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The Bakamjian-Thomas relativistic quark model for hadron current matrix elements, while noncovariant
at finite mass, is successful in the heavy quark limit: form factors are covariant and satisfy Isgur-Wise
scaling and Bjorken-Uraltsev sum rules. Motivated by the so-called “1/2 vs 3/2 puzzle” in B decays to
positive parity D**, we examine the implications of the model at finite mass. In the elastic case 5~ — %‘, the
heavy quark effective theory (HQET) constraints for the O(1/m) corrections are analytically fulfilled. A
number of satisfying regularities is also found for inelastic transitions. We compute the form factors using
the wave functions given by the Godfrey-Isgur potential. We find a strong enhancement in the case ;= — %+
for 0~ — 0*. This enhancement is linked to a serious difficulty of the model at finite mass for the inelastic
transitions, namely a violation of the HQET constraints at zero recoil formulated by Leibovich et al. These
are nevertheless satisfied in the nonrelativistic limit for the light quark. We conclude that these HQET
rigorous constraints are crucial in the construction of a sensible relativistic quark model of inelastic form

factors.
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I. INTRODUCTION

The Bakamyjian-Thomas (BT) relativistic quark models
[1-4] are a class of models with a fixed number of
constituents in which the states are covariant under the
Poincaré group. The model relies on an appropriate Lorentz
boost of the eigenfunctions of a Hamiltonian describing the
hadron spectrum at rest.

We have proposed a formulation of this scheme for the
meson ground states [5] and demonstrated the important
feature that, in the heavy quark limit, the current matrix
elements, when the current is coupled to the heavy quark,
are covariant. We have extended this scheme to P-wave
excited states [6].

Moreover, these matrix elements in the heavy quark limit
exhibit Isgur-Wise (IW) scaling [7]. As demonstrated in
[5,6], given a Hamiltonian describing the spectrum, the
model provides an unambiguous result for the Isgur-Wise
functions, the elastic £(w) [7] and the inelastic to P-wave
states 7y ,,(w), 73/2(w) [8].

On the other hand, the sum rules (SR) in the heavy quark
limit of QCD, like Bjorken [8,9] and Uraltsev SR [10] are
analytically satisfied in the model [11-13], as well as SR
involving higher derivatives of &(w) at zero recoil [14-16].
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In [17], we have chosen the Godfrey-Isgur (GI)
Hamitonian [18], that gives a very complete description
of the light ¢g and heavy Qg meson spectra in order to
predict within the BT scheme the corresponding IW
functions for the ground state and the excited states.

Similar work has been been performed for Qg meson
decay constants [19] and to demonstrate within the BT
scheme new heavy quark effective theory (HQET) SR
involving Isgur-Wise functions and decay constants [20].

A detailed and very useful account of the BT scheme for
the calculation of Isgur-Wise functions and heavy meson
decay constants and their numerical calculation within the
Godfrey-Isgur Hamiltonian has been given in the Ph.D.
thesis of Morénas [21].

As a further test, we have computed in [22], the vector,
scalar, and axial charge densities for the ground states 0~
and 1~ (5~ doublet) and for the excited states 0" and 1" (3"
doublet). In this case the active quark is the light quark, and
one can show that, unlike the case of the active heavy
quark, the current matrix elements are not covariant. For the
calculation, we have adopted the natural reference frame
for this problem, the heavy meson rest frame. As shown in
[22], the agreement with lattice data in the unquenched
approximation is really striking, and provides both a test of
the BT scheme and of the GI Hamiltonian that describes the
spectrum.

A main motivation to undertake this work has been the
so-called “J versus 3 puzzle” that, based on rather old data,
states the fact that the semileptonic decay rates %‘ - %* are
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much larger than the expectations of the heavy quark limit,
while the semileptonic decay rates 3~ — 3% are roughly
consistent with this limit. A precise discussion of this
puzzle has been given in Ref. [23]. Updated data by BABAR
[24] and Belle [25] confirm the problem, although there are
significant differences between both experiments.

The % Vs % puzzle is nicely exemplified by the Uraltsev

sum rule [10]:

SUHOP-EHOD =5 O

n

If one neglects completely higher excitations and the
ground state (n = 0) dominates the sum of the differences

of the left-hand side of (1), one expects |1g3)2(1)\2 >

|r<1(})2(1)|2. In addition, the phase space factors make much

larger the BR for 1~ — 3+ relatively to the = — 1 one.
The BT model satisfies analytically [13] the SR (1) with,
for n =0 [17]

11/2(1) :022, 73/2(1) = 0.54. (2)

On the other hand, calculations in the lattice in the
unquenched approximation [26] point to a similar con-
clusion
712(1) = 0.29 £0.03, 712(1) = 0.52 £0.03. (3)

Let us finally underline that the 1 vs 3 puzzle does not
seem to be present, assuming factorization, in the non-
leptonic decays B — D**z, as shown by the Belle results
[27], phenomenologically analyzed in Ref. [28]. This
feature makes the puzzle even more obscure. Recently,
in Ref. [29] a necessary, precise and updated discussion of
the situation for both the semileptonic and nonleptonic data
was given.

The paper is organized as follows. In Sec. II we give the
definitions of the form factors for the transitions on which
we are interested, reproducing some needed results at
leading and O(1/mg) order within HQET. In Sec. III
we give the master formulas defining the theoretical
framework of BT quark models. Since the current matrix
elements in the BT model are only covariant in the heavy
quark limit if the current is coupled to the heavy quark, the
calculation of the 1/m corrections must be done in a
particular reference frame. We discuss this problem in
Sec. IV and give arguments to adopt the equal velocity
frame (EVF), where the moduli of the initial and final three-
vector meson velocities are equal. In Sec. V we check that
this frame allows one to obtain very reasonable results for
the 1/m corrections for the elastic transitions 5
Sec. VI we give the analytical results of the BT model for
the O(1/my) of form factors to excited states B — D**£v
at zero recoil, and compare to the results of HQET.
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Section VII is devoted to the description of the Godfrey-
Isgur quark model for spectroscopy. In Sec. VIII we give
the results of the BT model for the %‘ - %‘ in the heavy
quark limit, at finite mass and at the order 1/m. Section IX
is devoted to the calculation of the different form factors for
the inelastic transitions 5~ — %* and %‘ - %* at infinite and
finite mass. In Sec. X we give the numerical results for the
branching ratios B — D¢y, D¥z and B - D*¢v, D"«
in the heavy mass limit and also at finite mass, and in
Sec. XI we expose a discussion of the obtained results and
problems. We leave a number of technicalities to the
appendixes. In Appendix A we write the needed formulas
of the different form factors in terms of matrix elements. In
Appendixes B and C we give the wave functions in the GI
model, respectively in the heavy quark limit and at finite
mass. In Appendix D we write some formulas defining a
family of collinear frames and in Appendix E we give the
formulas for the decay rates in the different cases.

II. MATRIX ELEMENTS FOR B — D¢y
AND B — D**¢v
For the ground state mesons D(0~) and D*(1~) we adopt
the notation of [30]:
D(v')|V¥|B
< ('U>| | (U)>:h+<W>(U+U/)ﬂ+h_(W)(U—’U/)ﬂ,
\/MpMmp

(4)

(D" (v, €)[V¥|B(v))
/Mgty
(D" (v, €)|A¥|B(v))
Norors
= hy (W) (w+ 1)e"™* — hy, (w)(e*.v)v"
= ha, (W) (e 0)v™, (6)

= ihy(w)e! o€ VP, (5)

while for the excited P-wave mesons, D; ;(0"), Dy (1),

D;,(17) and D5 ,(2"), we adopt the notation of [31] for

the form factors:

(D3p(17)(v', €')|A*|B(v))
\/ MM p

(D3 (17) (v, €)[V¥[B(v))
N
= Fr, (W)™ + (€ 0)[fy,0)e* + fy, ()0, (8)

D5, (27) (0, €')|V¥|B
< 3/2( )(v €)| | (v)>:l’kv(W)é‘/ﬂaﬂye/:;a/Uo'/UﬁU/y,
N
©)

= ifA(W)eﬂaﬂye’*av’ﬂv’V, (7)
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(D32(27) (v, €)|A|B(v))
\/mpnip-
= kg, (W)e'd v + €0 0P [kp, (W)VH + kg (W)0'*],
(10)

)()|AB(v))
=g W)+ vV +g-w)(v=2v), (11

(', €)|AM[B(v))
g

(Dya(17) (v, €)|V¥[B(v))
NCrrs

= gv,(W)e™ + (¢".v)[gy, W)o* + gy, (W] (13)

(Dy/»(0

(Dyx(1

=igs(w)e! yg P07, (12)

In the equations for the excited states D** denotes generi-
cally any excited state, but in each equation the physical
mass of the corresponding excited meson is understood.

A. Heavy quark expansion of form factors in HQET

1. Elastic form factors B — D) ¢v in HQET

To compare with the results of the BT model at finite
mass, let us give here the expressions of the form factors in
powers of o 1n HQET. Let us set the notation ey = 5, —. To
first order i m the heavy quark expansion one has, for the
elastic form factors B — D™ [30],

hi(w) = &(w) + (ec + €,) L1 (w )+01/m( w),  (14)

how) = (ec =)L) + Ol (0). (19)

hy(w) = &(w) + €.[La(w) — Ls(w)]
L) = L]+ 0), 0 00). (16)

) = E00) + €| Lalw) = 2 L)

w—1
w—+ 1

oL =2 L) | + O, ), (1)

ha, (W) = ec[Ls(w) + Ls(w)] + OF;, 2 (w). (18)

ha,(W) = ¢(w) + ec[La(w) = Ls(w) = Ls(w) + Le(w)]

+ep[Li(w) = La(w)] + 0?},,% (w). (19)

Luke’s theorem [32] states that, at first order in mLQ one
has

PHYSICAL REVIEW D 90, 114014 (2014)
Li(1)=Ly(1)=0 (20)

and therefore follows the important result that at zero recoil
(w = 1) the subleading corrections to /(1) and /4 (1)
begin at order 1/m:

ho(1)=1+68",

i ha (1) = 146

e (1)

The functions L;(w)(i = 4,5,6), corresponding to the

so-called Current perturbations, are not independent
according to HQET, and are given in terms of two functions

Aé&(w) and & (w) [30]:
Ly(w) = =A&(w) + 2&5(w), (22)

Ls(w) = —A¢(w)., (23)

L) = - (Re0) +&50)). (24)

where &(w) is the elastic IW function.
One finds therefore the relation

Ly(w) + (1 4+w)Lg(w) = 3Ls(w) (25)
that reduces to the relation at zero recoil

Ly(1) +2Lg(1) = 3Ls(1). (26)

2. Inelastic form factors B — D**(OT/Z,I;L/Z,II/Z,Z;/Z)KV
in HQET
For the inelastic form factors B — D** we repro-

duce only the leading order in the heavy quark expansion
[8,31]:

Falw) = = ea )+ Off 0). (27)
Fu ) =+ 0l ). (9
fia) = =—sryalw) + O, (). (29)
fun) =2 e() + 01 (). GO

ky(w) = =V3z3(w) + OY, (W), (31)

ka, (W) = =(w + 1)V3z3,5(w) + 01/mQ(W)» (32)

ka, () = O}, (w), (33)
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ka () = Viryo(w) + OV, (W), (34)

g (w) = 0%, (w). (35)
g (w) = 211 5(w) + 0%}, (W), (36)
g(w) = 2515(w) + 0%, (w). (37)

gv,(w) = (w—=1)2z)p(w) + Of;lng( w),  (38)
gv,(w) = 012, (w). (39)

gv,(w) = =27, 5(w) + Ofﬁng( w), (40)

where the different Oy ,,,(w) corrections are given in the
detailed and careful paper by Leibovich ez al. [31]. Among
these corrections, we reproduce the ones that do not
vanish at zero recoil, and that are very relevant for what
follows:

g4(1) = =3(e. + €,)AE, )71 2(1), (41)
gv,(1) = 2(e. = 3€,) AE jp115(1), (42)
Fr,(1) = =4V2e ME3 o155 (1), (43)
where
AE; = mpj+) = mp-) (j = lE)‘ (44)
22

III. BAKAMJIAN-THOMAS APPROACH TO
QUARK MODELS

As explained in [5], the construction of the BT wave

function in motion involves a unitary transformation that

_?._.s,,@],

one-particle variables, the spin S and momenta p; to the so-
(P. ks, ...
in terms of another set of variables, the total momentum P
and the internal momenta %1, %2, oo ién (2,.12,. = (). This
property ensures that, starting from an orthonormal set of
internal wave functions, one gets an orthonormal set of

wave functions in any frame. The base \IIEI)S (P1seees Pn)
is useful to compute one-particle matrix elements like
current one-quark matrix elements, while the second

relates the wave function \I/§1 , Pp) in terms of

called internal wave function ¥ ,k,) given

gt (P.ky,....k,) allows one to exhibit Poincaré
covariance. In order to satisfy the Poincaré commutators,
the unique requirement is that the mass operator M, i.e. the

Hamiltonian describing the spectrum at rest, should depend
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only on the internal variables and be rotational invariant,

i.e. M must commute with P 55 9 and S The internal wave

function at rest (2”)35(P)(Ps1 VVVVV S, (ks ...
state of M, P (with P = 0), S and S‘Z, while the wave
function in motion of momentum P is obtained by applying
the boost Bp, where P°=\/P*+ M2 involves the

dynamical operator M.

The final output of the formalism that gives the total

wave function in motion \I/§1>s (Pis -

,k,,) is an eigen-

P, in terms of
k. .

the internal wave function at rest ¢, ( k,) is the

formula

P - -
ql£1~)"-ssr1 (p17 seey Pn)

i i Pi
X Z '] ..... Sh (k27 k ) (45)
..... sh
where p¥ = /p? + m? and M, is the free mass operator,
given by

(Zp,»)z. (46)

The internal momenta of the hadron at rest are given in
terms of the momenta of the hadron in motion by the free
boost

ki = BZ Di (47)

where the operator B, is the boost (\/ p2,6) — p; the
Wigner rotations R; in the preceding expression are

.= B-IBZL
R, = B;'Bs

i

By, (48)

and the states are normalized by

(P',S.|P,S.) = (27)°8(P' —

P)ss . (49)

The one-quark current matrix element acting on quark 1
between two hadrons is then given by the expression

(P, SLlJDVIP,S.)

dp', dp ({y dp: , - -
/(27[) 3 (27)? H(zﬂ)3 s,,.,,A,S”(P1 ')

|plﬂs1>qj ..... n(ﬁh'”?l_ﬁn) (50)

x (pl1, s [JO
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where U2 (py.....p,) is given in terms of the internal
wave functlon by (45) and (p’y, s4|JV|py, s;) is the one-
quark current matrix element.

As demonstrated in [5,6], in this formalism, in the heavy
quark limit, current matrix elements are covariant and
exhibit Isgur-Wise scaling, and one can compute Isgur-
Wise functions like &(w), 71,,(w), 73/2(w) [17].

After we have presented the general calculations, we will
specify the mass operator M, which will be chosen as the one
of the Godfrey and Isgur model in the following section.
|
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We are interested in this paper in transitions between
heavy quarks b — ¢ where the initial meson is a pseudo-
scalar B. We particularize the general formula (50) to the
meson case q,g, where g; — ¢/ labels the heavy quarks,
g, the light antiquark, and the current operator J(!) acts on
the heavy quark.

As shown in [5], one can express (50) in a Pauli matrix
formalism and then in a Dirac matrix formalism. We
reproduce here the needed master formula in the Dirac
formalism:

- - dp, 1 1 S
(P elJVIP,e) = / 277 p F(szp .P) 16Tr[0(m1 + )1+ 1) (my + p2)Ty (14 2) (my + 7))o (K2) (k)
(51)
|
where where the convention €y,3 = —1 is adopted, €, are the
polarizations relative to the four-vector u/, four-vectors for
02,0 the J©' = = —, +) states, and a tensor for the J© =
¥ B _ VO KOS he J* =17 (P ) d for the J?
F(ps, P, P) 0 0 27" state.
PP\ (K + my) (K9 + my)
K9K'9 A. Matrix elements in the heavy quark limit
K9+ m (K% +m e now consider the heavy mass limit, defined as
N WO ) (K3 + my) (52) W ider the heavy limit, defined
my,m) — oo with v/ = P'/M' and v = P/M fixed, and
In formula (51) the following unit four-vectors are used: M/m; — 1,M'/m’| — 1. One has, in this limit
i 0 0
:7P1+P2, u’:pll+p2 (53) ﬂ—)y, p—l—) i ki — =7, k—//] 1,
M, M6 my m my n;
u— v, u — v, e, =€, =€,

with Mo = \/(p1 + p2)>. My = \/(p| + p2)*, as ex-
plained above.

In (51) the Dirac matrix O depends on the current, for
example O = y* or O = y*y5 for the vector or axial current.
On the other hand, the Dirac matrix ', depends on the
quantum numbers of the final state, namely 07, 1~ for the
ground state and 0, two 17 states and 2 for the excited
states. Let us give now these matrices for the different D
states [5,12,21]:

D(O_) Ly = 1,
D*(l_) Ly :755/Z/v

[P — (po.u ) Jys

D (0F r,=- ,
( 1/2) ! (Pz-“')z - m%
. [e¥.py + i€ u’“e*{fp”y"%]
D*(1f,)  Ty=- e w2l I

(pru)* —m3
et L1 2€5.ps — ieagpot' €l phy°ys)
D (13/2) Fu' - T T = s

V2 (pau')? = m3

) T,=-V3 YuP2€) 75
u )
(Pz-u')2 - m%

D** <2+

3/2 (54)

ky, = By p,. K, — B p,. (55)

On the other hand, one has, due to the invariance of the
scalar product,

(B;'p2)? = py.v, (B! p2)’ = prv' (56)

and therefore the matrix element (51), (52) is given by the
following covariant expression:

(P!, ¢|JD|P, €)

1 dpy 1 (P2-v")(P2-v)
Vardy© ) 27)2 pY \ (pa.v" + my)(py.v + my)

(1+2)gf

1
X ZTT[O(l +2)(my + )T,

x (B! p2) o(By! py) (57)

where the Dirac matrices I',; are identical to ',y in (54) with
u’ replaced by the four-velocity v'. .

The radial wave functions ¢'(k) and ¢(k) depend only
on k2, and from (56) one has
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1\2 2 2
(B! py)” = (p2-v)* — mj3.

(58)

ne _ 2 B-1p.)2 —
(Pz-”) my, ( v Pz)

B. The Isgur-Wise functions &(w), 71/,(w) and 73/,(w)

From the matrix elements (57), the operators (54) and the
definitions and 1/m, expansion of the form factors given
in Sec. II, the Isgur-Wise functions &(w), 7y 2(w), 73/2(w)
are given by the expressions

S \/ (P2-)(P2-0)
w+1/) (22)} (p2.¥" + my)(pav + my)

X [pa.(V + v) + my(w + 1)]
=) o (\/(pav)? = m3). (59)

&(w)

x 4)( (p2')?

(p2:v")(p2-v)

T1/2(W) =

/dpz 1 / .
I_W) (P20 +my)(pr.v+my)

X [(p2.0) (P20 + my)
— (p2.0") (P2 +wmy) + (1 —w)m3]
Lon (p2v')? =m3) @(y/(p2.v)* —m3)

(p2-v')* = m3

(60)

_ 1 dpy 1
w2 = 2V3(1 = w)(1 +w)? / (27)° p3

(p2:v")(P2-v)

* \/(Pz-”’ +my)(pa.v 4 my)
=2(w+ 1)(p2.v)(2ps.0" —my)
=2(w+ 1)(pa.0")(py. ' + wmy) + (W? = 1)m3}

{3[p-(v + )P

Lo (p2t')? = m3)* o(\/(pa-v)* — m3)
2 9

(p2v')> —m3

(61)
where all the radial wave functions for the 5, 3%, 3" states
in the heavy quark limit are normalized by

dI)Z - 2
=1. 62
[ Gl (62)

IV. LIMITATIONS OF THE BT MODEL
AT FINITE MASS: CHOICE OF A
CONVENIENT REFERENCE FRAME

As we have emphasized above, the BT model provides a
Poincaré covariant description of the states in motion, and
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also a Lorentz invariant formulation of the current matrix
elements in the heavy quark limit. In the present paper we
are interested in studying the 1/mg corrections to the
matrix elements. However, although the current matrix
elements can be formulated in the BT model by (51), (52),
this expression is not Lorentz covariant.

Another important point, also a limitation of the BT
model, is that at finite mass, although one has lost Lorentz
covariance, one does not even have Galilean covariance. In
order to have Galilean covariance one would need to take
the full nonrelativistic limit, i.e. to consider the non-
relativistic quark model: the model must be nonrelativistic,
not only for the heavy quarks » and c, but also for the
light quark.

However, the nonrelativistic quark model is not suited
for our purpose, because what we want is to understand the
departures relatively to the heavy quark limit predictions of
the BT model due to the finiteness of the masses m,,
and m,.

Then, we are left to consider the BT model at finite mass
in a definite reference frame. How does one choose this
frame? Fortunately, there is a theoretical criterium for
choosing a convenient frame. Namely, we will adopt the
frame that is consistent with known theoretical results in the
1/m expansion of HQET.

In Appendix D we have formulated a set of collinear
frames, that go from the B meson rest frame to the D meson
rest frame, dependent on a single parameter a. The B and D
rest frames correspond respectively to a =0 and a = 1.
There is an intermediate frame, that we call the equal
velocity frame (EVF), in which the spatial velocities are
equal in modulus (+° = v'%, »* = —1'?), that corresponds to

1

the value a = 3. In this latter frame, the initial and final

velocities then read, in terms of the variable w = v.7/,

(o)
() e

Considering the matrix element at arbitrary masses (51)
for the ground state B — D) transitions, and making
analytically an expansion up to the first power in 1/m, and
1/my;, we have realized that the form of the HQET
expansion of the form factors as written in (14)—(19) is
not fulfilled in any of the considered collinear frames,
except in the EVF. In this frame, relations (14)—(19), at least
up to first order in 1/m, are exactly satisfied. This seems
to us a good enough criterium for choosing the EVF in our
calculations. We will compute below all the ground state
subleading functions L;(w)(i = 1, ...6) and verify also that
Luke’s theorem is satisfied.

A last important point of principle is in order here. Had
we adopted the nonrelativistic quark model (including the
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light quark), relations (14)—(19) are exactly satisfied in any
Galilean frame. However, as pointed out above, we need to
consider the b and ¢ quarks as heavy, and the spectator light
quark as relativistic. Quantitatively, the results of the
nonrelativistic quark model would not make much sense
in order to consider departures of the heavy quark limit
results of the BT model due to the » and ¢ finite masses.

V. 1/my FORM FACTORS FOR THE GROUND
STATE TRANSITIONS B — D®)¢v IN
THE BT MODEL

To make explicit the discussion of the 1 /mg corrections
to B —» D®¢u, let us rewrite the basic formulas at finite
mass (51) and (52) under the form and new notation

(DU)(P), €[JD|B(P))

dp, 1 .
/(2”)2 GD(QB(pz,P P) (kz) (/’B(kz) (64)

with

(DY(P"),€|JV|B(P)) =

(27)* pY

dpz 1
+/—__ G

(2”)3 Pz

In the preceding equation, the subindex 0 means €, =€, =0
(heavy quark limit).

We have separated the perturbation of the kernel G and
of the wave functions ¢, in an obvious notation. In what
follows we will neglect the second term in (67) since we
have realized numerically that the perturbation of the wave
functions gives a very small contribution.

Using (67), it is convenient to write the matrix elements
(14)—(19) using the following notation:

B (w) = E00) + e HY () + €, HY (w) + O (),
(68)

hy(w) = Ew) + €Hy (w) + & HY (w) + 0,0 ().
(70)
ha, () = EW) + e HY (W) + e, HY (w )+0j‘;mz (W),

(71)

0

o(P2. P P) e,y (Ks) 9
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—> —>

p21 )

Vv uu'® koko \/
(

B P1P1 ko"‘ml k0+m2)

K09
K9+ mﬁ(k’% + m;)

(my + p1)(1 + &) (my + po)T0
x (1+#)(m +p')] (65)

x—Tr
16

where 'Y = 1 and I')" = y5¢’%,. For the sake of clarity we
now adopt the notation

1
€ ==, € =7 = . (66)

To compute the 1/2m, subleading functions L;(w)(i =
1,...6) (14)—(19), we need to expand the matrix element
(64) in powers of €, €. up to the first order. Symbolically
we can write, simplifying the notation,

(DW(P'), &|J|B(P)),
dp, 1
+/ P2 a6

(P2, B\ B) 4+ €.GY (2, B, )y (K5)* o (o)

(k2> + €c(ﬂ’ (kz) (Po(kz)} (67)

hay (W) = €cHGE (w) + e, HYY () + 05, (w). - (72)

ha, (W) = Ew) + e HY () + e,HY (w) + O e 00).
(73)

Performing analytically an expansion of the matrix
elements for the different currents in powers of ¢, €.,
we can compute the different functions H(@)(Q = b, ¢),
and from them obtain the subleading functions L;(w)(i =
1,...6) appearing in (14)—(19), by using the straightfor-
ward relations

= S [ow+ DHY ) ~ v = DHD )], (74)
La(w) =5 [0+ DHE) ) = o= DHE )], (79)
L) = 3 [HS) (0) = H ) + B () (70

114014-7
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Ly(w) = HY (w) = —H®) (w)

=" ) - HY ) (77)
Ls(w) =" H o) = HY L (79)
Lo(w) =5 [H00) + Y ) = HY ). (79

From these relations, and the expressions for the differ-
ent functions H'9)(Q = b,¢), we find analytically that
Luke’s theorem [32] (20) is satisfied

Li(1) = Ly(1) =0. (80)

Moreover we find, for the functions L;(w)(i = 1,2, 3),

corresponding to the so-called Lagrangian perturbations,

the following results, that do not follow from HQET, and
are specific to the BT model:

Ly(w) = La(w),
In the BT model, for the functions L;(w)(i = 4,5, 6) that

correspond to the Current perturbations, we find analyti-
cally relation (26) that holds in HQET:

Ly(w) = 0. (81)

Ly(1) + 2Lg(1) = 3Ls(1). (82)

More explicitly, we find in the limit mp = mp. =
m, + A, calling from now on the light quark mass m, = m:

e 22
L4<1>:_A+§/(§Zf)3m+ - —s (PP ()

Ls(1) = —A, (84)
Lo =R [ s lo @R 89

where the internal wave function normalization

dp B
/( S lo(P) = 1 (86)

has been used. Relation (84) is in agreement with (23) at
zero recoil.

VI. 1/my FORM FACTORS AT ZERO RECOIL FOR
TRANSITIONS TO EXCITED STATES B — D**¢v
IN THE BT MODEL

Performing a series expansion of the relevant form
factors one finds, in the BT model, at zero recoil:

PHYSICAL REVIEW D 90, 114014 (2014)

5u(1) = =3(ec + )5 [ s ploy (31017, (89
o (1) = 2(ec = 360) 5 [ 42 o (710017 (59
Fu V) ==av2ecs [ lploy (3 ol7). (59)

These formulas hold for all collinear reference frames
considered in Appendix D. We observe that the 1/m,
dependence agrees with the prediction of HQET for all
three form factors ¢, (1), gy (1), and fy (1) [formu-
las (41)-(43)], in particular the BT model predicts for
the two states belonging to the same doublet 0~ — 07, /20
0~ — 11+/2

g+(1)

gvl(l)

3e.+¢€,
=—= , 90
2¢e. — 3¢ (90)

while the form factor fy, (1) for 0~ — 13, is independent
because a different radial wave function ¢y (Ip|) appears in
formula (89). Formula (90) is consistent “with the expect-
ations of HQET (41)—(43).

Another matter is the absolute magnitude of the BT
results (87)-(89) as compared with the HQET results by
Leibovich et al. [31] (41)—(43). In the latter expressions we
see that there is factorization between the level spacings
and the corresponding inelastic IW functions at zero recoil:
AE%T]/z(l) or AE%T:;/z(l)

The spin-orbit term is small and one can therefore
assume that the level spacing is about the same for both
j7T states:

AE, = AE;. (91)
2 2

Then, the form factors at zero recoil (41)—(43) are in the
ratios

g+ (1) :gy,(1):fv, (1)
= =3(e. +€)71/2(1):2(e. — 3ep)712(1)
:—4v2e,135(1) (92)

while we find, from (87)—(89), in the BT model within the
same assumption of small spin-orbit coupling

9+ ( ) gv,( ) fvl()
= 3(e. +¢):2(e, — 3€p): —4V2e..  (93)
The contradiction between the results of HQET (92) and
the ones of the BT model (93) is obvious because of the

values (2) found in the heavy quark limit in the BT model
(for the IG potential): 7,/,(1) = 0.22, 73/,(1) = 0.54.

114014-8
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The origin of the difference between 7,/,(1) and 75/,(1)
in the BT model is the following. From expressions (60)
and (61) one obtains at zero recoil [6,21]

7ip(1) = —m IZEZA prdpep(p)
p m d
3+ — 2— , 94
) [m+p°< +p°>+ dp}p(m 54)
732(1) = M ; p2dpg; ) (p)
w | Lm0 (95)
m+p0p° " “ap| P

Therefore, due to the first terms in the right-hand side of
(94) and (95) one gets in the BT model 7,,,(1) # 73,5(1).
As analyzed in detail in [11] the Wigner rotations are at the
origin of these terms:

(1) <.+‘_P0iz+izp0 E(EXZ’T)zl‘>
j / 2 2 0 +m 12
13
.:—’— . 96
><<J 3 2) (96)

The Wigner rotation, second term in (96), is a relativistic
effect dependent on the spin that gives the difference
between 7, ,(1) and 73/,(1).

A. BT model 1/m, form factors at zero recoil for
transitions to excited states in the nonrelativistic limit

Let us first observe that expressions (87)—(89) are
independent of the light quark mass m. Therefore, the
same expressions must be valid in the nonrelativistic limit
of the BT model, i.e. taking |p| < m. Let us assume this
limit and consider the nonrelativistic Hamiltonian for the
light quark interacting with the heavy quark:

2

P

where 7 is the relative position between the light quark and
the heavy quark.

Let us first remark that in the nonrelativistic limit, since
the spin-orbit term does not contribute, one has

o(p) =¢:(p).  AEy=AE;. (98)

2 2

10

In the nonrelativistic limit one has 7 ,(w) = 73,5(w), that
at zero recoil is given by

PHYSICAL REVIEW D 90, 114014 (2014)

(1) = —m%ﬂzfo Pzdpfﬂj(l’)%(ﬂ(w
(0| oy (1=33) o9

Using (99) and the nonrelativistic Hamiltonian (97) let us
compute

AE;i(1) = —%m<0+‘ {H, %] 0°)
o 2
— o [T Paree) (i=33)

(100)

and we obtain therefore the common factor in the right-
hand side of Egs. (87)—(89).

Finally, in the nonrelativistic limit we obtain relations
(41)—(43) with AE%T%U) = AE%T%(l) given by the right-
hand side of (100).

The argument has a transparent physical interpretation in
configuration space. In the nonrelativistic limit of (96) the
Wigner rotations are subleading and one has

Tj(1)~m<j+|—iZ|%_> <_%%>

Computing the matrix element of the axial current A° at
zero recoil one has, since the active quark is the heavy
quark labelled 1:

(101)

00~ () lpelor) (5-3.3)
(102)

then one has, from the nonrelativistic Hamiltonian (97) and
p1 = —p, = —p, where p is the momentum of the light
spectator quark:

<0+|p1z

)] -2

= —im(E1 - EO)<O+|Z|O_>

0—> — —im(0"|[H, Z]|07)
(103)

where E, E; are the energies of the ground state and the
excited state. Therefore, the dependence on the level
spacing of HQET follows in the nonrelativistic limit, as
we have already seen from (100).

114014-9
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VII. THE GODFREY-ISGUR QUARK MODEL
FOR SPECTROSCOPY

Let us now particularize the above expressions for the
choice of the mass operator M given by the Godfrey-Isgur
model [18], and perform the numerical calculations.

The GI model for meson spectroscopy describes the
whole set of meson spectra gg and Qg, where ¢ is a light
quark (¢ = u, d, s) and Q is a heavy quark (Q = c, b), with
the important exception of the recently discovered narrow
states D,; (0" and 17), which are too low in mass
compared with the predictions of the model. The model
contains a relativistic kinetic term of the form

K=& +md 4+ [+ m3 (104)
that is identical to the operator M, at rest, and a compli-
cated interaction term that includes (1) a Coulomb part with
a ¢* dependent a;, (2) a linear confining piece, and (3) terms
describing the spin-orbit and spin-spin interactions. All
singularities are regularized—e.g. terms of the type &(7) or
1/m,, where m, is the light quark mass. The hamiltonian H
depends on a number of parameters that are fitted to
describe all the meson spectra.

VIII. FORM FACTORS FOR THE GROUND
STATE B — DW¢y

This section contains the numerical results for the ground
state form factors B — D*)£y using the Bakamjian-
Thomas model exposed above and the internal wave
functions provided by the GI spectrocopic potential, given
in Appendixes B (heavy quark limit) and C (at finite mass).

In Fig. 1 we give the prediction for the elastic ITW
function &£(w) and in Figs. 2-7 we give the results for the
different B — D) £y form factors at finite mass compared
with their heavy quark limit. The finite mass effect is rather
small in general, even in the case of the form factors that
vanish in the heavy quark limit, #_(w) and Ay, (w).

10
09
038

0.7

FIG. 1. The elastic Isgur-Wise function &(w) = (W?H)z"2 in the
BT model (p?> = 1.023).

PHYSICAL REVIEW D 90, 114014 (2014)
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FIG. 2. The form factor i, (w) in the BT model at finite mass
[continuous line, 4, (1) = 0.99033] and in the heavy quark limit
(dashed line).

0025 -
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0010F
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FIG. 3. The form factor 4_(w) in the BT model at finite mass
[continuous line, #_(1) = 0.02535] and in the heavy quark limit
(dashed line).

A. First order 1/m functions and Luke theorem

Here we compute within the BT model with the GI
internal wave functions the subleading functions L,(w)
defined in (14)—(19) and given by equations (74)—(79) in

10

o \

osf S
- N
\
L \ \\‘\
07k ~ \\\\
1 1 1 L 1 \\.\ 1
11 12 13 14 1.5 T.6

FIG. 4. The form factor &4, (w) in the BT model at finite mass
[continuous line, /14, (1) = 0.96606] and in the heavy quark limit
(dashed line).
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FIG. 5. The form factor /14, (w) at finite mass in the BT model
(it vanishes at infinite mass).
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FIG. 6. The form factor /4, (w) in the BT model at finite mass
[continuous line, /14, (1) = 0.92299] and in the heavy quark limit
(dashed line).

terms of the functions H@). In the results given below we
consider only the expansion of the kernel G in (67), since
the perturbation of the wave function ¢ gives a negligible
numerical contribution.

| PP | PRRPUNE NS SRS S S S |

1.1 1.2 1.3 14 15 I.6

FIG. 7. The form factor &y (w) in the BT model at finite mass
[continuous line, Ay (1) = 1.03414] and in the heavy quark limit
(dashed line).

PHYSICAL REVIEW D 90, 114014 (2014)

0.15
0.0}

005

11 12 13 14 1.5 1.6

FIG. 8. The subleading functions L;(w),L,(w) in the BT
model, in which L|(w) = L,(w) (in GeV units). Luke’s theorem
L(1) = L,(1) =0 is satisfied.

Figures 8-11 concern the subleading function
L;(w)(i =1,...6). Some comments are in order concern-
ing these figures.

Let us begin with the Lagrangian perturbation functions
L;(w)(i = 1,2,3). First, we observe that Luke’s theorem
[32] (20) is indeed satisfied:

Li(1)=Ly(1)=0. (105)

On the other hand, the result that we find for L;(w),
L;(1) =0, is not a prediction of HQET.

Considering now the Current perturbation functions
L;(w)(i =4,5,6), these functions are not independent
according to HQET, and are given in terms of two
independent functions A&(w) and &(w) [30] (22)-(24).
We recall here the expression of Ls(w) in terms of the
elastic IW function &(w):

Ls(w) = —A&(w) (106)
and the linear relation
Ly(w) + (1 +w)Lg(w) = 3Ls(w). (107)

It is important to emphasize that relation (106) is in
analytical agreement with the prediction of the BT model
for the elastic IW function (Fig. 1, where A = 0.3 GeV).
From the explicit formulas for L4(w), Ls(w), and Lg(w) in
the BT model, we have checked that this relation is also
analytically exact within the model.

From this section we conclude that the BT model gives a
description of the corrections of O(1/mg) to the elastic
form factors that is consistent with the predictions of
HQET, even for their w dependence.

B.1/ m2Q corrections at zero recoil for &, (w) and h, (w)

In the BT model we find indeed that the results satisfy
Luke’s theorem (20), and therefore the corrections at zero
recoil to (1) and 4 (1) begin at order 1/m2Q, Eq. 21).
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FIG. 9. The subleading function L,(w) in the BT model
[L4(1) =0.011250 GeV].

-0.18

L5 1.6

FIG. 10. The subleading function Ls(w) in the BT model
[Ls(1) = —=A = —0.3 GeV].

We get for the sum of all orders 1/mf(n>2) that
contribute at zero recoil

_ he
> 8 g, = 0.0097, (108)
n>2
> o)
=) 01/ = 0.0339. (109)
n>2 ©
-020F -
C ///f
- "
—025[ //
L o~
[ ~
-030f /
035} /
-040F /
E /
- .ll... 1.2.‘. 1.3... 14 1.5 1.6
FIG. 11. The subleading function Lg(w) in the BT model

[Le(1) = —0.455474 GeV].

PHYSICAL REVIEW D 90, 114014 (2014)

These results can be compared with the O(1/ mZQ) power
corrections obtained in HQET [33]. To do that we must
switch off the hard gluon radiative corrections in the HQET
approach. For the current masses m. = 1.25 GeV, m,, =
4.75 GeV and p% =0.35GeV?, 2 = 0.40 GeV?, the sec-

ond order HQET power corrections are roughly —6}]’;sz =

K. 0.042, to be compared with the prec-

0.0022, -6, Int

0
edent results of the BT model for the power corrections to
all orders with the constituent masses of the model.

IX. FORM FACTORS FOR THE EXCITED
STATES B — D*¢v

This section contains the numerical results for the
inelastic form factors B — D**#v, using the BT model
and the internal wave functions provided by the GI
potential tabulated in Appendix B (heavy quark limit)
and Appendix C (finite mass).

In Figs. 12 and 13 we give the predictions for the
inelastic IW functions 7;,(w) and 73,,(w).

022
020}
0.18 -
™~
\\
0.16 - S~
\\
R S S TP TS
1.1 12 13 14 15 L6

FIG. 12. The IW function r,/z(w):rl/z(l)(w%rl)%%/z for

the transitions 0~ — 01+/2’ 11+/2 in the BT model with the GI
hamiltonian (z;/,(1) = 0.2248, 0%/2 = 0.84).

050
045
040}
035f

0.30

FIG. 13. The IW function 73,,(w) = 735(1)(;2)> for
the transitions 0~ — 1;/2,2372 in the BT model with the GI

hamiltonian (z3/,(1) = 0.5394, 02/2 = 1.50).
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FIG. 14. The form factor g_(w) for the transition 0~ — 0% in the
BT model at finite mass (full line, g_(1)=0.3241) and in the
heavy quark limit (dashed line).
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FIG. 15. The form factor g, (w) for the transition 0~ — 0T in
the BT model at finite mass (g, (1) = —0.2657) and in the heavy
quark limit (dashed line).

In Figs. 14-27 we give the results for the different
form factors contributing to the transitions B — D**
(OT/Z, 11+/2, 1;/2, 2;/2). In the figures we compare the results
at finite mass with the corresponding heavy quark limit.

Unlike the elastic case, the finite mass effects for these
inelastic form factors are not small, even for some form

| -
0.5 —~
3 ~ /_/”
P ///
L /
L -~ o~
0.10 i - —
P /
L e
005 |
I rd
/
1 1 1 L 1 1
1.1 12 13 14 15 1.6

FIG. 16. gy, (w) for the transition 0~ — 1}, in the BT model at
finite mass [gy, (1) = —0.0022] and in the heavy quark limit
(dashed line).

-0.005 —

PHYSICAL REVIEW D 90, 114014 (2014)

-0010 | L

FIG.

_ooi5f /

17.  gy,(w) for the transition 0~ — 17, in the BT model at

finite mass [gy,(1) = —0.0159] and in the heavy quark limit
(dashed line).
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FIG. 18. gy, (w) for the transition 0~ — 17 , in the BT model at

finite mass [gy, (1) = —0.3534] and in the heavy quark limit
(dashed line).

factors that vanish in the heavy quark limit. This is
particularly true for the transition 0~ — 0T. In this case,
the leading form factor g_(w) is reduced by about a factor

1.5,
that

while the absolute magnitude of the form factor g, (w),
vanishes in the heavy quark limit, becomes of the same

order as the leading one.

045 .

[ ~
040f ™~

- ~

[ ~
03s) I

~

- ~
030F—__ —
025 N ——

||||l||||lA|||l||l|l||A|T_A_‘r_rﬂ.4
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FIG. 19. g4 (w) for the transition 0~ — 1}, in the BT model at

finite mass [g4(1) = 0.3030] and in the heavy quark limit
(dashed line).
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FIG.20. fy, (w) for the transition 0~ — 13, in the BT model at
finite mass [fy, (1) = —0.3567] and in the heavy quark limit
(dashed line).

FIG.21. fy,(w) for the transition 0~ — 13, in the BT model at
finite mass [fy,(1) = —0.9720] and in the heavy quark limit
(dashed line).

X. BRANCHING RATIOS OF
B - DYy, D*¢v, DY, D1

We now use formulas (E1)—(E7) to compute the semi-
leptonic branching ratios, and formula (E8) to compute the
pionic ones.

' L PR PR | A—‘l_—I-T’T-I-- ' 1 ! 1

- 1.1 |_g‘_._.‘/‘[_3 14 15 16

b //-

X — -
-01f .
02k B -

L -~

/

—03f ~

[ 7~

[~

FIG.22. fy,(w) for the transition 0~ — 13, in the BT model at
finite mass [fy,(1) = —0.1090] and in the heavy quark limit
(dashed line).

PHYSICAL REVIEW D 90, 114014 (2014)

FIG. 23.  f4(w) for the transition 0~ — 17, in the BT model at
finite mass [f4(1) = —0.7964] and in the heavy quark limit
(dashed line).
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FIG. 24.  ky, (w) for the transition 0~ — 27, in the BT model at
finite mass [k4, (1) = 1.6756] and in the heavy quark limit
(dashed line).

At infinite mass, only the form factors are computed
in the heavy quark limit, while the kinematics contains
the physical masses. One obtains, for the semileptonic
modes,

0000 e == == = = = — — — -
-00005 f
-00010 |

-00015

S~
PR S S S S N T S S v S S

PR SN U T S SN [ S S S S |
1.1 12 13 g5 16

FIG. 25. kg4, (w) for the transition 0~ — 27, in the BT model at
finite mass [ky, (1) = —0.00311] and in the heavy quark limit
(dashed line).
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FIG.26. k4, (w) for the transition 0~ — 23 , in the BT model at
finite mass [kA (1) = —0.69823] and in the heavy quark limit
(dashed line).

BR(B — Dfv) = 2.022%,

BR(B — D*¢v) = 5.894%,

BR(B — D™ (0;,,)fv) = 5.4 x 107,

BR(B (17,)¢v) = 5.6 x 107+

BR(B - D**(13,,)¢v) = 3.89 x 1073,
(B (2{,)¢v) = 6.04 x 1073,

2

)
)
)
)

L} U+ o+

(110)
and for the corresponding pionic decays,

BR(B = D) =3.73 x 1073,

BR(B — D*z) = 3.86 x 1073,

BR(B — D*(0),)7) = 1.5 x 107,

BR(B — D™ (1 1/2)”)

BR(B — D™ (13,,)x) = 1.25 x 1073,
(B )7)

= D*(27,)m) = 1.19 x 1073.

BR /

(111)

The pionic decays with form factors in the heavy quark limit
have been compared to the Belle data [27] in Ref. [28].

s N
VRS TN TN TN NN TR WY TN SN NN TN TN SN SN (Y TN TN WO S SN TN S SN SN N e S S N |

1.1 12 13 14 ts 1.6

-~

FIG. 27.  ky(w) for the transition 0~ — 2, in the BT model at
finite mass [ky (1) =0.95574] and in the heavy quark limit
(dashed line).
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On the other hand, at finite mass one has the following
semileptonic BR:

BR(B — D¢fv) = 2.354%,

BR(B — D*fv) = 6.312%,

BR(B — D™ (0} ,)¢v) = 2.77 x 1073,
(
(
(

/)

BR(B — D*(17),)fv) = 45 x 107,

BR(B - D**(l;’p)fy) =7.04 x 1073,

BR(B — D**(23+/2)f1/) =5.86 x 1073, (112)
and the BR for pionic decays:

BR(B — Dr) = 0.469%,

BR(B - D*r) = 0.476%,

BR(B — D*(0,)7) = 7.7 x 107*

BR(B - D**(lf/z)ﬂ) =1.1x1074,

BR(B — D**(13+/2)7z) 1.74 x 10~

BR(B - D**(23+/2)7r) =134 x 10" (113)

Comparing the finite mass results with those in the heavy
quark limit, we observe an enhancement in the case of the 0
modes in both the semileptonic and pionic cases (about a
factor 5), while the difference is moderate for the other decay
modes. The enhancement for the 0~ — 0 transitions is due
to a constructive interference in the decay rates between the
two form factors g, (w) and g_(w). Of course, the magnitude
of the enhancement is not trustable, since in this particular
mode it is clearly related to the violation of the relation of
Leibovich et al. In this case only two form factors contribute,
and the subleading one should satisfy this relation.

In such a situation, it is not sensible to compare with the
data of BABAR and Belle. A detailed discussion was given
recently of the experimental situation, compared with the
BT model in the heavy quark limit and with the lattice
results, in Ref. [29].

XI. DISCUSSION

There cannot be a clear-cut conclusion for this work.

The Bakamjian-Thomas relativistic scheme was origi-
nally formulated to build states covariant under the
Poincaré group. As shown in a number of papers, the
BT relativistic quark model for hadron transitions is very
satisfactory in the heavy quark limit. Indeed, in this limit
current matrix elements are covariant, form factors exhibit
Isgur-Wise scaling, and the Bjorken-Uraltsev sum rules are
analytically satisfied.

This model provides also a physical, phenomenologi-
cal interpretation of a number of features of the heavy
quark limit. One notorious example is the inequality
|73/2(1)| > |712(1)|, that in the BT model is a spin
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effect due the Wigner rotation of the spin of the
spectator light quark.

In the present paper we have tried to extend the BT model to
finite mass, for the ground state transitions and for inelastic
decays of the ground state to L” = 17 excited states.
However, at finite mass matrix elements are not covariant
anymore and some unwanted results are not unexpected.

As exposed above, a convenient frame is the equal-
velocity frame, that we have adopted. On the theoretical
side, to test the validity of the model at finite mass, at least
the corrections at O(1/m) have to be compared with the
rigorous results of HQET for these corrections.

Among the latter, there are the consequences from
HQET for the ground state case 0~ — 07,17, i.e. Luke’s
theorem for the Lagrangian perturbations at zero recoil, and
relations between the different Current perturbations for all
w, established by Falk and Neubert. We have checked that
these rigorous results of HQET are perfectly satisfied in the
BT model at finite mass, even for all w in the case of
Current perturbations. In particular, the interesting relation
between leading and subleading quantities Ls(w) =
—A&(w) is analytically fulfilled.

Other rigorous results of HQET at O(1/m) concern the
values of the subleading form factors at zero recoil for
transitions of the ground state to positive parity mesons
0~ -0, 1;?2, 1;“/2. These constraints on the subleading
form factors, formulated by Leibovich, Ligeti, Stewart, and
Wise, exhibit a certain pattern in 1/my(Q = b, c) and are
proportional to the level spacings AE;(j = 1/2,3/2). In
the model, the pattern in 1/my(Q = b, ¢) is obtained, but
the proportionality to AE; does not hold. This feature has
an important numerical impact on the subleading form
factor for the decays B(07) — D**(0")¢v, B(07) —
D**(0")x resulting in a spurious enhancement of these
decay rates.

As our analysis shows, in a formulation of relativistic
quark models for such meson form factors, it is crucial to
ensure that the relations of Leibovich et al. are satisfied in
the heavy quark expansion. It seems to us that to implement
these relations is not obvious, and one should investigate
whether they hold in other formulations of relativistic quark
models.

The BT scheme is not a particular model, but a very
general framework. In fact, a framework quite similar to the
one of BT is at the basis of the light front relativistic quark
models [2-4]. The same inelastic transitions L = 0to L =1
have been studied in the light front models of Cheng et al.
[34]. But, to our knowledge, the problem of the identities of
Leibovich et al. has not been evoked in this study.

A similar approach, but based on the point form of BT,
has been developed by Gémez-Rocha and Schweiger [35].
These authors compute the form factors for the ground state
transitions B — D*)#v. It would be very interesting to
know if within their formalism they could confirm or not
our results for the transitions L =0 — L = 1.

PHYSICAL REVIEW D 90, 114014 (2014)

On the other hand, this problem has been clearly raised
by Ebert et al. [36]. In their relativistic quark model the
identities are not automatically fulfilled, but imposed by a
choice of the parameters of the potential. In our BT scheme,
this latter possibility is clearly excluded.

For our part, one would wish to solve the problem of
inelastic form factors in a general way through a fully
covariant approach. This approach exists in the Bakamjian-
Thomas framework in the heavy quark limit, but is lacking
for the moment at finite mass.

ACKNOWLEDGMENTS

We acknowledge Damir Becirevi¢ for discussions and
useful advice, Roy Aleksan and Patrick Roudeau for remarks
on the “1/2 vs 3/2 puzzle,” and Vincent Morénas for
making available to us his very well-written Ph.D. thesis.

APPENDIX A: FORM FACTORS IN TERMS OF
MATRIX ELEMENTS

From the definitions of Sec. II, one can isolate the
different form factors by introducing convenient four-
vectors. The form factors for the 0~ — 0~ transitions are
simply given by

(D()|(v +v').V|B(v))

Vigph. (w) = 20 w) . (Al
Vmgmph_(w) = <D(v’)|(2v( 1—_v’y>y-)V|B(v>>_ (A2)

To isolate the B — D* form factors we need to consider the
longitudinal and transverse polarization four-vectors.
Assuming the motion along the Oz axis, we can adopt
the following four-vectors:

v = (0°,0,0, %), v =

(10,0,0,0/%),  (A3)

¢l = (1/7,0,0,0°), €T =(0,1,0,0). (A4)
Then, the different form factors for the 0~ — 1~ tran-

sitions are given by the expressions

DD (v')]ie We’(T)”v’/’v"Vﬂ B(v

gy (w) = -2t )'”Wz_l [B()

(AS)

Ty (w) = — <D*<”<v'v>vlef1)-AlB<v>> e
\/WhAZ(W)

_ <D*(L)(1)/)|e’(L).A|B(1j)> _ <D*(T)(,U/)|€/(T).A|B(/U)>

(el(L).v)z ’

(A7)
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_ (D) AlB(v))

w((D")(v')|e' M. A|B(v)) = (D" (v/)|e'").A|B(v)))
(') v) ’

(') v)?

+

gy, (W) = (A8)

Similar relations for the form factors of the transitions to excited states can be obtained from the definitions

(N-(13)

(D2 0)()](v +v').AlB(v))

\/mg+(w) = 2(1+W) ’ (A9)
D(1/2) V)|(v = v
5 0. = DI OAD= 8, Al
(1/2) (1+\(T) Nlie €/(T)D,U//)v(r u v
g ga(w) = L O e ATB)) (A1)
Vmgipe gy, (w) = —(DWA (1) (") 7). V|B(v)) (A12)
12 (19D (1D VIB(o)) — (DU (1HYD (5D VIB(w
Vg g, () = LIRS B GO B )
12 (15D (. v
2Nt
_w((DA () (’)|€’<L)-V|BEZ<>L) U<)2 25D @] .V|B(v))) (A14)

and similar formulas for the form factors f,(w), fv, (w), fv,(w) and fy,(w) for the DB/2)(1+) state. Notice also that
in the definition of the axial current matrix element for the ground state D*, the form factor /4 (w) is affected by a
factor (w + 1), that does not appear in the corresponding definition of the vector form factors gy, (w), fy, (w) for the

1+ states.
/(4)

To isolate the different form factors for the 2 states, let us first write the corresponding tensor polarizations €'/, that are

symmetric ¢’ f,’l) =¢ ﬁf), traceless g/‘”e’,([l) = (0 and transverse v'#¢’ ,(,’9 =", /(@ ) = 0. The polarization tensors we are interested

in (the currents are vectors) can be written as

1 _ _
6/;(1?/) _ %[6/;(4“)6/1(/ 1) +2€/;(40)€/z</0> +€/,(4 1)€/£+1)]’
1
6//(45) _ ﬁ [6/,(¢T)€/,/0> + e/g))e/yT)]’ (A15)
where ¢ (7) is the linear polarization vector (A4), and ¢ f[l ) are the usual circular polarizations vectors (¢’ @ W =1,

€W 4/ = 0). In consistency with the motion along Oz (A3) we have

1 .
€/(0) = (Ulz’ 0,0, 'U/O)a €/<i1) = <0a :F_zv —%,0) . (A16)

The different 2+ form factors will read, with the notation ¢'(¥) = ¢/(£),

D22 ()| .A|B(v))

/<L>.U

\/mBmD**kAI(W> ==

, (A17)
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JHDOD @O ()] AB(0)) = VADO 27| A|B(1)
\/WkAz (W> = (€/<L).1))3 ’ (Alg)

3(DB2) (2O (v)|v' . A|B(v
T () = \@ ( (L(L() .U>)|2 B(»))

\/%<D<3/2)(2*)<°’(v’)le"”-A\B(v»—\5< CA27) D ()|e'™).A|B(v))

Cw TP . (A19)
*(T) i e/ (T /e 9| B (v
gy (w) = —3 2 )<'W o 2l (A20)

APPENDIX B: WAVE FUNCTIONS IN THE HEAVY QUARK LIMIT IN THE GI MODEL

We have computed the ground state wave function j© = %‘ by expanding it in a truncated harmonic oscillator basis

Lon=ls Y 2 2
o ® =3 et [ B P (e (<) B1)

With the parameters
m; = 10* GeV, m, = 0.220 GeV, p =05 GeV (B2)

one gets the coefficients

€} 5 = (0.9793537,0.1176603, 0.1468293, 43721687 x 102,
4.8045449 x 1072,2.0475958 x 1072,2.1334046 x 102,
1.0961787 x 1072, 1.1114890 x 1072, 6.3780537 x 1073,
63600712 x 1073,3.9184764 x 10-3,3.8404907 x 102,
24935019 x 107%,2.3138365 x 1073, 1.6319989 x 1073). (B3)

Similarly, one gets the following wave function for the lowest %* state:

n=15 ' k _)2
2 : saqnit M+ 1)L K] 132
q0|+ C2 477,' 2 2n n 3 ﬁ5/2 exp 2ﬁ2 (B4)
with the following coefficients:

Cf) 15 = (0.9797808,0.1129152, 0.1477815,4.7028150 x 1072,
4.4749252 x 1072,2.2688832 x 1072, 1.8693443 x 1072,
1.2282215 x 1072,9.3433624 x 1073,7.2159977 x 1073,
5.1802760 x 1073,4.5010597 x 1073,3.0235867 x 1073,
2.9367937 x 1073, 1.7230053 x 1073, 1.9955065 x 1073). (B5)
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And the wave function for the lowest %* state

- In ) |k
€0g+(k) = ZC (=1)"(4z)3/42n+1 2::3 ﬁ|5/|2 3/2@ < 2ﬂ2> (B6)

with the coefficients

G35 = (0.9878460, 10599474 x 10-2,0.1471102,9.8141907 x 102,
43046847 x 1072, 5.8332058 x 1073, 1.7356267 x 1072,
3.4403985 x 1073, 8.4537473 x 1073, 2.0915067 x 1072,
4.6376493 x 1073, 1.3029705 x 1073,2.7383780 x 1072,
8.2387996 x 107, 1.6385724 x 1073, 5.3599390 x 1074). (B7)

The set of wave functions (B1)—(B7) are all normalized according to

dk
/( s loF =1 (BS)

APPENDIX C: WAVE FUNCTIONS IN THE GI MODEL AT FINITE MASS

At finite mass, the wave functions are parametrized by

N |
wi-SEerarirn G E) @

for the ground states J = 0, 1, and by

- In ) |k
(p,;(k):ZC (=1)"(4x)3/42n+1 25:3 ﬂ|5/|2 3/2<ﬂ < 2ﬂ2> (C2)

with J; = 015, 11, 132, 235.
The pseudoscalar B meson wave function is common to all initial states that we are considering. In the GI model, the
mass parameters that fit the data for B mesons are

my = 4977 GeV,  my, =0.220 GeV, f=0.5 GeV, (C3)

and the wave function coefficients are

Cﬁf?}s = (0.9690171,0.1531175,0.1649211, 6.2490419 x 1072,
6.0360532 x 1072,3.1558599 x 1072,2.9348362 x 1072,
1.7991375 x 1072, 1.6438706 x 1072, 1.1053351 x 1072,
9.9637937 x 1073,7.1392222 x 1073, 6.2874621 x 1073,
47953418 x 1073,3.8834463 x 1073,3.5072465 x 1073). (C4)

For the different charmed D mesons, the spectrum is described using the parameters

m; = 1.628 GeV,  m, =0220GeV, =05 GeV (C5)
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and the coefficients of the expansions (C1) and (C2) for the various quantum numbers are given by

cP L = (0.9600527,0.1799335,0.1767118,7.6031193 x 102,
6.8335488 x 1072,3.9312087 x 1072, 3.4507290 x 1072,
22833729 x 1072, 1.9844856 x 1072, 1.4270671 x 1072,
1.2243154 x 1072,9.4011556 x 10~3,7.7781440 x 1073,
6.5341271 x 1073, 4.6821525 x 1073, 5.1816395 x 1073),

CH L = (0.9894823,4.9004469 x 1072,0.1262952,2.2102771 x 1072,
35959065 x 1072, 1.0480723 x 1072, 1.4237838 x 1072,
5380643 x 1073, 6.7386944 x 1073, 2.9314966 x 1073,
35624162 x 1073, 1.6525286 x 1073, 2.0363566 x 1072,
9.2892419 x 107#,1.2249013 x 1073,5.2336301 x 107%),

.
Co = (0.9848158,5.2615825 x 1072,0.1519192,3.4893338 x 102,

4.5274679 x 1072,1.9408170 x 1072, 1.8440058 x 1072,
1.1052819 x 1072, 8.9459708 x 1073, 6.5899095 x 1073,
4.7909911 x 1073,4.1152863 x 1073,2.6809596 x 1073,
2.7001044 x 1073, 1.4315639 x 1073,1.9437365 x 1073),

2+
™2 — (0.9766909, —0.1460503,0.1472010, ~3.2608863 x 102,

3.9174896 x 1072, -9.5297368 x 1073, 1.4054954 x 1072,
—3.5175697 x 1073, 6.1494103 x 1073, —1.5897267 x 1073,
3.0960441 x 1073, —8.5987244 x 107%,1.7280004 x 1073,
—5.3811091 x 107#,1.0204369 x 1073, =3.2012642 x 1074).

(C7)

(€9)

For the two states D (11) and D,(17) the situation is more complicated because at finite mass they are not pure j = § or

j= % From the GI model we find that each of these states has two components with j = % and j = %

The two j =1 and j = 3 components of the D, (17) state, that is dominantly j =1 are the following:

Cgf.(_ll?‘“ = (0.9750784,4.2226720 x 107*,0.1388684, 1.9337032 x 1072,
3.8017304 x 1072, 1.3402707 x 1072, 1.4626256 x 1072,
8.3450762 x 1073,6.9152913 x 1073, 5.2573497 x 1073,
3.6921142 x 1073,3.424697 x 1073,2.0902278 x 1073,
2.3228918 x 1073, 1.1427986 x 1073,2.3432890 x 1073),

7 = (01630617, —1.7655547 x 1072,2.4015685 x 1072, —4.2665031 x 1073,

6.0282979 x 1073, —1.6391013 x 1073, 1.8471151 x 1073,
—9.1877274 x 107*,5.8052647 x 1074, —6.3214857 x 107*,
1.4512054 x 1074, —4.7771402 x 1074, -2.3710345 x 107°,
—3.8210297 x 107, —2.8517570 x 107>, 1.2153198 x 1074).

Of course, the sum of the squared norms of the vectors (C10) and (C11) is normalized, ) ; [|C?' 5
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3

On the other hand, the two j =1 and j =3 components of the D,(1T) state, that is dominantly j =3, are the

2
following:

»

Co ) = (=0.1633738, —4.8339165 x 1073, =2.5603601 x 102, —5.8475351 x 103,
— 8.1983565 x 1073, —3.9683113 x 1073, —3.8034132 x 102,
— 2.6259074 x 1073, —2.1547486 x 103, —1.7860712 x 10~2,
— 1.3476588 x 1073, —1.2581809 x 1073, —8.6974999 x 10,

—9.28100700 x 1074, =5.1979437 x 1074, —7.6447322 x 1074),

(C12)

Co\ ) = (0.9697097,6.9651324 x 1072,0.1564430, —6.7026414 x 1073,
47112839 x 1072, 2.2269301 x 10, 1.9536760 x 102,
2.9314493 x 103,9.8407984 x 103,2.3789247 x 1077,
5.5826771 x 1073, 17778778 x 10~3,3.3748336 x 10~2,

1.3486697 x 1073, 1.9880311 x 1073, 1.2300351 x 1073).

The sum of the squared norms of the vectors (C12) and

(C13) is normalized as expected, Z,-[|C?2(l+)”2|2+
|CiDz(l+)1/2|2] -1

The wave functions of D;(17) and D,(1") must be
orthogonal. The spin and orbital angular momentum parts
of the wave functions D;(17);, and D;(17);,, (i = 1,2)
are orthogonal. For the scalar product between |D; (1))
and |D,(11)) we are then left with the sum of products of
the radial functions for given j =1 and j =3 that, from
(C10)—(C13), indeed vanishes:

(D (1)|Da(17)) o (e e

1

(C14)

APPENDIX D: A SET OF COLLINEAR FRAMES

We have seen above that the current matrix elements in
the BT model are covariant in the heavy quark limit.
|

a?(w? —1)

+052—1—205(1—ct)w—l—(l—0()

(1-aPw’ -1

707 9
@ +2a(l —a)w+ (1 —a)? \/(x2—|—2a(1—a)w—|—(l - a)?

(C13)

|

However, the subleading corrections in 1/m are depen-
dent on the frame. We consider a family of collinear frames,
with the mesons moving along the Oz axis,

v = (0°,0,0,0%), v = (1°,0,0,2'%), (D1)

going continuously between the B meson rest frame
through the final D meson rest frame. These frames can
be labeled by a parameter a, with 0 < a < 1:

(1 —a)v* +av'* = 0. (D2)

The B and the D meson rest frames correspond respectively
to a = 0 and @ = 1, while the intermediate equal velocity
frame (EVF), in which the spatial velocities are equal in

modulus (v° = 20, v* = —1'?) corresponds to the value
1

In terms of this parameter and of the variable w = v.7/,
the four-vectors (C1) then read

a?(w? —1)
270707_ 2 2]
& +2a(l —a)w+ (1 -a)

(1-a)(w? - 1) ) D3)
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APPENDIX E: FORMULAS FOR THE
DECAY RATES

The differential rates can be expressed in terms of the
helicity amplitudes under the form

dar
GFmB |Vcb|2 3 4 /W -1

dw  487°
x (|H(wW)[> + [H_(w)]* + [Ho(w)[*), ~ (E1)

where r =72 (mp being the mass of the corresponding
charmed meson) and the helicity amplitudes squared read,
in the different cases:

(i) B —» D¢v
H, =0,
[Ho(w)2 = (w2 = D1+ 1)k (w) = (1= r)h_(w)].
(E2)
(i) B = D*¢v
|Hy(w)|> = (1 + 7> = 2rw)
X (w4 Dhy, (w)FVw? — 1hy(w)]",
[Ho(w)? = (w+ 1) {<w — ), (w) = (w - 1>
x [rha, (w) + ha, (w)]}2. (E3)
(iii) B — D (0] ,)¢v
H, =0,
[Ho(w)[2 = (w2 = D[(1+ r)gs (w) = (1= r)g-(w)].
(E4)
(iv) B - D™(1,)¢v
HL(w)P = (1+ 72 = 20w)[gy, (W) F 1g4(w)]’.
[Ho(w)2 = {(w = r)gy, (w)
+ (2 = D)lrgy, (w) + gy, (W)]}2, (ES)

PHYSICAL REVIEW D 90, 114014 (2014)
() B = D*(13,)¢v

[H . (w)[?
|Ho(w)]?

= (14 r* =2rw)[fy,(w
={w=r)fv,(w)
+ (W = D[rfy,(w) + fv,(W)]}2. (E6)

(vi) B > D™ (2},)¢v

JFVw =1 AW)

00 =5 (142 = 2rm) (w2 = 1)
x [k, () F VW = Ty (W),
[Ho(w)2 = 2 (02 = 1) { (o = )k, (0

+ (W2 = Drky, (W) + ka,(W)]}>. (E7)

Of course, in the preceding formulas the masses of the
charmed mesons, and hence the parameter r, vary
according to the considered state D,D*,D**(Of/z),
D*(1{,,),D*(13,,) or D**(2;,). Remember also that
the form factor h, (w) is affected by a factor (w + 1),
that does not appear in the corresponding definition of
the form factors gy, (w), fy, (w) for the 17 states and also
the form factors /4,(w) and h, (w) are affected by a
minus sign, contrary to the definitions of gy, (w), fv,(w)
and gy, (w), fy,(w) for the 17 states, as we see in the
definitions (6)—(13).

The decays rates for pionic decays read:

37|V Paifz (dly mg, + mjp,
Fn’ = > Whax = >
mpgmp aw J, 2mpmp
(E8)

where a; =1 is a combination of Wilson coefficients,
and mp is the mass of the corresponding char-
med meson.
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