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We study the three-flavor chirally and dilatation invariant extended linear sigma model with (pseudo)
scalar and (axial-)vector mesons as well as a scalar dilaton field whose excitations are interpreted as a
glueball. The model successfully describes masses and decay widths of quark-antiquark mesons in the
low-energy region up to 1.6 GeV. Here we study in detail the vacuum properties of the scalar-isoscalar
JPC ¼ 0þþ channel and find that (i) a narrow glueball is only possible if the vacuum expectation value of
the dilaton field is (at tree level) quite large (i.e. larger than what lattice QCD and QCD sum rules suggest)
and (ii) only solutions in which f0ð1710Þ is predominantly a glueball are found. Moreover, the resonance
f0ð1370Þ turns out to be mainly ðūuþ d̄dÞ= ffiffiffi

2
p

and thus corresponds to the chiral partner of the pion, while
the resonance f0ð1500Þ is mainly s̄s.
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I. INTRODUCTION

Glueballs are mesons which are solely made of gluons.
The prediction that glueballs exist dates back to the origin
of quantum chromodynamics (QCD) [1]: gluons carry
color charge and interact strongly with each other, so it
is natural to expect that they form bound states. This
expectation is confirmed by numerous simulations of lattice
QCD (see e.g. Refs. [2,3] and Refs. therein), in which a full
spectrum of glueballs with different quantum numbers JPC

(some of which are exotic) has been obtained. Although up
to now no glueball state has been unambiguously identi-
fied, the search for glueballs will be in the focus of the
future PANDA experiment at FAIR [4]. The hope is that the
existence of (at least some of the foreseen) glueballs will be
ultimately established.
The lightest glueball is predicted by lattice QCD to be a

scalar state with a mass of about 1.6 GeV [2,3]. The search
for this state has been, and still is, in the center of vivid
activity in the framework of low-energy QCD. This state is
also important because it is related to two basic phenomena
of QCD: the anomalous breaking of dilatation invariance
and the generation of the gluon condensate. In a widely
studied phenomenological scenario two scalar-isoscalar
quarkonia, n̄n ¼ ðūuþ d̄dÞ= ffiffiffi

2
p

and s̄s, and one bare
glueball state mix and form the scalar resonances
f0ð1370Þ, f0ð1500Þ, and f0ð1710Þ [5–9]. Our aim is to
investigate this system by using a three-flavor chiral
effective approach which we describe in the following.
In Refs. [10–15] an effective model of hadrons, denoted

as the extended linear sigma model (eLSM), has been
developed. The mesonic part of the eLSM contains
(pseudo)scalar and (axial-)vector states as well as a scalar
dilaton/glueball field and is built under the requirements of
chiral symmetry and dilatation invariance. Chiral symmetry

is broken explicitly (by the current quark masses) and, more
importantly, spontaneously (by the chiral condensate).
Dilatation invariance is explicitly broken by a logarithmic
dilaton potential which mimics the trace anomaly of QCD,
according to which gluonic quantum fluctuations give rise
to the fundamental energy scale of QCD,ΛQCD. The dilaton
field, named G, develops a nonzero vacuum expectation
value (vev) G0 and, in turn, the fluctuations around the
minimum represent the scalar glueball.
In this work we investigate the phenomenology of the

scalar glueball in the eLSM. To this end, we extend both
Ref. [12] and Ref. [13]. In Ref. [12] the dilaton has been
first introduced in the eLSM but the model has been
investigated only for the case of two flavors Nf ¼ 2. In
Ref. [13] a more complete study of the vacuum phenom-
enology has been performed in the three-flavor (Nf ¼ 3)
version of the eLSM and a good agreement with exper-
imental data listed in Ref. [16] for both masses and decay
widths has been achieved. However, the dilaton, although
formally present in order to guarantee dilatation invariant
interactions, was not included when calculating mixing in
the scalar-isoscalar sector and the corresponding decays.
In the present paper we close this gap: forNf ¼ 3 the scalar
field G naturally couples to nonstrange and strange
mesonic fields and, in particular, mixes with two scalar-
isoscalar quarkonia states.
There are two important and quite general aspects of the

physics of the scalar glueball, which need to be discussed
separately.
1. Is the scalar glueball broad or narrow? This question

is extremely important for the phenomenology and the
assignment of the scalar glueball to an existing resonance.
Yet, conflicting arguments exist: (i) In the large-Nc limit the
glueball is predicted to be narrow. Namely, the decay of a
bare glueball into two quarkonia (e.g. G → ππ) scales as
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N−2
c (for comparison, the decay of a quark-antiquark state

into two quark-antiquark states scales as N−1
c ). Since the

large-Nc limit is phenomenologically successful, the
quite narrow resonances f0ð1500Þ and f0ð1710Þ are prime
candidates for glueball states. (ii) In Ref. [17] it is shown
that the decay G → ππ depends on the vev G0 of the
dilaton field as G−2

0 . The values of G0 can be related to the
gluon condensate of QCD by assuming that the trace
anomaly is saturated by the dilaton field. Using the values
of the gluon condensate from either QCD sum rules or
lattice QCD calculations, it turns out that the width of the
decay G → ππ is very large (≳500 MeV). The authors of
Ref. [17] conclude that the search for the scalar glueball
may be very difficult (if not impossible) if this state is too
broad. [Note that a wide glueball was also discussed in
Refs. [18–20]].
In Fig. 1 we anticipate our result for the decay of a (bare,

i.e. unmixed) scalar glueball into two pions as function of
the vev G0: for values of G0 which belong to the range
obtained by QCD sum rules and lattice QCD (the vertical
band), G → ππ is also very large, in complete agreement
with Ref. [17]. The two curves correspond to the cases with
and without (axial-)vector states. One can see that the
inclusion of (axial-)vector degrees of freedom reduces the
decay width, but this effect is not sufficient to make it small
enough (whenG0 is inside the vertical band). When mixing
is taken into account, due to interference phenomena the
strong coupling of G to pions may be reduced for the
physical resonances. Yet, since the quarkonium state n̄n is
also expected to be broad, it is not possible to obtain two
narrow resonances f0ð1500Þ and f0ð1710Þ in a three-body
mixing scenario. Thus, we realize that we cannot obtain a
good description of the phenomenology of the states
f0ð1370Þ, f0ð1500Þ, and f0ð1710Þ if we impose that G0

corresponds to the range given by QCD sum rules or
lattice QCD.
2. Assuming that the scalar glueball is narrow, is

f0ð1500Þ or f0ð1710Þ mostly gluonic? A consensus has

grown that the light scalar mesons f0ð500Þ, f0ð980Þ,
a0ð980Þ, K�

0ð800Þ are not quark-antiquark states. The
possible assignments are tetraquark or molecular states
[21,22]. As a consequence, the scalar quark-antiquark
states are located above 1 GeV: a0ð1450Þ and K�

0ð1430Þ
represent the isovector and isodoublet q̄q states with
JPC ¼ 0þþ. This picture has been confirmed in the frame-
work of the eLSM [10–13]. In particular, in Ref. [13] a fit to
a variety of experimental data has shown that the scalar
states lie between 1 and 2 GeV. Then, if the glueball is a
narrow state, the main question is which of the two
resonances f0ð1500Þ and f0ð1710Þ contains the largest
gluonic amount. In our previous work [12] two solutions
were found, one in which f0ð1500Þ and one in which
f0ð1710Þ was predominantly a glueball (the former case
was slightly favored). Here, we re-analyze this issue in a
full three-flavor study of the eLSM and, quite remarkably,
our outcome is now unique: we find that f0ð1710Þ is
predominantly the gluonic state. This result is in agreement
with the original lattice study of Ref. [23], with (some of)
the phenomenological solutions of Refs. [6,24] and, inter-
estingly, with the recent lattice study of J=ψ decays in
Ref. [25]. It should be stressed that the solution in which
f0ð1710Þ is a glueball is obtained only if the value of G0 is
quite large (≳1 GeV). In turn, if this assignment is correct,
this suggests that either the gluon condensate should be
larger than what was previously believed or the dilaton field
is not the only composite field which is responsible for the
trace anomaly. Additional fields may change the values of
the parameters in the dilaton potential and thus help to
reconcile the value of G0 with lattice QCD and QCD
sum rules.
This paper is organized as follows. In Sec. II we present

the chiral Lagrangian of our model: the eLSM with a scalar
glueball. In Sec. III we discuss our results for the masses
and decay widths as well as the three-body mixing of the
resonances f0ð1370Þ, f0ð1500Þ, and f0ð1710Þ. Finally, in
Sec. IV we present our conclusions and an outlook for
future work.

II. THE MODEL

As mentioned in the introduction, the aim of this work
is to study the structure of the three scalar-isoscalar
resonances f0ð1370Þ, f0ð1500Þ, and f0ð1710Þ. To this
end we use the chiral Lagrangian of the eLSM developed in
Refs. [10–13].

A. The dilaton potential

An essential feature of the eLSM is dilatation invariance
together with its anomalous breaking, which we briefly
discuss in the following. The pure Yang-Mills (YM)
Lagrangian reads:

1 2 3 4 5
G0 GeV0.0

0.5

1.0

1.5

2.0
G GeV

FIG. 1 (color online). Decay of the pure glueball field into ππ
for a bare glueball mass mG ¼ 1525 MeV. Dashed (red) line:
(Axial-)vector mesons are decoupled (Zπ ¼ 1). Solid (blue) line:
(Axial-)vector mesons are included (Zπ ≠ 1).

JANOWSKI, GIACOSA, AND RISCHKE PHYSICAL REVIEW D 90, 114005 (2014)

114005-2



LYM ¼ −
1

4
Ga

μνGa;μν with

Ga
μν ¼ ∂μAa

ν − ∂νAa
μ þ gfabcAb

μAc
ν; ð1Þ

where Aa
μ is the gluon field with a ¼ 1;…; N2

c − 1 ¼ 8,Ga
μν

is the gluon field-strength tensor, and g is the QCD
coupling constant. This Lagrangian is classically invariant
under dilatation transformations xμ → λ−1xμ, together with
Aa
μðxÞ → λAa

μðλxÞ. However, when quantum fluctuations
are included and renormalization is carried out, the cou-
pling constant becomes g → gðμÞ, where gðμÞ is the
renormalized running coupling which is a function of
the energy scale μ. As a consequence, the divergence of
the dilatation (Noether) current does not vanish:

∂μJ
μ
YM;dil ¼ Tμ

YM;μ ¼
βðgÞ
4g

Ga
μνGa;μν ≠ 0; ð2Þ

where Tμν
YM is the energy-momentum tensor of the YM

Lagrangian and the β-function is given by βðgÞ ¼
∂g=∂ ln μ. At the one-loop level βðgÞ ¼ −bg3 with
b¼11Nc=ð48π2Þ. This implies g2ðμÞ¼ ½2b lnðμ=ΛYMÞ�−1,
where ΛYM ≈ 200 MeV is the YM scale (dimensional
transmutation). The expectation value of the trace anomaly
does not vanish and represents the so-called gluon
condensate

hTμ
YM;μi ¼ −

11Nc

48

�
αs
π
Ga

μνGa;μν

�
¼ −

11Nc

48
C4; ð3Þ

where

C4 ≈ ð0.3–0.6 GeVÞ4: ð4Þ
The numerical values have been obtained through QCD
sum rules (lower range of the interval) [26] and lattice QCD
simulations (higher range of the interval) [27,28]. In
particular, in Ref. [28] the value C ≈ 0.61 GeV has been
found in the quenched approximation.
At the composite level one can build an effective theory

of the YM sector of QCD by introducing a scalar dilaton
field G which describes the trace anomaly. The dilaton
Lagrangian reads [29,30]

Ldil ¼
1

2
ð∂μGÞ2 −

1

4

m2
G

Λ2

�
G4 ln

����GΛ
���� −G4

4

�
: ð5Þ

The minimum G0 of the dilaton potential is realized for
G0 ¼ Λ. Upon shifting G → G0 þ G, a particle with mass
mG emerges, which is interpreted as the scalar glueball.
The numerical value has been evaluated in lattice QCD
and reads mlat

G ≈ ð1.5–1.7Þ GeV [3]. The logarithmic term
of the potential explicitly breaks the invariance under a
dilatation transformation. The divergence of the corre-
sponding current reads

∂μJ
μ
dil ¼ Tμ

dil;μ ¼ −
1

4

m2
G

Λ2
G4⟶ −

1

4
m2

GΛ
2; ð6Þ

where for the last expression we have set G equal to the
minimum G0 ¼ Λ of the potential.
If we now require that the dilaton field saturates the trace

of the dilatation current, we equate Eq. (3) with Eq. (6) and
obtain:

Λ¼!
ffiffiffiffiffi
11

p
C2

2mG
: ð7Þ

Using mG ≈ ð1.5–1.7Þ GeV and C ≈ 0.61 GeV [28]
implies Λ ≈ 0.4 GeV. [Note that Eq. (5) describes only
the gluonic sector of QCD, thus the comparison with
lattice-QCD results should be done in the quenched
approximation, such as the one of Ref. [28]]. As already
shown in Fig. 1, if the value Λ ≈ 0.4 GeV would hold, the
glueball would be too wide when the coupling to ordinary
quarkonia mesons is switched on. A phenomenology with a
narrow glueball is possible only if Λ≳ 1 GeV, see Sec. III
and the related discussion.

B. The eLSM Lagrangian

The Lagrangian of the eLSM is built by requiring global
chiral Uð3ÞR × Uð3ÞL symmetry, dilatation invariance, as
well as the discrete symmetries charge conjugation C,
parity P, and time reversal T:

L ¼ Ldil þ Tr½ðDμΦÞ†ðDμΦÞ� − Tr

�	
m2

0

�
G
G0

�
2

þ E



Φ†Φ

�
− λ1½TrðΦ†ΦÞ�2 − λ2Tr½ðΦ†ΦÞ2� þ c1ðdetΦ − detΦ†Þ2

þ Tr½HðΦ† þ ΦÞ� þ Tr

�	
m2

1

2

�
G
G0

�
2

þ Δ


ðL2

μ þ R2
μÞ
�
−
1

4
TrðL2

μν þ R2
μνÞ þ

h1
2
TrðΦ†ΦÞTrðLμLμ þ RμRμÞ

þ h2TrðΦ†LμLμΦþ ΦRμRμΦ†Þ þ 2h3TrðΦRμΦ†LμÞ þ…; ð8Þ

where DμΦ ¼ ∂μΦ − ig1ðLμΦ − ΦRμÞ is the covariant derivative and

IS f0ð1710Þ A GLUEBALL? PHYSICAL REVIEW D 90, 114005 (2014)

114005-3



Φ ¼
X8
i¼0

ðSi þ iPiÞTi ¼
1ffiffiffi
2

p

0
BBB@

σNþa0
0
þiðηNþπ0Þffiffi

2
p aþ0 þ iπþ K⋆þ

0 þ iKþ

a−0 þ iπ−
σN−a00þiðηN−π0Þffiffi

2
p K⋆0

0 þ iK0

K⋆−
0 þ iK− K̄⋆0

0 þ iK̄0 σS þ iηS

1
CCCA ð9Þ

is the multiplet of the ordinary scalar (S) and pseudoscalar
(P) mesons including the bare nonstrange σN ≅
ðūuþ d̄dÞ= ffiffiffi

2
p

and strange σS ≅ s̄s fields. Under
Uð3ÞR ×Uð3ÞL chiral transformations Φ transforms as
Φ → ULΦU

†
R. The quantities Lμ ¼ P

8
i¼0ðVμ

i þ Aμ
i ÞTi

and Rμ ¼ P
8
i¼0ðVμ

i − Aμ
i ÞTi are the left- and the right-

handed vector matrices, which are linear combinations of
the vector and axial-vector multiplets Vμ and Aμ. Under
chiral transformations, Lμ→ULLμU

†
L and Rμ → URRμU

†
R.

The assignment of the quark-antiquark fields of our
model to the resonances listed by the PDG [16] is as
follows. (i) In the pseudoscalar sector we assign the fields
~π and K to the physical pion isotriplet and the kaon
isodoublets [16]. The bare fields ηN ≅ iðūγ5uþ d̄γ5dÞ=ffiffiffi
2

p
and ηS ≅ is̄γ5s are the nonstrange and strange con-

tributions to the physical states η and η0ð958Þ [16]
η ¼ ηN cosφη þ ηS sinφη;

η0 ¼ −ηN sinφη þ ηS cosφη; ð10Þ
where φη ≈ −44.6∘ is the pseudoscalar mixing angle [13].
(ii) As shown in the comprehensive study of Ref. [13],
the scalar q̄q states lie above 1 GeV [in turn, the scalar
states below 1 GeV should not be interpreted as q̄q states
but as tetraquarks and/or mesonic molecular states, see
Refs. [21,22,31,32]]. Hence, in the scalar sector we assign
the field ~a0 to the physical isotriplet resonance a0ð1450Þ
and the scalar kaon isodoublet field K⋆

0 to the resonance
K�

0ð1430Þ [16]. The least clear assignment occurs in the
scalar-isoscalar channel because in the region from 1 to
2 GeV there are three resonances which are listed in
Ref. [16]: f0ð1370Þ, f0ð1500Þ, and f0ð1710Þ. Only two
of them can be interpreted as predominantly q̄q states while
the third one is probably predominantly a glueball state G.
The determination of the mixing matrix is carried out later.
(iii) The assignment of the (axial-)vector fields of the model
is straightforward and is presented, together with the
corresponding multiplets, in Appendix A. Notice that there
are other interpretations in which f0ð1370Þ and f0ð1710Þ
are described as dynamically generated resonances out of
vector-vector interactions [33].
Chiral symmetry is spontaneously broken when m2

0 < 0.
Dilatation symmetry is explicitly broken by the logarithmic
term in Eq. (5). The quantity G0 is the vev of the G field,
which, in the full version of the model (8), is (slightly)
larger than Λ appearing in Eq. (5). Moreover, both chiral
and dilatation transformations are explicitly broken by the

terms which describe the nonzero bare quark masses of the
mesons, which are proportional to H ¼ diagfhN; hN; hSg,
Δ ¼ diagf0; 0; δSg, and E ¼ diagf0; 0; ϵSg. Note that the
latter term was not included in Ref. [13] because it
represents a next-to-leading order correction in the expan-
sion in terms of the quark mass. However, due to the fact
that the current mass of the strange quark is not small, this
term is important in our study of the quark-antiquark scalar
state σS. The axial anomaly is described by the determinant
term which is invariant under SUð3ÞR × SUð3ÞL but breaks
UAð1Þ. This term which breaks dilatation symmetry and
originates also from the gluon dynamics is responsible for
the large mass splitting of η and η0. Note that in the chiral
limit (in which H ¼ Δ ¼ E ¼ 0) and neglecting the chiral
anomaly, the requirement of dilatation invariance and
analyticity in G ensures that only a finite number of terms
is allowed in our chiral Lagrangian (8).
Finally, the dots in Eq. (8) indicate further terms which

do not affect the calculations of this work and are therefore
neglected, and additional degrees of freedom which can be
studied in the framework of the eLSM, e.g. a pseudoscalar
glueball ~G, JPC ¼ 0−þ, which couples to the ordinary
scalar and pseudoscalar mesons. The origin of the corre-
sponding chiral Lagrangian, L ~G ¼ ic ~GΦ

~GðdetΦ − detΦ†Þ,
comes from the axial anomaly in the pseudoscalar-isoscalar
sector, see details and predictions for branching ratios in
Ref. [34]. An extension of the eLSM to four flavors allows
to describe quite successfully charmed meson masses and
decays as well [35].

C. Lagrangian, masses, and mixing matrix
of the scalar-isoscalar fields

The three scalar-isoscalar fields σN ≅ ðūuþ d̄dÞ= ffiffiffi
2

p
,

σS ≅ s̄s, and G are the only fields of the model with
quantum numbers of the vacuum, JPC ¼ 0þþ. In order to
study the vev’s and the mixing behavior of these fields we
set all the other fields of the chiral Lagrangian (8) to zero
and obtain the scalar-isoscalar Lagrangian

LσNσSG ¼Ldilþ
1

2
ð∂μσNÞ2þ

1

2
ð∂μσSÞ2−

m2
0

2

�
G
G0

�
2

× ðσ2N þ σ2SÞ− λ1

�
σ2N
2
þ σ2S

2

�
2

−
λ2
4

�
σ4N
2
þ σ4S

�
þhσNσN þhσSσS−

1

2
ϵSσ

2
S: ð11Þ
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Now we perform the shifts of the JPC ¼ 0þþ fields by their
vev’s, σN → σN þ ϕN , σS → σS þ ϕS, andG → GþG0, in
order to obtain their bare masses and the bilinear mixing
terms ∝ σNσS, ∝ σNG, and ∝ σSG. The bare masses of the
nonstrange and strange q̄q fields read

m2
σN ¼ C1 þ 2λ1ϕ

2
N þ 3

2
λ2ϕ

2
N;

m2
σS ¼ C1 þ 2λ1ϕ

2
S þ 3λ2ϕ

2
S þ ϵS;

ð12Þ

where

C1 ¼ m2
0 þ λ1ðϕ2

N þ ϕ2
SÞ ð13Þ

is a constant [13] (see Table I),

ϕN ¼ Zπfπ; ϕS ¼
2ZKfK − ϕNffiffiffi

2
p ; ð14Þ

are the condensates of the nonstrange and strange quark-
antiquark states, where Zπ=K are the wave-function renorm-
alization constants given in Eq. (A7) in Appendix A, and
fπ=K are the vacuum decay constants. The bare mass of the
scalar glueball reads

M2
G ¼ m2

0

G2
0

ðϕ2
N þ ϕ2

SÞ þ
m2

GG
2
0

Λ2

�
1þ 3 ln

����G0

Λ

����
�
: ð15Þ

Note that the bare glueball mass also depends on the quark
condensates ϕN and ϕS, but correctly reduces to mG in the
limit m2

0 ¼ 0 (when quarkonia and the glueball decouple).
When quarkonia couple to the glueball, m2

0 ≠ 0, the vev G0

is given by the equation

−
m2

0Λ
2

m2
G

ðϕ2
N þ ϕ2

SÞ ¼ G4
0 ln

����G0

Λ

����: ð16Þ

This equation shows thatG0 ≳ Λ. For large values of Λ one
has G0 ≃ Λ, while for small values G0 can be somewhat
larger than Λ. This is indeed the reason why the band in
Fig. 1 is slightly shifted to the right when compared to the
range of Λ determined from Eqs. (4) and (7).
The contribution to the tree-level potential, which is of

second order in the fields, reads

Vð2Þ ¼ 1

2
ΣTMΣ;

M ≡
0
B@

m2
σN 2λ1ϕNϕS 2m2

0ϕNG−1
0

2λ1ϕNϕS m2
σS 2m2

0ϕSG−1
0

2m2
0ϕNG−1

0 2m2
0ϕSG−1

0 M2
G

1
CA;

Σ≡
0
B@

σN

σS

G

1
CA: ð17Þ

Following the usual diagonalization procedure, an orthogo-
nal matrix B is introduced such that the matrix M0 ¼
BMBT is diagonal. As a consequence, B links the bare
scalar-isoscalar fields to the physical resonances:

0
B@

f0ð1370Þ
f0ð1500Þ
f0ð1710Þ

1
CA≡ Σ0 ¼

0
B@

σ0N
σ0S
G0

1
CA ¼ BΣ ¼ B

0
B@

σN

σS

G

1
CA: ð18Þ

D. Parameters of the model

In Ref. [13] a global fit was performed, in which 21
experimental quantities were fitted to eleven parameters of
the eLSM. Due to their ambiguous status, scalar-isoscalar
mesons were not part of the fit, which allowed to exclude
the coupling constants λ1 and h1 from the fit. Since we are
now explicitly interested in the scalar-isoscalar resonances,
these two coupling constants must be considered, which
brings the number of parameters to 13. Furthermore, in the
fit of Ref. [13], the glueball was considered to be frozen.
This approximation is justifiable in the large-Nc limit
because the coupling of one scalar glueball to m ordinary
mesons scales as ∼N−m=2

c . In this study the scalar glueball is
present, which introduces two additional parameters Λ and
mG, so that we have 15 parameters. Moreover, there is an
additional mass term ∝ ϵS not present in the study of
Ref. [13], and thus our chiral Lagrangian (8) contains 16
parameters. However, since the parameter g2 (which is
contained in the dots in Eq. (8)) does not play any role in
the present study, we can omit it in the following, bringing
the total number of relevant parameters to be fitted to 15: Λ,
mG, m0, m1, λ1, λ2, h1, h2, h3, g1, c1, h0N , h0S, δS, ϵS. For
the calculations in this work we use the values of the
parameters entering the Lagrangian (8), i.e. λ2, h2, h3, g1,
c1, h0N , h0S, δS, as well as the two combinations C1 [see
Eq. (13)], C2 ¼ m2

1 þ h1
2
ðϕ2

N þ ϕ2
SÞ determined in Ref. [13]

and shown in Table I.
We will perform a fit by using the remaining five free

parameters entering into the model: Λ, mG, λ1, h1, ϵS.

TABLE I. Values of the parameters from Ref. [13].

Parameter Value Parameter Value

C1 −0.918 × 106 MeV2 C2 0.413 × 106 MeV2

c1 450 × 10−6 MeV−2 δS 0.151 × 106 MeV2

g1 5.84 λ2 68.3
h2 9.88 h3 3.87
ϕN 164.6 MeV ϕS 126.2 MeV
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III. RESULTS AND DISCUSSION

A. Input and results of the χ 2 analysis

Using the χ2 analysis,

χ2 ≡ χ2ðxiÞ ¼
X8
j¼1

�
Qth

j ðxiÞ −Qex
j

ΔQex
j

�2

; with

i ¼ 1;…; 5;

ð19Þ

we fit eight experimental quantities to the five parameters
xi ¼ Λ, mG, λ1, h1, ϵS of our chiral model summarized in
Tables. II and III.
For the mass of f0ð1370Þ we use the value Mf0ð1370Þ ¼

ð1350� 150Þ MeV and we increase the experimental
errors of Mf0ð1500Þ ¼ ð1505� 6Þ MeV and Mf0ð1710Þ ¼
ð1720� 6Þ [16] to 5% of their physical values. This
procedure was also applied in Ref. [13], arguing that the
precision of our model cannot be better than 5% since it
does not account e.g. for isospin breaking effects.
Moreover, in order to better constrain the fit we use the
value Γf0ð1370Þ→ππ ¼ 325 MeV [36] together with an esti-
mated uncertainty [not given in [36]] of about 100 MeV.
The parameters in Table II, for which χ2=d:o:f: ≈ 0.35 was
achieved, and the masses as well as the decay widths of the
scalar-isoscalar resonances in Table III correspond to the
solution in which σ0N ≡ f0ð1370Þ ≅ ðūuþ d̄dÞ= ffiffiffi

2
p

is
predominantly a nonstrange, σ0S ≡ f0ð1500Þ ≅ s̄s predomi-
nantly a strange q̄q state, and G0 ≡ f0ð1710Þ predomi-
nantly a glueball state.
The bare fields σN ≅ ðūuþ d̄dÞ= ffiffiffi

2
p

, σS ≅ s̄s, and G
generate the resonances f0ð1370Þ, f0ð1500Þ, and
f0ð1710Þ, where the corresponding mixing matrix B,
cf. Eq. (18), is given by

B ¼

0
B@

−0.91 0.24 −0.33
0.30 0.94 −0.17
−0.27 0.26 0.93

1
CA; ð20Þ

which implies the following admixtures of the bare fields to
the resonances:

f0ð1370Þ∶ 83%σN; 6%σS; 11%G;

f0ð1500Þ∶ 9%σN; 88%σS; 3%G;

f0ð1710Þ∶ 8%σN; 6%σS; 86%G: ð21Þ

The parameters λ1 and h1 are small, in agreement with the
large-Nc expectation: they scale as 1=N2

c and not as 1=Nc.
The numerical value Λ ≈ 3.3 GeV suppresses the quarko-
nium-glueball mixing: this is why the admixtures in
Eq. (21) are small.
In the pure YM sector the vev of the dilaton field G is

given by G0 ¼ Λ. The numerical value Λ ≈ 3.3 GeV
implies that the resulting gluon condensate in pure YM,
which is parametrized by the constant C defined in Eq. (3),
reads C ≈ 1.8 GeV, which is a factor 3 larger than the
lattice value C ≈ 0.61 GeV obtained in Ref. [28] in
the quenched-approximation. When quarks are included,
the value of G0 is such that G0 ≈ Λ to a very good level of
precision, see Eq. (16). Similarly, using Eq. (15) the value
of the bare glueball mass in the presence of quarks reads
MG ≈mG. The fact that G0 ≈ Λ and MG ≈mG is also a
consequence of the large value of Λ. (For small Λ≲
0.6 GeV the differences are larger.)
Our determination of the parameter C is based on the

assumption that the glueball is narrow, see Fig. 1 and the
discussion in the introduction. If this assumption does not
hold, the glueball is very broad (and would probably
remain undetected). If, however, the narrow-glueball
hypothesis is correct, our results imply that either (i) the
value of the constant C cannot be directly compared to the
corresponding one appearing in lattice QCD or QCD sum
rules (which is entirely possible because there may be
corrections to the tree-level Lagrangian (5) arising from
renormalization), or (ii) that it is not allowed to assume that
the dilaton field saturates the trace anomaly. In turn, Eq. (6)
would not hold and other contributions should appear in
order to reconcile the mismatch.
The stability of the fit has been also tested by repeating

the minimum search for different values of the parameters,
by increasing or reducing the errors in some channels

TABLE II. Parameters obtained from the fit with the solution:
fσ0N; σ0S; G0g≡ ff0ð1370Þ; f0ð1500Þ; f0ð1710Þg.
Parameter Value

Λ 3297 [MeV]
mG 1525 [MeV]
λ1 6.25
h1 −3.22
ϵS 0.4212 × 106 [MeV2]

TABLE III. Fit with the solution: fσ0N; σ0S; G0g≡ ff0ð1370Þ;
f0ð1500Þ; f0ð1710Þg.
Quantity Fit [MeV] Experiment [MeV]

Mf0ð1370Þ 1444 1200–1500
Mf0ð1500Þ 1534 1505� 6
Mf0ð1710Þ 1750 1720� 6

f0ð1370Þ → ππ 423.6 � � �
f0ð1500Þ → ππ 39.2 38.04� 4.95
f0ð1500Þ → KK̄ 9.1 9.37� 1.69
f0ð1710Þ → ππ 28.3 29.3� 6.5
f0ð1710Þ → KK̄ 73.4 71.4� 29.1
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and by including and/or removing some experimental
quantities. The same pattern has always been found: in
all solutions the resonance f0ð1710Þ is (by far) predomi-
nantly a glueball, while f0ð1370Þ and f0ð1500Þ are
predominantly ðūuþ d̄dÞ= ffiffiffi

2
p

and s̄s quark-antiquark
states, respectively.
In the future, one should also go beyond the present

two-step fit and perform a unique fit in which all 15
parameters are determined at once. However, we do not
expect large variations for the parameters determined in
Ref. [13] and listed in Table I. Otherwise the agreement
with mesonic masses and decays calculated in Ref. [13]
would inevitably be spoiled.

B. Consequences of the χ 2 analysis

As a consequence of our fit we calculate the decay
processes given in Table IV. We discuss our results in the
following:
(a) At present, the different decay channels of the reso-

nance f0ð1370Þ are experimentally not yet well known
because conflicting experimental results exist [16].
Only the full decay width is listed in Ref. [16]:
Γexp
f0ð1370Þ ¼ ð200–500Þ MeV. In our solution the dom-

inant decay channel of f0ð1370Þ is the one into two
pions with a decay width of about 400 MeV. This
corroborates that f0ð1370Þ is predominantly a non-
strange q̄q state as also found in Refs. [11–13]. The
total decay width of f0ð1370Þ obtained with the
parameters of Table II is 598 MeV. In addition, we
found non-negligible contributions from the decays
f0ð1370Þ → ηη and f0ð1370Þ → ρρ → 4π (where
in the latter case we have integrated over the corre-
sponding ρ spectral function). These results are
in qualitative agreement with the experimental analy-
sis of Ref. [36], where Γf0ð1370Þ→ππ ¼ 325 MeV,
Γf0ð1370Þ→4π≈50MeV, and Γf0ð1370Þ→ηη=Γf0ð1370Þ→ππ ¼
0.19�0.07. Note that the channel f0ð1370Þ →
f0ð500Þf0ð500Þ → 4π is not included in our model,
so our determination of the 4π–decay mode is not
complete.

(b) When omitting the quantity Γf0ð1370Þ→ππ from the fit, a
solution with a similar phenomenology is found.

However, the state f0ð1370Þ would be somewhat
too wide (≈700 MeV.) This is why we have decided
to include the quantity Γf0ð1370Þ→ππ ¼ 325 MeV [36]
in the fit.

(c) The decay channel f0ð1500Þ → ηη turns out to be in
good agreement with the experiment.

(d) Experimentally, there is also a sizable contribution
of the channel f0ð1500Þ → 4π: Γexp

f0ð1500Þ→4π ¼
ð54.0� 7.1Þ MeV. We have calculated the decay of
f0ð1500Þ into 4π only through the intermediate ρρ
state (as in the case of f0ð1370Þ and f0ð1710Þ,
respectively, including the ρ spectral function). We
found that this decay channel is strongly suppressed.
However, we expect a further (and much larger)
contribution to this decay channel through the inter-
mediate state of two f0ð500Þ resonances, but f0ð500Þ
is not implemented in the present model, see outlook I
in Sec. IV.

(e) The decay channel f0ð1710Þ → ηη is slightly larger
than the experiment.

(f) In comparison with the Nf ¼ 2 results of Ref. [12], we
now find that the decay channel f0ð1710Þ → ρρ → 4π
is strongly suppressed. The reason is the scaling
Γf0ð1710Þ→ρρ→4π ∝ 1=G0. This is indeed an important
point: in Ref. [12] two scenarios were phenomeno-
logically acceptable, one in which f0ð1500Þ and
one in which f0ð1710Þ is predominantly a glueball.
The latter case was, however, slightly disfavored
because Γf0ð1710Þ→ρρ→4π was too large in virtue of
the vev G0 ∼ Λ, which was much smaller in that case.
A solution of that type was possible because only one
quarkonium existed and less experimental information
was taken into account.

IV. CONCLUSIONS AND OUTLOOK

A. Conclusions

In the present paper, the scalar glueball state of the
extended linear sigma model, which was considered to be
frozen in Ref. [13], was elevated to a dynamical degree of
freedom. We then studied a three-state mixing scenario
in the scalar-isoscalar sector, where a nonstrange and a
strange quark-antiquark state mix with the glueball to
produce the physical resonances f0ð1370Þ, f0ð1500Þ, and
f0ð1710Þ. We have found that the resonance f0ð1710Þ is
predominantly a glueball state, as was also obtained
in Refs. [6,23–25]. Moreover, we find that the state
f0ð1370Þ is predominantly a nonstrange quarkonium
ðūuþ d̄dÞ= ffiffiffi

2
p

and f0ð1500Þ a strange quarkonium s̄s.
Our solution implies that the gluon condensate G0 arising
from the tree-level dilaton potential (5) is about a factor 3
larger than the one obtained in lattice QCD and QCD
sum rule calculations. As already noticed in Ref. [17],
this is quite natural if one wants to obtain a narrow
glueball state.

TABLE IV. Consequences of the fit with the solution:
fσ0N; σ0S; G0g≡ ff0ð1370Þ; f0ð1500Þ; f0ð1710Þg.
Decay channel Our value [MeV] Experiment [MeV]

f0ð1370Þ → KK̄ 117.5 � � �
f0ð1370Þ → ηη 43.3 � � �
f0ð1370Þ → ρρ → 4π 13.8 � � �
f0ð1500Þ → ηη 4.7 5.56� 1.34
f0ð1500Þ → ρρ → 4π 0.2 > 54.0� 7.1
f0ð1710Þ → ηη 57.9 34.3� 17.6
f0ð1710Þ → ρρ → 4π 0.5 � � �
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B. Outlook

1. Inclusion of light tetraquark fields

One should include the nonet of light scalar states
f0ð500Þ, f0ð980Þ, a0ð980Þ, and K�

0ð800Þ, which then
allows to describe all scalar states up to 1.7 GeV.
Indeed, in the two-flavor case the resonance f0ð500Þ as
a tetraquark/molecular field has been already included in a
simplified version of the eLSM [37], in which chiral
symmetry restoration at nonzero temperature has been
studied, and in the extension of the eLSM to the baryonic
sector [38]. The role of f0ð500Þ is important because it
induces a strong attraction between nucleons and affects the
properties of nuclear matter at nonzero density.
In the three-flavor case chiral models with tetraquark

fields but without (axial-)vector mesons were studied
[31,32,39]. The isovector resonances a0ð1450Þ and
a0ð980Þ arise as a mixing of a bare quark-antiquark and
a bare tetraquark/molecular field configuration. A similar
situation holds in the isodoublet sector for K�

0ð1430Þ and
K�

0ð800Þ. The mixing angle turns out to be small [32]. In
the scalar-isoscalar sector one has a mixing of five bare
fields, which leads to the five resonances f0ð500Þ, f0ð980Þ,
f0ð1370Þ, f0ð1500Þ, and f0ð1710Þ [31].
In the framework of the eLSM, the inclusion of the light

scalars should also contain their coupling to (axial-)vector
degrees of freedom as well as to the dilaton field. A
variety of decays, such as the decays of the light scalars
(f0ð500Þ → ππ, f0ð980Þ → KK, etc.) as well as decays
into them (a1ð1230Þ → f0ð500Þπ, f0ð1500Þ → f0ð500Þ
f0ð500Þ, etc.) can be studied. Moreover, the mixing in

the isovector, isodoublet, and–most importantly–in the
isoscalar sector can be investigated in such a framework.

2. Inclusion of other glueball fields

In Ref. [34] the pseudoscalar glueball has been coupled
to the eLSM and its branching ratios have been calcu-
lated. The mass of the pseudoscalar glueball is about
2.6 GeV [2], which is already in the reach of the PANDA
experiment [4]. Lattice QCD predicts a full tower of
heavier gluonic states with various quantum numbers,
such as JPC ¼ 1−−, 1þ−, 2þþ;… [2,3]. These glueball
states can be easily implemented in the eLSM in a chirally
invariant way: the decays can be evaluated, thus giving
useful information about the properties of these (still
hypothetical) glueballs. The search for theses states could
be simplified if clear theoretical input about their decay
pattern is known.
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APPENDIX A: DETAILS OF THE EXTENDED
LINEAR SIGMA MODEL

1. Vector and (axial-)vector multiplets
and renormalization constants

The left-handed and right-handed (axial-)vector fields of
the eLSM are contained in the multiplets [13]

Lμ ¼
X8
i¼0

ðVμ
i þ Aμ

i ÞTi ¼
1ffiffiffi
2

p

0
BBB@

ωμ
Nþρμ0ffiffi

2
p þ fμ

1Nþaμ0
1ffiffi

2
p ρμþ þ aμþ1 K⋆μþ þ Kμþ

1

ρμ− þ aμ−1
ωμ
N−ρ

μ0ffiffi
2

p þ fμ
1N−a

μ0
1ffiffi

2
p K⋆μ0 þ Kμ0

1

K⋆μ− þ Kμ−
1 K̄⋆μ0 þ K̄μ0

1 ωμ
S þ fμ1S

1
CCCA; ðA1Þ

and

Rμ ¼
X8
i¼0

ðVμ
i − Aμ

i ÞTi ¼
1ffiffiffi
2

p

0
BBB@

ωμ
Nþρμ0ffiffi

2
p − fμ

1Nþaμ0
1ffiffi

2
p ρμþ − aμþ1 K⋆μþ − Kμþ

1

ρμ− − aμ−1
ωμ
N−ρ

μ0ffiffi
2

p − fμ
1N−a

μ0
1ffiffi

2
p K⋆μ0 − Kμ0

1

K⋆μ− − Kμ−
1 K̄⋆μ0 − K̄μ0

1 ωμ
S − fμ1S

1
CCCA: ðA2Þ

The assignment of the fields in Eq. (A1) and (A2) to the physical resonances is as follows. In the JPC ¼ 1−− sector the
nonstrange ωμ

N and the strange ωμ
S field represent the resonance ωð782Þ and ϕð1020Þ, respectively. The isotriplet field ~ρμ

and the isodoublet fields K⋆μ correspond to the resonance ρð770Þ and K�ð1410Þ, respectively. In the JPC ¼ 1þþ sector the
nonstrange fμ1N and the strange fμ1S field are assigned to the resonance f1ð1285Þ and f1ð1420Þ. The isotriplet field ~aμ1 is
identified with the resonance a1ð1260Þ. Finally, the isodoublet fields K1 corresponds to a mixture of K1ð1270Þ and
K1ð1400Þ, for details see Ref. [40].
Spontaneous breaking of chiral symmetry induces bilinear terms in the Lagrangian of the eLSM which can be eliminated

by shifting the (axial-)vector fields as follows [13],
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fμ1N=S → fμ1N=S þ ZηN=S
wf1N=S

∂μηN=S;

aμ�;0
1 → aμ�;0

1 þ Zπwa1∂μπ�;0;
ðA3Þ

Kμ�;0;0̄
1 → Kμ�;0;0̄

1 þ ZKwK1
∂μK�;0;0̄;

K⋆μ�;0;0̄ → K⋆μ�;0;0̄ þ ZK⋆wK⋆∂μK⋆�;0;0̄
0 : ðA4Þ

After performing this procedure additional kinetic terms
occur. In order to remove the latter a redefinition of the
(pseudo)scalar fields is required,

π�;0 → Zππ
�;0; ηN=S → ZηN=S

ηN=S; ðA5Þ

K�;0;0̄ → ZKK�;0;0̄; K⋆�;0;0̄
0 → ZK⋆K⋆�;0;0̄

0 ; ðA6Þ

where

Zπ ¼ ZηN ¼ ma1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
m2

a1 − g21ϕ
2
N

q ;

ZK ¼ 2mK1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
4m2

K1
− g21ðϕN þ ffiffiffi

2
p

ϕSÞ2
q ;

ðA7Þ

ZK⋆ ¼ 2mK⋆ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
4m2

K⋆ − g21ðϕN −
ffiffiffi
2

p
ϕSÞ2

q ;

ZηS ¼
mf1Sffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

m2
f1S

− 2g21ϕ
2
S

q ðA8Þ

are the wave-function renormalization constants and

wf1N ¼ wa1 ¼
g1ϕN

m2
a1

; wf1S ¼
ffiffiffi
2

p
g1ϕS

m2
f1S

; ðA9Þ

wK⋆ ¼ ig1ðϕN −
ffiffiffi
2

p
ϕSÞ

2m2
K⋆

; wK1
¼ g1ðϕN þ ffiffiffi

2
p

ϕSÞ
2m2

K1

:

ðA10Þ
Explicit breaking of chiral symmetry is incorporated by the
following constant matrices,

H ¼ H0T0 þH8T8 ¼

0
BB@

h0N
2

0 0

0 h0N
2

0

0 0 h0Sffiffi
2

p

1
CCA; ðA11Þ

E ¼ E0T0 þ E8T8 ¼

0
BB@

~ϵN
2

0 0

0 ~ϵN
2

0

0 0 ~ϵSffiffi
2

p

1
CCA≡

0
B@

ϵN 0 0

0 ϵN 0

0 0 ϵS

1
CA;

ðA12Þ

Δ ¼ Δ0T0 þ Δ8T8

¼

0
BBB@

~δN
2

0 0

0
~δN
2

0

0 0
~δSffiffi
2

p

1
CCCA≡

0
B@

δN 0 0

0 δN 0

0 0 δS

1
CA; ðA13Þ

where the terms in Eqs. (A12) and (A13) are next-to-
leading corrections in the current quark masses.

APPENDIX B: DECAY WIDTHS

In this work we compute two-body decays using the
well-known formula

ΓA→BC ¼ sfI
kf

8πm2
A
j − iAA→BCj2; ðB1Þ

where

kf ¼ 1

2mA

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
m4

A þ ðm2
B −m2

CÞ2 − 2m2
Aðm2

B þm2
CÞ

q
× θðmA −mB −mCÞ ðB2Þ

is the modulus of the three-momentum of one of the
outgoing particles (the moduli of the momenta are equal in
the rest frame of the decaying particle) and AA→BC is the
decay amplitude. The symmetry factor sf avoids double
counting of identical Feynman diagrams and I is the
isospin factor which considers all subchannels of a par-
ticular decay channel. The θ function encodes the decay
threshold.
All relevant expressions for the decay processes studied

in this work are extracted from the Lagrangian (8) and are
presented in the following.

1. Decays of the scalar-isoscalar fields into ππ

Following the general formula (B1) we obtain for the
decay widths of the scalar-isoscalar resonances into ππ

Γf0→ππ ¼ 6

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
m2

f0
4
−m2

π

q
8πm2

f0

j − iAf0→ππðmf0Þj2; ðB3Þ

where mf0 is the mass of the physical f0 resonance. The
bare amplitudes (as functions of mf0) are

−iAσN→ππðmf0Þ¼ i

�
AσNππ−BσNππ

m2
f0
−2m2

π

2
−CσNππm

2
π

�
;

ðB4Þ

−iAσS→ππðmf0Þ ¼ i

�
AσSππ − BσSππ

m2
f0
− 2m2

π

2

�
; ðB5Þ

IS f0ð1710Þ A GLUEBALL? PHYSICAL REVIEW D 90, 114005 (2014)

114005-9



−iAG→ππðmf0Þ ¼ i

�
AGππ − BGππ

m2
f0
− 2m2

π

2

�
; ðB6Þ

with the corresponding constants

AσNππ ¼ −
�
λ1 þ

λ2
2

�
Z2
πϕN; ðB7Þ

BσNππ ¼ −2g1Z2
πwa1 þ

�
g21 þ

h1 þ h2 − h3
2

�
Z2
πw2

a1ϕN;

ðB8Þ

CσNππ ¼ −g1Z2
πwa1 ; ðB9Þ

AσSππ ¼ −λ1Z2
πϕS; ðB10Þ

BσSππ ¼
h1
2
Z2
πw2

a1ϕS; ðB11Þ

AGππ ¼ −
m2

0

G0

Z2
π; ðB12Þ

BGππ ¼
m2

1

G0

Z2
πw2

a1 : ðB13Þ

After performing an orthogonal transformation we obtain
the amplitudes for the physical scalar-isoscalar fields
σ0N ≡ f0ð1370Þ, σ0S ≡ f0ð1500Þ, and G0 ≡ f0ð1710Þ:

−iAσ0N→ππðmσ0N
Þ ¼ i½AσN→ππðmσ0N

Þb11 þAσS→ππðmσ0N
Þb12 þAG→ππðmσ0N

Þb13�; ðB14Þ

−iAσ0S→ππðmσ0S
Þ ¼ i½AσN→ππðmσ0S

Þb21 þAσS→ππðmσ0S
Þb22 þAG→ππðmσ0S

Þb23�; ðB15Þ

−iAG0→ππðmG0 Þ ¼ i½AσN→ππðmG0 Þb31 þAσS→ππðmG0 Þb32 þAG→ππðmG0 Þb33�; ðB16Þ

where bij, i; j ¼ 1; 2; 3, are the corresponding elements of
the mixing matrix B from Eq. (18).

2. Decays of the scalar-isoscalar fields into KK

Following the general formula (B1) we obtain for the
decay widths of the scalar-isoscalar resonances into KK

Γf0→KK ¼ 2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
m2

f0
4
−m2

KK

q
8πm2

f0

j − iAf0→KKðmf0Þj2; ðB17Þ

where the bare amplitudes are

−iAσN→KKðmf0Þ ¼ i

	
AσNKK − ðBσNKK − 2CσNKKÞ

m2
f0
− 2m2

K

2
þ 2CσNKKm

2
K



; ðB18Þ

−iAσS→KKðmf0Þ ¼ i

	
AσSKK − ðBσSKK − 2CσSKKÞ

m2
f0
− 2m2

K

2
þ 2CσSKKm

2
K



; ðB19Þ

−iAG→KKðmf0Þ ¼ i

�
AGKK − BGKK

m2
f0
− 2m2

K

2

�
ðB20Þ

and the corresponding constants read

AσNKK ¼ Z2
Kffiffiffi
2

p
h
λ2ðϕS −

ffiffiffi
2

p
ϕNÞ − 2

ffiffiffi
2

p
λ1ϕN

i
; ðB21Þ

BσNKK ¼ g1
2
Z2
KwK1

h
−2þ g1wK1

ðϕN þ
ffiffiffi
2

p
ϕSÞ

i

þ Z2
Kw

2
K1

2

h
ð2h1 þ h2ÞϕN −

ffiffiffi
2

p
h3ϕS

i
; ðB22Þ

CσNKK ¼ g1
2
Z2
KwK1

; ðB23Þ

AσSKK ¼ Z2
Kffiffiffi
2

p
h
λ2ðϕN − 2

ffiffiffi
2

p
ϕSÞ − 2

ffiffiffi
2

p
λ1ϕS

i
; ðB24Þ

BσSKK ¼
ffiffiffi
2

p
g1
2

Z2
KwK1

h
−2þ g1wK1

ðϕN þ
ffiffiffi
2

p
ϕSÞ

i

þ Z2
Kw

2
K1ffiffiffi
2

p
h ffiffiffi

2
p

ðh1 þ h2ÞϕS − h3ϕN

i
; ðB25Þ
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CσSKK ¼
ffiffiffi
2

p
g1
2

Z2
KwK1

; ðB26Þ

AGKK ¼ −
2m2

0

G0

Z2
K; ðB27Þ

BGKK ¼ 2m2
1

G0

Z2
Kw

2
K1
: ðB28Þ

After performing an orthogonal transformation we obtain the amplitudes for the physical scalar-isoscalar fields

−iAσ0N→KKðmσ0N
Þ ¼ i½AσN→KKðmσ0N

Þb11 þAσS→KKðmσ0N
Þb12 þAG→KKðmσ0N

Þb13�; ðB29Þ

−iAσ0S→KKðmσ0S
Þ ¼ i½AσN→KKðmσ0S

Þb21 þAσS→KKðmσ0S
Þb22 þAG→KKðmσ0S

Þb23�; ðB30Þ

−iAG0→KKðmG0 Þ ¼ i½AσN→KKðmG0 Þb31 þAσS→KKðmG0 Þb32 þAG→KKðmG0 Þb33�; ðB31Þ

which we assign to the physical resonances as follows:
σ0N ≡ f0ð1370Þ, σ0S ≡ f0ð1500Þ, and G≡ f0ð1710Þ.

3. Decays of the scalar-isoscalar fields into ηη

Following the general formula (B1) we obtain for the
decay widths of the scalar-isoscalar resonances into ηη

Γf0→ηη ¼ 2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
m2

f0
4
−m2

η

q
8πm2

f0

j − iAf0→ηηðmf0Þj2; ðB32Þ

where the bare amplitudes are

− iAσN→ηηðmf0Þ

¼ i

�
AσNηη − BσNηη

m2
f0
− 2m2

η

2
þ CσNηη

m2
f0

2

�
; ðB33Þ

− iAσS→ηηðmf0Þ

¼ i

�
AσSηη − BσSηη

m2
f0
− 2m2

η

2
þ CσSηη

m2
f0

2

�
; ðB34Þ

−iAG→ηηðmf0Þ ¼ i

	�
AGηNηN − BGηNηN

m2
f0
− 2m2

η

2

�
cosφη þ

�
AGηSηS − BGηSηS

m2
f0
− 2m2

η

2

�
sinφη



ðB35Þ

and the corresponding constants read

AσNηη ¼ −Z2
πϕN

�
λ1 þ

λ2
2
þ c1ϕ2

S

�
cos2φη

− Z2
ηSϕN

�
λ1 þ

c1
2
ϕ2
N

�
sin2φη

−
3

4
c1ZπZηSϕ

2
NϕS sinð2φηÞ; ðB36Þ

BσNηη ¼ −
Z2
πw2

a1

ϕN

�
m2

1 þ
h1
2
ϕ2
S þ 2δN

�
cos2φη

þ h1
2
Z2
ηSw

2
f1S
ϕNsin2φη; ðB37Þ

CσNηη ¼ g1Z2
πwa1 cos

2 φη; ðB38Þ

AσSηη ¼ −Z2
ηSϕSðλ1 þ λ2Þsin2φη

− Z2
πϕSðλ1 þ c1ϕ2

NÞcos2φη

−
1

4
c1ZπZηSϕ

3
N sinð2φηÞ; ðB39Þ

BσSηη ¼ −
Z2
ηSw

2
f1S

ϕS

�
m2

1 þ
h1
2
ϕ2
N þ 2δS

�
sin2φη

þ h1
2
Z2
πw2

a1ϕScos2φη; ðB40Þ

CσSηη ¼
ffiffiffi
2

p
g1Z2

ηSwf1Ssin
2φη; ðB41Þ

AGηNηN ¼ −
m2

0

G0

Z2
π; ðB42Þ
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BGηNηN ¼ m2
1

2G0

Z2
πw2

f1N
; ðB43Þ

AGηSηS ¼ −
m2

0

G0

Z2
ηS ; ðB44Þ

BGηSηS ¼
m2

1

G0

Z2
ηSw

2
f1S
: ðB45Þ

After performing an orthogonal transformation we obtain the amplitudes for the physical scalar-isoscalar fields

−iAσ0N→ηηðmσ0N
Þ ¼ i½AσN→ηηðmσ0N

Þb11 þAσS→ηηðmσ0N
Þb12 þAG→ηηðmσ0N

Þb13�; ðB46Þ

−iAσ0S→ηηðmσ0S
Þ ¼ i½AσN→ηηðmσ0S

Þb21 þAσS→ηηðmσ0S
Þb22 þAG→ηηðmσ0S

Þb23�; ðB47Þ

−iAG0→ηηðmG0 Þ ¼ i½AσN→ηηðmG0 Þb31 þAσS→ηηðmG0 Þb32 þAG→ηηðmG0 Þb33�; ðB48Þ

which we assign to the physical resonances as follows:
σ0N ≡ f0ð1370Þ, σ0S ≡ f0ð1500Þ, and G≡ f0ð1710Þ.

4. Decays of the scalar-isoscalar fields into ρρ → 4π

The decay processes f0 → ρρ → 4π are on the threshold,
hence we use for the calculation of the decay widths the
spectral function of the ρ meson

dρðXmρ
Þ¼N

X2
mρ
Γρ→ππðXmρ

Þ
ðX2

mρ
−m2

ρÞ2þX2
mρ
Γ2
ρ→ππðXmρ

ÞθðXmρ
−2mπÞ;

ðB49Þ
where N is a normalization constant. Considering the
polarization of the ρ mesons the general amplitude reads

j− iAf0→ρρðmf0 ;Xi;mρ
Þj2

¼A2
ρρ

"
4−

X2
1;mρ

þX2
2;mρ

m2
ρ

þ
ðm2

f0
−X2

1;mρ
−X2

2;mρ
Þ2

4m4
ρ

#
;

ðB50Þ

where i ¼ 1; 2 and Aρρ is one of the corresponding
constants

AσNρρ ¼
ϕN

2
ðh1 þ h2 þ h3Þ; ðB51Þ

AσSρρ ¼
ϕS

2
h1; ðB52Þ

AGρρ ¼
m2

1

G0

: ðB53Þ

The physical amplitudes of the scalar-isoscalar fields read

j − iAσ0N→ρρðmf0 ; Xi;mρ
Þj2 ¼ ½AσNρρb11 þ AσSρρb12 þ AGρρb13�2

"
4 −

X2
1;mρ

þ X2
2;mρ

m2
ρ

þ
ðm2

f0
− X2

1;mρ
− X2

2;mρ
Þ2

4m4
ρ

#
; ðB54Þ

j − iAσ0S→ρρðmf0 ; Xi;mρ
Þj2 ¼ ½AσNρρb21 þ AσSρρb22 þ AGρρb23�2

"
4 −

X2
1;mρ

þ X2
2;mρ

m2
ρ

þ
ðm2

f0
− X2

1;mρ
− X2

2;mρ
Þ2

4m4
ρ

#
; ðB55Þ

j − iAG0→ρρðmf0 ; Xi;mρ
Þj2 ¼ ½AσNρρb31 þ AσSρρb32 þ AGρρb33�2

"
4 −

X2
1;mρ

þ X2
2;mρ

m2
ρ

þ
ðm2

f0
− X2

1;mρ
− X2

2;mρ
Þ2

4m4
ρ

#
: ðB56Þ

The formula for the decays of the scalar-isoscalar fields into ρ mesons and 4π, respectively, reads
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Γf0→ρρðmf0 ; Xi;mρ
Þ ¼ 6

kfðmf0 ; Xi;mρ
Þ

8πm2
f0

j − iAf0→ρρðmf0 ; Xi;mρ
Þj2θðmf0 − X1;mρ

− X2;mρ
Þ; ðB57Þ

Γf0→ρρ→4π ¼
Z

∞

0

Z
∞

0

Γf0→ρρðmf0 ; Xi;mρ
ÞdρðX1;mρ

ÞdρðX2;mρ
ÞdX1;mρ

dX2;mρ
: ðB58Þ

The scalar-isoscalar fields are assigned to the physical resonances as follows: σ0N ≡ f0ð1370Þ, σ0S ≡ f0ð1500Þ,
and G≡ f0ð1710Þ.
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