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We pursue the group-theoretical method to study Isgur-Wise (IW) functions. We extend the general
formalism, formerly applied to the baryon case j© = 0% (for A, — A.£7,), to mesons with j© = %‘, ie.
B — D(D™)¢v. In this case, which is more involved from the angular momentum point of view, only the
principal series of unitary representations of the Lorentz group contribute. We obtain an integral
representation for the IW function &(w) with a positive measure, recover the bounds for the slope and
the curvature of £(w) obtained from the Bjorken-Uraltsev sum-rule method, and get new bounds for higher
derivatives. We demonstrate also that if the lower bound for the slope is saturated, the measure is a &
function, and £(w) is given by an explicit elementary function. Inverting the integral formula, we obtain the
measure in terms of the IW function, allowing us to formulate criteria to decide if a given Ansatz for the
Isgur-Wise function is compatible or not with the sum-rule constraints. Moreover, we obtain an upper
bound on the IW function valid for any value of w. We compare these theoretical constraints to a number of
forms for &(w) proposed in the literature. The “dipole” function &(w) = (;27)* satisfies all constraints for
c> ?T’ while the QCD sum rule result including condensates does not satisfy them. Special care is devoted
to the Bakamjian-Thomas relativistic quark model in the heavy-quark limit and to the description of the

Lorentz group representation that underlies this model. Consistently, the IW function satisfies all Lorentz

group criteria for any explicit form of the meson Hamiltonian at rest.
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I. INTRODUCTION

The heavy-quark limit of QCD and, more generally,
heavy quark effective theory (HQET), has aroused
enormous interest since the 1990s, starting from the
formulation of heavy-quark symmetry by Isgur and
Wise (IW) [1].

Hadrons with one heavy quark such that mgy > Agcp
can be thought of as a bound state of a light cloud in the
color source of the heavy quark. Due to its heavy mass, the
latter is unaffected by the interaction with soft gluons.

In this approximation, the decay of a heavy hadron
with four-velocity » into another hadron with velocity v/,
for example the semileptonic decay B — D")£p, or
A, - A.fDy, occurs just by free heavy-quark decay
produced by a current, and the rearrangement of the light
cloud, to follow the heavy quark in the final state and
constitute the final heavy hadron.

The dynamics is contained in the complicated light
cloud, which concerns long-distance QCD and is not
calculable from first principles. Therefore, one needs to
parametrize this physics through form factors, i.e., the IW
functions.

The matrix element of a current between heavy hadrons
containing heavy quarks Q and Q' can thus be factorized as
follows [2]:
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where v, v/ are the initial and final four-velocities, j, j', M,
M’ are the angular momenta and corresponding projections
of the initial and final light clouds, and u, ¢’ are the angular-
momentum projections of the heavy quark.

The current affects only the heavy quark, and all the soft
dynamics is contained in the overlap between the initial
and final light clouds (v/, j/, M’|v, j, M), which follow the
heavy quarks with the same four-velocity. This overlap is
independent of the current heavy-quark matrix element,
and depends on the four-velocities v and v’. The TW
functions are given by these light-cloud overlaps.

An important hypothesis has been developed in writing
the previous expression, namely neglecting hard-gluon
radiative corrections.

As we will make explicit below, the light cloud belongs
to a Hilbert space, and transforms according to a unitary
representation of the Lorentz group. Then, as we have
shown in Ref. [3], the whole problem of getting rigorous
constraints on the IW functions amounts to decomposing
unitary representations of the Lorentz group into
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irreducible ones. This allows one to obtain for the IW
functions general integral formulas in which the crucial
point is that the measures are positive.

In Ref. [3] we treated the case of a light cloud with
angular momentum j = 0 in the initial and final states, as
happens in the baryon semileptonic decay A, — A .£D,.

A different but, as we will show below, equivalent method
to that of the present paper was developed in a number of
articles using sum rules in the heavy-quark limit, like the
famous Bjorken sum rule and its generalizations [4-9].

The sum rule method is completely equivalent to the
method of the present paper. Indeed, starting from the sum
rules one can demonstrate that an IW function, say
E(v.v') = (V'|v) in a simplified notation, is a function of
positive type, and that one can construct a unitary repre-
sentation of the Lorentz group U(A) and a vector state |¢)
representing the light cloud at rest. The IW function is then
simply (e.g. in the special case j = 0)

&(vv") = (U(By)gho|U(B,)dho) )

where B, and B, are the corresponding boosts.

Let us now go back to previous work on the sum-rule
method. In the meson case B — D"£D,, in the leading
order of the heavy-quark expansion, the Bjorken sum rule
(SR) [4,5] gives the lower bound for the derivative of the
IW function at zero recoil p*> = —&(1) > 1. A new SR was
formulated by Uraltsev in the heavy-quark limit [6] that,
combined with Bjorken’s, gave the much stronger lower
bound p? > 3. A basic ingredient in deriving this bound was
the consideration of the nonforward amplitude B(v;) —
D" (v') - B(v ), allowing for general four-velocities v;,
Ve, V.

fIn Refs. [7-9] we developed a manifestly covariant
formalism within the operator product expansion (OPE)
and the nonforward amplitude, using the whole tower of
heavy meson states [2]. We did recover Uraltsev SR plus a
general class of SR that allow one to bound also higher
derivatives of the IW function. In particular, we found a
bound on the curvature in terms of the slope p?, namely

£1(1) 2 5147 + 37 g

The more powerful method of the present paper will
provide a new insight into the physics of QCD in the heavy-
quark limit and its Lorentz group structure.

As we will see below, we obtain an integral formula
for the Isgur-Wise function in terms of a positive measure.
We will see that we recover the bound (3) and that this
systematic method allows us to find bounds for higher
derivatives.

We can invert this integral formula and obtain the
measure corresponding to any given Ansatz for the IW
function and we thus obtain a powerful criterium to decide
if this Ansatz is consistent with the Lorentz group approach
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or, equivalently, with the generalized Bjorken-Uraltsev sum
rules. The method exposed in this paper allows one to decide
if a given model for the IW function is consistent with the
general principles of QCD in the heavy-quark limit.

The purpose of the present paper is purely theoretical.
In HQET, e.g. in b — c transitions, one can take the heavy-
quark limit for both initial and final quarks while keeping
the mass ratio r = m,,/m, finite. By varying the ratio r one
can in principle attain any value for the variable w within
the range 1 <w < 14272, and our theoretical constraints on
IW functions are then valid for any value of w.

Of course, this is quite different from the physical range
at finite masses, namely 1 <w < 1.4 GeV. To perform an
analysis at finite mass would require not only implementing
the theoretical constraints on the IW function obtained in
the present work; one would also need to perform a serious
phenomenological discussion and to include 1/m, correc-
tions, radiative corrections within the effective theory
HQET, and make use of the Wilson coefficients to match
with the true QCD, as has been done for the curvature of the
IW function (3) by Dorsten [10]. This whole program is
outside the intention of the present work, which only deals
with rigorous constraints on the shape of the IW function.

The outline of the paper is as follows. Sections II and I1I
recall necessary generalities and details on the present
Lorentz group approach to IW functions, following closely
Ref. [3]. In Sec. IV we apply the method exposed in detail
in Ref. [3] to the present meson case, making explicit the
needed unitary representations of the Lorentz group.
In Sec. V we compute the irreducible IW functions in
the case j = % and give an integral formula expressing the
IW function in terms of the latter and a positive measure.
In Sec. VI we use this integral formula to get a polynomial
expression for the derivatives of the IW function, and in
Sec. VII we obtain lower bounds on its derivatives.
Section VIII is devoted to obtaining the inversion of the
integral formula for the IW function. In Sec. IX we find an
upper bound on the IW function. In Sec. X we apply the
inverted integral formula to study consistency tests of a
number of models of the IW function proposed in the
literature. The Bakamjian-Thomas relativistic quark model
in the heavy-quark limit and the description of the Lorentz
group representation that underlies this model is studied in
detail in Sec. XI. In Sec. XII we discuss the theoretical and
phenomenological relevance of our results, and we conclude.

II. THE LORENTZ GROUP AND THE
HEAVY-QUARK LIMIT OF QCD

In the heavy-mass limit, the states of a heavy hadron H
containing a heavy quark Q are described as follows [2], as
we can see from Eq. (1):

[H(v), . M) = |Q(v). 1) @ |v,j. M) (4)

where there is a factorization into the heavy-quark state
factor |Q(v),pu) and a light cloud component |v, j, M).
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The velocity v of the heavy hadron H is the same as the
velocity of the heavy quark @, and is unquantized.
The heavy-quark Q state depends only on a spin y = j:%
quantum number, and so belongs to a two-dimensional
Hilbert space. The light component is the complicated
thing, but it does not depend on the spin state y of the heavy
quark @, nor on its mass, and this gives rise to the
symmetries of the heavy-quark theory.

As advanced in the Introduction, the matrix element of a
heavy-heavy current J (acting only on the heavy quark) is

(H'(v"), ', M'|J|H (v), i, M)
= (@ (W), W IQW), m (v, ', M’

v.j. M) (5)

and the IW functions are defined as the coefficients,
depending only on v.7/, in the expansion of the unknown
scalar products (v', j', M'|v, j, M) into independent scalars
constructed from v, v’ and the polarization tensors describ-
ing the spin states of the light components.

Now, the crucial point in the present work is that the
states of the light components make up a Hilbert space in
which acts a unitary representation of the Lorentz group.
In fact, this is more or less implicitly stated, and used in the
literature [2].

A. Physical picture of a heavy quark

To see the point more clearly, let us go into the physical
picture that is at the basis of Eq. (4). We first consider a
heavy hadron at rest, with velocity

-

vo = (1,0) (6)

whose light component enters the interactions between the
light particles, light quarks, light antiquarks and gluons,
and the external chromoelectric field generated by the
heavy quarks at rest. This chromoelectric field does not
depend on the spin p of the heavy quark or its mass. We
shall then have a complete orthonormal system of energy
eigenstates |vg, j, M,a) of the light component, where j
and M are the angular momentum quantum numbers and «
denotes other quantum numbers (like the radial excitation
number),

<1}0’ j/v M/7 a/‘UO’ j’ M, (X> = 5_/',_/"6M,M’5a,a/' (7)

Now, for a heavy hadron moving with a velocity v, the
only thing that changes for the light component is that the
external chromoelectric field generated by the heavy quark
at rest is replaced by the external chromoelectromagnetic
field generated by the heavy quark moving with velocity v.
Neither the Hilbert space describing the possible states of
the light component, nor the interactions between the light
particles, are changed. We shall then have a new complete
orthonormal system of energy eigenstates |v, j, M,q), in
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the same Hilbert space. Then, because the color fields
generated by a heavy quark for different velocities are
related by Lorentz transformations, we may expect that the
energy eigenstates of the light component will, for various
velocities, be themselves related by Lorentz transforma-
tions acting in their Hilbert space.

B. Lorentz representation from covariant overlaps

Let us now show that such a representation of the
Lorentz group does in fact underly the work of Ref. [2].
The description of spin states by polarization tensors
is used.

For half-integer spin j, in which we are interested in
the present paper, the polarization tensor becomes a
Rarita-Schwinger tensor-spinor ¢y "~ subject to the
constraints of symmetry, transversality and tracelessness

HiseHj-172
Uy, €a =0,

e/;lvﬂz-“ﬂj—l/Z _ O, (8)

gﬂ]ﬂz

and

(17 - 1>aﬁ€7il ..... e = 0, (7}41)(1/}6731 ..... e = 0. (9)

Then a scalar product (v, €'|v,j,€) is a covariant
function of the vectors v and v’ and of the tensors (or
tensor-spinors) ¢ and e, bilinear with respect to ¢”* and e,
and the IW functions—functions of the scalar v.v'—are
introduced accordingly.

The covariance property of the scalar products is
explicitly expressed by the equality

(AU, j', A€'|Aw, j, Ae) = (v, ', €

v.j.e)  (10)

which is valid for any Lorentz transformation A, with the
transformation of a tensor-spinor given by

(A% = N N ED(A)

Vj-1/2

e, (1)
Then, let us define the operator U(A), in the space of the
light cloud states, by

U(A)v.j.€) = |Av. j. Ae) (12)

where here v is a fixed, arbitrarily chosen velocity.
Equation (10) implies that U(A) is a unitary operator,
as demonstrated in Ref. [3].

C. From a Lorentz representation
to Isgur-Wise functions

A unitary representation of the Lorentz group emerges
from the usual treatment of heavy hadrons in the heavy-
quark theory. For the present purpose, we need to go in the
opposite direction, namely, to show how—starting from a
unitary representation of the Lorentz group—the usual
treatment of heavy hadrons and the introduction of the IW
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functions emerge. What follows is not restricted to the
Jj= % case, but rather concerns any IW function.

So, let us consider some unitary representation A —
U(A) of the Lorentz group [or more precisely of the group
SL(2,C)] in a Hilbert space H, where we have to identify
states in H depending on a velocity v. As explained in
Ref. [3], we have in H an additional structure, namely the
energy operator of the light component for a heavy quark at
rest, with vy = (1,0,0,0). Since this energy operator is
invariant under rotations, we consider the subgroup SU(2)
of SL(2,C). By restriction, the representation in H of
SL(2,C) gives a representation R — U(R) of SU(2), and
its decomposition into irreducible representations of SU(2)
is needed. We then have the eigenstates |vy, j, M) of the
energy operator, which are classified by the angular
momentum number j of the irreducible representations
of SU(2) and associated with the rest velocity v, since their
physical meaning is to describe the energy eigenstates of
the light component for a heavy quark at rest.

We now need to express the states |v, j, €) in terms of the
states |vg, j, M). We begin with v = ;. For fixed j and a,
the states |vg, j, M) constitute, for —j < M < j, a standard
basis of a representation j of SU(2):

U(R) vy, j. M) = ZDL’,M(R”UOvj? M) (13)

where the rotation matrix elements D{W  are defined by

Dy = (- M'|U;(R)

Jj. M), ReSU(2). (14)

On the other hand, the states |v,, j, €) constitute [when e
goes over all polarization tensors (or tensor-spinors)] the
whole space of a representation j of SU(2). As emphasized
in Ref. [3], this representation of SU(2) in the space of
3-tensors (or 3-tensor-spinors) is not irreducible, but it
contains an irreducible subspace of spin j, which is
precisely the polarization 3-tensor (or 3-tensor-spinor)
space selected by the other constraints (8) and (9) for
the velocity v,,.

We may then introduce a standard basis ™),
—j <M < j, for the SU(2) representation of spin j in
the space of polarization 3-tensors (or 3-tensor-spinors). As
demonstrated in Ref. [3], the states |v, j,¢) are given by

0. €) =D (A7e)y U vg. j. M) (15)

M

for any A such that Av, = v, with v, given by Eq. (6), and
where (A7'e),, is the component of the velocity v,
polarization tensor A~!e in the standard basis.

Equation (15) is our final result, defining—in the Hilbert
space H of a unitary representation of SL(2, C)—the states
|v, j,e) which transform as Eq. (12) and whose scalar
products define the TW functions, in terms of |vg, j, M)
which occur as SU(2) multiplets in the restriction to SU(2)
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of the SL(2,C) representation. Furthermore, these states
v, j, €) defined by Eq. (15) do indeed transform as Eq. (12).

III. DECOMPOSITION INTO IRREDUCIBLE
REPRESENTATIONS

In the case of a compact group [such as SU(2)], any
unitary representation can be written as a direct sum
of irreducible ones. In the present case of SL(2,C)
(a noncompact group), the more general notion of a
direct integral is required [11]. Let us denote by X the
set of irreducible unitary representations of SL(2, C), by
H, the Hilbert space of a representation y € X, and
by U,(A) the unitary operator acting in 7, which corre-
sponds to any A € SL(2, C). Then, for any unitary repre-
sentation of SL(2, C), the Hilbert space H can be written in
the form

H= [ @, duty) (16)

where  is an arbitrary positive measure on the set X, and n,
is a function on X with > | integer values or possibly .
Explicitly, an element y € H is a function

wix€EX >y, =WiynWn,) €EO,H, (17)

which assigns to each y € X an element y, € GBn),Hx’ and
which is y-measurable and square p-integrable. The scalar
product in H is given by

Wy = / Wolv)du(r) (18)

and the operator U(A) of the representation in the space H
is given by

(UM, = Uy (M (19)

Now let us look at the consequences for the IW
functions. For simplicity, we take here the case of a spinor
(= %) light component. For the hadron at rest, the light
component will be described by some element w1 € H

which is a spinor for the subgroup SU(2) of SL(2,C).
Then, according to the transformation law (19), requiring
that y; is a spinor under rotations is the same as requiring

that v is a spinor under rotations for all y’s and all

Koy
k=1,...,n,. More generally, the decomposition of the
irreducible representations of SL(2,C) into irreducible
representations of SU(2) is known (see the next section).
Since SU(2) is compact, the decomposition is by a direct
sum, and therefore each H, admits an orthonormal basis
adapted to SU(2). Moreover, it turns out that each repre-
sentation j of SU(2) appears with multiplicity O or 1. Then,
there is a subset Xy C X of irreducible representations of
SL(2, C) containing a nonzero SU(2) spinor subspace and,
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for y € X, there is a unique (up to a phase) normalized
SU(2) scalar element in H,, which we denote as gb%%.

Each scalar element in H,, is then proportional to qb%%. So,
one has

l//%,;( = (Cl,;( ¢%,;(’ cees Cnl.)( ¢%){) (20)

with some coefficients ¢, ... From the scalar

s Cn e
»
product (18) in H, one sees that the normalization

<1//% |z//% ) = 1 of the light component amounts to

n,

/ S eaglduty) = 1. (21)
Xo k=1

IV. LORENTZ-GROUP-IRREDUCIBLE UNITARY
REPRESENTATIONS AND THEIR
DECOMPOSITION UNDER
ROTATIONS

A. Explicit form of the principal series of irreducible
unitary representations of the Lorentz group

We have described in Ref. [3] an explicit form of the
irreducible unitary representations of SL(2, C). Their set X
is divided into three sets: the set X, of representations of
the principal series, the set X, of representations of the
supplementary series, and the one-element set X, made up
of the trivial representation [12].

Actually, for the j = % case, only the principal series is
relevant. For the moment, let us however consider the
principal series, leaving j completely general.

A representation y = (n,p) in the principal series is
labeled by an integer n € Z and a real number p € R.
Actually, the representations (n, p) and (—n, —p) (as given
below) turn out to be equivalent so that, in order to have
each representation only once, n and p will be restricted as
follows [12]:

n=0,

n>0,

p =0,
pER. (22)

Notice that we keep the standard notation p used in
mathematical books to label the irreducible Lorentz-group
representations. This parameter should not be confused
with the standard notation in HQET for the slope of the IW
function p?.

The Hilbert space H,, , is made up of functions of a
complex variable z with the standard scalar product

(@) = | ¢'(z) Pp(2) &z (23)

with the measure d?z in the complex plane being simply
d*z = d(Re z)d(Imz). So, H,, = L*(C, d*z).
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The unitary operator U, ,(A) is given by

UnsW9)E) = (2212 - e g(21)

la —yz| a—yz

(24)

where a, B, y, 6 are complex matrix elements of
Ae SL(2,C):

a
=
/4

B. Decomposition under the rotation group

'g), ad—py = 1. (25)

Next we need the decomposition of the restriction to the
subgroup SU(2) of each irreducible unitary representation
of SL(2,0C).

Since SU(2) is compact, the decomposition is by a direct
sum so that for each representation y € X we have an
orthonormal basis ¢; 5, of H,, adapted to SU(2). Having in
mind the usual notation for the spin of the light component
of a heavy hadron, here we denote by j the spin of an
irreducible representation of SU(2). It turns out [12] that
each representation j of SU(2) appears in y with multi-
plicity O or 1, so that (/)’]{ 1, heeds no other indices, and that
the values taken by j are a part of the integer and half-
integer numbers. For fixed j, the functions qYJ( v —J <M<
j are chosen as a standard basis of the representation j of
SUQ2).

It turns out [12] that the functions ¢ ,(z) are expressed

in terms of the rotation matrix elements Dﬁ,l,_  defined by
Eq. (14). For a matrix R € SU(2) of the form

a
R:< i
—b

we shall also consider Di/[,. v as a function of a and b,
satisfying |a|*> + |b|* = 1.

We can now give explicit formulas for the orthonormal
basis ¢, of H,.

The spins j which appear in a representation y = (n, p)
are [3]

b
) WP EBE=1  (26)
a

all integers j > g for n even, (27)

all half-integers j > g for n odd. (28)

Such a spin appears with multiplicity 1.
The basis functions ¢77,(z) are given by the
expression [3]
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NOES

(1+ 2Py D]

¢71€1(Z) = \/E n/2.M
1 z )
X ,— , (29)
<\/1 +P V4P
or, using an explicit formula for D{l S
np V2j+1 /2
¢11/\/1(Z) = (_1) /M
N
e (.] - Il/2)‘(] + I’l/2)' (1 + |Z|2)i/;_j_]
(=M +M)!
Jt+M
X —1)*
R ()
j—-M n /2 Mtk =
X (j_n/2_k>z/2 M+I<Zk (30)

where the range for k can be limited to 0 < k < j — n/2 due
to the binomial factors.

V. IRREDUCIBLE ISGUR-WISE
FUNCTIONS FOR j = %

For j = %, one has a fixed value for n,

1
j===>n=1,

R 31
5 pE (31)

and we are thus in the case (28).

From now on we delete the fixed indices j :% and
n = 1, and we apply the explicit formula (30) to this case,
so that the nonvanishing functions (30) read

(z) = \/%(1 + |2y, (32)

p =kt

Let us now specialize the SL(2, C) matrix (25) to a boost
in the z direction,

20
A, = <e . ), w = cosh(z) (34)
0 e

and, following the j = 0 case studied at length in Ref. [3],
let us consider the following objects:

&, 4w) = WU (AN, (35)

&, (w) = (WU (A ). (36)

1
2
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From the transformation law (24) and the explicit forms
(32) and (33), one gets

(v, ) ) = Rt e, o)

2 . 3

(38)

(e

(S

and therefore, from these expressions and Egs. (35)
and (36), one obtains

2 2\—ip=3 ,(ip-1)t
&y =2 [ (1 fgPyrteton

x (1 + e |z2)ir2dy, (39)

2 ; .
& w) == / |22 (1 + |22) e lio-r
’ T
x (14 ez ) rdPz. (40)

We must now extract the Lorentz-invariant Isgur-Wise
function &(w). To do this, we must decompose the matrix
elements (39) and (40) into invariants using the spin—%
spinors of the light cloud .. We have not introduced
parity into our formalism. Therefore, we will have the
following decomposition:

(W )rsus(v)e(w),  (41)

a0 rsuy)P)  (42)
where & (w) is an irreducible 3= — 1~ elastic IW function,
labeled by the index p, and 7”(w) is a function correspond-
ing to the flip of parity 5~ — 1.
The notation for the function 7”(w) has to be distin-
guished from that for the boost parameter z introduced
in Eq. (34).
Let us now compute the spinor bilinears of Eqgs. (41)
and (42). From the expression

WO+ 1( X _
ui%(”) = ) ( 0.y );i1>’ “i%(”)ui%(v) =1

0+1
(43)

one gets
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1
a0y (0) = (0 uy(0) = [, (44)
7 - 1 w—1
g ()rsig(v) = =iy ()rsuy(v) = —= [0y

and therefore we obtain

P = - - _ £
o) = VI ) =& ) @)
Finally, from Egs. (39) and (40) one gets
1 1
P —
&(w) 1 4 cosh(z) sinh(7)
1 Telir=27 — o=lip=2)7  plipt3)T _ p=(ip+3)T
2 { ip—1 ip+3
(48)
or
1 1 4
(W) =
&(w) 1 + cosh(z) sinh(z) 4p? + 1
X [Sinh <§> cos(pt) + 2pcosh <%> sin(pr)} :
(49)

This is the expression for the elastic 1~ — 1~ irreducible
IW functions we were looking for, parametrized by the real

parameter p, which satisfies
(1) = 1. (50)
Like in the case j =0, which was analyzed in great

detail in Ref. [3], the elastic 1~ — 1~ IW function &(w) will
be given by the integral over a positive measure dv(p):

)= [ emas) (51)
where the measure is normalized according to

/]_ [dz/(p) =1. (52)

Notice that the range | — oo, o[ for the parameter p that
labels the irreducible representations follows from the fact
that in the j = % case one has n = 1 and p € R [Eq. (31)].
Notice also that the IW irreducible function (49) is even in

PHYSICAL REVIEW D 90, 114016 (2014)

p, & (w) = E7P(w). (This seems to contradict the nonequiv-
alence of the irreducible representations labeled by p and
—p, but this can be resolved by considering the Lorentz-
plus-parity group.)

The irreducible IW functions (49), parametrized by some
value of p = pj, are legitimate IW functions since the
corresponding measure is given by a delta function,

dv(p) = é(p — po) dp- (53)

In the case of the irreducible representation py = 0
one finds

4sinh(2) _( 2\
) = (1 + cosh(z)) sinh(z) <] +W) o

which saturates the lower bound for the slope —&'(1) > 3.
This is the so-called Bogomol’nyi-Prasad-Sommerfield
(BPS) limit of the IW function, which was considered
previously using different theoretical arguments [13,14].

VI. INTEGRAL FORMULA FOR THE IW
FUNCTION &(w) AND POLYNOMIAL
EXPRESSION FOR ITS DERIVATIVES

From the normalization of the norm (52) and the
normalization of the irreducible IW functions (50) one
gets the correct value of the IW function at zero recoil,

&1 = 1. (55)
The integral formula (49) and (51) is, explicitly,

1 1
1 + cosh(z) sinh(z)

/
X
|—00,00( 4,0 1

X [sinh( > cos(pt) + 2p cosh (%) sin(pr)} dv(p)

(56)
from which one can find the following polynomial expres-
sion for its derivatives:

&(w)

N

1
(_1)n22n(2n+ Hn

xﬁ<[(2i+1)2+4p2]> (n>1) (57)
i=1

gn(1) =

where the mean value in Eq. (57) is defined as

oy = [ 1)), (58)

Equation (57) can be demonstrated along the same lines
as the corresponding equation in the baryon case
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(Appendix D of Ref. [3]) by using the following integral
representation of the irreducible IW function (48) or (49):

2 h o 1
2 1LS (ﬂp)/ wioth X 577 dx.

p+y 0 (1 4+ 2wx + x%)
(59)

&(w) =

VII. BOUNDS ON THE DERIVATIVES
OF THE IW FUNCTION

A. Lower bounds on the derivatives

Bounds on the successive derivatives of the IW function
are important. Indeed, the extrapolation at zero recoil to
obtain |V,,| from the semileptonic exclusive data is
sensitive to high derivatives (curvature and third derivative,
at least) because the data points are more precise at large
recoil than at low recoil [8].

From the expression (57) one gets immediately the lower
bounds on the derivatives

(2n+ 1)1

(-1 () 2 = (60)

obtained in Ref. [8], which reduces for the slope and the
curvature to the bounds

15

HORE (61)

£z,

B. Improved bounds on the derivatives
To get improved bounds on the derivatives we must (like
in Ref. [3]) express the derivatives in terms of moments of
the positive variable p?, which we can read from Eq. (57).
Calling the moments

o= ()20 (n20) (62)

one gets the successive derivatives in terms of moments:

E(1) =po =1,
301
/ 1 — | = _
15 17 1
/! - _ _
&'(1) = 16+30ﬂ1 + 5H2
105 1891 83
BG)1) = - =4+ —— - _—
&7 (64 +1680”1+420”2+105”3>’
945 4561 - 4307 4l 1
®)y="Z4 —
$90) = 256 T 680" T 7560" Toa5H a5
(63)
etc.

PHYSICAL REVIEW D 90, 114016 (2014)

Notice that the lowest bounds (60) and (61) are found in
the limit p, =0 (n > 1).

The equations (63) can be solved step by step, and the
moment y,, is expressed as a combination of the derivatives

&(1), £(1). .6 (1):

po =&(1) =1,

p =203 +42(1)

o =227+ 1362/(1) + 80'(1)],
py = —63’—4 [243 + 3724&' (1) + 6640£" (1) + 2240£3)(1)],

py = —— [2187 + 96016£/(1) + 399840¢" (1)

256

+367360&3) (1) + 80640&@) (1)), (64)
etc.

Since p? is a positive variable, one can obtain improved
bounds on the derivatives from the following set of
constraints. For any n > 0, one has [3]

det [(4i4j)o<i j<n) = 0, (65)

det [(#i1j+1)o<i j<nl 2 O (66)

Since each moment y;, is a combination of the derivatives
£(1), €(1),...£W(1), the constraints on the moments
translate into constraints on the derivatives.

Here we shall treat in detail only the constraints on y;,
Mo, and p3, which are given by Egs. (66) (n = 0), (65)
(n=1), and (66) (n = 1), respectively:

M1 > Ov (67)
L 2
det = py —puy 20, (68)
i K2
2 )
det< > = pips — 3 > 0, (69)
Hy M3
Lo o
det| wy o p3 | = (o — ph)ua — (W3 = 2p1 0203 + 13)
Ho M3z Ha

>0, (70)

etc.

Clearly, each moment y; is bounded from below, and the
lower bound is given by Eq. (65) for even k and by Eq. (66)
for odd k in terms of the lower moments. So Egs. (67)—(70)
give
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u =0, (71) The constraints (71)—(73) imply, respectively, in terms of
the derivatives
o > 13, (72)
3
2 -&(1) >, 75
Lk 73) 127 (75)
H
—43 + 2p oy — 13 . Lo 2
py > . , (74) &'(1) 2 o [-4&'(1) + 3¢ (1)), (76)
KT~ M2 5
etc.
|
5 —12&(1 (1) =39&"(1) = 128 (1)&"(1 16£7(1)?
(1) » 3 T2 92 (1) - 39/(1) — 122(1)E'(1) + 16£'(1) -
8 -3 —-4&(1)
and from Eq. (74) we find a lower bound on &#(1), etc. d + B T
We see that we recover the bounds obtained using the SR dr ¢’ (z) = 2cos(pr) cosh 2 (82)

method.

The lower bound of the third derivative (77) is apparently
singular for the lower bound (75) of the first derivative
—&(1). However, using the lower bound (76) to eliminate
&’(1) we find the less restrictive lower bound

, ~€()[10 =38 (1)][4 -3¢ (1)]

-€9(1) 3

(78)

VIII. INVERSION OF THE INTEGRAL
REPRESENTATION OF THE
ISGUR-WISE FUNCTION

Let us now show that the integral formula for the IW
function (51) can be inverted, giving the positive measure
dv(p) in terms of the IW function &(w). This will allow us
to formulate criteria to test the validity of a given phe-
nomenological Ansatz of &(w).

Let us define

&(z) = (cosh(z) + 1) sinh(z)&(cosh(7)) (79)
and similarly for the irreducible IW function
& (z) = (cosh(z) + 1) sinh(7)¢,(cosh(z)).  (80)
The integral formula (51) then reads
i = [ F@awl) (81)

It is convenient to use the form (48) for the irreducible
IW function. One finds, for its derivative, the simple
formula

We now assume that the general measure dv(p) is even,
i.e. like the measure dp, without loss of generality because
&(w) is even in p. This means that [ f(p)dv(p) =

| f(=p)dv(p) for any function f(p).
Defining the function

1

10) = 5 conigy e £ (83)

one sees, from Eq. (82), that the integral formula (51) reads

nw—[“[wmem—[ ). (84
Computing the Fourier transform
s 1 teo iT, / /
n(p) =5 e dry(r) = 8p—p')dv(p')
T J -0 ]—00,00]
(85)
and defining the function
_ du(p)
Hp) == (86)
one finds
n(p) = ulp) (87)
The function (86) is even
u(p) = u(=p) (88)

and one finally finds
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dv(p) = ni(p)dp (89)

or

dl/(p) 1 /+oo eirp dr

dp 21 ) 2 cosh(3)

« % [(cosh(z) + 1) sinh()é(cosh(z))].  (90)

This completes the inversion of the integral representa-
tion. Equation (90) is the master formula expressing the
measure in terms of a given Ansatz for the Isgur-Wise
function.

We can now apply this formula to check if a given
phenomenological formula for the IW function &(w)
satisfies the constraint that the corresponding measure
dv(p) must be positive. This provides a powerful consis-
tency test for any proposed Ansatz. Notice also that,
as a necessary condition on &(w), the function 75(p),
defined by Egs. (79) and (83) in terms of &(w), must be
bounded by 1.

IX. AN UPPER BOUND ON THE
ISGUR-WISE FUNCTION

Also, an upper bound on the whole IW function &(w) can
be obtained from the integral formula obtained above.
Defining the function

1 d,,

w(z) = maf (7) (91)

we have obtained, from Egs. (82) and (83),
0’ (z) = cos(pr) (92)
and it follows that
-1<p(r) <1 (93)
which gives
—2cosh (f) < 4 &(r) < 2cosh <Z) (94)
2 dt 2
Integrating this inequality from 0, one gets
—4sinh (%) < #(r) < 4sinh G) (95)
and since

&(¢) = 4sinh 6) (96)

PHYSICAL REVIEW D 90, 114016 (2014)

one finds the inequalities

) <&(0) <) 97)
and by simplifying common factors dependent on 7 we get
=&(r) <&(r) < &(a). (98)
Since &(7) is given by the expression (54), we finally
obtain
2 \?
E(w)| < <1+w> : (99)

This inequality is a strong result because it holds for any
value of w.

X. CONSISTENCY TESTS FOR ANY Ansatz OF THE
IW FUNCTION: PHENOMENOLOGICAL
APPLICATIONS

In this section we examine a number of phenomeno-
logical formulas proposed in the literature.

We will compare these Ansdtze with the theoretical
criteria formulated in the two preceding sections, concern-
ing, respectively, the lower bounds on derivatives at zero
recoil (Sec. VII), the upper bound obtained for the whole
IW function (Sec. IX), and the inversion of the integral
formula for the IW function, and check the positivity of the
measure (90). For the bounds on the derivatives, we will
limit the test up to the third derivative [Eqs. (75)-(77)],
although the method can be generalized to any higher
derivative in a straightforward way.

We must emphasize that the satisfaction of the bounds on
the derivatives and of the upper bound on the whole TW
function are necessary conditions, while the criterium of
the positivity of the measure is a necessary and sufficient
condition to establish if a given Ansatz of the IW function
satisfies the Lorentz-group criteria of the present paper.

To illustrate the methods exposed in this paper, we use a
number of proposed phenomenological models for the IW
function. Some of these functions could happen to be rather
close numerically in the physical range at finite mass
I <w < wp. = 1.4 GeV. However, as emphasized in the
Introduction, our purpose is mainly theoretical and has the
interest of giving theoretical criteria as to whether a given
model for the IW function satisfies or does not satisfy the
general principles of QCD in the heavy-quark limit.

A. The exponential Ansatz

¢(w) = exp[=c(w—1)]. (100)

This form corresponds to the nonrelativistic limit for the
light quark with the harmonic-oscillator potential [16].
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1. Bounds on the derivatives

The bound for the slope (75) is satisfied for ¢ > %, the
bound for the second derivative (76) is satisfied for ¢ > 2,
while the bound for the third derivative (77) is violated for
any value of c.

Therefore, this phenomenological Ansatz on the IW
function is invalid on the theoretical grounds of Sec. VII.

2. Upper bound on the IW function

The exponential Ansatz (100) nevertheless satisfies the

upper bound (99), é(w) < (liw)%-

3. Positivity of the measure

Let us now examine the criterium based on the positivity
of the measure.
One needs to compute

n(r) = % <— j—; + %) cosh <§> exp [—c(cosh(z) — 1)].

(101)

The function n(z) is bounded for any value of ¢ (Fig. 1).
The Fourier transform of this function gives, from
Eq‘ (90)9

) =5t (9243 Kipes) + K (oo, (102

This function is not positive for any value of ¢, as we
illustrate in Fig. 2.

Therefore, the exponential Ansatz for the IW function
violates the consistency criteria exposed in Secs. VII
and VIIL

B. The “dipole”

The following shape has been proposed in the literature
(see for example Refs. [17,18]):

107
05 -
5 7 5
-10 -
FIG. 1. 75(r) [Eq. (83)] for the exponential Ansatz ¢ = 3/4,1,2

(higher to lower curves).

PHYSICAL REVIEW D 90, 114016 (2014)

FIG. 2. d':,—foﬂ) [Eq. (90)] for the exponential Ansatz, for ¢ =

3/4,1,2 (higher to lower curves).

Ew) = (1%) "

1. Bounds on the derivatives

The bound for the slope (75) is satisfied for ¢ > %, while
the bounds for the second derivative (76) and third
derivative (77) are also satisfied for ¢ > 3/4. The “dipole”

Ansatz is thus valid for any value of c.

(103)

2. Upper bound on the IW function

Of course, the “dipole” satisfies the upper bound (99),
Ew) < (HLW)%, for ¢ > 3/4.

3. Positivity of the measure

Let us verify this result in all generality by computing the
measure (90).
One needs first to compute

n(t) = —4(c—1) |:COSh G)] —4c+3

+ (4c—3) [COSh( )} -

Since one needs the function 7(7) to be bounded, the
parameter ¢ must satisfy

(104)

O

3
>-—. 105
c>3 (105)
We realize that in this particular case
3
c=7=nt)=1-duv(p) =3(p)dp.  (106)

Therefore, one gets in this case a delta function for the
measure, which is positive and corresponds to the explicit
formula (54) for the IW function in the BPS limit given
above.
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08

0.6

(=]
(¥}
L I S I B L L

FIG. 3. n(z) [Eq. (83)] for the “dipole” Ansatz ¢ = 1.,1.5,2.
(from higher to lower curves).

On the other hand, one sees from the lower bound (105),
that the so-called meson-dominance IW proposal [19]

2

Svup(w) = W——f—l

(107)

does not satisfy our general constraints because in this

case ¢ = 1.
For ¢ > 3 one obtains a function 5(z) that is bounded, as
we can see from Eq. (108) and Fig. 3.
Computing its Fourier transform (90) one gets the

measure

240—1 1
de =3)(p? +~
5, (e )(p + 4>
[(ip +2c =3 (=ip +2¢ —3)
[(4c—1)

dv(p) =

X

dp  (108)

which is positive (Fig. 4).

In conclusion, from Egs. (106) and (108), we see that the
measure du(p) for the “dipole” Ansarz is positive for ¢ > 3.
Therefore, the “dipole” form satisfies all the consistency
criteria.

0.6
05
04
03
02

0.1

E 1 2 3 4 5
-0.

FIG. 4. d’;—(ﬂp) for the “dipole” Ansatz for ¢ = 1.,1.5,2. (from
higher to lower curves).

PHYSICAL REVIEW D 90, 114016 (2014)

C. Kiselev’s Ansatz
Kiselev [19] proposed the following shape:

2 2 -1
) = oo () (109

m

i” and the slope is given by &'(1) = —1— .

where f = —

1. Bounds on the derivatives

The bound for the slope (75) is satisfied for f > }P the
bound for the second derivative (76) is satisfied for f > 0.4,
while the bound for the third derivative (77) is satisfied for
f > 1.5. One can suspect that bounds for higher derivatives
will only be satisfied for higher values of f.

2. Upper bound on the IW function

The Kiselev formula (109) does not satisfy the upper
bound (99), &(w) < (2

3
q +W)Z, for any value of f because, as

we can see, in the limit of large w it becomes , /szﬂe‘ﬂ .

3. Positivity of the measure
One finds for the function 7(z) [Eq. (83)]

e |

x [-38 + 2(53 + 8p) cosh(r) — 24 cosh(27)
+ 21 cosh(37) — 16f cosh(37) — 2 cosh(47)
+ cosh(57)].

(110)

Independently of any value of the parameter f = mi”, this
function is not bounded since it blows up for 7 — Foo.
Therefore the Ansatz (109) for the IW function does not
satisfy the general Lorentz-group criteria formulated in the

present paper.

m

D. BSW formula for the IW function

Using the relativistic oscillator wave functions of Bauer,
Stech and Wirbel (BSW) [20] one finds the IW function [21]

2 =1\ Fley/s2)
éBSW(W) - w4 I;SXP <_C T ) F(C)

(111)

with ¢ = £ in the notation of Ref. [20], and

+o00 1
F(x) = / de(z+x)e" = S (e + V(1 + erf(x))].
(112)
As we will see, this Ansatz for the IW function allows us

to illustrate in detail the consistency criteria developed in
this paper.
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1. Bounds on the derivatives

First, the bound for the slope (75) is satisfied for any
value of ¢ [for ¢ = 0, the slope is —&5gw (1) = 2], while the
bounds for the second derivative (76) and third derivative
(77) are satisfied for any value of c¢. Thus, up to this third
derivative the BSW Ansatz seems valid for any value of c.

2. Upper bound on the IW function

The BSW formula (111) satisfies the upper bound (96),

E(w) < (lfw)%, for any value of the parameter c.

3. Positivity of the measure

We will check now that this is true in all generality, for
any derivative, using the criterium of positivity of the
measure duv(p) [Eq (90)].

Computing the function #(z) [Eq. (83)] for the BSW
Ansatz (111) one finds, numerically, the functions #ggw(7)
of Fig. 5.

We observe that for 7 — oo, the function #(7) tends to a
constant, which is found to be

2

N . 2+ cV2mexp(§)[1 + erf(\;—'i)]
A% = limp(e) = 4 4ey/mexp()[1 +erf(c)]

(113)

Since the function 7(z) tends to a constant, its Fourier
transform, which gives the measure (89), will contain a §
function. Substracting the constant (113), we define a new
function

o

Nt () = npsw(z) = 7). (114)

We plot this function in Fig. 6 for some values of ¢, and
observe that it is bounded.
Defining [like in Eq. (85)] its Fourier transform by

1

~(0 teo irp (0
o) =5z [ T emaly@de @19
we obtain the functions of Fig. 7.
s 3 10

FIG. 5. The function ngsw(7) [Eq. (83)] for ¢ =0, 1,2 (from
higher to lower curves).

PHYSICAL REVIEW D 90, 114016 (2014)

04

02

q
|

FIG. 6. The function vy (7) [Eq. (114)].

Finally, the total measure will be given by

dusw(p) = Tsew (p)dp +1®)8(p)dp ~ (116)

with ﬁgos)w(p) given in Fig. 3 and the constant 7(*) is given

by Eq. (113).

The conclusion is that the BSW Ansatz for the IW
function is consistent. It satisfies the theoretical criteria
since both pieces of the measure (116), ﬁg)s)w(p)dp and

17®)8(p)dp, are positive. Therefore, the BSW Ansatz is thus
valid for any value of c. However, this conclusion is only
based on numerical calculation. We do not have a complete
proof at this time.

E. Relativistic harmonic oscillator

The following shape follows from a relativistic quark
model with a harmonic oscillator wave function [17]:

2 -1
sw) = w1k (—ﬂ::—H>

where the parameter f is related to the slope by f =

—2&(1) - 1.

(117)

0.14
0.12
0.10
0.08
0.06
0.04

0.02

FIG. 7. Fourier transform ﬁg)s)w(p) of the function nl(gogw(r).
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1. Bounds on the derivatives

We find that the first and second derivatives satisfy the
bounds of Sec. VII for g >1 5» while the third derivative
satisfies the constraint (77) for f > 0.73.

2. Upper bound on the IW function

The formula (117) does not satisfy the upper bound (96),
E(w) < (1 = ) for any value of f because, as we can see, in
the limit of large w it becomes a pole.

3. Positivity of the measure

This Ansatz for the IW function does not satisfy the
general consistency criterium of Sec. VIII for any value
of .

One finds for the function 7(z) [Eq. (83)]

n(z) = 4coslhz@ °xp [_ﬂ tanh* <;> }

x [1 +4p 4+ (2 —4p) cosh(z) + cosh(27)]. (118)
This function is unbounded for any value of the parameter
p, and therefore the proposal (117) does not satisfy the
general criteria.

This means that bounds on some higher derivatives, as
can be generalized following Sec. VII, are not satisfied for
any given value of S.

F. The IW function in the QCD sum rules approach

The QCD sum rules (QCDSR) approach yields the
following result for the IW function, switching off the
hard-gluon radiative corrections [17,22]:

o)

(55) 450} [ 24

(120)

and

I(x) = /Xdyyze_y =2—(x*+2x+2)e” (121)
0

On the other hand, the function o(w) satisfies 6(1) = 1 and
is bounded by

PHYSICAL REVIEW D 90, 114016 (2014)

2L
FIG. 8. The function 7gcpsr(7) [Eq. (83)] for the QCDSR
formula (1 19) and (120) for the IW function in the cases o(x) = 1
and o(x) =4(x+1—Vvx*—1) (upper and lower curves,
respectively).

(x+1-vVx*=1)<o(x) <1

1
3 (122)

Let us now compute the functions 7(z) [Eq. (83)] and

dv(p)/dp [Eq. (90)].

For the parameters in the above formula we adopt the
values within the QCDSR approach [17]: 6§=1.9 GeV,
A =0.65-1.0 GeV, A=-0.2GeV, (gq) = —4*, (a,GG)=
0.12 GeV*. For the function o(x) we consider the two
limiting cases: 6(w) = L and o(w) =1 (w+ 1 = Vw? - 1)
(Figs. 8 and 9).

1. Bounds on the derivatives

For the case o(w) = 1 we find that the lower bounds for
the slope and the curvature [Eqs. (75) and (76)] are
satisfied, but the bound on the third derivative (77) is

=1(w+1—-vw?—1)wefind

e

FIG. 9. dvgcpsr(p)/dp in the cases o(x) =1 and o(x) =
(x+l—\/x —1) (upper and lower curves at low p,
respectlvely)

violated. For the case o(w)

10

05

05

-10
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that the derivatives diverge at w = 1, and the lower bounds
on the derivatives are trivially satisfied.

2. Upper bound on the IW function

We find that in general the QCDSR expression for the
IW function (119) does not satisfy the upper bound (99),

£(w) < (72.)%. Although for the limiting case o(w) =

1w+ 1—=+vw? —1) we find that it is satisfied, the bound
is violated for the other limiting case o(w) = 1.

3. Positivity of the measure

We see that the function 7gcpsg (7) remains bounded, but
not by 1 (Fig. 8), and we can compute its Fourier transform,
which gives the measure dvgcpsk(p)/dp (Fig. 9).

XI. BAKAMJIAN-THOMAS RELATIVISTIC
QUARK MODEL

The Bakamjian-Thomas relativistic quark model [23-26]
is a class of models with a fixed number of constituents in
which the states are covariant under the Poincaré group.
The model relies on an appropriate Lorentz boost of the
eigenfunctions of a Hamiltonian describing the hadron
spectrum at rest. From now on we use the abbreviation BT
for the Bakamjian-Thomas model, not to be confused with
the Buchmiiller-Tye quarkonium potential model.

We have proposed a formulation of this scheme for the
meson ground states [27] and demonstrated the important
feature that, in the heavy-quark limit, the current matrix
elements, when the current is coupled to the heavy quark,
are covariant. We have extended this scheme to P-wave
excited states [28].

Moreover, these matrix elements in the heavy-quark limit
exhibit IW scaling [1]. As demonstrated in Refs. [27,28],
given a Hamiltonian describing the spectrum, the model
provides an unambiguous result for the Isgur-Wise func-
tions: the elastic £(w) [1] and the inelastic to P-wave states
TI/Q(W), T3/2(W) [5]

On the other hand, the sum rules in the heavy-quark limit
of QCD, like Bjorken [4,5] and Uraltsev SR [6] are
analytically satisfied in the model [15,29,30], as well as
SR involving higher derivatives of £(w) at zero recoil [7-9].

In Ref. [18], we chose the Godfrey-Isgur Hamitonian
[31], which gives a very complete description of the light
qq and heavy Qg meson spectra in order to predict within
the BT scheme the corresponding IW functions for the
ground state and the excited states.

A. Isgur-Wise function and positivity of the measure

Let us now demonstrate that in the Bakamjian-Thomas
relativistic quark model, the IW function implies a positive
measure independently of the potential.

PHYSICAL REVIEW D 90, 114016 (2014)

In this scheme, the IW function is given by the expression

1 /cz’iam(v.v’+1)+p.(v+v’)
L+wvd' ) p* \/(pv+m)(po +m)

%< () (p-) = m?) oy (pv)? —m?)  (123)

with the wave function normalized according to

dp .
/—0 o) = 1.
P

A change in formula (123) with respect to the formula
(31) in the original paper [27] is due to using here the scalar
product (124) instead of (32).

Let us first transform this expression into a convenient form
[Eq. (135) below] that will allow us to compute the measure
dv(p) [Eq. (90)] of the decomposition of &(w) in terms of
irreducible IW functions & (w) [Eq. (48) or Eq. (49)].

Let us perform a change of integration variables:

&(v.0')

(124)

(p'.p*p’) = (plx=vpx' =wvp). (125

In this way, the arguments of ¢ will not depend on » and v'.
Using the invariance of Eq. (123), we express v, v’ in terms
of the variable 7 [Eq. (34)] as follows:

v = (cosh(z/2), 0,0, sinh(z/2)),

v' = (cosh(z/2), 0,0, —sinh(z/2)). (126)
One has v.v" = cosh(z) and
x = cosh(z/2)p° — sinh(z/2)p?,
x" = cosh(z/2)p® + sinh(z/2) p>. (127)
The Jacobian reads
a _ | izdpldxdx’ (128)

p*  sinh(7) p
and Eq. (123) becomes (expression to be corrected below)
g
~ cosh(z) + Isinh(z) | |p?|

5 m(cosh(z) + 1) +x + x/
(x + m)(x" + m)

X (p(\/x’2 - mz)*(p(\/x2 - m2>.

Using now Eq. (127) and (p?)? = (p°)? — (p*)* = (p')* -
m? one gets the integration domain

&(cosh(z)) dxdx’

(129)

0 < (¥ —e"x)(e"x — x') —sinh?(7)m?,  (130)

V(¥ = e7x)(e*x — x') — sinh?(z)m?
sinh(|z]) '

'] < (131)
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V7 = e x)(ex = ¥) = sinh(5) (p)? = m?)
sinh([z]) '

pP==

(132)

Let us first remark that Eq. (132) gives two values for p?,
and hence the integral (129) has to be multiplied by a factor
of 2 since both domains p? < 0 and p? > 0 correspond to
the domain of (p',x,x’) given by Egs. (130) and (131).
On the other hand, Egs. (131) and (132) have the form
Ip'| < A, p* = £1/A%? — (p')?, where A can be read from
Eq. (131) and hence one can compute the integral
dp! A dp' __ _
|p ‘ -A /AZ_(pl)z -

ing Eq. (129) by the missing factor of 2, we have

7. Using this value and multiply-

1 1
cosh(z) + 1sinh(|z|)

X /)((O < (X —ex)(efx —x')
— sinh?(z)m?)dxdx’
m(cosh(z) + 1) +x + x’
(x +m)(x" + m)

X qo(\/x’2 - mz)*(p(\/x2 - mz)

where the characteristic function y(D) of a certain domain
D is defined to be equal to 1 within the domain, and 0
outside.

The equation (133) simplifies if we replace the variables
of integration x, x’ by

&(cosh(z)) =27

(133)

x = mcosh(a), x' = mcosh() (134)

since the constraint on x,x’ becomes 0 < (cosh(z)—
cosh(a — a))(cosh(a + a) — cosh(z)), or | —a| < 7| <
a + a and Eq. (133) becomes

1 1
cosh (7) + 1sinh(|z])

/ / ld —a| <|7| £ + a)dadd

x (cosh(z) + cosh(a) + cosh(a’) + 1)
x f) f(a)

E(cosh(r)) = 2zm

(135)
where

sinh(a) ¢(m sinh(a)) .

fl@) = cosh(a) + 1

(136)

The normalization of the wave function ¢(p) [Eq. (124)]
translates into the condition for the function f(a):
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dam? A ™ (cosh(a) + 1)|f(@da=1. (137)

To compute the measure we need to go through
Egs. (79), (83), and (90). We have first that

&(z) = 2am>2sgn(7)
X /0°° /0°° dada'y(|od —a| < |7] < & + a)
x (cosh(z) 4 cosh(a) + cosh(a’) + 1)f(')* f(a)
(138)

and its derivative is given by

—5 ) = 27xm? / / dadd () f(a)
x ((6(le = al = |z]) = 6(«’ + a = [z]))(cosh(z)
+ cosh(a) + cosh(d) + 1)

+sinh(|z]) x (o —al < |o| < +a))).  (139)
This expression simplifies to
—§ ) = 27am? / / dadd f(o) f(a)
X (4cosh(z/2) (6(|a —a| = |z])
—6(a + a—|z])) cosh(d’/2) cosh(a/2)
+sinh(|z)) y(| —a| < |t7| <& +a)))  (140)
and finally one gets the function
) = 2am? / / dadd f()* f(a)
X (2(8(le —af = [z]) = 6(e + a —z]))
x cosh(a’/2) cosh(a/2)
+sinh([el/2) ¢l —a] <[] <o + ). (141)

Now we have to compute the Fourier transform (90) of
this function. Let us consider the first term of Eq. (141),

+oo
/ e (6(la’ —al = [2]) = 6(’ + a —[2]))dz

= —4sinh(ipa) sinh(ipa’) (142)

and the second term,

114016-16



ISGUR-WISE FUNCTIONS AND UNITARY ...

+o0 |
[ e sinb(el/ 2~ al <ol <+
o sinn( (ip+ 1)) sinn( (ip +
= S1n. — Sin —
ip+% ipt5 ) ipt5|a
1 1 1
—ip_%sinh<<ip—§)o/> sinh<<ip—§>a)).

(143)

We finally obtain the following expression for the
measure:

dl;(;) — o2 Aoo /Ooo dadd f(o) f(a)

X (—4 sinh(ipa’) cosh(o /2) sinh(ipa) cosh(a/2)

1 1 1
" +%sinh((ip+§>a’> sinh((ip —l—E)a)
1 1 1
- ip_%sinh<<ip—§>a’> sinh((ip—§>a>).

(144)

+

What needs to be demonstrated now is that indeed this
dv(p)
dp
two functions, transformed of f(a),

0.(p) = /) msinh((ipi%)a) Fla)yda  (145)

in terms of which Eq. (144) becomes

measure is positive, > 0. To this purpose, let us define

ap)

)|2_M
dp

=2m? +9-
(19:0) + - - =22

ip—
and the measure can be expressed as a modulus squared

dv(p)
dp

= [h(p)? (147)

where the function h(p) is given by the expression

x ((ip—%)%(ﬂ) + <ip+%)g_(p)>- (148)

We conclude that the measure duv(p)/dp is positive.
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Moreover, one must notice that dl;—if’) is a function, and
therefore it does not contain discrete o-function terms. This
follows from the fact that, according to Eq. (145), g (p) are
Fourier transforms of functions that, from Eq. (137), are
square integrable and therefore are themselves functions
(square integrable).

So, not all possible IW functions &(w) are obtained in the
BT models. For instance, the so-called BPS limit for the
slope —&'(1) =2, leading to the function (54) cannot be
obtained.

B. Lorentz-group representation for the BT model

We will begin with a short description of what was
exposed in detail for the baryon case j = 0 [3].

The starting point is an arbitrary unitary representation U
of the Lorentz group SL(2, C) in an arbitrary Hilbert space
‘H. To have the meson states and define the Isgur-Wise
functions it is moreover necessary that 7 is provided with a
mass operator M that commutes with the rotations, i.e. with
the subgroup SU(2) of SL(2,C). The eigenvalues and
eigenvectors of M will give the spectrum and eigenfunc-
tions of the mesons at rest.

The Hilbert space H will describe the states of the light
cloud and M will describe the effect of the heavy quark at
rest on the latter. Hence, the states of the light cloud that
correspond to the hadrons (for the heavy quark at rest) are
the eigenstates of M.

The first step is to determine the irreducible representa-
tions of spin j of the restriction of U to SU(2), with their
standard bases |j, ).

When one has the states of the light cloud of a hadron at
rest vy = (1,0), the states at arbitrary velocity v are
obtained from U(A), with the Lorentz transformation A
transforming v, into v. More specifically, we need the
states |J, v, €) where the spin is specified by a polarization
tensor ¢, which transform in a covariant way as follows:

U(A)|j, v, €) = |j, Av, Ae). (149)
These states are given by the following formula:
ove) = Y (B AUB ). (150)

u

Let us emphasize that the tensors ¢ at velocity v
constitute a vector space £; ,, of dimension 2j + 1, that A €
SL(2,C) applies &;, on &;,, and that £, , acts on the
representation j of SU(2). Then in Eq. (150) (¢*) isa
standard basis of £&;,, one has Ble € Eive
(¢"|B;'e) = (By'e), are the components of B,'e on this
basis. On the other hand, B, € SL(2,C) is the boost
vy — v, but Eq. (150) gives the same state |}, v,¢) if B,
is replaced by any A: vy — .

—j<pu<j
and
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The second step is therefore to compute the states
defined by Eq. (150). Finally, what remains is to compute
the scalar products (j/, v/, €'|j, v, €). Because of Eq. (149)
and the unitarity of U, these scalar products satisfy
(', v, €lj,v,€e) = (j/, A/, A€'|j, Av, Ae), i.e. are func-
tions of v,€, v, € that are invariant under Lorentz trans-
formations. The Isgur-Wise functions are then the
coefficients—which are functions of only ».v'—in the
expansion of these scalar products on a basis of these
invariants.

We will now apply this program to a particular repre-
sentation of SL(2,C) and obtain in this way the IW
functions in the BT model, which were computed else-
where. We do not need to specify the mass operator M.

1. Description of the Lorentz-group representation

The representation of SL(2, C) that we consider is the
one obtained from a spin-1/2 particle by restriction of the
Poincaré group to the Lorentz group. The Hilbert space H
is L?:Z(Hm,d,u(p)) of the functions on the mass hyper-
boloid H,, = {p € R*|p> = m?, p°)0}, with values in the
space C? of the unitary representation D'/? of SU(2) of spin
1/2, with the scalar product

Wy = / () (Plwp))  (151)

where du(p) is the invariant measure on the mass
hyperboloid

au(p) = &P (152)
P
and the action of A € SL(2,C) in H is given by
(U)y)(p) = D'2(R(A. p))w(A~'p)  (153)
where the Wigner rotation R(A, p) eSU(2) is
R(A,p) = B,'ABy-1, (154)

where B, € SL(2,C) is the boost (m()) - p.

The check of the group law U(A)U(A) = U(AN'A)
follows from a simple calculation, and unitarity comes
from the unitarity of D'/? and the invariance of the
measure du(p).

2. States j of the light cloud for the heavy quark at rest

We do not have to specify here the mass operator M (for
example it can be the Hamiltonian of Godfrey-Isgur [31] in
the heavy-quark limit). We need simply to describe the
irreducible representations of spin j of the restriction to
SU(2), with their standard bases.
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For a rotation A = R € SU(2), the transformation (152)
reduces to

(UR))(p) = D'(R)y (R p) (155)
because the Wigner rotation is simply R
R(R,p) =R. (156)

This can be seen by using the following characterization of
the boost:
A(m,0) = p, A= AT,

A>0sA=B, (157)

which implies

RBR—IPR_] =B,. (158)
Therefore, from Eq. (155), the calculation is reduced to the
combination of an orbital angular momentum L with a spin
1 described by a Pauli spinor y.

For each value of j one has two families of solutions
(L = j+3) of opposite parity (—1):

@) (p) = ax (Y1) (P) o) (1p]).
1

(Yex)j(p) =Y (i

My

LM, i)Y (D)2

(159)

which depend on the radial function ¢"/)(|p|) normalized
by

&p N
[ SRt E = 1. (160)

Following Eq. (150), the next step is the calculation of
the wave functions of the light cloud @“/€)(p) for a
velocity v and a polarization tensor e, starting from the
functions ¢/#)(p) given by Eq. (159). This is enor-
mously simplified if one uses a representation of SL(2, C)
that is equivalent to the preceding one, expressed in terms
of spinors and Dirac matrices.

3. Representation in terms of Dirac spinors and matrices

Let us introduce now the space H’, which is another way
of describing the space H, constituted of functions on the
hyperboloid H,,, taking values at the point p € H,, in the
subspace of C* constituted by the Dirac spinors which
satisfy

(p—mu=0 (161)
since in the BT model the light quark is on-shell. The scalar
product is
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(W'ly) = / du(p)w' (pw(p)  ((p) =w'(p)r")

(162)

and the action of A € SL(2,C) is given by

(UA)y)(p) = D(A)y(A™'p)

where D(A) is the Dirac matrix of the Lorentz trans-
formation A:

(163)

A AT

1 (AJrAT—l
A—‘,—AT_I

P =3 A ar

5 ) (164)

The unitary tranformation V: H — H’

w(p) = (Vo)(p) (165)

that implements the equivalence is given by
(Ve)(p) = D(B,)Q0(p). (166)
(V='w)(p) = QD(B," )w(p) (167)

where the operators Q and Q' make the connection
between the four-component spinors and the two-
component ones:

Q<X1>:)(17 Qsz()()-
X2 0

Let us collect some identities used to establish the equiv-
alence:

(168)

(a) Q0" =1,

1+9°
7

) (¥-10Q"=0,

(b) Q70 =

(

(d) O'D'*(R)Q = Q'QD(R)
(

(

(

R € SU(2).
e) D(N)D(A) = D(A'A).
f) D(A)aD(A™) = Aa,

g) D) =y"DA). (169)

Applying V! to w = V¢ one finds, using relation (d)
and then relation (a), (V~'w)(p) = ¢(p) and therefore
V-V = 1. Next, if w = V¢ one has (p—m)y(p) =
(#—m)D(B,)Q"¢(p) =0, using relations (d) and (f)
and then relation (c).

Applying V to ¢ =V'y, with w(p) satisfying
(4= m)w(p) = 0, one obtains (Ve)(p) = D(B,)Q 0D
(B, Yw(p) = w(p), using relation (b) and then relation (f)
and finally (p*— m)y(p) = 0, and one also gets VV~! = 1.
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To establish the unitarity of V one needs to show that
(V=!|V=ly) = (y'|w), where on the left one has the
scalar product (151), and on the right one has the scalar
product (162). One has

(V' |[V-ly) = /dﬂ(p)l/f’(p)TD(B;])TPTPD(B;’)w(p)
=/W@W@MM=WW (170)

using relation (b) and then relations (g) and (f) and finally
(p—m)y(p) = 0. This establishes also that the scalar
product (162) is indeed positive definite.

Finally, it remains to verify that the transformation law
VU(A)V=!in H', transported from U(A) in H [given by
Egs. (153) and (154)] by V is given by Eq. (163):

(VUM)Vy)(p)
= D(B,)Q"D'*(R(A, p))OD (B! )y (A" p)
K 'p+m

= D(A) .

w(A™'p) = D(A)y(A~'p) (171)
using relation (d), then Eq. (154) and relation (e), then
relations (b) and (f), and finally (p-— m)y(p) = 0.

4. States j of the light cloud in the Dirac
representation
Concerning the states |, u) in H’, they are obtained from
the states |/, x) in H given by Eq. (159) by applying the
transformation V given by Eq. (166), i.e. w'Li#)(p) =
V74 (p), which gives

u

WL38)(p) = VARD(B,) < (YL;(())j (p) >¢<L,j>(|,3|) (172)

or

, p+m (Yox)j(P) (17,
9 (p) = Var— L)
2m(p® + m) 0
(173)
where we have used
m +ﬁ7/0
D(B,) = (174)

T2m(p +m)

We will see that the calculation of Eq. (150) is simple
when the p dependence of |j,u) appears in the form
(Yj—1jox)j, as is the case with Eq. (173) for L =
j—1/2. In the case L = j+ 1/2 one can also express
wE7#) in terms of (Y;_;/»x)% by using the identity
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(Y je102)j (P) = =(6.p) (Y i 205 (P)  (175)

and from Eq. (175) one gets, after some algebra,

et rND)

0 1 m 1 (D
== B - m) () 1)

and we have, finally

V/ PR -

2m(p° + m)

« <(Yj_l/i))()j(p) )(p(1_1/2’1)(|ﬁ|),

w(j—l/lm (p) =

(177)

—m
-Vv4 }’5—

m(p° —m)

,/,(j+1/2,j,u>(p)

(178)

5. States for arbitrary velocity and the polarization tensor

We can now go to the second step, the calculation using
Eq. (150) of the wave functions y//+1/2/:7€)(p) of the states

|j.v.€) using the wave functions ywU*!/2/#)(p) of the
states |j,u), given by Eqs. (177) and (178), with U(A)
given by Eq. (163). We then have to compute

W20 (p) = 3 (871 €)D(B w1/ (B ).
"

(179)

To do that, we need some specific information about the
polarization tensors.

For half-integer j, they constitute the subspace &;,
(dependent on the velocity v) of (C*)®U~1/2) @ C* of
the tensors ¢, "/~* that satisfy the following conditions:

(a) symmetry under permutation of the u indices;

{29

(b) null trace, i.e. gﬂl.ﬂzef{;l ,,,,, 1)

3
© Gy (123);

—1)gpey T =0, (180)
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The Lorentz transformation of the polarization tensor is
the following:

(AG)ZI ..... Hj-1/2 (181)

1/2

= AL ALTED(A) ey

One sees that A transforms &;, into &; y,, that &;,, is
obtained from the space at rest £;, by A when Avy = v,
and that &; , applies to itself by rotations. Noting that in
Eq. (179) the tensors e and B, 'e are in &; j.vg» 1L18 Clear that
the sum in Eq. (179) requires one to con51der the polari-
zation tensors at zero velocity vy = (1,0).

For the tensors at zero velocity, the condition (d) means
that any component with some p = 0 vanishes, and con-
dition (e) means that any component where the index a is
equal to 3 or 4 vanishes. Thus, keeping the other compo-
nents, &, identifies with (C*)®0U-1/2) @ C? which, from
the point of view of rotations, is the tensor product of
j—1/2 angular momenta equal to 1 and one angular
momentum 1/2. Then, conditions (a), (b) and (c) mean
simply that this subspace is the one where these angular
momenta add to the maximal possible value j.

For the polarization tensors one has, at rest, the following
identity:

D (el (Y o) (P)

u

j 12— z Bl '\/l 12 glieijo1p (182)

oy /2
with

(2L +1)!

To demonstrate these formulas one first has to establish
the relation

AiL iy

YM(p) = (184)

P
vV Var IZ
where € form a standard basis of polarization tensors
(tridimensional at zero velocity) for an integer spin L.
These e are obtained by coupling L spins equal to 1 to the
maximum value L.

The Clebsch-Gordan coefficients that couple two spins J
and J' to the maximum value J + J' are given by

c(J.M)C(J' M)
CU+J .M+ M)
(185)

(J.J M. MJ+T . M+M) =

with

2J)!
CU.M) = \/(J—M()!()J+M)!‘ (186)
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Then one gets

C(1, ...C(1,
M = ( mcl) (L,m) em...em  (187)
my+...mp =M (L’M)
where the ¢” form a standard basis
€+1:_e1—|—iez’ O — e_l_e'—iez
V2 V2
(188)

Let us now consider the generating function of the Y,

L! M (2 L+M
Z\/L M)I(L+M)! Y (p)s

2L+ 1(p'—ip* 5 p'+ip?
= +p R ——
4 2 2

and let us compute the generating function of the rhs of
Eq. (184). Using Eq. (187) one finds

s2>L (189)

L N,

Z\/L—M ! L+M)' 4r
X pl] t, l ..i,_SLJrM
=

oy (e o
and, taking into account Eq. (188), one has
> _C(1m)(p.em)st
= (pe™) +V2(p.)s + (pe)s?

_ ﬂ(¥ﬂ,as _%@ (191)

and one sees that both generating functions are identical
provided N; is given by Eq. (183). This establishes the
relation (184) with Eq. (183), and from it one easily obtains
Eq. (182). This ends the demonstration of Eqs. (182)
and (183).

Taking p’ = B;!p, the identity (182) allows one to easily
make the sum over y in Eq. (179) for y/*!/2#) ( p) given by
Egs. (177) and (178). Indeed, Eq. (182) gives

Z<€”|BZIE>(YJ'—1/2)()5(IA7/)

u

j 1/2\/_ Z pll . ’J 12 (B 1 ) je1/2 (192)

itseeeijo1y2
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and using D(A')D(A) = D(A'A) and

(B;'p)°=pw,  [By'p|=1/(pv)*—=m* (193)

one gets for y“/*€)(p), omitting the spinorial index
Njip
2m(p.v + m)
X (pr+m)py,..
q,(j—l/z,j)( (o) = mz)
( (p.v)? — mz)j_]/2

l//(j—l/Z,j,v,e) <p> — (_1)/—1/2

-p,u» 1/26”‘ ceHj-1/2
i

X

(194)

and

) ) ) Ni_
W(]+1/2,],v,e)<p) _ _(_1)]—1/2 j=1/2

2m(p.v —m)
Xys(#=m)Py, Py,
(p(j+1/2,j)< (po) — mz)

( (p.v)* - mz)j_l/2

6. Isgur-Wise functions

eHi---Hj-1/2

X

(195)

We will now consider three cases of physical interest for
which, in the scalar product of states, a single IW function
is involved, namely the ground-state elastic case {j = 1/2,
L=0- j=1/2,L =0} and the ground state to L =1
states j=1/2,3/2: {j=1/2,L=0—-j=1/2,L =1},
{j=1/2,L=0-j=3/2,L =1}.

Elastic case j=1/2,L=0—- j=1/2,L=0

For the ground-state IW function &(w) one must compute
the overlap (for j = 1/2 the tensor ¢ is just a spinor)

(01720 )y (01/20€)) = £(1p) ele (196)
where
(0,1/2,v.€) - - +m)e
W (p) TR (p+m)
X (p(0’1/2>( (p.v)? - mz). (197)

With the scalar product defined by Eq. (151) and with the
measure (152) one obtains

<l//(0,1/2.v’.e’) |w(0.1/2.v,e)>

é(p+me

B /d** 1 1
P VP tm/pu +m
« g0(0,1/2)( (p.')2 — m2) *(/)(0,1/2)( (p.v)? — m2>

(198)
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parametrizing the integrals of Eq. (198) under the form

d*p
A(w) :/FF(p,v, V'), (199)
/ d31_5 /
B(w)v* + C(w)v™" = ?F(p,v,v)p” (200)
where
F(p,v,v)
Ry ¢ ()
VpvFmy/pv+m
(201)
One obtains, for the scalar product (198)
<w(0,1/2,v’,e’) |W(0’1/2’U’6)>
= ¢ [mA(w) + B(w)w + C(w)'le
= [mA(w) + B(w) + C(w)]¢e. (202)

On the other hand, by multiplying Eq. (200) by v, or v},
one can isolate the functions B(w) and C(w) and finally
one gets

1 [d&p .
__ 4 [EP 012 N2 _ 2
w—+ 1 pO ¢ ( (p.v) " )
X(p(0.1/2)( (p.v)z—m2>
" p(v+v)+mw+1)
V(pv+m)(p +m)

i.e. we find Eq. (123).
Case j=1/2,L=0-j=1/2, L =1
In this case the following invariant is involved:

&(w)

(203)

Dy O120) = L) e [Ew) = 210
(204)

where we quote the two notations that are currently used in
the literature.

From Eq. (195), using the expressions for the L = 1
states

y(11/208) (p) = — ys(p—m)e

2m(p.v —m)

X (p(l’]/2)< (p.v)? - m2> (205)

and computing the scalar product (204), the calculation is
very similar to that for the ground-state IW function and we
obtain, after some algebra,
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1 d&’p "
(w) = w1 Féﬂ(l’lm( (p-v')* - mz)
% (p((),l/Z)( (p.v)? — m2>
1 1

ot m(pd +m) (p ) e
x[(p-t/) + m][(p.t/) = (p.v) + m(w = 1)]. (206)

Case j=1/2,L=0—-j=3/2,L =1
The following invariant is involved:
(1,3/2.1/.6’)|W(0.1/2.1/,e)> _ T(W) (67.1))6

[z(w) = V3735 (w)]

(v
(207)

where we quote the two notations used in the literature.
From Eq. (194) one gets

V3

(1,3/2,v,€) - v=
v (p) 2m(p.v + m)

)

(pv)? —m?

(p+me.p

(208)

The scalar product (207) is written as

3=

r d —
1320y O1200)) = [ S8 p (et m)e F(p,v,1/)
p

(209)

where now

B V3
VpvFmy/pv+m

. (p(1,3/2)( (p_vl>2 _ mZ)*
2

F(p,v,v) =

(pv')? —m

X(p(o,1/2)< [(p.v)? - 2).

We now have to compute the integrals

(210)

&P
/FpﬂF(p, 0,0) = AWy, + B, (211)

&p
0 PupuF(p.v.v)

= C(w)v,v, + D(w)

x (v,v, + vyv,) + E(w)v,v, + G(w)g,,. (212)

Using the Eq. (180) and conditions (c), (d), and (e) one sees
from Eq. (207) that the IW function is given in terms of
only three functions
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7(w) = C(w) + D(w) + mA(w). (213)
By saturating the index u in Eq. (211) with ¢* and v’# one finds the equations
&p ,
Aw) +wB(w) = ?(v.p) F(p,v,v'),
&p :
wA(w) + B(w) = F(v .p)F(p,v,v) (214)

and by saturating the indices yu, v in Eq. (212) with the tensors v#v”, v#v", ...¢" one gets the set of linear equations

C(w) + 2wD(w) + w?E(w) + G(w) =

w2C(w) +2wD(w) + Ew) + G

/

WO+ (02 4 1)D0) + wE) 4060 = [ L2 0p) ) Fip .0,
/
/

C(w) +2wD(w) + E(w) +4G(w) =

(215)

Equations (214) and (215) allow one to compute the different functions A(w),...G(w). From these functions and

Eq. (213) one finally gets

Vi [
2w=1)(w+1)2) p°
1 1

(w) =—

¢(1,3/2)( (p.v')? —m2>*qo(0'1/2)( (p.v)? +m2)

o s mp tm ) —m
120w — 1)(p.0)(p.1') + 20w+ D) (w(p.t/) — (p.v))m — (w2 — 1)),

Taking into account differences in the definition and
normalization conventions, the expressions (206) and (216)
are the same asthose found in the previous papers [18,28].

XII. CONCLUSIONS

We have applied the Lorentz-group method to study the
Isgur-Wise function in the case of mesons B — D*)/y
where the light quark has j = % We recovered the con-
straints obtained previously using the Bjorken-Uraltsev
sum-rule method, plus a number of other results.

In particular, we have obtained an integral representation
for the IW function in terms of elementary functions and a
positive measure. We have inverted this representation,
expressing the measure in terms of the IW function. This
has allowed us to test whether a given Ansatz of the IW
function satisfies the Lorentz or, equivalently, the gener-
alized Bjorken-Uraltsev SR constraints.

We have compared a number of phenomenological
shapes for the Isgur-Wise function with the obtained

= [=3(p.v)* + (2w = 1) (p.v')?

(216)

theoretical constraints. This has provided explicit illustra-
tions of the method in a rather complete way. The different
criteria based on the Lorentz group, i.e. lower limits on the
derivatives at zero recoil, positivity of the measure in the
inversion formula for the IW function and the upper bound
for the whole IW function, have been illustrated by using
different models of the IW function.

We have studied a number of models proposed in the
literature: exponential shape, “dipole” form, Kiselev Ansatz,
Bauer-Stech-Wirbel model, relativistic harmonic oscillator,
QCD sum rules, Bakamjian-Thomas relativistic quark
model, etc. We have shown that the “dipole,” the BSW
model and the BT model satisfy the theoretical constraints.

The case of the QCDSR result is particularly interesting
because of its link to general principles. In the limit in
which the condensates are disregarded, the predicted
dipole shape satisfies all the constraints. However, switch-
ing on the condensates spoils this nice feature. Of course,
one can argue that the OPE has been limited to the lower-
dimension condensates. Our results show the interesting
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feature that in this framework one could obtain incorrect
results by keeping only the lowest-dimension operators.
Our study in the heavy-quark limit does not take into
account the radiative corrections, which is consistent with
the considered theoretical hypothesis—the factorization
between the heavy-quark matrix element and the light-
could overlap—in which the methods of the present paper
can hold.

We have studied in detail the Bakamjian-Thomas rela-
tivistic quark model applied to mesons in the heavy-quark
limit. To this aim we have described the Lorentz-group
representation that underlies the model. We formulated the
form of the wave functions of the light cloud for all
quantum numbers, and provided the formalism to obtain
the IW functions by scalar products of these states.
Consistently, the elastic IW function in this model satisfies

PHYSICAL REVIEW D 90, 114016 (2014)

all the Lorentz-group criteria, and this feature holds for any
explicit form of the Hamiltonian describing the meson
spectrum at rest. Completeness in the Hilbert space implies
the strong result that the full set of Bjorken-like heavy-
quark-limit sum rules is automatically satisfied in the BT
model at infinite mass.

In conclusion, using a method based on the Lorentz
group, completely equivalent to that of the generalized
Bjorken-Uraltsev sum rules, we have obtained in this paper
strong constraints on the Isgur-Wise function for the
ground-state mesons.
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