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The radiative decay of sterile neutrinos with typical masses of 10 keV is investigated in the presence of a
strong magnetic field and degenerate plasma. A full account is taken of the strongly modified photon
dispersion relation relative to vacuum. The limiting cases of relativistic and nonrelativistic plasma are
analyzed. The decay rate in a strongly magnetized plasma as a function of the electron number density is
compared with the unmagnetized case. We find that a strong magnetic field suppresses the catalyzing
influence of the plasma on the decay rate.
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I. INTRODUCTION

The weak interaction strength of neutrinos as well as
their small masses single them out among all elementary
particles. While neutrinos play almost no role on Earth,
their role in astrophysics and cosmology is important and
sometimes dominant. In particular, this pertains to astro-
physical cataclysms like core-collapse supernova explo-
sions or coalescence of neutron stars. In these phenomena,
a dense and hot plasma interacting with a strong neutrino
flux arises. It has become clear that strong magnetic fields
of up to 1016 G can be generated, exceeding the electron-
mass critical field Be ¼ m2

e=e≃ 4.41 × 1013 G. Neutrino
processes are also important for the cooling of supernova
cores and neutron stars where neutrinos are emitted from
the dense central region. Observations of neutron stars lead
to a wide spread of magnetic-field values, and very large
magnetic fields B≳ 1015 G have been identified in some
objects called magnetars [1,2]. Therefore, studying proper-
ties and dynamics of such astrophysical phenomena
requires a detailed understanding of quantum processes
involving neutrinos under the influence of a strong mag-
netic field and relativistic plasma.
The plasma and magnetic field are optically active media

and therefore can significantly influence the photon-neu-
trino interaction that in vacuum arises at loop level and
turns out to be extremely weak. On the other hand, the
photon-neutrino interaction within a medium can lead to
actually observed effects, notably the neutrino luminosity
of a plasma by the γ → νν̄ decay [3]. In this process, the
plasma has two effects: it provides photons with an
effective mass, enabling the decay kinematics, and it
provides an effective interaction between neutrinos and

photons. On the other hand, the radiative decay of a
massive neutrino is kinematically allowed in vacuum
(see, for example, Ref. [4] and references therein).
However, an active medium can influence both the decay
amplitude and particle kinematics, and hence, the decay
rate can change significantly [5,6].
Early studies of the radiative decay of a massless neutrino

in a magnetic field were performed in Refs. [7–9]. (Note
that the process νi → νjγ in the presence of external fields
or media has been called “radiative decay,” “Cherenkov
effect,” or “bremsstrahlung” in the literature.) The radiative
decay of a massive neutrino νi → νj þ γ with i ≠ j in the
framework of the Standard Model with lepton mixing was
considered in Ref. [10] for electromagnetic fields of
different configurations. In all of these papers, the decay
probability was calculated for low-energy neutrinos
(Eν < 2me) and under the assumption that the modification
of the photon dispersion law can be neglected. In addition,
it was shown that the field-induced amplitude of the
ultrarelativistic neutrino decay in a magnetic field is not
suppressed by the smallness of the neutrino mass, in
contrast to vacuum [10].
We recall that with increasing the photon energy, its

dispersion in a strong B field differs from vacuum and each
photon polarization has its own dispersion law [11–13].
In particular, the photon four-momentum qμ can be space-
like and its square can be sufficiently large, jq2j ≫ m2

ν, to
allow the transition νi → νj þ γ of a lighter neutrino to a
heavier one (mi < mj). In other words, the strongly modi-
fied photon dispersion law implies that in practice the
radiative decay probability of ultrarelativistic neutrinos in
strongmagnetic fields does not depend on the neutrinomass
spectrum.
For high-energy neutrinos (Eν ≫ me) in a strong con-

stant magnetic field, the process ν → νþ γ was studied in
Ref. [14], taking account of the appropriate photon
dispersion. The same process in a homogeneous magnetic
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field was considered in detail in Ref. [9] for low-energy
neutrinos (Eν < 2me) and in the kinematical region where
the photon dispersion is similar to vacuum. The neutrino
radiative decay was also investigated in plasma [15–21]. In
particular, the decay probability of a heavier neutrino to a
lighter one and a photon in a thermal medium was
calculated in Refs. [17,18] under the assumption that the
particle dispersion relations were not affected by the
plasma.
Later, the study of the neutrino-photon interaction was

extended to high energies in a strongly magnetized elec-
tron-positron plasma [22]. In this case, apart from the
modified photon dispersion, large radiative corrections
exist near the e−eþ resonance—otherwise the result is
overestimated.
Most recently, the decay of a massive neutrino was

analyzed for the conditions of a strongly magnetized,
degenerate electron gas [23]. There are no theoretical
restrictions on the existence of astrophysical objects where
both a strong magnetic field and degenerate plasma can
exist. Several objects called magnetars [1,2] have been
observed that probably contain such a medium, i.e., 14 Soft
Gamma-ray Repeaters of which 10 are confirmed and 4 are
candidates as well as 14 Anomalous X-ray Pulsars with 12
being confirmed and candidates [24]. The existence of such
objects motivates the study of elementary processes under
extreme conditions.
The main point of our paper is to extend the analysis of

Ref. [23] to include the modified photon dispersion
relation. As a motivation we note that in a strongly
magnetized plasma, the neutrino-photon interaction is
mainly determined by electrons occupying the lowest
Landau level. Therefore, the electron chemical potential
should satisfy μ2e −m2

e < 2eB. If the plasma is degenerate
(μe −me ≫ T), the plasma frequency is [23,25,26]

ω2
0 ¼

2α

π
eB

pFffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
p2
F þm2

e

p ; ð1Þ

where pF is the electron Fermi momentum. The electron
number density in a strongly magnetized electron gas is
ne ¼ eBpF=ð2π2Þ [27]. This relation allows us to express
the plasma frequency of Eq. (1) in the form

ω0 ≃ 37.1 keV

�
n230b

2

b2 þ 1.3n230

�
1=4

; ð2Þ

where b ¼ B=Be and n30 ¼ ne=ð1030 cm−3Þ. Our bench-
mark number density ð1030 cm−3Þ, interpreted here as a
baryon density, corresponds approximately to a mass
density of 106 g cm−3, where degenerate electrons would
still be nonrelativistic.
For the conditions of interest, a typical scale of ω0 is

therefore 10 keVor larger. Ordinary neutrinos have sub-eV
masses so that radiative decays would not be kinematically

possible. Of course, the presence of electrons implies a
weak potential for electron neutrinos of

ffiffiffi
2

p
GFne ≃

1.27 × 10−7 eVn30, which is a very small effect compared
with the plasma frequency. Therefore, it is the modification
of the photon dispersion relation that tends to be the
dominant effect. It is clear that radiative decays would
be of interest only for sterile neutrinos νs with keV masses
and above. There has been renewed interest in such
particles recently as a possible warm or cold dark matter
candidate [28–32]. Moreover, the observation of an unex-
plained 3.5 keV X-ray line, possibly caused by the νs →
νaγ decay of dark-matter sterile neutrinos, has recently
electrified the community [33–37].
Whatever the final verdict on such speculations, we here

go through the exercise of calculating the radiative decay of
nonrelativistic sterile neutrinos in an optically active
medium that can be identified with both an unmagnetized
or a strongly magnetized plasma. Our main new point
beyond the previous literature is to include the photon
dispersion relation consistently. We limit our discussion to
Dirac neutrinos—the Majorana case should only differ by
numerical factors. We neglect the modified active neutrino
dispersion relation in the final state.
We begin in Sec. II with the simpler case of an

unmagnetized degenerate plasma for comparison with
our main calculation in Sec. III, the strongly magnetized
case. In Sec. IV we summarize our findings.

II. UNMAGNETIZED PLASMA

A sterile neutrino νs can mix with an active species and
in this way interact with matter, where θs is the usual
mixing angle. It is assumed to be very small so that νs
essentially coincides with a propagation eigenstate of mass
ms. For the radiative decay νs → νaγ in vacuum one finds
the probability (or rather decay rate) [4]

Wvac ¼
9αG2

F

2048π4
m5

s sin2ð2θsÞ: ð3Þ

This result pertains to the Dirac case, whereas for Majorana
neutrinos the rate is a factor of 2 larger and then agrees with
what is usually stated in the sterile-neutrino literature [28].
We will frequently use this vacuum result to normalize our
results.
Turning next to an unmagnetized electron plasma, the

contribution to the radiative decay amplitude is defined by
the neutrino-photon interaction via real electrons. The
neutrino-electron interaction is described by the effective
local Lagrangian [9]

Leff ¼ −
GFffiffiffi
2

p ½Ψ̄eγ
αðCV − CAγ5ÞΨe�jα; ð4Þ

where Ψe is the electron field. CV ¼ �1=2þ 2 sin2 θW and
CA ¼ �1=2 with the Weinberg angle θW are the vector and
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axial-vector coefficients, respectively, which take into
account the Z- and W-boson exchange. The plus sign
pertains to νe, and the minus sign to νμ and ντ.
The neutrino current jα in Eq. (4) describes the transition

of a heavy neutrino νs with a mass of several keV to a light
neutrino νa with a sub-eV mass,

jα ¼ cos θs sin θs½ν̄aγαð1 − γ5Þνs�: ð5Þ

The vector current in the Lagrangian (4) has the same
structure as the standard electron interaction with a photon,
LQED ¼ eðΨ̄eγαΨeÞAα. Therefore, the decay νs → νa þ γ
in plasma corresponds to the Feynman graphs shown in
Fig. 1, which is identical to the one shown in Fig. 2 after
one of the photon lines has been replaced by the neutrino
current.
It is well known that the amplitude of the γ → γ

transition shown in Fig. 2 determines the polarization
operator Παβ of the photon [38,39]

Mγ→γ ¼ −ε�αΠαβεβ: ð6Þ

Therefore, the vector part of the νs → νa þ γ amplitude can
be expressed in terms of the photon polarization operator
Παβ in plasma,

MðVÞ
pl ¼ CVGF

e
ffiffiffi
2

p ðjαΠαβε�βÞ; ð7Þ

where εβ is the photon polarization vector.
The corresponding axial-vector contribution is much

smaller. In a nonrelativistic plasma one finds explicitly
that it is suppressed by a factor ðCA=CVÞðms=meÞ ≪ 1. In a
relativistic plasma,me is replaced by the chemical potential
μe. We conclude that the axial coupling contributes very
little to the process, in analogy to a photon absorption
by neutrinos [15] and for a plasmon decay into neutrino
pairs [40,41].
As mentioned earlier, photons in plasma acquire an

effective mass in the form of the plasma frequency ω0.
Under a wide range of conditions, ω0 is small enough to
fulfill the kinematical conditions for νs → νaγ with ms of
several tens of keV,

ω0 < ms ≪ me: ð8Þ

We concentrate on a nonrelativistic plasma where

ω2
0 ¼

4παne
me

; ð9Þ

where ne ¼ p3
F=ð3π2Þ for degenerate electrons. Therefore,

the kinematical condition (8) restricts the Fermi velocity to
V2
F < 0.25ðms=ð10 keVÞÞ4=3. This condition provides an

upper bound ms ≪ 30 keV for which the nonrelativistic
approximation is appropriate.
Photons in plasma have three polarization modes, one

longitudinal (polarization vector εl) and two transverse
(εt). They are the eigenvectors of the polarization operator
Παβ and determine the corresponding set of eigenvalues Πλ

(λ ¼ l; t). In a nonrelativistic plasma they are Πt ≈ ω2
0

and Πl ≈ ω2
0ð1 − k2=ω2Þ, where k ¼ jkj is the photon

momentum.
The probability for νs → νaγ can be written in the form

Wλ
pl ¼

1

32π2ms

Z
ZAλjMλ

plj2½1þ fγðωÞ�

× δðms − k − ωÞ d
3k
kω

; ð10Þ

where fγðωÞ is the photon distribution function. In a cold
plasma (T ≪ ω0), the deviation of the photon stimulation
factor ½1þ fγðωÞ� from unity can be neglected. The factor
ZAλ accounts for the renormalized wave function of the
photon,

FIG. 1. Feynman graphs for the νs → νa þ γ decay in plasma.
The crosses attached at the ends of the electron lines signify that
these particles pertain to the plasma. In the magnetized case, the
magnetic field is included on the electron lines.

FIG. 2. Diagrams for the photon forward scattering on plasma
electrons in analogy to Fig. 1.
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Z−1
Aλ ¼ 1 −

∂Πλ

∂ω2
: ð11Þ

The matrix element is largely determined by the vector part
of Eq. (7). In terms of the eigenvalues and eigenvectors of
the photon polarization operator we find

jMλ
plj2 ¼

G2
FC

2
V

16πα
sin2ð2θsÞ½m2

s − q2 þ 4ðpελÞ2�Π2
λ : ð12Þ

The νs decay probabilities are then found to be

Wt
pl ¼

ðGFω
2
0Þ2C2

V

128π2α
sin2ð2θsÞms

�
1 −

ω2
0

m2
s

�
2

; ð13Þ

Wl
pl ¼

ðGFm2
sÞ2C2

V

64π2α
sin2ð2θsÞω0

�
1 −

ω0

ms

�
2

: ð14Þ

The rate with a transverse photon coincides with a well-
known result in the limit ω0 → 0 [18]. Besides the different
phase space, the longitudinal case involves a nontrivial
wave-function renormalization factor ZAl.
We finally express Eqs. (13) and (14) in terms of the

vacuum rate of Eq. (3) and find

Wt
pl ¼ Wvac

32π2

18α2
x40ð1 − x20Þ2; ð15Þ

Wl
pl ¼ Wvac

32π2

9α2
x0ð1 − x0Þ2; ð16Þ

where we have introduced x0 ¼ ω0=ms in terms of the
plasma frequency (9). The kinematical constraint x0 < 1
implies that typically the decay into longitudinal plasmons
is much faster than into transverse ones.
In Fig. 3 we show the total rate Wpl ¼ Wl

pl þWt
pl as a

function of the electron density (dashed lines). The strong

catalyzing effect of the plasma is clearly seen with an
enhancement of up to 5 orders of magnitude compared with
vacuum. There is also a maximum of these functions for an
electron density ne, which moves to larger number densities
with increasing the neutrino mass.

III. STRONGLY MAGNETIZED PLASMA

A. Analytic calculation

In the strongly magnetized case the neutrino-photon
interaction is defined by the same effective Lagrangian (4)
as before. However, the electron field now is a super-
position of solutions of the Dirac equation in a strong B
field. We assume that the hierarchy of plasma parameters is

2eB > μ2e −m2
e ≫ T2; ð17Þ

and we take the magnetic field to be oriented along the third
axis, i.e., B ¼ ð0; 0; BÞ.
The neutrino-photon interaction is mainly determined by

electrons on the lowest Landau level [42]. Therefore, the
electron quantum field Ψe is an eigenfunction of the
projection operator [6,43]

Π− ¼ 1þ iðγφγÞ
2

¼ 1 − iγ1γ2
2

; ð18Þ

where φαβ ¼ Fαβ=B is the dimensionless tensor of the
external magnetic field. We use the shorthand notation
ðγφγÞ ¼ γαφαβγ

β for the contraction of Lorentz indices.
The properties of this projection operator reveal an

effective equality [6,43]

Π−γαγ5Π− ¼ ð ~φγÞαΠ−; ð19Þ

where ~φαβ ¼ ~Fαβ=B is the dual dimensionless tensor of the
external magnetic field and ð ~φγÞα ¼ ~φαβγ

β. This equality
differs from zero only at α ¼ 0 and 3. Therefore, we
may transform the axial-vector electron current in the
Lagrangian (4) to a vector current of the form

Ψ̄eγαγ5Ψe ¼ Ψ̄eΠ−γαγ5Π−Ψe ¼ Ψ̄eð ~φγÞαΨe; ð20Þ

where Π−Ψe ¼ Ψe was used. Therefore, Eq. (4) becomes

Leff ¼ eðΨ̄eγ
αΨeÞVα; ð21Þ

where we have introduced the local vector operator

Vα ¼ −
GF

e
ffiffiffi
2

p ½CVð ~ΛjÞα þ CAð ~φjÞα�: ð22Þ

The Lorentz tensor ~Λμν ¼ ð ~φ ~φÞμν determines the metric of
the two-dimensional Minkowski subspace of the four-
dimensional space-time [6,43]. The direct analogy of the
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FIG. 3 (color online). Sterile-neutrino radiative decay proba-
bility for the indicated mass values as a function of the electron
density n30 ¼ ne=ð1030 cm−3Þ. Dashed lines: unmagnetized
plasma. Solid lines: strongly magnetized plasma with B ¼
Be ¼ 4.41 × 1013 G.
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Lagrangian (21) with the electromagnetic case LQED ¼
eðΨ̄eγαΨeÞAα again allows us to map results from electro-
dynamics to neutrino processes.
The diagrams for νs → νa þ γ and photon forward

scattering in a strongly magnetized plasma are the same
as before (Figs. 1 and 2), except that the electrons are now
states in a strong B field. The incoming-photon polarization
vector EðλÞ

α (λ ¼ 1; 2; 3) in Fig. 2 is replaced with the
effective neutrino current Vα of Eq. (22) in Fig. 1. We
implicitly assume forward scattering of a photon of definite
polarization λ and the production of a photon with the same
polarization in the sterile-neutrino decay. The basis of
photon polarization vectors EðλÞ

α generally differs from the
basis εðλÞα of the unmagnetized case. The new polarization
operator Παβ receives contributions from both the plasma
and the external magnetic field. The eigenvalue problem is
now rather complicated and has not yet been solved in the
general case [44].
However, limiting cases provide simplifications and

allow us to find analytic solutions. A strongly magnetized
electron plasma is a beautiful case in point. In particular, the
eigenvalues and eigenvectors of the corresponding photon
polarization operator were found as a power expansion in
the inverse magnetic field strength [45]. In this plasma there
are only two physical states of the photon [44] that largely
coincide with the photon polarization vectors in the con-
stant uniform magnetic field [6,43]

Eð1Þ
α ≈

ðqφÞαffiffiffiffiffiffi
q2⊥

p and Eð2Þ
α ≈

ðq ~φÞαffiffiffiffiffi
q2∥

q : ð23Þ

The shorthand q2⊥ ¼ qμφμνφνρqρ and q2∥ ¼ qμ ~φμν ~φνρqρ

were used. The third polarization vector Eð3Þ
α is reduced

to the photon four-momentum qμ and can be eliminated by
a gauge transformation [44,46].
Therefore, the sterile-neutrino decay amplitude also

requires the corresponding eigenvalues Πλ of the polari-
zation operator with λ ¼ 1 and 2, which are [44,47]

Π1 ≈ −
2α

π
ωμeVF

ffiffiffiffiffi
q2

q2∥

s
; ð24Þ

Π2 ≈
2α

π
eBVF

q2∥
ω2 − V2

Fk
2
3

: ð25Þ

Here, ω is the photon energy, k3 the projection of the
photon momentum on the B-field direction, and VF ¼
pF=μe the Fermi velocity. Equations (24) and (25) apply
when the kinematical condition ω≲ms ≪ me is satisfied.
To go further, it is instructive to compare the above

eigenvalues under the plasma conditions of Eq. (17). With
the values of the parameters entering Eqs. (24) and (25)
close to what is maximally allowed, i. e., ω ∼ms, k3 ≪ ms,
and q2; q2∥ ∼m2

s , one easily obtains

����Π1

Π2

����≃ μems

eB
≲ms

μe
≪ 1: ð26Þ

This means that if both eigenvalues contribute to the decay
amplitude with weights of the same order in ms, terms with
Π1 can be neglected in the amplitude.
Let us apply the procedure explained above that was

successfully worked out in the case of pure plasma. More
precisely, after the replacement of the photon polarization
vector EðλÞ

β → Vβ by the neutrino current in Eq. (6), one can
express the sterile-neutrino decay amplitude through the
photon polarization operator Παβ as

Mplþf ¼
GF

e
ffiffiffi
2

p EðλÞ�
α Παβ½CVð ~ΛjÞβ þ CAð ~φjÞβ�: ð27Þ

Comparison of the amplitude Mplþf obtained with the
similar one of Eq. (7) calculated in the pure plasma shows
that CA appears and can no longer be neglected as will be
demonstrated later. Taking into account the hierarchy of
the polarization operator eigenvalues in Eq. (26), mainly
photons with the polarization λ ¼ 2 are produced in this
decay. So, the photon polarization vector should be
identified with Eð2Þ

α . As a result, the decay amplitude is

Mplþf ¼
GF

e
ffiffiffi
2

p Π2½CVðEð2Þ� ~ΛjÞ þ CAðEð2Þ� ~φjÞ�; ð28Þ

where the neutrino current jα is given in Eq. (5). The
effective neutrino current Vα in the strongly magnetized
plasma, where all electrons are on the lowest Landau level,
is the projection of jα on the two-dimensional Minkowski
subspace and thus is orthogonal to the other polarization
vector with λ ¼ 1, i.e., ðEð1ÞVÞ ¼ 0.
After substituting the polarization vector Eð2Þ

α (23) and
corresponding eigenvalue Π2 (25) in Eq. (28), we arrive at
the final form of the decay amplitude

Mplþf ¼
GFΩ2

0

e
ffiffiffi
2

p
ffiffiffiffiffi
q2∥

q CVðq ~φjÞ þ CAðq ~ΛjÞ
ω2 − V2

Fk
2
3

: ð29Þ

We have introduced the plasma frequency

Ω2
0 ¼

2αeB
π

VF; ð30Þ

relevant in the magnetized electron plasma.
The probability of νs → νa þ γ requires a phase-space

integration of the amplitude squared (29), including the
appropriate dispersion relations. The magnetized plasma
does not strongly modify the active-neutrino dispersion
properties. To get the modified dispersion relation for a
photon with polarization λ one needs to solve

q2 ¼ Πλ: ð31Þ
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For a photon with λ ¼ 2 it can be written as

ω2 ¼ k23 þ k2⊥ þΩ2
0

ω2 − k23
ω2 − V2

Fk
2
3

: ð32Þ

When the photon momentum vanishes, k23 ¼ k2⊥ ¼ 0, the
photon energy is ω ¼ Ω0 and means the effective photon
mass in the magnetized plasma. Note that the plasma
frequency squared (30) differs from the similar quantity (9)
defined in the unmagnetized plasma.
The νs → νa þ γ decay can occur only if Ω0 < ms. This

requirement restricts the Fermi velocity to

V2
F < 0.01

�
Be

B

�
2
�

ms

10 keV

�
4

: ð33Þ

This expression shows that the radiative decay of a sterile
neutrino with the mass 2–20 keV in a highly magnetized
plasma requires the latter to be nonrelativistic.
The decay probability has the standard form of an

integral over phase space of the final-state particles

Wplþf ¼
1

32π2ms

Z
d3pa

Ea

d3k
ω

δð4Þðps − pa − qÞ½1þ fγðωÞ�

× ZA2jMplþf j2; ð34Þ

where pμ
s ¼ ðms; 0Þ is the νs four-momentum in its rest

frame, pμ
a ¼ ðEa;paÞ is the four-momentum of the active

neutrino, and the factor ZA2 defined in Eq. (11) accounts for
the photon wave-function renormalization.
After performing the integration over the active neutrino

momentum pa and the azimuth angle in the cylindrical
momentum frame of the photon, Eq. (34) becomes

Wplþf ¼
1

32πms

Z þ∞

−∞
dk3

Z
∞

0

dk2⊥
Eaω

× δðms − Ea − ωÞ½1þ fγðωÞ�ZA2jMplþf j2:

The remaining integrations are not simple as one should
include the nontrivial photon dispersion relation of Eq. (32)
and thus the νa energy in the form Ea ¼ ms − ω. It is
convenient to remove the variable k2⊥ in favor of ω by
dk2⊥ ¼ 2ωj∂k2⊥=∂ω2jdω. In the new variables k3 and ω, the
integration area is divided into two parts, leading to

Wplþf ¼
1

16πms

�Z
ΩF

Ω0

dω
Z

k3F

0

dk3Fðω; k3Þ

þ
Z

∞

ΩF

dω
Z

ω

0

dk3Fðω; k3Þ
�
; ð35Þ

where ΩF ¼ Ω0=
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − V2

F

p
and k3F ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ω2 −Ω2

0

p
=VF. The

integrand Fðω; k3Þ in Eq. (35) can be represented as

Fðω; k3Þ ¼
���� ∂k2⊥∂ω2

���� δðms − Ea − ωÞ
Ea

½1þ fγðωÞ�

× ðjMplþf j2 þ jMplþf j2k3→−k3Þ: ð36Þ

The calculation of the squared matrix element is not
complicated, and one finds

jMplþf j2 þ jMplþf j2k3→−k3

¼ ðGFΩ2
0Þ2

8απ
sin2ð2θsÞ

q2∥
ðω2 − V2

Fk
2
3Þ2

× f4m2
s ½C2

Aω
2 þ C2

Vk
2
3�

þ q2∥½ðC2
V − C2

AÞðm2
s − q2Þ − 4C2

Amsω�g: ð37Þ

This is our final analytical result for the probability of the
sterile-neutrino radiative decay.

B. Approximations and limiting cases

In applications it may be more useful to have a simple
approximate formula valid in certain parameter ranges.
We adopt ms ¼ 2–20 keV as before and B ¼ 1–10Be to
guarantee strong magnetization. In particular, for ms ¼
10 keV and B ¼ 10Be we find

Wplþf

Wvac
≈
π2

α2

�
15.93

ð1− x0Þ0.65
x18.090

exp
�
−11.79

ð1− x0Þ
x0

�

þ 1168.96ð1− x0Þ1.46x3.880 exp

�
−0.089

x0
1− x0

��
;

ð38Þ

where x0 ¼ Ω0=ms. The first function within the square
brackets mainly determines the behavior at large x0 values,
while the second one is for small x0. The variation of ms
and B in our chosen parameter range causes only very small
changes in the approximation formula. Also, the impact of
the stimulating statistical factor ½1þ fγðωÞ� is numerically
small as in the unmagnetized plasma.
In the same parameter range we can get another

approximate representation for the decay probability.
Equation (33) reveals that the Fermi velocity is always
small. In the VF ≪ 1 limit the integrand in Eq. (36)
becomes a relatively simple function and can be integrated
analytically,

Wn-rel
plþf ¼ Wvac

256π2

25515α2
ðC2

V þ C2
AÞ

× ½θð2x0 − 1ÞFn-rel
1 ðx0Þ þ θð1 − 2x0ÞFn-rel

2 ðx0Þ�;
ð39Þ

where the functions Fn-rel
1;2 ðx0Þ are
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Fn-rel
1 ðx0Þ ¼

2835x40
32

Z
1=x0−1

0

dxð1 − x2Þ½1þ x20ð1 − x2Þ�

× ½1þ 3x2 − x20ð1 − x2Þ2�

¼ −
11

x0
þ 129x0 − 210x20 þ 168x30 − 84x40

− 24x60 þ 32x80; ð40Þ

Fn-rel
2 ðx0Þ ¼

2835x40
32

Z
1

0

dxð1 − x2Þ½1þ x20ð1 − x2Þ�

× ½1þ 3x2 − x20ð1 − x2Þ2�
¼ 4x40ð21þ 6x20 − 8x40Þ: ð41Þ

The integration variable is x ¼ ω=ms. The reduced plasma
frequency x0 ¼ Ω0=ms is restricted to the interval 0<x0<1

because of the decay kinematics. The variation of Wn-rel
plþf

with x0 is shown in Fig. 4 where both Eqs. (38) and (39)
coincide numerically.
In Fig. 3 we compare the decay rate for the unmagnetized

(dashed lines) and strongly magnetized (solid lines) plasma
as a function of the electron density. For the chosen field
strength B ¼ Be the decay rate is strongly suppressed, but,
of course, it is still much faster than in vacuum. The
maximum decay rate is shifted to somewhat larger electron
densities, reflecting the different dependence of the plasma
frequency on ne.
At CV ¼ CA ¼ 1 and Ω0 ≪ ms (x0 ≪ 1) we reproduce

the result of Ref. [23],

Wn-rel
plþf ¼

256π2

135α2
x40Wvac: ð42Þ

For relativistic and strongly magnetized conditions, the
plasma frequency is Ω0 ≃ 34.7 keV

ffiffiffiffiffiffiffiffiffiffiffi
B=Be

p
and νs → νaγ

with ms < 20 keV requires B < Be=3. At larger B values
the decay mode γ → νa þ νs opens. Therefore, we now
implicitly consider sufficiently heavy sterile neutrinos.

In the relativistic limit VF ≃
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 −m2

e=μ2e
p

→ 1 and
Eq. (35) simplifies to

Wrel
plþf ¼

ðGFm2
sÞ2

64π2α
mssin2ð2θsÞðC2

V þC2
AÞ

x40ð1þx20Þ
1−e−msð1þx2

0
Þ=ð2TÞ

×

�
Fðx0;VFÞþθ

�
1−x0

ffiffiffiffiffiffiffiffiffiffiffiffiffi
1þVF

1−VF

s �
~Fðx0;VFÞ

�
:

ð43Þ

Analytical expressions for the functions Fðx0; VFÞ and
~Fðx0; VFÞ are given in the Appendix. This result further
simplifies in the limiting case of a very small plasma
frequency, x0 ≪ me=μe,

Wrel
plþf≃ðGFΩ2

0Þ2
64π2α

ms sin2ð2θsÞðC2
VþC2

AÞ
lnð2μe=meÞ−5=4

1−e−ms=ð2TÞ :

ð44Þ

A simplification also obtains in the opposite limit
x0 ≫ me=μe,

Wrel
plþf ≃ ðGFm2

sÞ2
64π2α

mssin2ð2θsÞðC2
V þC2

AÞ
x40

1−e−msð1þx2
0
Þ=ð2TÞ

×

�
ð1þx20Þ ln

1

x0
−
1

8
ð1−x20Þð3þx20Þ

�
: ð45Þ

Notice that this result applies close to the kinematical limit
ms, i.e., for x0 → 1.

IV. CONCLUSIONS

We have studied the radiative decay νs → νa þ γ with
cosmologically interesting masses of some 10 keV in a
dense magnetized and unmagnetized electron plasma. Our
work goes beyond the previous literature in that for the first
time we have consistently included the modified photon
dispersion relation. The kinematical requirement that the
photon effective mass must be smaller than ms implies that
we should typically restrict the plasma parameters to
nonrelativistic conditions.
The decay rate in plasma is much larger than in vacuum

because the neutrino-photon interaction is mediated by
plasma electrons instead of virtual states. In the unmagne-
tized case, the enhancement is some 5 orders of magnitude,
in detail depending on the electron density. In a strongly
magnetized plasma the enhancement is significantly
smaller. A strong B field slows the rate down because
the contributing electrons are restricted to the lowest
Landau level. It is also noteworthy that here the electron
axial-current interactionCA contributes on the same level as
the vector-current CV , in contrast to the unmagnetized case
where the vector current dominates by far. This difference
would be especially important if the final state active flavor

FIG. 4 (color online). The radiative decay probability of sterile
neutrinos in a nonrelativistic strongly magnetized plasma as a
function of the reduced plasma frequency x0 ¼ Ω0=ms.
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is not νe because for νμ and ντ the vector-coupling constant
CV nearly vanishes.
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APPENDIX: PROBABILITY IN THE LIMIT
OF RELATIVISTIC PLASMA

The probability of the sterile-neutrino radiative decay in
a relativistic magnetized electron plasma has the form

Wrel
plþf ¼

ðGFm2
sÞ2

64π2α
mssin2ð2θsÞðC2

V þ C2
AÞ

× ½1 − e−msð1þx2
0
Þ=ð2TÞ�−1x40ð1þ x20Þ

×
�Z

a

0

dxfðx; x0Þ

þ Θ
�
1 − x0

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ VF

1 − VF

s �Z
1

a
dxfðx; x0Þ

�
; ðA1Þ

where x ¼ 2k3=½msð1þ x20Þ�, x0 ¼ Ω0=ms, a ¼ ð1 − x20Þ=
ð1þ x20Þ,ΘðxÞ is the unit-step function, and the integrand is

fðx; x0Þ ¼
1 − x2

ð1 − V2
Fx

2Þ2 −
3þ x20

4

ð1 − x2Þ2
ð1 − V2

Fx
2Þ2 : ðA2Þ

So, there are two simple integrals:

F1ðy; VFÞ ¼
Z

y

0

ð1 − x2Þdx
ð1 − V2

Fx
2Þ2

¼ −
y

2V2
F

�
1 − V2

F

1 − V2
Fy

2
þ 1þ V2

F

2VFy
ln
1 − VFy
1þ VFy

�
;

ðA3Þ

F2ðy; VFÞ ¼
Z

y

0

ð1 − x2Þ2dx
ð1 − V2

Fx
2Þ2

¼ y
2V4

F

�
2þ ð1 − V2

FÞ2
1 − V2

Fy
2

þ ð3þ V2
FÞð1 − V2

FÞ
2VFy

ln
1 − VFy
1þ VFy

�
: ðA4Þ

The two integrals in Eq. (A1) are

Fðx0; VFÞ≡
Z

a

0

dxfðx; x0Þ

¼ F12ða; VFÞ þ
1 − x20
4

F2ða; VFÞ; ðA5Þ

~Fðx0; VFÞ≡
Z

1

a
dxfðx; x0Þ

¼ F12ð1; VFÞ − F12ða; VFÞ

þ 1 − x20
4

½F2ð1; VFÞ − F2ða; VFÞ�; ðA6Þ

where it is convenient to use the difference of the integrals
(A3) and (A4),

F12ðy; VFÞ≡ F1ðy; VFÞ − F2ðy; VFÞ

¼ −
y

2V4
F

�
2þ 1 − V2

F

1 − V2
Fy

2
þ 3 − V2

F

2VFy
ln
1 − VFy
1þ VFy

�
:

ðA7Þ

We substitute x20 ¼ ð1 − aÞ=ð1þ aÞ in Eqs. (A5) and (A6)
and use the specific values of the functions (A4) and (A7)

F2ð1; VFÞ ¼
1

2V4
F

�
3 − V2

F þ
ð3þ V2

FÞð1 − V2
FÞ

2VF
ln
1 − VF

1þ VF

�
;

ðA8Þ

F12ð1; VFÞ ¼ −
1

2V4
F

�
3þ 3 − V2

F

2VF
ln
1 − VF

1þ VF

�
ðA9Þ

in Eq. (A6). We thus arrive at the final analytical result
Eq. (43) for the decay probability of the sterile neutrino.
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