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An explicit form of the pion scalar form factor ΓπðtÞ is constructed by using its phase representation and
a correct description of the S-wave isoscalar ππ phase shift δ00ðtÞ data by the parametrization of tan δ00ðtÞ in
the absolute valued pion c.m. three-momentum q ¼ ½ðt − 4m2

πÞ=4�1=2. This parametrization has been found
starting from fully general considerations. Then a calculation of the corresponding integral in the
framework of the theory of residua provides ΓπðtÞ in the form of a rational function with one zero and four
poles in the q variable. Investigations of the latter poles demonstrate that two of them, to be conjugate
according to the imaginary axis in the q plane, clearly correspond to complex conjugate f0ð500Þ meson
poles on the second Riemann sheet in a momentum transfer squared t variable. Another pair of poles, also
conjugate according to the imaginary axis in the q plane, can be identified with two complex conjugate
poles on the second Riemann sheet in the t variable, corresponding to the f0ð980Þ meson.
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I. INTRODUCTION

In contrast to other SUð3Þ multiplets of hadrons, the
identification of the scalar mesons is a long-standing
puzzle. There are at least two reasons for the latter
situation. First, more particles have been found exper-
imentally with quantum numbers 0þþ than can be
included in one SUð3Þ multiplet. Second, some of them
have decay widths which cause a strong overlap between
resonances and background. In order to avoid these
problems, the present-day experimentally established
scalar mesons [1] are classified into a light scalar nonet
comprising the f0ð500Þ, K�

0ð800Þ, f0ð980Þ, and a0ð980Þ
mesons—not necessarily in qq̄ states—and into a regular
nonet consisting of the f0ð1370Þ, K�

0ð1430Þ, a0ð1450Þ,
and f0ð1500Þ [or f0ð1700Þ] resonances.
But the most problematic case appeared to be the lowest

scalar meson, f0ð500Þ. It has been difficult to establish its
parameters because of its large width and because it could
not be determined by a naive Breit-Wigner form.
The f0ð500Þ scalar meson resonance manifests itself as a

pole on the second Riemann sheet of the S-wave isoscalar
ππ scattering amplitude and many of the determinations of
the mass and width of the f0ð500Þ meson listed by the
Particle Data Group (PDG) are concentrated just on the
identification of the latter pole by using various models
and specific parametrizations. The analytic properties of the
S-wave isoscalar ππ scattering amplitude t00ðsÞ consists of
the right-hand unitary cut and the left-hand dynamical cut.
Many of the aforementioned determinations neglect the
left-hand cut contribution, which also contributed to the
unclear situation with the parameters of the f0ð500Þmeson.
Therefore, some authors questioned the inclusion of the
f0ð500Þ meson.

As a result, this so-called σ meson was listed in PDG data
as “not well established” until 1974 and one has believed in
the existence of a broad and light scalar isoscalar resonance.
However, it was removed from the PDG list in 1976

because two heavier resonances, f0ð980Þ and f0ð1300Þ,
were found and σ meson could be replaced by these two
heavier ones, which could complete a light ðqq̄Þ nonet.
The σ meson was again listed in 1996, after being absent

for more than two decades, although still with an obscure
denotation, f0ð400 − 1200Þ.
The f0ð600Þ meson has been listed as “well established”

since 2002, but with conservative estimate of the mass
ð400–1200Þ MeV and the width ð600–1000Þ MeV.
A clarification of this controversial situation has been

achieved only recently in Refs. [2,3], where clear argu-
ments are presented for the existence of the lowest
resonance in the spectrum of QCD, with quantum numbers
0þþ now to be called the f0ð500Þ scalar meson.
In this paper we demonstrate another confirmation of

the existence of the f0ð500Þ scalar meson resonance by the
construction of an explicit form of the pion scalar form
factor ΓπðtÞ, which does not possess the left-hand cut, so we
automatically avoid any approximations or omission of the
left-hand cut contribution considered in the S-wave isoscalar
partial wave ππ scattering amplitude t00ðsÞ to be used for
identification of the pole on the second sheet, corresponding
to the f0ð500Þ scalar meson resonance. Starting with the
analytic properties of ΓπðtÞ and by an application of the
Cauchy formula, one comes to dispersion relations, which in
combination with the pion scalar form factor elastic unitarity
condition give the Muskelishvili-Omnès integral equations.
Solutions of these equations are phase representations of
ΓπðtÞ, where, under the corresponding integral S-wave
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isoscalarππ phase shift, δ00 appeared.Then thewhole problem
of finding the concrete form of ΓπðtÞ is reduced to the
description of existing data on δ00 and finally to an explicit
(not numerical) calculation of the corresponding integral.
With such a fully solvable mathematical problem, we do

not carry out any analytic extrapolations of experimental
information (in the sense of the original Sorin Ciulli idea)
into the complex plane. Even in advance we do not specify
the number of zeros and poles of the pion scalar form factor
ΓπðtÞ, and all of them appear naturally in the specific
parametrization of tan δ00 in the absolute valued pion c.m.
three-momentum q to be related with momentum transfer
squared t by the relation t ¼ 4ðq2 þm2

πÞ, the correct
description of existing data on δ00ðtÞ, and an explicit
calculation of the corresponding integral to be carried
out in the q variable. The result of this fully solvable
mathematical problem is the pion scalar form factor in the
form of a rational function in the q variable with one zero
and four poles.
Investigations of these poles finally demonstrate that

one pair of them is conjugate according to the imaginary
axis in the q plane and clearly corresponds to the complex
conjugate f0ð500Þ meson poles on the second Riemann
sheet in the momentum transfer squared t variable.
This result alone can be considered another confirmation

of the existence of the f0ð500Þ scalar meson.

II. THE PION SCALAR FORM FACTOR

The pion scalar form factor (FF) ΓπðtÞ is defined by the
matrix element of the scalar quark density

hπiðp2Þ∣m̂ðūuþ d̄dÞ∣πjðp1Þi ¼ δijΓπðtÞ; ð1Þ
where t ¼ ðp2 − p1Þ2, m̂ ¼ 1

2
ðmu þmdÞ and it has similar

properties to the pion electromagnetic FF [4].
The pion scalar FF ΓπðtÞ is analytic in the whole

complex t plane, except for a cut along the positive real
axis, starting at t ¼ 4m2

π .
For real values, t < 4m2

π ΓπðtÞ is real. The latter implies
the so-called reality condition Γ�

πðtÞ ¼ Γπðt�Þ, i.e., that the
values of FF above and below the cut are complex
conjugate to each other.
At t ¼ 0 the pion scalar FF ΓπðtÞ coincides with the pion

σ term [5] Γπð0Þ ¼ ð0.99� 0.02Þm2
π to be evaluated in the

framework of chiral perturbation theory ðχPTÞ. Further, the
pion scalar FF will be normalized exactly to m2

π .
The FF ΓπðtÞ is not a directly measurable quantity and it

enters, e.g., the matrix element for the decay of the Higgs
boson into two pions. However, the contribution to the
decay rate seems to be negligibly small [6,7].
If ΓπðtÞ is evaluated on the upper boundary of the cut,

one finds that the following unitarity condition is obeyed:

ImΓπðtÞ ¼
X
n

hπðp0ÞπðpÞ∣T∣nihn∣m̂ðūuþ d̄dÞ∣0i; ð2Þ

where T is the T operator and the sum runs over a complete
set of the allowed states 2π; 4π;…; KK̄;…, which create
branch points on the positive real axis of the t plane
between 4m2

π and ∞.
In the elastic region 4m2

π ≤ t ≤ 16m2
π , only the first term

on the right-hand side of (2) contributes, then

ImΓπðtÞ ¼ ΓπðtÞðσT0
0Þ�; ð3Þ

where σT0
0 is the S-wave isoscalar ππ scattering amplitude

M0
0 ¼ σT0

0 ¼
1

2 i
ðe2 iδ − 1Þ; ð4Þ

δ ¼ δ00 þ iφ; δ00;φ real, where δ00 stands for the S-wave
isoscalar ππ phase shift and φ > 0 measures the inelasticity.
Though φ vanishes exactly only below t ¼ 16m2

π, the
phenomenological analysis of the ππ interactions [8] shows
that final states containing more than two particles start
playing a significant role only well above 4m2

K ≈ 1 GeV2,
where the inelastic two-body channel ππ → KK̄ opens.
Then,

ImΓπðtÞ ¼ ΓπðtÞe−iδ00 sin δ00 ð5Þ
for 4m2

π ≤ t ≤ 1 GeV2.
From the relation (5), it follows that the phase δΓ of ΓπðtÞ

coincides with δ00 and that this identity alone enables us to
obtain the pion scalar FF ΓπðtÞ behavior that is valid at the
elastic interval 4m2

π ≤ t ≤ 1 GeV2.
The asymptotic behavior

ΓπðtÞ∣t∣→∞ ∼
1

t
ð6Þ

is predicted by the quark counting rules.
Starting with the unitarity condition for the S-wave

isoscalar ππ scattering amplitude

ImM0
0 ¼ −jM0

0j2; ð7Þ

one can do analytic continuation of M0
0 through the upper

and lower boundaries of the unitary elastic cut and can
prove in this way that the singularity at t ¼ 4m2

π is a square
root branch point. As a result, one gets

ðM0
0ÞII ¼

ðM0
0ÞI

1 − 2 iðM0
0ÞI

: ð8Þ

The same can be done with the pion scalar FF and, as a
result, one gets the expression

ðΓπÞII ¼
ðΓπÞI

1 − 2 iðM0
0ÞI

; ð9Þ

relating the pion scalar FF on the second Riemann sheet
with the pion scalar FF and the S-wave isoscalar ππ
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scattering amplitude on the first Riemann sheet, demon-
strating in this way that the singular point of the pion scalar
FF at t ¼ 4m2

π is the square root branch point, generating
the two-sheeted Riemann surface on which the pion scalar
FF is defined.
Moreover, by a comparison of (8) with (9), one can see

that both expressions have identical denominators, from
which it automatically follows that if there are 0þþ scalar
mesons in the form of the poles of the S-wave isoscalar ππ
scattering amplitude on the second Riemann sheet, then
they also appear as poles on the second Riemann sheet of
the pion scalar FF.
Now, by an application of the conformal mapping

q ¼ ½ðt − 4Þ=4�1=2;
mπ ¼ 1; ð10Þ

the two-sheeted Riemann surface of ΓπðtÞ in the t variable
is mapped into one absolute valued pion c.m. three-
momentum q plane and the elastic cut disappears.
Neglecting branch points beyond 1 GeV2, there are only
poles and zeros of ΓπðtÞ in the q plane and, as a
consequence, the pion scalar FF can be represented by a
Padé-type approximation,

ΓπðtÞ ¼
P

M
n¼0 anq

nQ
N
i¼1ðq − qiÞ

: ð11Þ

Because ΓπðtÞ is a real analytic function, the coefficients an
in (11) with M even (odd) are real (purely imaginary), and
the poles qi either can appear on the imaginary axis or the
two of them are placed symmetrically along it.
If one multiplies both the numerator and the denominator

of (11) by the complex conjugate factor
Q

N
i¼1ðq − qiÞ�, the

new denominator is a polynomial with real coefficients
already and a tangent of the pion scalar FF phase δΓðtÞ is
given simply by the ratio of the imaginary part to the real
part of the new numerator, as follows:

tan δΓðtÞ ¼
Im½QN

i¼1ðq − qiÞ�
P

M
n¼1 anq

n�
Re½QN

i¼1ðq − qiÞ�
P

M
n¼1 anq

n� : ð12Þ

Further, by using the identity δΓ = δ00 following from (5)
and the threshold behavior of δ00, the following paramet-
rization,

tan δ00ðtÞ ¼
A1qþ A3q3 þ A5q5 þ A7q7 þ…

1þ A2q2 þ A4q4 þ A6q6 þ…
; ð13Þ

or the equivalent relation

δ00ðtÞ ¼
1

2 i
ln
ð1þ A2q2 þ A4q4 þ A6q6 þ…Þ þ iðA1qþ A3q3 þ A5q5 þ A7q7 þ…Þ
ð1þ A2q2 þ A4q4 þ A6q6 þ…Þ − iðA1qþ A3q3 þ A5q5 þ A7q7 þ…Þ ð14Þ

is obtained from (12), where Ai are all real new coefficients.
The parameter A1 is exactly equal to the S-wave isoscalar
ππ scattering length a00.
One can see directly from (13) that if the degree of

the numerator is higher than the degree of its denominator,
then

lim
q→∞

δ00ðtÞ ¼
π

2
: ð15Þ

However, if the degree of the numerator in (13) is lower
than the degree of its denominator, then

lim
q→∞

δ00ðtÞ ¼ 0: ð16Þ

The above-mentioned asymptotic behaviors cannot be
solved beforehand and only a comparison of (13) with data
on δ00ðtÞ can determine what type of pion scalar FF phase
representations—ones derived from either the dispersion
relation with one subtraction or the dispersion relation
without subtractions—will be suitable in our further
considerations.

III. ANALYSIS OF S-WAVE ISOSCALAR ππ
SCATTERING PHASE SHIFT DATA

In order to obtain an explicit algebraic form of the
S-wave isoscalar ππ scattering phase shift δ00ðtÞ in the q
variable with the final number of real coefficients in (13),
one has to compare the corresponding relation with the
existing experimental information on δ00ðtÞ in the elastic
region 4m2

π < t < 1 GeV2 and to find a minimal value of
χ2=ndf. The existing data, however, in comparison, e.g.,
with P-wave isovector ππ scattering phase shift δ11ðtÞ, are
very scattered, and some points are even inconsistent with
each other. As will be demonstrated despite using such
scattered data on δ00ðtÞ, one can obtain some reasonable
results in the framework of the fully solvable mathematical
scheme elaborated on in this paper.
The majority of experimental data on δ00ðtÞ in the

approximate region from t ¼ 0.26 GeV2 up to t ¼
0.94 GeV2 [9–11] were obtained in the 1970s. They have
been supplemented at the same approximate region by the
data [12] obtained at the beginning of this century by a joint
analysis of the CERN-Munich experiment [9,13] with the
reaction π−p → πþπ−n, at 17.2 GeV=c, and the BNL-
E852 Collaboration [14] with the reaction π−p → π0π0n, at
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18.3 GeV=c. The data in [12] are more or less consistent
with the data of Estabrooks and Martin [11]; however, both
set [11] and set [12] are approximately at the region
0.54 GeV2 < t < 0.84 GeV2, in disagreement with data
of Protopopescu [10].
An invaluable set of data on δ00ðtÞ at the threshold region

[15,16] has been obtained by measuring the difference
δ≡ δ00 − δ11 at the Ke4 ½K� → πþπ−e�νeðν̄eÞ� decays.
Then precise experimental points with isospin correction
obtained by the NA48/2 Collaboration [16] appear to be
especially important in obtaining the correct value of the
S-wave isoscalar ππ scattering length a00 [in our para-
metrization (13) corresponding to the coefficient A1] in
order to coincide with the very precise theoretical predic-
tion in the framework of the χPT, as well as the determi-
nation of the correct value of the f0ð500Þ parameters.
The latter was demonstrated in detail by I. Caprini in [17]
by an analytic extrapolation of the data on δ00 into the region
of f0ð500Þ meson resonance.
The data on δ00ðtÞ from the measured difference δ00ðtÞ −

δ11ðtÞ [15,16] atKe4 decays have been obtained by using the
best fit of the δ11ðtÞ data in [4].
As a result, the set of 95 experimental points in the elastic

region 4m2
π < t < 1 GeV2 has been collected and used for

a determination of a final number of real coefficients in the
relation

δ00ðtÞ ¼ arctan
A1qþ A3q3 þ A5q5 þ A7q7 þ…

1þ A2q2 þ A4q4 þ A6q6 þ…
; ð17Þ

following from (13), by means of the χ2 minimization
method in the framework of the computer program MINUIT.
The analysis has been carried out successively, starting

with the first nonzero coefficient A1 and then repeating the
optimal description of the data, always adding the next
coefficient to be different from zero. So, the data with a
one, two, three, etc., parameter expression (17) have been
analyzed up to the moment when the minimum of χ2=ndf
is achieved.
The results are summarized in the following table:

Number of Ai χ2=ndf

1 57.43
2 3.44
3 2.79
4 2.19
5 1.69
6 1.71
7 1.73

One can see from the table that the minimum of χ2=ndf
is achieved with five nonzero coefficients in (17). The value
of the first coefficient is found to be 0.20820� 0.02491,
very close to the predicted value a00 ¼ 0.2200� 0.0050 by
χPT [18]; therefore, we have fixed the first coefficient

in (17) at the latter value and have repeated the minimi-
zation procedure. Then the five coefficients in (17) take the
values

A1 ¼ 0.22000� 0.00500;

A3 ¼ 0.23167� 0.01268;

A5 ¼ −:016901� 0.00204

A2 ¼ 0.10841� 0.13194;

A4 ¼ −:02702� 0.01564; ð18Þ

giving the description of the data on δ00ðtÞ in the elastic
region presented in Fig. 1 by a solid line.
The latter result [see (15)] requires us to start a

construction of the explicit form of the pion scalar FF
by the dispersion relation with at least one subtraction,

ΓπðtÞ ¼ 1þ t
π

Z
∞

4m2
π

ImΓπðt0Þ
t0ðt0 − tÞ dt

0: ð19Þ

Of course, a dispersion relation with a larger number of
substraction constants could be more effective, as we are
restricted to the elastic region in our fully solvable
mathematical scheme. However, as we mentioned earlier,
the pion scalar FF is not an experimentally measurable
quantity and we know only its normalization point from
χPT, by using of which the dispersion relation (19) with
one subtraction is derived.

FIG. 1. Description of the S-wave isoscalar ππ phase shift
data by the [5=4] Padé-type approximation with the values of
parameters (18). (circle) J. R. Batley et al., (diamond) S. Pislak
et al., (cross) R. Kaminski et al., (square) P. Estabrooks and
A. D. Martin, (triangle) S. D. Protopopescu et al., and (plus)
B. Hyams et al.
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IV. THE PHASE REPRESENTATION
AND EXPLICIT FORM OF THE PION

SCALAR FORM FACTOR

Now, substituting the pion scalar FF elastic unitarity
condition (5) into the dispersion relation with one sub-
traction (19), one finds the Muskhelishvili-Omnes integral
equation,

ΓπðtÞ ¼ 1þ t
π

Z
∞

4m2
π

Γπðt0Þe−iδ00 sin δ00
t0ðt0 − tÞ dt0; ð20Þ

the solution of which is the pion scalar FF phase repre-
sentation with one subtraction

ΓπðtÞ ¼ PnðtÞ exp
�
t
π

Z
∞

4m2
π

δ00ðt0Þ
t0ðt0 − tÞ dt

0
�
; ð21Þ

where PnðtÞ is an arbitrary polynomial to be restricted with
the normalization Pnð0Þ ¼ 1 and its degree must not be
higher than δ00ð∞Þ=π.
The substitution of δ00ðtÞ (17) in the equivalent form (14)

with the five above-mentioned nonzero coefficients into the
pion scalar FF phase representation (21) leads to the
expression

ΓπðtÞ ¼ PnðtÞ exp
ðq2 þ 1Þ

πi

×
Z

∞

0

q0 ln ð1þA2q02þA4q04ÞþiðA1q0þA3q03þA5q05Þ
ð1þA2q02þA4q04Þ−iðA1q0þA3q03þA5q05Þ

ðq02 þ 1Þðq02 − q2Þ dq0;

ð22Þ

in which mπ ¼ 1 is assumed. Taking into account the fact
that the integrand is an even function in its argument, i.e., it
is invariant under the transformation q0 → −q0, the latter
expression can be transformed into the following form:

ΓπðtÞ ¼ PnðtÞ exp
ðq2 þ 1Þ

2πi

×
Z

∞

−∞

q0 ln ð1þA2q02þA4q04ÞþiðA1q0þA3q03þA5q05Þ
ð1þA2q02þA4q04Þ−iðA1q0þA3q03þA5q05Þ

ðq02 þ 1Þðq02 − q2Þ dq0;

ð23Þ

where the integral is already suitable to be calculated by
means of the theory of residua.
In order to carry out this program one has to identify all

poles of the integrand and simultaneously calculate com-
plex roots of the polynomial in the numerator and complex
conjugate roots in the denominator under the logarithm,
which generates branch points in the q plane.

Considering the case q2 < 0, i.e., q ¼ i
ffiffiffiffiffiffi
4−t
4

q
≡ ib, one

finds the poles of the integrand in q0 ¼ �i and q0 ¼ �ib.

Concerning the roots of the polynomials under the
logarithm, it is clear that it is enough to investigate the
roots of the numerator, as the roots of the denominator are
complex conjugate to the roots of the numerator.
So, let us start with an investigation of the numera-

tor ð1þ A2q02 þ A4q04Þ þ iðA1q0 þ A3q03 þ A5q05Þ ¼ 0.
In order to have an equation with real coefficients, one

substitutes q0 ¼ ix.
Then, 1 − A1x − A2x2 þ A3x3 þ A4x4 − A5x5 ¼ 0 or

−x5 þ A4

A5
x4 þ A3

A5
x3 − A2

A5
x2 − A1

A5
xþ 1

A5
¼ 0.

Solutions of the latter equation are straightforward,
where one finds roots of the numerator and the denominator
under the logarithm of integrand ϕðq0; qÞ to be

q1 ¼ −i1.45626;

q2 ¼ −3.67646þ i0.40771;

q3 ¼ −1.17396þ i1.27308;

q4 ¼ 3.67646þ i0.40771;

q5 ¼ 1.17396þ i1.27308; ð24Þ

and

q�1 ¼ −q1;

q�2 ¼ −q4;

q�3 ¼ −q5;

q�4 ¼ −q2;

q�5 ¼ −q3; ð25Þ

respectively.
Then the integral in (23) takes the form

I ¼
Z

∞

−∞

q0 ln ðq0−q1Þðq0−q2Þðq0−q3Þðq0−q4Þðq0−q5Þ
ðq0−q�

1
Þðq0−q�

2
Þðq0−q�

3
Þðq0−q�

4
Þðq0−q�

5
Þ

ðq0 þ iÞðq0 − iÞðq0 þ ibÞðq0 − ibÞ dq
0; ð26Þ

with all of the singularities of its integrand to be explicitly
presented in Fig. 2.
For an explicit calculation of the latter integral (26), it is

convenient to split it into a sum of two integrals

I ¼
Z

∞

−∞

q0 ln ðq0−q2Þðq0−q3Þðq0−q4Þðq0−q5Þ
ðq0−q�

1
Þ

ðq0 þ iÞðq0 − iÞðq0 þ ibÞðq0 − ibÞ dq
0

þ
Z

∞

−∞

q0 ln ðq0−q1Þ
ðq0−q�

2
Þðq0−q�

3
Þðq0−q�

4
Þðq0−q�

5
Þ

ðq0 þ iÞðq0 − iÞðq0 þ ibÞðq0 − ibÞ dq
0 ¼ I1 þ I2;

according to singularities to be placed in the upper or lower
half-plane, respectively.
Let us start to calculate the first integral I1 by the theory

of residua,
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I q0 ln ðq0−q2Þðq0−q3Þðq0−q4Þðq0−q5Þ
ðq0−q�

1
Þ

ðq0 þ iÞðq0 − iÞðq0 þ ibÞðq0 − ibÞ dq
0

¼ 2πi
X2
n¼1

Resn; ð27Þ

where the contour of integration is closed in the upper half-
plane (see Fig. 2).
As the integral on the half-circle is 0, then

I1 ¼
Z

∞

−∞
ϕ1ðq0Þdq0

¼ 2πi
X2
n¼1

Resn −
�
−
Z
1�
þ
Z
2

þ
Z
3

þ
Z
4

þ
Z
5

�
; ð28Þ

where the integrals on the right-hand side represent the
contributions of the cuts generated by the branch points
q�1; q2; q3; q4; q5 in Fig. 2.

The residua at the poles q0 ¼ i; q0 ¼ ib are straightforward to calculate and they are

Resϕ1ði; qÞ ¼ −
1

2ðq2 þ 1Þ ln
ði − q2Þði − q3Þði − q4Þði − q5Þ

ði − q�1Þ
; ð29Þ

Resϕ1ðib; qÞ ¼
1

2ðq2 þ 1Þ ln
ðq − q2Þðq − q3Þðq − q4Þðq − q5Þ

ðq − q�1Þ
; ð30Þ

as ib ¼ q.
Now we move on to the contributions of the cuts. Let us start with the contribution of the cut to be generated by the

branch point q�1:

Z
1�
¼

Z
q�
1

∞

q0lnþðq0 − q�1Þ
ðq02 þ 1Þðq02 þ b2Þ dq

0 þ
Z

∞

q�
1

q0ln−ðq0 − q�1Þ
ðq02 þ 1Þðq02 þ b2Þ dq

0

¼
Z

∞

q�
1

q0

ðq02 þ 1Þðq02 þ b2Þ ½ln−ðq
0 − q�1Þ − lnþðq0 − q�1Þ�dq0

¼ −2πi
Z

∞

q�
1

q0

ðq02 þ 1Þðq02 þ b2Þ dq
0

¼ −
πi

ðb2 − 1Þ ln
ðq�21 þ b2Þ
ðq�21 þ 1Þ ≡ 1

2

2πi
ðq2 þ 1Þ ln

ðq�21 − q2Þ
ðq�21 þ 1Þ : ð31Þ

Similarly,

Z
j
¼ −

πi
ðb2 − 1Þ ln

ðq2j þ b2Þ
ðq2j þ 1Þ ≡ 1

2

2πi
ðq2 þ 1Þ ln

ðq2j − q2Þ
ðq2j þ 1Þ ; j ¼ 2; 3; 4; 5: ð32Þ

Then the sum of all of these partial results according to (28) gives the final result for I1 in the form

I1 ¼
1

2

2πi
ðq2 þ 1Þ ln

ðqþ q�1Þ
ðqþ q2Þðqþ q3Þðqþ q4Þðqþ q5Þ

ðiþ q2Þðiþ q3Þðiþ q4Þðiþ q5Þ
ðiþ q�1Þ

: ð33Þ

FIG. 2. Poles (cross) and branch points (circle) of the integrands
ϕ1ðq0Þ and ϕ2ðq0Þ, with contours of integrations in the upper and
lower half-planes, respectively.
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Similarly, one can also calculate the second integral I2 by means of the theory of residua:

I q0 ln ðq0−q1Þ
ðq0−q�

2
Þðq0−q�

3
Þðq0−q�

4
Þðq0−q�

5
Þ

ðq0 þ iÞðq0 − iÞðq0 þ ibÞðq0 − ibÞ dq
0 ¼ 2πi

X2
n¼1

Resn; ð34Þ

where the contour of integration is closed in the lower half-plane (see Fig. 2).
As the integral on the half-circle is 0, then

I2 ¼
Z

∞

−∞
ϕ2ðq0Þdq0 ¼ −2πi

X2
n¼1

Resn þ
�
þ
Z
1

−
Z
2�
−
Z
3�
−
Z
4�
−
Z
5�

�
: ð35Þ

The residua at the poles q0 ¼ −i; q0 ¼ −ib take the form

Resϕ2ð−i; qÞ ¼ −
1

2ðq2 þ 1Þ ln
ð−i − q1Þ

ð−i − q�2Þð−i − q�3Þð−i − q�4Þð−i − q�5Þ
; ð36Þ

Resϕ2ð−ib; qÞ ¼
1

2ðq2 þ 1Þ ln
ð−q − q1Þ

ð−q − q�2Þð−q − q�3Þð−q − q�4Þð−q − q�5Þ
; ð37Þ

as ib ¼ q.
The contribution of the cut to be generated by the branch point q1 is

Z
1

¼
Z

q1

∞

q0lnþðq0 − q1Þ
ðq02 þ 1Þðq02 þ b2Þ dq

0 þ
Z

∞

q1

q0ln−ðq0 − q1Þ
ðq02 þ 1Þðq02 þ b2Þ dq

0

¼
Z

∞

q1

q0

ðq02 þ 1Þðq02 þ b2Þ ½ln−ðq
0 − q1Þ − lnþðq0 − q1Þ�dq0

¼ −2πi
Z

∞

q1

q0

ðq02 þ 1Þðq02 þ b2Þ dq
0

¼ −
πi

ðb2 − 1Þ ln
ðq21 þ b2Þ
ðq21 þ 1Þ ≡ 1

2

2πi
ðq2 þ 1Þ ln

ðq21 − q2Þ
ðq21 þ 1Þ : ð38Þ

Similarly,

Z
j�
¼ −

πi
ðb2 − 1Þ ln

ðq�2j þ b2Þ
ðq�2j þ 1Þ ≡ 1

2

2πi
ðq2 þ 1Þ ln

ðq�2j − q2Þ
ðq�2j þ 1Þ ; j ¼ 2; 3; 4; 5: ð39Þ

Then the sum of all of these partial results according to (35) gives the comprehensive result for I2 in the form

I2 ¼
1

2

2πi
ðq2 þ 1Þ

�
ln

ðqþ q1Þ
ðqþ q�2Þðqþ q�3Þðqþ q�4Þðqþ q�5Þ

ðiþ q�2Þðiþ q�3Þðiþ q�4Þðiþ q�5Þ
ðiþ q1Þ

þ ln
q21 − q2

q21 þ 1
− ln

q�22 − q2

q�22 þ 1
− ln

q�23 − q2

q�23 þ 1
− ln

q�24 − q2

q�24 þ 1
− ln

q�25 − q2

q�25 þ 1

�
; ð40Þ

from which by using the relations (25) one finally gets

I2 ¼
1

2

2πi
ðq2 þ 1Þ ln

ðqþ q�1Þ
ðqþ q2Þðqþ q3Þðqþ q4Þðqþ q5Þ

ðiþ q2Þðiþ q3Þðiþ q4Þðiþ q5Þ
ðiþ q�1Þ

: ð41Þ

The sum of (41) with (33) represents the total integral,
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I ¼ 2πi
ðq2 þ 1Þ ln

ðq − q1Þ
ðqþ q2Þðqþ q3Þðqþ q4Þðqþ q5Þ

×
ðiþ q2Þðiþ q3Þðiþ q4Þðiþ q5Þ

ði − q1Þ
: ð42Þ

If the latter is substituted into the pion scalar FF phase
representation (23), one obtains an explicit form for the
pion scalar FF ΓπðtÞ:

ΓπðtÞ ¼ PnðtÞ
ðq − q1Þ

ðqþ q2Þðqþ q3Þðqþ q4Þðqþ q5Þ

×
ðiþ q2Þðiþ q3Þðiþ q4Þðiþ q5Þ

ði − q1Þ
; ð43Þ

with one zero and four poles whose behavior is graphically
presented in Fig. 3.
The −q3 pole of ΓπðtÞ on the second Riemann sheet in

the t variable clearly corresponds to the f0ð500Þ meson, as
its mass and width are determined to be mf0ð500Þ ¼ ð388�
23Þ MeV and Γf0ð500Þ ¼ ð602� 67Þ MeV, respectively.
Investigating additional poles of ΓπðtÞ in (43), one finds

that the −q2 pole must correspond to the f0ð980Þ meson,
with mf0ð980Þ ¼ ð1066� 142Þ MeV and Γf0ð980Þ ¼ð220� 194Þ MeV. The errors correspond to the transferred
errors of the coefficients of (18).
Finally one can only say that, if more precise data on the

S-wave isoscalar ππ scattering phase shift is available,
more precise parameters of mesons under consideration can
be found in the framework of our fully solvable math-
ematical scheme.

V. CONCLUSIONS

In this paper we have elaborated for the pion scalar FF in
the elastic region on the fully solvable mathematical
scheme, in the framework of which we have demonstrated
another confirmation of the existence of the f0ð500Þ scalar
meson resonance, whereby we did not pretend to make a
determination of its worldwide parameters. In order to find
an explicit form of the pion scalar FF, we have used the
dispersion relation with one substraction, whereby the
substraction constant has been taken to be the normaliza-
tion of the pion scalar FF at t ¼ 0, well known from χPT. A
combination of this dispersion relation with the elastic
unitarity condition led to the phase representation of the
pion scalar FF, whereby the corresponding phase under the
integral has been identified with S-wave isoscalar ππ phase
shift δ00ðtÞ. For the arctan of the latter, starting from fully
general considerations, a sophisticated parametrization in
the absolute valued pion c.m. three-momentum variable q
has been found. By a comparison of such a parametrization
with existing experimental information on δ00 and the
calculation of the integral in the phase representation,
one finds the pion scalar FF in the form of a rational
function with one zero and four poles, whereby two of them
conjugated according to the imaginary axis of the q plane
clearly correspond to the f0ð500Þ scalar meson resonance.
The latter alone can be considered to be another proof of the
f0ð500Þ scalar meson’s existence.

ACKNOWLEDGMENTS

The support of the Slovak Grant Agency for Sciences
VEGA under Grant No. 2/0158/13 and of the Slovak
Research and Development Agency under Contract
No. APVV-0463-12 is acknowledged.

[1] J. Beringer et al. (Particle Data Group), Phys. Rev. D 86,
010001 (2012).

[2] I. Caprini, G. Colangelo, and H. Leutwyler, Phys. Rev. Lett.
96, 132001 (2006).

[3] R. Garcia-Martin, R. Kaminski, J. R. Pelaez, and J. Ruiz de
Elvira, Phys. Rev. Lett. 107, 072001 (2011).

[4] S. Dubnicka, πN Newsletter 11, 167 (1995).
[5] J. Gasser and U.-G. Meissner, Nucl. Phys. B357, 90 (1991).
[6] M. A. Shifman, A. I. Vainshtein, and V. I. Zakharov, Phys.

Lett. 78B, 443 (1978).
[7] M. B. Voloshin and V. I. Zakharov, Phys. Rev. Lett. 45, 688

(1980).

FIG. 3. Behavior of the pion scalar form factor in the region
−1 GeV2 < t < 1 GeV2.

DUBNIČKA, DUBNIČKOVÁ, AND LIPTAJ PHYSICAL REVIEW D 90, 114003 (2014)

114003-8

http://dx.doi.org/10.1103/PhysRevD.86.010001
http://dx.doi.org/10.1103/PhysRevD.86.010001
http://dx.doi.org/10.1103/PhysRevLett.96.132001
http://dx.doi.org/10.1103/PhysRevLett.96.132001
http://dx.doi.org/10.1103/PhysRevLett.107.072001
http://dx.doi.org/10.1016/0550-3213(91)90460-F
http://dx.doi.org/10.1016/0370-2693(78)90481-1
http://dx.doi.org/10.1016/0370-2693(78)90481-1
http://dx.doi.org/10.1103/PhysRevLett.45.688
http://dx.doi.org/10.1103/PhysRevLett.45.688


[8] B. R.Martin,D.Morgan, andG.Shaw,Pion-Pion Interactions
in Particle Physics (Academic Press, New York, 1976).

[9] B. Hyams et al., Nucl. Phys. B64, 134 (1973).
[10] S. Protopopescu, M. Alston-Garnjost, A. Barbaro-Galtieri,

S. Flatté, J. Friedman, T. Lasinski, G. Lynch, M. Rabin, and
F. Solmitz, Phys. Rev. D 7, 1279 (1973).

[11] P. Estabrooks and A. D. Martin, Nucl. Phys. B79, 301
(1974).

[12] R. Kaminski, L. Leśniak, and K. Rybicki, Eur. Phys. J.
direct C 4, 1 (2002).

[13] G. Grayer et al., Nucl. Phys. B75, 189 (1974).
[14] J. Gunter et al. (E852 Collaboration), Phys. Rev. D 64,

072003 (2001).
[15] S. Pislak et al. (BNL-E865 Collaboration), Phys. Rev. Lett.

87, 221801 (2001).
[16] J. R. Batley et al. (NA48/2 Collaboration), Eur. Phys. J. C

70, 635 (2010).
[17] I. Caprini, Phys. Rev. D 77, 114019 (2008).
[18] G. Colangelo, J. Gasser, and H. Leutwyler, Nucl. Phys.

B603, 125 (2001).

PION SCALAR FORM FACTOR AND ANOTHER … PHYSICAL REVIEW D 90, 114003 (2014)

114003-9

http://dx.doi.org/10.1016/0550-3213(73)90618-4
http://dx.doi.org/10.1103/PhysRevD.7.1279
http://dx.doi.org/10.1016/0550-3213(74)90488-X
http://dx.doi.org/10.1016/0550-3213(74)90488-X
http://dx.doi.org/10.1007/s1010502c0004
http://dx.doi.org/10.1007/s1010502c0004
http://dx.doi.org/10.1016/0550-3213(74)90545-8
http://dx.doi.org/10.1103/PhysRevD.64.072003
http://dx.doi.org/10.1103/PhysRevD.64.072003
http://dx.doi.org/10.1103/PhysRevLett.87.221801
http://dx.doi.org/10.1103/PhysRevLett.87.221801
http://dx.doi.org/10.1140/epjc/s10052-010-1480-6
http://dx.doi.org/10.1140/epjc/s10052-010-1480-6
http://dx.doi.org/10.1103/PhysRevD.77.114019
http://dx.doi.org/10.1016/S0550-3213(01)00147-X
http://dx.doi.org/10.1016/S0550-3213(01)00147-X

