ ¼ TχPT
IJ ðsÞ − Tð2Þ

IJ ½Ī0ðsÞ þ CIJ�Tð2Þ
IJ : ð30Þ

As already noted in Ref. [52] within the IAM method, the
on-shell approximation in the coupled-channel potential
has the drawback of generating spurious singularities below
the opening of a new channel because the left cut is
analytically extrapolated below the inelastic threshold. For
instance, as can be appreciated in the top panel of Fig. 2, for
ππ → ππ below the KK̄ threshold, the three-loop ππ →
K̄K → K̄K → ππ term contains, in the on-shell K̄K → K̄K
piece, a 2π-exchange contribution in the t channel, gen-
erating a left cut in the partial waves at s ¼ −4m2

π þ 4m2
K

which sits in the elastic scattering region 4m2
π < s < 4m2

K .
However, the effect is numerically quite small.

A. Oðp4Þ χPT and single-resonance approximation
(SRA) amplitudes and large-Nc counting rules

To incorporate LO 1=Nc corrections in the description of
the interactions among the Goldstone bosons, we follow the
scheme derived in [16]. There, the leading-Nc prediction
for the actual ππ scattering amplitude was used as deduced
from RχT, considering just the lowest-lying nonet of
exchanged resonances [11,12].7 Thus, let us denote by
TSRA
IJ ðsÞ the two SU(3)-Goldstone-boson scattering ampli-

tude within the SRA, obtained from the lowest-order RχT
Lagrangian [11,12] and projected onto isospin and angular

momentum. Below the resonance mass scale, the singu-
larity associated with the pole of a resonance propagator
could be replaced by the corresponding momentum expan-
sion; therefore, the exchange of virtual resonances gen-
erates derivative Goldstone couplings proportional to

powers of 1=m2
R. Let us denote by Tð4ÞSRA

IJ ðsÞ the lowest-
order term in derivatives. It gives the large-Nc predictions
for the Oðp4Þ χPT couplings [11,12] and constitutes the
leading-1=Nc approximation to TχPT

IJ . Our approach con-
sists in using Eqs. (29) and (30), but replacing. in the
definition of the two-particle-irreducible amplitude, VIJðsÞ,
TχPT
IJ ðsÞ by

TχPT
IJ ðsÞ ↔ TSRA

IJ ðsÞ|fflfflfflffl{zfflfflfflffl}
Oð1=NcÞ

þ ðTχPT
IJ ðsÞ − Tð4ÞSRA

IJ ðsÞÞ|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}
Oð1=N2

cÞ

: ð31Þ

In this way, by construction, we recover the one-loop χPT
results, while at the same time, all terms in the amplitude
that scale like 1=Nc (leading) are also included within the
SRA. Note that in the 1=Nc counting, the correction

ðTχPT
IJ ðsÞ − Tð4ÞSRA

IJ ðsÞÞ is incomplete since it does not
account for all existing subleading-1=N2

c contributions to
TIJðsÞ. A complete 1=N2

c calculation would require quan-
tum corrections also stemming from the low-lying
resonances.
We should point out a problem that now appears when

unitarity is restored. Let us pay attention, for instance, to
the ρ exchange, for ππ → ππ below the KK̄ threshold. The
ππ → K̄K → K̄K → ππ term contains a contribution from
the intermediate K̄K → K̄K amplitude driven by ρ
exchange in the t channel (see bottom panel of Fig. 2).
Such a contribution, within the on-shell scheme used
here, leads to a spurious left-cut contribution at
s ≤ 4m2

K −m2
ρ ∼ ð0.64 GeVÞ2, with very visible conse-

quences if nothing is done. It is indeed unphysical, and
it is an artifact of the on-shell unitarization in the coupled

FIG. 2. Some Oðp8Þ loop contributions generated when
coupled-channels unitarity is restored (Eqs. (29), (30) and
(31)). They give rise to pathologies when estimated using
anon-shell approximation. In the bottom panel, the line shows
a possible source of a physical imaginary part, when the particles
cut by it are put on the mass shell.

7This latter approximation is justified as long as s; t and u are
kept far from the second resonance region.
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channels adopted here. A contribution like the one
described above cannot physically give rise to an inelastic
imaginary part below s ¼ ð2mK þmρÞ2, as trivially
inferred from the optical theorem (see the cut in the figure).
In our case we handle the problem by smoothly switching
off coupled-channel effects for

ffiffiffi
s

p
≤ 0.73 GeV, and by

thus considering purely elastic ππ → ππ scattering below
these energies, where coupled-channel effects are expected
to be negligible. The same procedure has been applied to
other channels, where similar problems also show up. This
problem appears but was not mentioned explicitly in
Ref. [30], and it was solved there by reexpanding the
ρ-meson propagator as a polynomial, hence removing the
singularity. Note that the truncation of the expansion
implies that in [30] not all leading-1=Nc terms in the
amplitude are included.

V. FITTING STRATEGIES

A. Fitting parameters

Our 24 fitting parameters can be separated into partial-
wave specific ones which play the role of renormalization
constants,

Cππ
00 ; C

ππ
11 ; C

ππ
20 ; C

KK̄
00 ; Cηη

00; C
KK̄
11 ;

CKπ
1
2
0
; CKη

1
2
0
; CKπ

1
2
1
; CKη

1
2
1
; CKπ

3
2
0
; CKπ

3
2
1
; ð32Þ

and those which appear in the potential:

GV; cd; cm; ~cd; ~cm; dm; ~dm;mS1 ; mS8 ; mV; μV; μS: ð33Þ

The RχT predictions are supposed to be valid at some fixed
value of the renormalization scale, which we allow to be
different for vector (μV) and scalar (μS) couplings.

8

B. Fitted data and error assignment

An important novelty of this work is the use of the most
precise and reliable output for the ππ and πK scattering
processes, which is a key factor to attaining high levels of
precision and to fix the RχT parameters given in Eq. (33).

In the ππ case, we use the recent data analysis given
in [55]. This analysis incorporates the latest data on Kl4
decays from NA48/2 [56] as well as constraints from
Roy equations and one-subtracted coupled dispersion
relations—or Garcia-Martin, Kaminski, Pelaez and
Yndurain (GKPY) equations. For the πK case, we use the
last update of the Roy-Steiner solutions in [57], which
includes input from the πK phase shifts around 1.1 GeV
and information on the vector πK form factor from tau
decays. However, we do not fit to the δ

3
2
1 phase shift, as this

channelwas not considered in the solution of the Roy-Steiner
equations, and it cameas a predictionof the scheme.Thus, the
subtraction constant CKπ

3
2
1
in Eq. (32) cannot be determined.

In total, the data set which we are fitting is a compilation
of 14 independent channels, shown in Table II, from the
above two independent sources. Additionally, despite using
an elaborated theoretical model to describe these channels,
we know that it contains systematic uncertainties (partial
resummation) or neglected physics (isospin breaking). A
key issue in our fit is therefore how to combine the different
experimental and theoretical inputs in a consistent picture.
The first important point is the choice of the data errors

for the individual channels. Unfortunately, for the Kπ

TABLE II. Compilation of data included in the fit. In the case of
the ππ → ππ channels we take the errors as obtained from the
CFD parametrization derived in [55], with two exceptions: in (*)
the errors have been multiplied by a factor 2 and the region in the
range 990 MeV <

ffiffiffi
s

p
< 1010 MeV has been excluded from the

fit; in (**) the errors have been reduced by a factor of 2.25 (see
text for details). The errors on the ππ → KK̄ and πK → πK data
sets have been obtained from the experimental input uncertainties
in [57] (see Figs. 2, 4, 8 and 9 of this reference); however, in the
case of jT00j we also added an absolute 0.1 error above 1 GeV. In
the last column, we show the contribution χ2chan of each channel as
defined in Eq. (35).

Data set Range (GeV) Errors χ02

ππ → ππ [55]
δ00 [0.28, 1.2] (*) 1.6
δ11 [0.28, 1.2] 1.0
δ20 [0.28, 1.2] 0.7
η00 [0.28, 1.2] (**) 0.5
η11 [0.28, 1.2] 0.0
ππ → KK̄ [57]
jT00j [0.99, 1.2] 10% 0.8
δ00 [0.99, 1.2] 10% 0.2
jT11j [0.99, 1.2] 10% 0.1
δ11 [0.99, 1.2] 10% 0.0
πK → πK [57]
δ
1
2
0 [0.64, 1.2] 10% 1.2

δ
1
2
1 [0.64, 1.2] 10% 0.8

δ
3
2
0 [0.64, 1.2] 10% 0.4

η
1
2
0 [0.64, 1.2] 0.05 0.0

η
1
2
1 [0.64, 1.2] 0.05 0.0

8The low-lying vector, axial-vector, scalar and pseudoscalar
resonances contribute to the Li (see Table I), where renormalized
values Lr

i can be written as a sum Lr
i ¼ LSRA

i þ L̂r
i ðμÞ of the

resonance contributions, with a remainder L̂r
i ðμÞ. The choice of

the renormalization scale μ is arbitrary, and it is common to
adopt μ ¼ mρ as a reasonable choice. However, one might take as
a best-fit parameter one scale, μRS, for which a complete
resonance saturation of all the LECs Lr

i occurs, that is to say,
L̂r
i ðμRSÞ ¼ 0. As suggested in [16], we have considered a

scenario where the complete resonance saturation of the LECs
Lr
i occurs at two different scales, μV for Lr

1;2;9;10 and μS for L
r
4;5;6;8

depending on whether the LEC is dominated by the vector or
the scalar resonance contribution. Note that L3 and L7 are
renormalization-scale invariant.
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scattering, the output of the analysis in Ref. [57] does not
provide any errors. Nevertheless, the input contains some
experimental uncertainties, typically of the 10% order, and
we assume this to be the error for theKπ-scattering data. The
only exception is the jT00j case in ππ → K̄K, for which, due
to its small value above 1 GeV, we also add 0.1 to the errors.
In the case of the ππ-scattering channels, we take the errors
from thework ofRef. [55]with two exceptions: the δ00 phase
shift and the η00 inelasticity. They are reported to be 1%–5%
and about 20%, respectively. Using these errors in a
combined fit represents certain difficulties as they are very
different compared to all the other channels or the assump-
tions that entered themodel. On the one hand, the sharp error
for the δ00 would drive the fit to precisely describe this
channel at the expense of all the other ones, especially the
η00. On the other hand, we do not expect our model to be
accurate to a < 5% level. Therefore, to have a more
homogeneous error definition across all channels, we
enlarge the reported δ00 error by a factor of 2 and divide
the reported η00 errors by a factor of 2–2.25. The enlarge-
ment of the δ00 errors is thereby to be interpreted as a
quantitative input of the model uncertainties to the fit.
Concerning the reweighting of η00, we hope that future,
more precise datawillmake this reweighting unnecessary. In
addition, we will see later that the main results of this work
are not significantly affected by this choice. Furthermore,
our model does not include isospin breaking effects, which
are known to play a crucial role in the δ00 channel of
ππ → ππ around the region 990 MeV <

ffiffiffi
s

p
< 1010 MeV.

We therefore exclude these data points from the fit.
The second important issue is connected to the pseudo-

data points used, as their number in each channel is arbitrary.
They are analytically generated from the theoretical analyses
carried out in Refs. [55,57], usually in intervals of 5MeV. To
reduce the dependence on this, we normalize each contri-
bution from a given channel by the number of data points in
that channel. The exact χ2 definition is given in the next
section. In using this normalized approach, the reduction of
the η00 errors by 2–2.25 is equivalent to giving an extra
weight of 4–5 to this channel in the overall χ2.
With the above settings we will be able to obtain a

consistent fit that homogeneously describes all 14 channels
and is compatible with the theoretical assumptions entering
the model.

C. The usual χ 2 approach

On the one hand, a fit to the scattering data of the
Ndc ¼ 14 channels involves the standard χ2, defined as

χ2exp ¼ Nd

XNdc

chan¼1

χ2chan; ð34Þ

χ2chan ¼
1

n

Xn
i¼1

�
Oth

i −Oexp
i

ΔOexp
i

�
2

; ð35Þ

with Nd the overall total number of data points. The
ðOexp

i ;ΔOexp
i Þ are the fitted observables with their corre-

sponding errors, and Oth
i ¼ Fiðp;CÞ are our theoretical

descriptions, with pj ¼ GV; cd;… parameters subjected to
theoretical conditions and Cj ¼ Cπ

00;… parameters which
can only be determined from data. On the other hand, we
typically expect our calculation to be accurate up to 1=Nc
corrections. Thus, if a fit turns out to provide numbers
completely different from the large-Nc estimates of Eqs. (8)
and (9), we will suspect the fit. The optimal situation would
be when the data have an accuracy able to reliably pin down
all the parameters. Unfortunately, this is not the case.
Attempts to determine the CIJ subtraction constants in
Eq. (32) and the RχT parameters in Eq. (33) (in all 23
parameters) produce multiple minima with at times quite
unreasonable values for the RχT parameters. In this case,
we are inclined to reject the fit. If, on the other hand, the
large-Nc constraints are fully implemented9 and larger error
bands are assumed, the resulting fits are likewise not
satisfactory.
We want to obtain a reasonable fit with sensible

parameters. Therefore, rather than expecting the fit to tell
us a posteriori whether the parameters are reasonable, we
provide a priori a reasonable guess for the parameters and
search for the minimum within the expected departure of
this assumption. In the next section, we explain how we
include the a priori input in the fit.
The existence of multiple solutions is a consequence of

several shallow directions in the parameter space, which
makes it impossible to identify a unique global minimum.
This situation could be solved by including further exper-
imental or theoretical information, for example, data of
those channels that, considered in the coupled-channel
formalism, have not been fitted. Unfortunately, this is not
the case, and a Bayesian fit with large-Nc priors becomes a
natural and simple way to circumvent this problem.
Guo and Oller [30] handle the problem of proliferation of

parameters in a different manner. They took free values for
all the resonance parameters (pj in our notation), but they
invoked some unclear SU(3) relations among the subtrac-
tion constants (Cj in our notation) and kept just four
independent. However, this is not a consistent approach.
First, the subtraction constants are not, in principle, related
by SU(3) and should all be taken as independent (see
discussion in [17]). Second, the unconstrained fit of the
resonance parameters to data leads, in some cases, to values
in clear contradiction to the large-Nc expectations.10

Conversely, the Bayesian approach to be discussed below,
where large-Nc constraints are imposed as a probabilistic
prior, does not support the assumptions of Ref. [30].

9As done in the previous work [16] with a lower-energy
cutoff

ffiffiffi
s

p ≲ 700 MeV.
10For instance, a best-fit value of 15 MeV for cd was obtained

in [30], which is around a factor of 3 smaller than that of fπ=2
given in Eq. (8)
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D. The augmented χ 2 approach

In the Bayesian interpretation, the fitting parameters are
actually random variables which are determined from the
existing data and a prior probability of finding the param-
eters, regardless of the actual measurements under analysis.
We shall not dwell on the philosophical intricacies, and we
use the augmented χ2 method to fix the prior distribution
[58–60]. This approach has successfully been used in
lattice QCD to analyze a number of data with a similar
number of parameters. In our case the situation is slightly
different, but we expect the large-Nc limit to set reasonable
ranges on the fitting parameters.
We consider first the theoretical χ2 defined in Eq. (13).

This figure of merit is coherent with the assumption that the
prior probability for the RχT parameters is given by their
large-Nc estimate, within a relative 1=Nc accuracy (and not
as a uniform distribution). We use the results of Eq. (8) for
GV; ~cm; cd; ~cd; dm; ~dm and Eq. (9) for mS0 ; mS8 ; mV. Thus,
we take the following Gaussian variables normalized to the
same Δpi ¼ fπ=Nc:

ξGV
¼

ffiffiffi
2

p
GV − fπ
fπ=Nc

; ξcd ¼
2cd − fπ
fπ=Nc

;…

ξmV
¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Nc=24π2

p
mV − fπ

fπ=Nc
;… ð36Þ

We provide, in addition, an a priori splitting mS0 −mS8
for the scalar octet and singlet masses, which are equal at
large Nc:

ξmS0
−mS8

¼
ffiffiffiffiffiffiffiffiffiffi
Nc

24π2

r
mS0 −mS8

fπ=Nc
; ð37Þ

and we finally also consider the robust constraint in the
large-Nc limit 4cdcm ∼ f2π , obtained by requiring the Kπ
scalar form factor to vanish in the t → ∞ limit [61],

ξcdcm ¼
ffiffiffiffiffiffiffiffiffiffiffiffi
4cdcm

p
− fπ

fπ=Nc
: ð38Þ

Thus, we take into account a total of 10 contributions to
construct χ2th,

χ2th ¼ ½ξ2GV
þ ξ2cd þ ξ2cdcm þ ξ2dm þ ξ2~cd þ ξ2~cm þ ξ2~dm

�
þ ½ξ2mV

þ ξ2mS8
þ ξ2mS0

−mS8
�: ð39Þ

In addition, we take, for the singlet and octet pseudoscalar
resonance masses, mPi

¼ ffiffiffi
2

p
mSi ; i ¼ 0; 8 (see Sec. II).

The key question now is how to combine χ2exp and χ2th.
Obviously, since we have a small number of constraints Np
as compared to the number of data or pseudodata Nd, a
direct addition of χ2exp and χ2th would make the constraints
irrelevant. Therefore, we will construct a reduced χ2,

χ̄2 ≡ χ2=N, with a 50% weighting on the data or pseudo-
data and the theoretical constraints.
Thus, we define

χ2total ¼
Nd þ Np

2

�
χ2exp

NdNdc
þ χ2th
Np

�
: ð40Þ

The additional terms in the total χ2 impose a penalty for fits
which deviate from the large-Nc expectations by more than
1=Nc. This is just a condition on the naturalness of
parameters, based on a simple large-Nc estimate. Of course,
the values we are taking as a reference are based just on the
single-resonance approximation, and this is precisely why
one should not attach exaggerated significance to the
detailed accuracy of the reasonable fit. The opposite
situation, the impossibility of performing a successful fit,
would signal a serious drawback of the whole framework,
including the usefulness of the short-distance constraints in
meson-meson scattering.
Furthermore, we have checked our approach against the

weighting choice of Eq. (40). We found that the parameters
in Table III do not depend strongly on this particular setting
as long as the fit starts in the vicinity of the respective
minimum. That is, the augmentation of Eq. (40) is needed
to isolate the physical minimum of Table III from all
the unphysical local minima, but after having found it, the
corresponding parameters do not strongly depend on the
specific choice of Eq. (40).

E. Results

The values of the fitted parameters are presented in
Table III, and the results for scattering properties are

TABLE III. Parameters (in MeV) of the RχT Lagrangian
determined from phenomenology [11,12] or short-distance con-
straints [14] and the resulting values from the combined fit.
Resonance masses and saturation scales are also given in MeV,
while subtraction constants are dimensionless.

Parameter Large Nc Fit Fit

GV 65.3 63.2(1) Cππ
00 −0.0209ð2Þ

cd 46.2 39.8(1) CKK̄
00

−0.0085ð3Þ
~cd 26.7 20.7(3) Cηη

00 0.0060(2)
cm 46.2 41.1(1) Cππ

11 −0.0279ð6Þ
~cm 26.7 18.9(9) CKK̄

11
−0.0100ð5Þ

dm 32.7 29.8(1) Cππ
20 −0.0561ð5Þ

~dm 18.9 19.3(7) CKπ
1
2
0

−0.0029ð3Þ
mV 821 805(2) CKη

1
2
0

−0.0165ð14Þ
mS0 821.0 808.9(4) CKπ

1
2
1

0.0380(20)

mS8 821 1279(9) CKη
1
2
1

−0.0240ð20Þ
μV 645(4) CKπ

3
2
0

−0.0394ð14Þ
μS 274(10) CKπ

3
2
1

–
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depicted in Fig. 3, where solid (blue) lines represent fitted
curves. The results for nonfitted data are depicted as dashed
(blue) lines. In the Bayesian approach, errors on the
parameters are estimated as mean values, i.e., integrating
the likelihood with respect to the fitting parameters, but
when the total χ2 is large (not the χ2=d:o:f:), as is the case
here, a saddle-point approximation can be used. This is
equivalent to determining them by the standard covariance
matrix inversion method applied in our case to Eq. (40).
As expected, the fit below ΛR ¼ 1.2 GeV is successful

with reasonable resonance parameters motivated by large-
Nc constraints (when states with mass above ΛR are
disregarded). Indeed, as can be seen in Table III, all
RχT parameters turn out to be in agreement, within the
typical 30% uncertainty, with the large-Nc expectations.
The only exception is the value ofmS8 ∼ 1280 MeV, which
lies outside of the Nc expected region. However, the mean
between the two scalar masses, mS8 and mS0 , satisfies this
constraint.
The achieved description for all 14 pseudodata channels

considered is quite good, as can be appreciated in Fig. 3.

This is even more relevant, taking into account that the
comparison is being made with the quite precise output
obtained from the data constrained Roy-GKPY and Roy-
Steiner analyses carried out in Refs. [55,57], which provide
the most reliable information currently available in the
literature on the various scattering amplitudes.
Next, we discuss the poles found in the SRS of the

amplitudes. The SRS of the T matrix is determined by the
definition of the loop function Iϕϕ0

0 ðsÞ. As mentioned
above, we use Eq. (A13) of Ref. [54]. Masses and widths
of the dynamically generated resonances are determined
from the positions of the poles, sR, in the SRS of the
corresponding scattering amplitudes in the complex s
plane. Since in the SRA amplitudes we have explicitly
incorporated one vector and two scalar poles, we expect at
least these poles to appear in the appropriate sectors.
However, because of the resummation in Eq. (29), the
pole positions will change with respect to those of the
bare ones (s ¼ m2

V;m
2
S0

and m2
S8
) and the resonances will

acquire a width that accounts for their two-meson decay.
This change is especially relevant for the f0ð500Þ or σ

FIG. 3 (color online). Results for meson-meson scattering observables as a function of the CM energy
ffiffiffi
s

p
(in MeV). We display the

pseudodata, with their assumed uncertainties included in the fit (see Table II). Solid lines represent fitted curves; dashed (blue) lines
represent nonfitted curves.
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meson, where pion loops dominate at Nc ¼ 3, producing
a state very deep on the complex plane, with a mass
around 450 MeVand a width around 520 MeV. As studied
in [33], this effect is due to a strong cancellation between
different Nc orders, which makes it difficult to analyze
its properties just from the pure 1=Nc expansion. In fact,
there are several works in the literature [16,28–32] in which
the f0ð500Þ fades away on the complex plane as Nc
increases, being made just of meson-meson loops and
having, then, no relation with the scalar poles included in
the Lagrangian.
In addition, as we will see, some other poles are

generated as well in the SRS of the scattering amplitudes.
The results are presented in Table IV. We find a quite good
description of the f0ð500Þ; f0ð980Þ; K�

0ð800Þ; ρð770Þ and
K�ð892Þ resonances, with masses and widths that compare
rather well with the averaged ones compiled in the Review
of Particle Properties [43]. Furthermore, since our results
have been obtained by fitting the pseudodata values from
the ππ [55] and πK [57] dispersive analyses, we also
include, in the last row of Table IV, the dispersive
determinations obtained from these schemes [62,63].
The agreement is also remarkable. We want to note that
the properties of all these dynamically generated states are
not significantly affected by the employed reweighting of
the δ00 and η00 channels.
Let us now pay attention to the complex pole structure of

the scalar-isoscalar sector, depicted in Fig. 4. The f0ð500Þ
and f0ð980Þ resonances are clearly visible. Besides, there
are two additional poles, which are placed above
ΛR ¼ 1.2 GeV. Perhaps the lower one could have some
relation with the f0ð1370Þ state. This will agree with the
findings of Ref. [65], where the f0ð1370Þ is identified as a
pure octet state not mixed with the glueball. The chiral
unitary approaches, supplemented by the inclusion of
vector mesons, of Refs. [66–68] seem to also give support
to this hypothesis. Nevertheless, the exact position of the
higher poles depends much more on the choice of the merit

function which is being minimized. In particular, the
position of the f0ð1370Þ depends strongly on how the
comparatively imprecise η00 pseudodata is included in
the fit. In addition, these states are located above the scale
of the first resonance multiplet considered and, then, are
strongly dependent on those heavier states integrated out in
the starting Lagrangian. Therefore, these heavier poles
cannot be properly described within the framework used in
this work and are included only for completeness.
Finally, in Table IV, we also provide for each resonance

its coupling to the fitted channels [πK in the case of the
K�

0ð800Þ and K�ð892Þ, and ππ and KK for the others],
defined from its pole residue as

gAgB ¼ lim
s→spole

ðs − spoleÞTA→B
IJ ðsÞð2J þ 1Þ=ð2pÞ2J; ð41Þ

where p is the center-of-mass-system momentum of the
corresponding process.

TABLE IV. Pole positions and resonance couplings found in this work with the best-fit parameters compiled in Table III. All statistical
uncertainties are defined on a 68% confidence level. For the resonances marked with (*), the PDG quote Breit-Wigner (BW) parameters
spole ¼ M2

BW − iMBWΓBW, from which we have computed the corresponding pole positions. For the ρð770Þ case we show the “Neutral
only, other reactions” average values, whereas for the K�ð892Þ case we give the “Neutral only” average mass and width. Note that the
dispersive data analysis of Ref. [64], based on the Roy equations, predict

ffiffiffiffiffi
sσ

p ¼ ð441þ16
−8 − i272þ9

−12Þ MeV. In addition, the jgππ j GKPY
dispersive determination given in [62] for the f0ð500Þ, f0ð980Þ and ρð770Þ are 3.59þ0.11

−0.13 , 2.3� 0.2 and 6.01þ0.04
−0.07 , respectively.

I J
ffiffiffiffiffi
sR

p
[MeV] jgππ;πK j [GeV] jgK̄K j [GeV] PDG [43]

ffiffiffiffiffi
sR

p
[MeV] GKPY/RS [62,63]

ffiffiffiffiffi
sR

p
[MeV]

0 0 f0ð500Þ or σ 458ð2Þ − i264ð3Þ 3.3(1) 0.9(1) 400 ∼ 550 − i½200 ∼ 350� 457þ14
−13 − i279þ11

−7
0 0 f0ð980Þ 1001ð4Þ − i24ð2Þ 2.2(1) 4.2(1) 990� 20 − i½20 ∼ 50� 996ð7Þ − i25þ10

−6
0 0 1211ð64Þ − i332ð78Þ 3.3(5) 2.6(2)
0 0 1449ð29Þ − i61ð12Þ 3.1(2) 0.3(1)
1 1 ρð770Þ 761ð3Þ − i73ð2Þ 6.0(1) 3.9(1) 772.3ð9Þ − i75.1ð8Þ� 763.7þ1.7

−1.5 − i73.2þ1.0
−1.1

1=2 0 K�
0ð800Þ or κ 684ð4Þ − i260ð4Þ 4.2(1) 682ð29Þ − i273ð12Þ 659ð13Þ − i278ð12Þ

1=2 1 K�ð892Þ 897ð5Þ − i24ð2Þ 5.4(3) 896.1ð19Þ − i23.7ð3Þ�

FIG. 4 (color online). Poles found in the SRS of the scalar-
isoscalar elastic ππ amplitude. The f0ð500Þ and f0ð980Þ are
clearly visible.

T. LEDWIG et al. PHYSICAL REVIEW D 90, 114020 (2014)

114020-12



VI. CONCLUSIONS

Within a unitarized coupled-channel approach, we have
analyzed the scattering of the pseudoscalar mesons forffiffiffi
s

p
≤ 1.2 GeV, where all two-body scattering channels are

open. Our amplitudes contain one-loop (NLO) χPT and
tree-level (LO) large-Nc pieces, with 24 fitting parameters.
Given the lack of very precise experimental data, in this
work we have used the most precise and reliable output for
the ππ and πK scattering processes from the Roy-GKPY
and Roy-Steiner analyses carried out in Refs. [55,57]. This
is a major novelty of this work, since for the very first time,
these two sets of data or pseudodata have been simulta-
neously used to constrain the LECs. Indeed, it has been a
key factor to attaining high levels of precision and to fixing
the RχTT parameters. However, not all of the pseudodata
have experimentally inherited uncertainties, and hence an
educated guess in defining the merit function used has
been made.
While our model contains important features of the true

solution and we optimized it by minimizing the discrep-
ancies with experiment, the large number of best-fit
parameters made the task of performing the fit difficult.
We faced a quite complex structure of the parameter
manifold, which has many resemblances to a multidimen-
sional egg box. The proliferation of undetermined LECs
made direct fits rather elusive, and quite often we were
driven to unreasonable parameter values, which suggested
rejecting the fit. Under these circumstances, we have
adopted the Bayesian point of view of making the natural
assumption that the RχT parameters take their large-Nc
estimated values within an expected 1=Nc uncertainty.
The main outcome of the present study is that a rather

good description of the data can be achieved with natural
values of the parameters and by considering the nominal
expected accuracy of the calculations. This is a nontrivial
result, and an important ingredient for this success is the
allowance for systematic deviations in all parameters where
the large-Nc expansion is expected to provide corrections
ofOð1=NcÞ. The predictions compiled in Table IV for pole
positions and couplings of the lowest-lying dynamically
generated resonances, which show a nice agreement with
the most precise current determinations, are an example of
this success.
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APPENDIX: SRA RχT AND ONE-LOOP
χPT AMPLITUDES

The Oðp4Þ χPT amplitudes [TχPT
IJ ðsÞ] used throughout

this work are obtained from Ref. [52]. There, and assuming
crossing symmetry, the isospin projected amplitudes for
every possible process involving π; K; η mesons can be
found. Next, the individual contributions with total angular
momentum J are calculated using Eq. (17). Possible η − η0
mixing effects are not taken into account, and thus the η
meson is identified with the isospin singlet (η8) of the octet
of Goldstone bosons. In addition, the normalizations used
here are such that our amplitudes differ in one sign from
those given in [52].

(i) ππ → ππ: There is only one independent amplitude,
Tðs; t; uÞ, that is taken to be the πþπ− → π0π0,
which at one loop in χPT, is given in Eq. (B4) of
Ref. [52]. Linear combinations of Tðs; t; uÞ,
Tðt; s; uÞ and Tðu; t; sÞ provide the isoscalar, iso-
vector and isotensor amplitudes [see text above
Eq. (12) in [52]].

(ii) Kπ → Kπ: Crossing symmetry allows us to write the
I ¼ 1=2 amplitude [Eq. (12) in [52]] in terms of the
I ¼ 3=2 Kþπþ → Kþπþ one, which is given in
Eq. (B5) of Ref. [52].

(iii) KK̄ → KK̄: In this case, the two isospin amplitudes
can be expressed in terms of the K̄0K0 → KþK−

amplitude [see Eq. (25) of Ref. [30]], an expression
which to one loop can be obtained from Eq. (B8) of
[52]. Note that this latter equation suffers from a
typo, and there, it turns out that the amplitude
K0K̄0 → KþK− is the one which is given instead
of K̄0K0 → KþK−.

(iv) KK̄ → ππ: Thanks to crossing symmetry, the am-
plitudes in this sector are determined by the I ¼ 3=2
Kþπþ → Kþπþ one.

(v) Kη → Kη: This is a pure I ¼ 1=2 process. The
one-loop amplitude is given in Eq. (B2) of
Ref. [52].

(vi) K̄K → ηη: This is an I ¼ 0 process that, using
crossing symmetry, can be obtained from the pre-
vious amplitude.

(vii) Kη → Kπ: This is also an I ¼ 1=2 process, and the
one-loop expression for K̄0η → K0π0 can be found
in Eq. (B3) of Ref. [52].

(viii) KK → πη: This I ¼ 1 process is related to the
K̄0η → K0π0 amplitude by crossing symmetry.

(ix) πη → πη: This is a pure I ¼ 1 isospin process, and
its amplitude is given in Eq. (B6) of Ref. [52].
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(x) ππ → ηη: This amplitude is determined from the
previous one by crossing.

(xi) ηη → ηη: This pure I ¼ 0 amplitude at one loop in
χPT is given in Eq. (B1) of Ref. [52].

Next, we compile the RχT amplitudes TSRAðs; t; uÞ,
within the SRA, for the independent processes mentioned
above. The different Feynman diagrams corresponding to
the resonance exchange amplitudes are illustrated in Fig. 5.
Note that, as it has been anticipated in Eq. (31), tree-level

amplitudes are also included in TSRAðs; t; uÞ. In addition,
resonances contribute indirectly through the diagrams of
Fig. 6 which modify, atOðp4Þ, the pion-decay constant and
the pseudoscalar meson self-energy ΣR

ϕ¼π;K;ηðp2Þ and,
consequently, pseudoscalar masses and wave-function
renormalization constants. The scalar and pseudoscalar
resonance contribution to the pion-decay constant and
self-energy renormalization reads

fπ ¼ f

�
1þ 8

3

cmcd
f2m2

S8

ðm2
π −m2

KÞ þ 4
~cm ~cd
f2m2

S0

ð2m2
K þm2

πÞ
�
;

ΣS
πðp2Þ ¼ −16cmðm2

π −m2
KÞ

3f2m2
S8

½cdp2 − cmm2
π� −

8~cmð2m2
K þm2

πÞ
f2m2

S0

½~cdp2 − ~cmm2
π�;

ΣS
Kðp2Þ ¼ −8cmðm2

π −m2
KÞ

3f2m2
S8

½−cdp2 þ cmm2
K� −

8~cmð2m2
K þm2

πÞ
f2m2

S0

½~cdp2 − ~cmm2
K�;

ΣP
ϕ¼π;Kðp2Þ ¼ 8

d2mm4
ϕ

f2
1

p2 −m2
P8

; ΣS
ηðp2Þ ¼ 4

3
ΣS
Kðp2Þ − 1

3
ΣS
πðp2Þ: ðA1Þ

Therefore, taking into account all these contributions, the TSRAðs; t; uÞ amplitude for the channel πþπ− → π0π0 is
given by

TSRAðs; t; uÞ ¼ 1

f2π
ðm2

π − sÞ þ G2
V

f4π

�
tðs − uÞ
t −m2

V
þ uðs − tÞ

u −m2
V

�
þ 2ð2cmm2

π þ cdð−2m2
π þ sÞÞ2

3f4πðs −m2
S8
Þ

þ 4ð2~cmm2
π þ ~cdð−2m2

π þ sÞÞ2
f4πðs −m2

S0
Þ −

8m4
πd2m

f4πðm2
π −m2

P8
Þ : ðA2Þ

For the channel Kþπþ → Kþπþ,

TSRAðs; t; uÞ ¼ 1

2f2π
ðs −m2

K −m2
πÞ −

G2
V

2f4π

�
tðs − uÞ
t −m2

V
þ ðt − 2m2

KÞðt − 2m2
πÞ − ðm2

K þm2
π − sÞ2

u −m2
V

�

þ 4ð2ð−~cd þ ~cmÞm2
K þ ~cdtÞð2ð−~cd þ ~cmÞm2

π þ ~cdtÞ
f4πðt −m2

S0
Þ þ ððcd − cmÞðm2

K þm2
πÞ − cduÞ2

f4πðu −m2
S8
Þ

−
ð2ðcd − cmÞm2

K − cdtÞð2ðcd − cmÞm2
π − cdtÞ

3f4πðt −m2
S8
Þ −

4d2mm2
πm2

K

f4π

�
1

m2
K −m2

P8

þ 1

m2
π −m2

P8

�

þ cmðm2
K −m2

πÞð3cmðm2
K −m2

πÞ þ cdð4m2
K þ 4m2

π − 5sþ tþ uÞÞ
3f4πm2

S8

: ðA3Þ

FIG. 5. Resonance contributions to the pseudoscalar meson-meson scattering. The dotted lines denote pseudoscalar mesons, double
lines the intermediate resonances, and the black dot their interaction. The first row contains the diagrams with intermediate vector and
scalar resonances in the s-, t- and u-channel graphs. The pseudoscalar resonance contributions are shown in the second row.
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For K0K̄0 → KþK− the SRA amplitude reads

TSRAðs; t; uÞ ¼ u − 2m2
K

2f2π
þ G2

V

2f4π

�
sðt − uÞ
s −m2

V
þ tðs − uÞ

t −m2
V

�
þ 4ð2~cmm2

K þ ~cdð−2m2
K þ sÞÞ2

f4πðs −m2
S0
Þ −

ð2cmm2
K þ cdð−2m2

K þ sÞÞ2
3f4πðs −m2

S8
Þ

þ ð2cmm2
K þ cdð−2m2

K þ tÞÞ2
f4πðt −m2

S8
Þ −

8d2mm4
K

f4πðm2
K −m2

P8
Þ þ

4cdcmðm2
K −m2

πÞð2m2
K − uÞ

f4πm2
S8

; ðA4Þ

whereas for the process K̄0η → K̄0η,

TSRAðs; t; uÞ ¼ −9tþ 6m2
η þ 2m2

π

12f2π
−
3G2

V

4f4π

�ððt− 2m2
KÞðt− 2m2

ηÞ− ðm2
K þm2

η − uÞ2Þ
ðs−m2

VÞ

þ ððt− 2m2
KÞðt− 2m2

ηÞ − ðm2
K þm2

η − sÞ2Þ
ðu−m2

VÞ
�
−
ðcmð−5m2

K þ 3m2
πÞ þ cdðm2

η þm2
K − sÞÞ2

6f4πðm2
S8
− sÞ

þ ð2ðcd − cmÞm2
K − cdtÞð2cmð8m2

K − 5m2
πÞ þ 3cdð−2m2

η þ tÞÞ
9f4πðm2

S8
− tÞ −

ðcmð−5m2
K þ 3m2

πÞ þ cdðm2
η þm2

K − uÞÞ2
6f4πðm2

S8
− uÞ

−
4ð2ð−~cd þ ~cmÞm2

K þ ~cdtÞð−6~cdm2
η þ 8~cmm2

K − 2~cmm2
π þ 3~cdtÞ

3f4πðm2
S0
− tÞ

þ 4d2mð−4m4
K þ 3m2

πm2
KÞ

3f4πðm2
K −m2

P8
Þ þ 4d2mð−20m4

K þ 9m2
πm2

K − 4m4
πÞ

9f4πðm2
η −m2

P8
Þ −

32~d2mð2m4
K − 3m2

πm2
K þm4

πÞ
3f4πðm2

η −m2
P0
Þ

þ cmðm2
K −m2

πÞð21cmð−m2
K þm2

πÞ þ cdð246m2
K − 58m2

π − 63ðsþ uÞÞÞ
9f4πm2

S8

: ðA5Þ

For the channel K̄0η → K̄0π0 we have

TSRAðs; t; uÞ ¼ −
8m2

K þm2
π þ 3m2

η − 9t

12
ffiffiffi
3

p
f2π

−
ffiffiffi
3

p
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FIG. 6. Scalar and pseudoscalar resonance contributions to the pseudoscalar meson self-energy and the scalar one to the pion decay
constant fπ .
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In the case of the process π0η → π0η, the SRA amplitude is given by

TSRAðs; t; uÞ ¼ −
1

3f2π
m2

π þ
2ð−2cmm2

π þ cdðm2
η þm2

π − sÞÞ2
3f4πðs −m2

S8
Þ

þ 4ð2ð−~cd þ ~cmÞm2
π þ ~cdtÞð−6~cdm2

η þ 8~cmm2
K − 2~cmm2

π þ 3~cdtÞ
3f4πðt −m2

S0
Þ

−
2ð2ð−cd þ cmÞm2

π þ cdtÞð2cmð8m2
K − 5m2

πÞ þ 3cdð−2m2
η þ tÞÞ

9f4πðt −m2
S8
Þ

þ 2ð−2cmm2
π þ cdðm2

η þm2
π − uÞÞ2

3f4πðu −m2
S8
Þ −

8d2mm4
π

3f4πðm2
π −m2

P8
Þ þ

16d2mm2
πðm2

π − 4m2
KÞ

9f4πðm2
η −m2

P8
Þ

þ 64~d2mm2
πðm2

K −m2
πÞ

3f4πðm2
η −m2

P0
Þ þ 32cdcmm2

πðm2
K þm2

πÞ
9f4πm2

S8

: ðA7Þ

Finally, for the channel ηη → ηη it reads

TSRAðs; t; uÞ ¼ 7m2
π − 16m2

K

9f2π
þ 4ð6~ctm2

η − 8~cmm2
K þ 2~cmm2

π − 3~cdsÞ2
9f4πðs −m2

S0
Þ þ 2ð6cdm2

η − 16cmm2
K þ 10cmm2

π − 3cdsÞ2
27f4πðs −m2

S8
Þ

þ 4ð6~ctm2
η − 8~cmm2

K þ 2~cmm2
π − 3~cdtÞ2

9f4πðt −m2
SS0

Þ þ 2ð6cdm2
η − 16cmm2

K þ 10cmm2
π − 3cdtÞ2

27f4πðt −m2
S8
Þ

þ 4ð6~ctm2
η − 8~cmm2

K þ 2~cmm2
π − 3~cduÞ2

9f4πðu −m2
S0
Þ þ 2ð6cdm2

η − 16cmm2
K þ 10cmm2

π − 3cduÞ2
27f4πðu −m2

S8
Þ

−
128~d2mð5m4

π þ 8m4
K − 13m2

Km
2
πÞ

9f4πðm2
η −m2

P0
Þ −

32d2mð64m4
K − 44m2

Km
2
π þ 7m4

πÞ
27f4πðm2

η −m2
P8
Þ þ 128d2mm4

K

9f4πðm2
K −m2

P8
Þ

−
56d2mm4

π

9f4πðm2
π −m2

P8
Þ þ

64cmðm2
K −m2

πÞð10cdm2
K − 6cmm2

K − 7cdm2
π þ 6cmm2

πÞ
27f4πm2

S8

: ðA8Þ

For the sake of completeness, we have checked, for each of the considered processes, that the above formulas are
equivalent to the Oðp4Þ contributions proportional to the LECs Li of Ref. [52], when the following relations hold:

L1 ¼
G2

V

8m2
V
−

c2d
6m2

S8

þ ~c2d
2m2

S0

; L2 ¼
G2

V

4m2
V
; L3 ¼

−3G2
V

4m2
V

þ c2d
2m2

S8

;

L4 ¼ −
cdcm
3m2

S8

þ ~cd ~cm
m2

S0

; L5 ¼
cdcm
m2

S8

; L6 ¼ −
c2m
6m2

S8

þ ~c2m
2m2

S0

; L8 ¼ −3L6;

L7 ¼
d2m
6m2

P8

−
~d2m

2m2
P0

; L8 ¼
c2m
2m2

S8

−
d2m
2m2

P8

: ðA9Þ
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