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The existence of the inflationary era in the early Universe seems to be strongly supported by recent CMB
observations. However, only a few realistic inflation scenarios which have close relation to particle physics
seem to have been known unfortunately. The radiative neutrino mass model with inert doublet dark matter
is a promising model for the present experimental issues which cannot be explained within the standard
model. In order to make the model include inflation, we extend it by a complex scalar field with a specific
potential. This scalar could be closely related to the neutrino mass generation at a TeV scale as well as
inflation. We show that the inflation favored by the CMB observations could be realized even if inflaton
takes sub-Planck values during inflation.
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I. INTRODUCTION

Recent discovery of a Higgs-like particle [1] suggests
that the framework of the standard model (SM) can
describe Nature well up to the weak scale. On the other
hand, we have experimental results which cannot be
explained within it, that is, the existence of small neutrino
masses [2,3], the existence of dark matter [4], and baryon
number asymmetry in the Universe [5]. They require some
extension of the SM.
As such an example, we have a model which is the

simple extension of the SM with a second doublet scalar
(which has no vacuum expectation value and is called by
several names such as inert [6], scotogenic [7], or doumant
[8]) and also three right-handed neutrinos. The model
shows promising features in physics at TeV regions for
the explanation of both the neutrino oscillation data and the
observed abundance of dark matter (DM). In fact, if these
new fields are assigned odd parity of an assumed Z2

symmetry, small neutrino masses are generated at one-loop
level and the lightest Z2 odd field can be stable as a DM
candidate [9]. The quantitative conditions required for their
explanation in both this model and several extended models
have been clarified through various studies by now
[10–14]. They show that the simultaneous explanation of
these is possible without causing a strong tension with other
phenomena like lepton flavor violating processes if DM is
identified with the lightest neutral component of the inert
doublet scalar [11,14]. In such a case, moreover, the baryon
number asymmetry in the Universe is also successfully
explained if the resonant leptogenesis could occur due to
the mass degeneracy among right-handed neutrinos which
have masses of a TeV scale [15]. An interesting point is that

the required mass degeneracy could be rather mild com-
pared with the ordinary cases [14].
The CMB observations suggest that the exponential

expansion of the Universe occurs in the very early
Universe. These results can constrain severely the allowed
inflation models now [16,17]. For example, BICEP2
recently suggests that the tensor to scalar perturbation ratio
should be r ∼ 0.2 and the Hubble parameter during
inflation should take a value of Oð1014Þ GeV. Although
we know that a quadratic chaotic inflation model could be
such a candidate, the inflaton should take trans-Planckian
values during inflation in that model. Since higher order
terms which are suppressed by the Planck mass are
generally expected to give larger contributions to the
potential there, the flatness of potential cannot be guaran-
teed without any symmetry.
On the other hand, we do not have a lot of examples of

inflaton that plays any role in particle physics. Inflaton is
introduced just to bring about the inflation in many models.
As an exceptional example, one may suppose sneutrino
inflation [18].1 If we consider the neutrino mass generation
based on the seesawmechanism in supersymmetric models,
right-handed sneutrinos are introduced inevitably. One of
them could work as inflaton causing the quadratic chaotic
inflation. However, the model could be annoyed by the
above mentioned trans-Planckian problem.
In this paper, we propose an inflation scenario in the

framework related to the radiative seesaw model. Although
several inflation scenarios have been considered in the
radiative seesaw model, they have still problems, for
example, the above mentioned trans-Planckian problem
[13] or the unitarity problem caused by a large nonminimal
coupling [21]. Our scenario is based on an extension of the
radiative seesaw model with a complex scalar, whose
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1Higgs inflation [19] and axionic inflation [20] are also
motivated by particle physics.
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component is identified with the inflaton. We show that
sufficient e-foldings could be realized even if the inflaton
takes sub-Planckian values during inflation. In this scenario,
the scalar spectral index and the tensor-to-scalar ratio could
have values in the region favorable from the recent precise
CMB observations. In particular, the tensor-to-scalar ratio
could take ratherwide rangevalues consistentwith theCMB
results depending on the parameters in the inflaton potential.
Moreover, this inflaton could play a crucial role for the
neutrino mass generation other than the inflation, which is
similar to the sneutrino inflation scenario.
The paper is organized as follows. In the next section

we address our extended model briefly. In particular, the
role of a new singlet scalar in the neutrino mass generation
is explained. In Sec. III, we study the inflation in this
model. Important quantities relevant to the inflation such
as e-foldings, slow-roll parameters and spectral index
are estimated numerically. Reheating temperature is also
discussed. In Sec. IV we summarize the paper.

II. AN EXTENDED MODEL

The original radiative seesaw model is defined by the
following Z2 invariant terms [9]:

−LO ¼ −hαiN̄iη
†lα − h�αil̄αηNi þ

Mi

2
N̄iNc

i þ
M�

i

2
N̄c

i Ni

þm2
ϕϕ

†ϕþm2
ηη

†ηþ λ1ðϕ†ϕÞ2 þ λ2ðη†ηÞ2
þ λ3ðϕ†ϕÞðη†ηÞ þ λ4ðη†ϕÞðϕ†ηÞ

þ 1

2
½λ5ðη†ϕÞ2 þ λ�5ðϕ†ηÞ2�; ð1Þ

where li is a left-handed lepton doublet and η is an inert
doublet scalar. Since η and right-handed neutrinos Ni are
assigned odd parity of Z2 symmetry and all the SM
contents including the ordinary Higgs doublet scalar ϕ
are assigned even parity, neutrino Dirac mass terms are
forbidden at tree level. Neutrino masses are generated
through one-loop diagram which has Ni and η in the
internal lines as shown in the left diagram of Fig. 1.
As found from this figure, neutrino mass generation in

this model is characterized by a scalar quartic coupling
λ5ðη†ϕÞ2 between the ordinary doublet Higgs scalar ϕ and
an inert doublet scalar η. In this mass generation at TeV
scales, the smallness of the coupling λ5 plays a crucial role
to explain the smallness of neutrino masses. It is considered

to be a key feature of this scenario. To explain its smallness,
we may consider a scenario that this coupling is an effective
coupling appearing at low energy regions after integrating
out a heavy complex singlet scalar S. Such a scenario could
be realized by introducing a Z2 odd singlet complex scalar.
Additional terms in the new Lagrangian are given as

−LS ¼ ~m2
SS

†Sþ 1

2
m2

SS
2 þ 1

2
m2

SS
†2 þ κ1ðS†SÞ2

þ κ2ðS†SÞðϕ†ϕÞ þ κ3ðS†SÞðη†ηÞ
− μSη†ϕ − μ�S†ϕ†η; ð2Þ

where these are most general terms which are Z2 invariant
and renormalizable.2

If the new singlet S is much heavier than η and Ni,
favorable features of the original model could be kept in
this extended version. Neutrino mass is generated through
the one-loop diagram shown in the right one of Fig. 1. In
this diagram, φa represents the component fields of Swhich
are defined as S ¼ 1ffiffi

2
p ðφ1 þ iφ2Þ. Their masses are easily

found to be m̄2
1 ¼ ~m2

S þm2
S and m̄

2
2 ¼ ~m2

S −m2
S. Since Z2 is

considered as an exact symmetry, ~m2
S > m2

S should be
satisfied. The similar diagram is know to contribute to the
neutrino mass generation in the supersymmetrized radiative
seesaw model [12]. Neutrino mass induced through this
diagram can be estimated as

ðMνÞαβ ¼
X3
i¼1

X
a¼1;2

hαihβiMiμ
2
ahϕi2

8π2
IðMη;Mi; m̄aÞ; ð3Þ

whereM2
η ¼ m2

η þ ðλ3 þ λ4Þhϕi2 and μa is defined as μ1 ¼
μffiffi
2

p and μ2 ¼ iμffiffi
2

p , respectively. The function Iðma;mb;mcÞ is
defined as

Iðma;mb;mcÞ ¼
ðm4
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FIG. 1. One-loop diagrams which contribute neutrino mass
generation. Left one is the diagram in the original model. The
right diagram generates neutrino masses in the present model.
The dimensionful coupling μa is defined as μ1 ¼ μffiffi

2
p and μ2 ¼ iμffiffi

2
p

by using μ in Eq. (2).

2In this extension, λ5 ¼ 0 is supposed in Eq. (1). Since the β-function of λ5 is proportional to λ5 itself, this assumption is justified after
taking into account the radiative correction.
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If we assume that the conditions ~mS ≫ mS;mη;Mi are
satisfied, this formula can be approximated as

ðMνÞαβ ¼
X3
i¼1

hαihβihϕi2
8π2

m2
Sμ

2

~m4
S

Mi

M2
η −M2

i

×

�
M2

i

M2
η −M2

i
ln
M2

i

M2
η
þ 1

�
: ð5Þ

It is equivalent to the neutrino mass formula in the original

model if
m2

Sμ
2

~m4
S
is identified with the coupling constant λ5 for

the ðη†ϕÞ2 term.
This correspondence might be found in an effective

theory obtained at energy regions smaller than ~mS by
integrating out S. In fact, if we use the equation of motion
for S which could be approximated as S≃ μ�ϕ†η= ~m2

S, the
required terms are derived as

1

2

�
m2

Sμ
2

~m4
S

ðη†ϕÞ2 þm2
Sμ

�2

~m4
S

ðϕ†ηÞ2
�
: ð6Þ

The origin of small λ5 which is the key nature to explain
the smallness of the neutrino masses is now translated
to the hierarchy problem between μ, mS, and ~mS in this
extension. If we leave the origin of this hierarchy to a
complete theory at high energy regions, all the neutrino
masses, the DM abundance, and the baryon number

asymmetry could be also explained in this extended model
at TeV regions just as in the same way discussed in the
previous articles [14]. Following the results obtained in

these studies, the value of m2
Sμ

2

~m2
S
could be constrained by the

simultaneous explanation of these.

III. INFLATION DUE TO THE COMPLEX
SCALAR S

A. e-foldings and the spectral index

If the singlet scalar S does not play any other role, this
modification might not be so interesting. However, we find
that the introduction of S could add an interesting feature to
the radiative seesaw model as an inflation model.3 As such
simple scenarios for a real singlet scalar S, one may
consider m2

SS
2 type chaotic inflation [13] or S-inflation

[22]. In the former example, the inflation could be related
with the neutrino mass generation like sneutrino inflaton
model. However, the scenario requires trans-Planckian
values for S during inflation and it could induce the above
mentioned problem.
In this section, we consider an inflation scenario which

could work even for sub-Planckian values of S, following
the proposal in [23]. We show that it is possible as long as
the existence of specific nonrenormalizable terms is
assumed in the potential for S. As such potential, we
suppose that the complex scalar S has Z2 invariant addi-
tional potential terms such as

V ¼ c1
ðS†SÞn
M2n−4

pl

�
1þ c2

��
S
Mpl

�
2m

exp

�
i
S†S
Λ2

�
þ
�

S†

Mpl

�
2m

exp

�
−i

S†S
Λ2

���

¼ c1
φ2n

2nM2n−4
pl

�
1þ 2c2

�
φffiffiffi
2

p
Mpl

�
2m

cos

�
φ2

2Λ2
þ 2mθ

��
; ð7Þ

where both n and m are positive integers and Mpl is the
reduced Planck mass. We use the polar coordinate ex-
pression S ¼ φffiffi

2
p eiθ in the second equality of Eq. (7).

Although the exponential part of this potential is crucial
for the present scenario, we cannot describe its origin
concretely at the present stages. We only expect that it
might be effectively induced through the nonperturbative
dynamics in the UV completion of the model. However,
since the model has interesting features for the inflation as
shown below, we expect that the potential form might give
us some useful hints to find the UV completion and its
dynamics.
In the left panel of Fig. 2, we show a typical shape of the

potential as a function of φ for a fixed θ. As easily found,
the potential V has local minimums for a fixed θ under the
condition Λ ≪ φ ≪ Mpl at

φ2

2Λ2
þ 2mθ ¼ ð2jþ 1Þπ þ α≃ ð2jþ 1Þπ; ð8Þ

where j is an integer and α ¼ tan−1ð2Λ2

M2
pl
Þ.

Now we assume that inflation proceeds along this local
minimum. In that case, the field a along this direction is
considered to play a role of inflaton. It might be represented
as da2 ¼ dφ2 þ φ2dθ2. Since φ is supposed to evolve as a
function of θ following Eq. (8), we find that the field a
should satisfy the relation such as

da ¼
�
φ2 þ

�
dφ
dθ

�
2
�
1=2

dθ ¼
�
1þ 4m2

�
Λ
φ

�
4
�
1=2

φdθ:

ð9Þ

3Higgs inflation has been applied to the radiative seesawmodel
in [21].
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This shows that the field a can be expressed as
da≃ φdθ as long as φ ≫ Λ is satisfied. Thus,
the field a associated to the almost flat direction can be
treated as a canonically normalized inflaton field
orthogonal to φ. In order to estimate the mass of φ during
the period when the field evolve along the a direction, we
expand the potential V given in Eq. (7) around its local
minimum at a fixed θ. As this result, we find that the mass
of φ satisfies

mφ ≳
�
c1
2n−1

nð2n − 1Þ
�
1=2

�
φ

Mpl

�
n−2

φ: ð10Þ

On the other hand, the Hubble parameter during this period
could be roughly estimated as

H ¼
�

V
3M2

pl

�
1=2 ≃

�
c1
3.2n

�
1=2

�
φ

Mpl

�
n−1

φ: ð11Þ

As long as we suppose a situation such as φ ≪ Mpl, we find
that the mass of φ is much larger than the Hubble parameter
there. This shows that φ cannot contribute to the inflation
and then the single inflaton scenario due to the field a could
be realized.
We can check that this actually occurs through numerical

calculation. We solve the field equations for the component
fields φ1;2 of S ¼ 1ffiffi

2
p ðφ1 þ iφ2Þ numerically. They evolve

following the field equations,

φ̈i þ 3H _φi ¼ −
∂V
∂φi

ði ¼ 1; 2Þ ð12Þ

where H2 ¼ 1
3M2

pl
ðPi

1
2
_φ2
i þ VÞ. For example, the explicit

expression for ∂V
∂φi

in the case of n ¼ 3 and m ¼ 1 is

given as

∂V
∂φ1

¼ c1ðφ2
1 þ φ2

2Þ3
8M2
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�
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φ2
1 þ φ2

2

þ c2φ1

M2
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�
6ðφ2

1 − φ2
2Þ
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1 þ φ2

2

þ 2 − 2
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�
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2

2Λ2

�

− c2
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�
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− c2
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2
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�
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2

2Λ2

��
: ð13Þ

In the right panel of Fig. 2, we show an example for the evolution of the inflaton in the ð φ1ffiffi
2

p
Mpl

; φ2ffiffi
2

p
Mpl

Þ plane. In this

calculation, we assume that φ1;2 initially stay at the local minimum. The figure shows that the field a evolves as an
aperiodic circle. Along this trajectory, the value of a changes by an amount larger than the Lyth bound [24] during the
small change of φ in the sub-Planckian range. From this figure, we find that the single inflaton scenario could be realized
in this model as long as the conditions mentioned above are satisfied and the fields φ1;2 start to evolve from a local
minimum.
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FIG. 2 (color online). The left panel shows the potential V defined by n ¼ 3 and m ¼ 1. Other parameters in V are fixed as
c1 ¼ 1.65 × 10−6, c2 ¼ 0.7 and Λ=Mpl ¼ 0.04. In the right panel, the time evolution of the field a in the ð φ1ffiffi
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Þ plane for the

potential V shown in the left panel. φ is related to φ1;2 by φ2 ¼ φ2
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2.

BUDHI, KASHIWASE, AND SUEMATSU PHYSICAL REVIEW D 90, 113013 (2014)

113013-4



Next, in order to see the feature of the inflation induced
by this field a, we calculate the quantities which character-
ize inflation, that is, the e-foldings N, the spectral index ns,
the tensor-to-scalar ratio r and so on. The change of the
inflaton a from some period to the end of inflation can be
expressed by using φ as

ae − a ¼ −
Z

φe

φ

~φ2

2mΛ2
d ~φ ¼ 1

6mΛ2
ðφ3 − φ3

eÞ; ð14Þ

where we use Eq. (9) under the assumption φ ≫ Λ. A value
of φ at the end of inflation is expressed by φe. For the

convenience, we may redefine the canonically normalized
new inflaton as

χ ≡ ae þ
φ3
e

6mΛ2
− a ¼ φ3

6mΛ2
: ð15Þ

This expression explicitly shows that sub-Planckian values
of φ could be enhanced by φ2

6mΛ2 to result in trans-Planckian
values of the inflaton χ. The e-foldings induced by the
inflaton change from χ to χe is estimated as

N ¼ −
1

M2
pl

Z
χe

χ
dχ

V
V 0 ≡ NðχÞ − NðχeÞ;

NðχÞ ¼ 1

6m2n

�
Mpl

Λ

�
4
�

φffiffiffi
2

p
Mpl

�
6
�
1þ 6c2m

nð3þmÞ
�

φffiffiffi
2

p
Mpl

�
2m

×F

�
1;

3

m
þ 1;

3

m
þ 2; 2c2

�
1þm

n

��
φffiffiffi
2

p
Mpl

�
2m
��

; ð16Þ

where V 0 ¼ dV
dχ and F is the hypergeometric function. χe is fixed as a value at the end of inflation. In the expression of NðχÞ,

it might be approximated by the first term since the second term is negligibly small compared with it. However, it should be
noted that NðχÞ ≫ NðχeÞ is not satisfied in this scenario.
Slow-roll parameters [25] are easily calculated by using Eqs. (7) and (9). We find that they are given by using the model

parameters as

ε≡M2
pl

2

�
V 0

V

�
2

¼ m2

� ffiffiffi
2

p
Mpl

φ

�6� Λ
Mpl

�
4
�n − 2c2ðmþ nÞð φffiffi

2
p

Mpl
Þ2m

1 − 2c2ð φffiffi
2

p
Mpl

Þ2m
�2
;

η≡M2
pl

�
V 00

V

�

¼ m2

� ffiffiffi
2

p
Mpl

φ

�6� Λ
Mpl

�
4 nð2n − 3Þ − 2c2ðmþ nÞð2mþ 2n − 3Þð φffiffi

2
p

Mpl
Þ2m

1 − 2c2ð φffiffi
2

p
Mpl

Þ2m : ð17Þ

If c2 terms are neglected in these formulas, we find that
these slow-roll parameters at the period characterized
by the inflaton value χ can be represented in the very
simple forms such as ε≃ n

6ðNþNðχeÞÞ and η≃ 2n−3
6ðNþNðχeÞÞ by

using the e-foldings N given in Eq. (16). We note that
the explicit m dependence in these quantities remains only
in the expression of the e-foldings N. The end of inflation
could occur much before the time when ε ¼ 1 is realized.
It is crucial to guarantee the field evolution along the
local potential minimum and the c2 term plays a key role
there.
We clarify this feature through a simple observation.

When the kinetic energy is equal to the local potential
barrier Vb which is given by the cos term of Eq. (7), the
inflaton could go over the potential barrier to the global

minimum. The condition could be expressed as 1
2
_χ2 ∼ V 0. If

we use the slow-roll approximation 3H _χ ¼ −V 0 here, this
condition can be written as ε ∼ 3Vb

V . Since V > Vb is
supposed in the model, the end of inflation occurs at the
time when ε < 1 is satisfied. By solving this condition, we
can estimate the value of φe as

φeffiffiffi
2

p
Mpl

≃
�
m2n
6c2

� 1
2mþ6

�
Λ
Mpl

� 2
mþ3

; ð18Þ

where we neglect the contribution from the c2 terms. In that
case, NðχeÞ has a substantial contribution to determine the
e-foldings N. To confirm this behavior and estimate the
value of χe, we use the numerical solutions of the field
equations (12) which contain the effect of the c2 term.
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The numerical results given in the latter part show a good
agreement with the values of χe derived by using Eq. (18).
It supports our picture for the end of inflation.
The spectrum of scalar perturbation predicted by the

inflation is expressed as [25]

PRðkÞ ¼ Δ2
R

�
k
k�

�
ns−1

; Δ2
R ¼ V

24π2M4
plε

				
k�
: ð19Þ

The CMB observations give the normalization such that
Δ2

R ≃ 2.43 × 10−9 at k� ¼ 0.002 Mpc−1. This constrains
the value of V=ε at the time when the scale characterized
by the wave number k� exits the horizon. On the other hand,
the remaining e-foldings N� of the inflation after the scale
k� exits the horizon is dependent on the reheating phenom-
ena and others as [25]

N� ≃ 61.4 − ln
k�

a0H0

− ln
1016 GeV

V1=4
k�

þ ln
V1=4
k�

V1=4
end

−
1

3
ln
V1=4
end

ρ1=4reh

:

ð20Þ

Taking account of this uncertainty,N� is usually considered
to take a value in the range 50–60. Here we also use the
values in this range and we represent a value of φ which
gives the e-foldings N� as φ�. If we use these notations, the
above normalization Δ2

R is found to have a suitable value
for

c1 ¼ 9.5 × 10−8
n
N�

� ffiffiffi
2

p
Mpl

φ�

�2n

; ð21Þ

as long as the c2 term in the potential is neglected.4 As
examples, if we suppose n ¼ 3 and N� ¼ 60, c1 ≃ 3 ×
10−7 and 0.3 are required for φ�ffiffi

2
p ¼ 0.5Mpl and 0.05Mpl,

respectively.
The scalar spectrum index ns and the ratio of the tensor

perturbation to the scalar perturbation r can be represented
by using the slow-roll parameters ε and η as follows [25],

ns ¼ 1 − 6εþ 2η; r ¼ 16ε: ð22Þ

If we use the formulas (17), we can estimate ns and r at k�
in this model. In particular, when c2 terms are negligibly
small, these are summarized by using the e-foldings N in
the very simple forms such as

ns ¼ 1 −
nþ 3

3ðN� þ NðχeÞÞ
; r ¼ 8n

3ðN� þ NðχeÞÞ
:

ð23Þ
It is very interesting that both expressions of ns and r
given in Eq. (23) reduce to the same forms which are
obtained in the chaotic inflation with the quadratic
potential in the case n ¼ 3 as suggested in [23]. They
are known to be favored for reasonable N� values such as
N� ¼ 50–60 by BICEP2 results. However, NðχeÞ≃ 0 is
not guaranteed in the present model as mentioned before.
As a result, the values of ns and r obtained only for N� >
60 in the quadratic chaotic inflation model could be
realized even for N� ¼ 50–60. This clarifies a typical
feature of the inflation induced in the model. It is induced
by the c2 term in the potential. As commented above, the
trajectory cannot follow the potential minimum and the
field suddenly rolls down toward the global minimum as
long as the c2 term is neglected. Thus, in order to estimate
these parameters including the value of NðχeÞ, we need
the analysis keeping the effect of c2 terms as an
indispensable one.5

In Table 1 we show typical examples which are calcu-
lated numerically for different values for the model
parameters c1, c2, and Λ. These examples suggest that
sufficiently large e-foldings such as N� ¼ 50–60 could be
realized as long as Λ ≪ φ� is satisfied even for the sub-
Planckian inflaton value φ� < Mpl.

6 The Hubble parameter
during the inflation takes values around 1014 GeV as
shown in this table. The predicted values of ns and r are
also listed in each case. In this calculation, we again use the
solutions obtained from the field equations (12).
In Fig. 3, we plot the predicted points in the ðns; rÞ plane

for N� ¼ 50–60 in the cases A and B given in Table 1.
Although the model parameters c2 and Λ are required to
take values in suitable regions to realize the observational
data, the serious fine-tuning of parameters seems not to be
necessary. As a reference, we plot the prediction of the ϕ2

chaotic inflation as a dotted line in the same figure. Two
crosses on it show the predicted points for N� ¼ 50 and 60.
The figure shows that this model could realize the ðns; rÞ
points in the wider ranges which cannot be reached for
N� ¼ 50–60 in the ϕ2 chaotic inflation scenario. It should
be noted that such points are realized even for the values of
N� such as 50–60 by changing the model parameters
suitably. We find that the points of the case B somewhat
shift from the line for the quadratic chaotic model. This can

4One might find that this condition could be easily satisfied
even for a large value of c1 near Oð1Þ. In fact, if we scale c1, c2
and Λ such as x2nc1, x2mc2 and x−1Λ with x, the potential keeps
its form for the scaled x−1φ. Although the numerical detail in the
field evolution has subtle behavior, the basic feature is understood
in this way as found in the solution given in Table 1.

5Here we confine our analysis to the case defined by n ¼ 3 and
m ¼ 1, although other values of n could give interesting results.
Those detailed results will be presented elsewhere.

6The values of N� in Table 1 are obtained through the direct
numerical integration of Hubble parameters. If we use the
formula given in Eq. (16), the similar value can be obtained
within a few percent difference from those. Both ns and r are
found to be not sensitive for such differences.
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be easily understood. As found from Eq. (17), the c2 term
makes η somewhat smaller than ε compared with the ϕ2

chaotic inflation model where ε ¼ η is satisfied. Since this
effect becomes larger for the parameters in the case A than
the ones in the case B, the predicted points appear below
the line for the ϕ2 chaotic inflation model. We find that the
model is expected to predict ðns; rÞ in the region on or
below the line predicted by the ϕ2 chaotic inflation model
and also in the region where ns takes a larger value than the
one predicted by the ϕ2 chaotic inflation model for the
fixed N� value. These features show that the model could
be an alternative interesting scenario to the simple ϕ2

chaotic inflation model. If both values of ns and r could be
constrained through the precise data obtained from the
future CMB observations, the model could be tested in the
near future.
Finally, we should address the notorious η-problem in

the model. Although we could make higher order terms
suppressed by the Planck scale in the potential ineffective,
the η problem still remains in the model. It may be
formulated in two forms such that, (i) why Λ

Mpl
in

Eq. (7) is smaller than Oð1Þ, and (ii) why ~m2
S, m

2
S and

κ1φ
2 are small enough in comparison with H2. As

mentioned before, the first one is closely related to the
UV completion of the model, which fixes the exponential
part of the potential. This could be solved only if the UV
completion is found and its dynamics is clarified. It is
beyond the present scope. The second one might be also
determined in the UV completed model. In the present
model, however, the values of ~m2

S and m2
S are related to

other low energy physics, that is, the neutrino masses. This
additional aspect might give a new physical meaning to the
η problem in this model. We might approach the problem
based on this view point.

B. Reheating after the end of inflation

The result shown in the previous part suggests that the
model has favorable features as an inflation scenario. In
order for the model to be a realistic one, it is required that
the inflaton energy should be transferred to radiation
energy to reheat the Universe after the end of inflation.
It could be expected to occur if the aperiodic circular

motion of the inflaton stops at a certain period and starts to
behave as matter through the oscillation around the global
minimum of the potential. In fact, such a behavior can be
found to occur in the right panel of Fig. 2. Since the kinetic
energy of the fields becomes larger compared with the local
potential barrier which gradually becomes smaller, the field
component φ is expected to leave the local minimum and
go over the potential toward the global minimum at a
certain period.
As reheating processes during the φ1;2 oscillation, we

have to consider both preheating due to the parametric
resonance [26] through quartic interactions of S with ϕ
and η and also the perturbative decay due to an interaction
term μSη†ϕ given in Eq. (2). Just after the end of inflation,
the fields φ1;2 start the oscillation around the global
minimum with very large amplitude. Since the fields
coupled with them have large effective masses and then
it seems difficult for φ1;2 to produce these particles.
However, the particle production due to the parametric
resonance is known to occur effectively even in such a
situation. In this model the parametric resonance due to
the scalar quartic couplings might realize rather high
reheating temperature.
On the other hand, only preheating cannot transfer the

inflaton energy to the radiation completely [26,27]. The
decay of φ1;2 induced through three scalars interaction such
as μffiffi

2
p φ1η

†ϕ and iμffiffi
2

p φ2η
†ϕ can complete the energy transfer

in this model. The decay width for these processes is

estimated as Γφi
¼ 1

8π
jμj2
m̄i

where m̄2
1 ¼ ~m2

S þm2
S and

m̄2
2 ¼ ~m2

S −m2
S. Since ~mS ≫ mS is assumed to be satisfied

here, the reheating temperature realized through these
processes could be estimated as [27]

TR ≃ 0.35g−1=4� jμj
ffiffiffiffiffiffiffiffi
Mpl

~mS

s
; ð24Þ

where we use g� ¼ 116 as the relativistic degrees of
freedom in this model. Since both μ and ~mS are relevant
to the neutrino mass generation as shown in the previous
part, we should take account of the constraint from it. The
present inflation scenario also requires that Eq. (7) is the

TABLE I. Hubble parameter, spectral index and the tensor-to-scalar ratio for typical examples of four parameters of the model defined
by n ¼ 3 and m ¼ 1. These model parameters are fixed to realize the observed value for the scalar perturbation amplitude Δ2

R.

c1 c2 Λ
Mpl

φ�ffiffi
2

p
Mpl

H� (GeV) N� ns r

A 1.66 × 10−6 0.7 0.04 0.378 0.871 × 1014 59.0 0.971 0.107
2.04 × 10−6 0.7 0.04 0.371 0.921 × 1014 54.2 0.968 0.119
2.42 × 10−6 0.7 0.04 0.366 0.965 × 1014 49.1 0.965 0.131

B 0.257 6.0 0.002 0.0512 0.945 × 1014 60.4 0.969 0.124
0.305 6.0 0.002 0.0505 0.986 × 1014 55.0 0.966 0.136
0.364 6.0 0.002 0.0498 1.03 × 1014 50.0 0.962 0.149
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dominant potential of S at the inflation era. This brings
about the additional constraints on ~mS as

~mS ≪
ffiffiffiffiffi
c1

p �
φ�
Mpl

�
n−2

φ�

≃ 3.1 × 10−4
�

n
N�

�
1=2

�
Mpl

φ�

�
2

φ�; ð25Þ

where Eq. (21) is used. If we apply N� ¼ 60 and φ� ≃
0.5Mpl which are the typical values for the case n ¼ 3 in the
previous part, the bound for ~mS can be obtained as
~mS ≪ 3.4 × 1014 GeV. Taking account of this constraint,
we may estimate the reheating temperature through this
process as

TR ≃ 1.6 × 108
� jλ5j
10−6

�
1=2

�
~mS

mS

��
~mS

106 GeV

�
1=2

GeV:

ð26Þ

Here we also note that jλ5j should be smaller than Oð10−6Þ
from the present bound of DM direct search since the
lightest neutral component of η is DM and its mass is
∼1 TeV [14]. We find that the reheating temperature could
be in a rather wide range such as 105 GeV≲ TR ≲
1015 GeV depending on a value of ~mS. This temperature
is high enough to produce thermal right-handed neutrinos
in the present model since the masses of right-handed

neutrinos are assumed to be of Oð1Þ TeV. If the right-
handed neutrino masses are sufficiently degenerate, the
baryon number asymmetry could be generated through the
resonant leptogenesis as discussed in [14]. Right-handed
neutrinos need not to be light but they could have large
mass such as Oð109Þ GeV in a consistent way with this
neutrino mass model [14]. Even in that case, Eq. (26) shows
that sufficient reheating temperature could be induced for
leptogenesis to work well without the resonant effect.
Anyway, the model could cause sufficient reheating tem-
perature for the generation of baryon number asymmetry
independently from the details of preheating in the
model.

IV. SUMMARY

In this paper we have considered an extension of the
radiative seesaw model with a complex singlet scalar to
realize the inflation of the Universe keeping favorable
features of the original model, that is, the simultaneous
explanation of the small neutrino masses, the DM abun-
dance and the baryon number asymmetry in the Universe.
This singlet scalar plays a crucial role not only in the
exponential expansion of the Universe as an inflaton but
also in the small neutrino mass generation. In this scenario
inflaton trajectory follows an aperiodic circle during the
inflation. This feature makes it possible that sub-Planckian
values of the relevant field induce trans-Planckian changes
of the inflaton value which is needed for the sufficient
e-foldings. The model could be free from the serious
problem caused by trans-Planckian field values. However,
the η problem still remains. TheUVcompletion of themodel
is expected to give a solution for it.
We have also shown that the model has other interest-

ing aspects as the inflation model. As a limiting situation,
it gives the same formulas for the spectral index ns and
the tensor-to-scalar ratio r as ones of the m2φ2 type
chaotic inflation, in which r could take a large value. In
more general cases, we have estimated them by solving
numerically the field equations for the component fields
of the singlet scalar. The tensor-to-scalar ratio could take
large values in these cases also. Both the spectral index ns
and the tensor-to-scalar ratio r could have values which
are favorable from the recent CMB observations. If the
precise data from the CMB observations are given in
the near future, we could restrict the model parameters
much more. Since the roughly estimated reheating tem-
perature tells us that it could be high enough for lepto-
genesis, the model seems to explain consistently the
crucial problems in the SM including the baryon number
asymmetry. Although we cannot mention the origin of the
specific potential at this stage, the features shown by the
model seem to be interesting. The model may deserve
further study.

FIG. 3 (color online). Predicted values of ðns; rÞ for several
parameter sets ðc2; Λ

Mpl
Þ given in Table 1. A dotted line represents

the prediction by the quadratic chaotic inflation model and the
crosses correspond to the points for N� ¼ 50 and 60. Horizontal
solid lines and dotted lines represent the Bicep2 1σ constraints
with and without the foreground subtraction, respectively [17].
Contours given as Fig. 4 in Planck Collaboration XXII [16] are
used here. Since the running of the spectral index ns is negligible
in the present model, the blue contours should be compared with
the predictions.
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