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We present a new general dispersive formalism for evaluating the hadronic light-by-light scattering
contribution to the anomalous magnetic moment of the muon. In the suggested approach, this correction is
related to the imaginary part of the muon’s electromagnetic vertex function. The latter may be directly
related to measurable hadronic processes by means of unitarity and analyticity. As a test we apply the
introduced formalism to the case of meson pole exchanges and find agreement with the direct two-loop
calculation.
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The keen interest in the anomalous magnetic moment of
the muon aμ is motivated by its high potential for probing
physics beyond the Standard Model (SM). The presently
observed 3–4σ discrepancy [1] allows for a number of
beyond SM scenarios which relate this deviation to
contributions of hypothetical particles, see [2] and refer-
ences therein. On the experimental side, the new measure-
ments both at Fermilab (E989) [3] as well as at J-PARC [4]
aim to reduce the experimental error on aμ to
δaμðexpÞ ¼ �16 × 10−11, which is a factor of 4 improve-
ment over the present value. The expected precision of the
new experiments will give access to scales up to
Λ ∼m=

ffiffiffiffiffiffiffi
δaμ

p
∼ 8 TeV, where m is the mass of the muon

[5], which makes it highly competitive to measurements at
the Large Hadron Collider (LHC). However, the interpre-
tation of aμ is undermined by theoretical uncertainties
of the strong-interaction contributions entering its SM
value. Depending on the analysis of these hadronic con-
tributions [1,6] the present SM uncertainty amounts to the
range δaμðSMÞ ¼ �ð49 − 58Þ × 10−11 which significantly
exceeds the future experimental accuracy. This motivates
an intense activity to reliably estimate contributions of
hadrons to aμ, see [7] and references therein.
The hadronic uncertainties mainly originate from had-

ronic vacuum polarization (HVP) and hadronic light-by-
light (HLbL) insertion diagrams shown in Fig. 1. The
dominant HVP contribution can be reliably estimated on
the basis of experimental information of electromagnetic
hadron production processes implemented via the
dispersion technique. The existing estimates are based on
data for eþe− → hadrons, data for eþe− → γ þ hadrons, as
well as τ decays (see [1] and references therein) yielding an
accuracy δaμðlowest-order HVPÞ ¼ �42.4 × 10−11 [6].
The ongoing experiments at eþe−-colliders (mainly
VEPP-2000 and BES-III) will provide valuable experi-
mental input to further constrain this contribution. It was
estimated in [1] that the forthcoming data will allow to
reduce the uncertainty in the HVP by around a factor of 2.

Unlike the HVP contribution, in most of the existing
estimates of the HLbL contribution, the description of the
nonperturbative light-by-light matrix element is based on
hadronic models rather than determined from data. These
approximations are based on a requirement of consistency
with the asymptotic constraints of QCD and predict that the
hadronic corrections are dominated by long-distance phys-
ics, namely due to exchange of the lightest pseudoscalar
states [8]. Unfortunately, a reliable estimate based on such
models is possible only within certain kinematic regimes.
This results in a large, mostly uncontrolled uncertainty
of aμ. The two main estimates of the HLbL contribution
to aμ yield the following [8,9]:

aμðHLbLÞ ¼ ð116� 39Þ × 10−11; ð1Þ

aμðHLbLÞ ¼ð105� 26Þ × 10−11: ð2Þ

To overcome the model dependence one may resort to
data-driven approaches for the HLbL contribution to aμ.
Recently, such an approach based on the analytic structure
of the HLbL tensor has been discussed in [10,11]. In the
present paper, we present a new data driven approach
for calculating aμ based on the analytic properties of the
muon’s electromagnetic vertex function. We express aμ
through a dispersive integral over the discontinuity of the

FIG. 1. The hadronic vacuum polarization (left panel) and light-
by-light scattering (right panel) contributions to the anomalous
magnetic moment of the muon.
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muon’s electromagnetic vertex function, which in turn can
be related to observables.
Defined as a static limit (k2 ¼ 0, with k being the photon

momentum) of the Pauli form factor F2ðk2Þ, the anomalous
magnetic moment can be extracted from the vertex function
by a projection technique as was elaborated in [12,13].

Applying the Feynman rules to the diagram on the right
panel of Fig. 1 and rewriting the virtual photon propagators
using the completeness relation for photon polarization
vectors as gμν=ðq2−iεÞ¼

P
λð−1Þλεμðq;λÞε�νðq;λÞ=ðq2−iεÞ,

the HLbL contribution to F2ðk2Þ is obtained as a two-loop
integral:

F2ðk2Þ ¼ e6
X

λ1;λ2;λ3;λ

ð−1Þλþλ1þλ2þλ3

Z
d4q1
ð2πÞ4

Z
d4q2
ð2πÞ4 Lλ1λ2λ3λðp; q1; k − q1 − q2; q2Þ

×
Πλ1λ2λ3λðq1; k − q1 − q2; q2; kÞ

q21q
2
2ðk − q1 − q2Þ2½ðpþ q1Þ2 −m2�½ðpþ k − q2Þ2 −m2� : ð3Þ

In Eq. (3) the fourth-rank hadronic vacuum polarization tensor projected on the helicity basis is defined as a Fourier
transform of the four-current correlator in the QCD vacuum jΩi:

Πλ1λ2λ3λ4ðq1; q2; q3Þ ¼ ϵμðq1; λ1Þϵνðq2; λ2Þϵλðq3; λ3Þϵρðq4; λ4Þ

×
Z

d4x1

Z
d4x2

Z
d4x3eiðq1·x1þq2·x2þq3·x3ÞhΩjTfjμðx1Þjνðx2Þjλðx3Þjρð0ÞgjΩi: ð4Þ

The leptonic coefficient functions Lλ1λ2λ3λ4 are defined by

Lλ1λ2λ3λ4ðp; q1; q2; q3Þ ¼ ε�μðλ1; q1Þε�νðλ2; q2Þε�λðλ3; q3Þε�σðλ4; q4Þ
× Tr½Λσðpþ q1 þ q2 þ q3; pÞγλðpþ q1 þ q2 þmÞγνðpþ q1 þmÞγμ�; ð5Þ

with projector

Λσðp0; pÞ ¼ m2

k2ð4m2 − k2Þ ðpþmÞ
�
γσ þ

k2 þ 2m2

mðk2 − 4m2Þ ðp
0 þ pÞσ

�
ðp0 þmÞ:

In the latter formulas p0 and p denote momenta of the muon
before and after scattering on an electromagnetic field with
k ¼ p0 − p, qi and λi are the virtual photons’ momenta and
helicities.
When analytically continued to complex values of the

external photon’s virtuality k2, the muon’s electromagnetic
vertex function possesses branch point singularities joining
the physical production thresholds, as is dictated by
unitarity [14]. Using Cauchy’s integral theorem, the form
factor in Eq. (3) can be represented as an integral along a
closed contour avoiding the cuts and extended to infinity.
Assuming that the form factor vanishes uniformly when k2

tends to infinity the contour integral reduces to an integral
of the form factor’s discontinuity Disck2F2ðk2Þ along the
cut in the k2-plane starting from the lowest branch point:

F2ð0Þ ¼
1

2πi

Z
∞

0

dk2

k2
Disck2F2ðk2Þ: ð6Þ

As can be seen from the structure of the two-loop integral
in Eq. (3), the branch cuts of the Pauli form factor F2ðk2Þ
are related to the propagators of virtual particles and
nonanalyticities of the HLbL tensor. The latter possesses
two types of discontinuities, the corner (one-photon) and

cross (two-photon) cuts. The corner cuts are related to a
conversion of a photon to a hadronic state with negative
C-parity, while the cross cuts are related to a two-photon
production of a C-even hadronic state. As the dominant
contributions originate from the lowest thresholds it is
mainly governed by intermediate states including pions.
In particular, the lowest threshold in the C-odd channel is
related to a πþπ−-pair production and in theC-even channel
to a π0 intermediate state. By virtue of unitarity, these
discontinuities are related to amplitudes of two-photon and
eþe− hadron production processes, which are accessible
experimentally (for references see [7]). The data driven
dispersive analysis of the two-pion production channel by a
real and a virtual photon was recently discussed in [15].
Taking into account the analytical structure of the HLbL

tensor, the discontinuity in Eq. (6) is obtained as a sum of
nine topologically different contributions, which are graphi-
cally represented by unitarity diagrams in Fig. 2. On a
practical level, the contribution of a particular unitarity
diagram is obtained by replacing the cut virtual propagators
in the two-loop integral by corresponding delta functions,
and the cut vertices by their appropriate discontinuities. As
an example for the first diagram in Fig. 2, it implies
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DiscF2ðk2Þ ¼ e6
X

λ1;λ2;λ3;λ

ð−1Þλþλ1þλ2þλ3

Z
d4q1
ð2πÞ4

Z
d4q2
ð2πÞ4

1

q21

1

ðk − q1 − q2Þ2
1

ðpþ q1Þ2 −m2

1

ðpþ k − q2Þ2 −m2

× Lλ1λ2λ3λðp; q1; k − q1 − q2; q2Þð2πiÞδðq22ÞDiscðk−q2Þ2Πλ1λ2λ3λðq1; k − q1 − q2; q2; kÞ: ð7Þ

The nonperturbative discontinuity function
Discðk−q2Þ2Πλ1λ2λ3λ in Eq. (7) is directly related to ampli-
tudes of processes γ�γ� → X and γ� → γX, with X denoting
a C-even hadronic state.
To set up and test the technique for evaluating the phase

space and dispersion integrals we consider a well-studied
approximation for the HLbL amplitude based on the large-
Nc limit [16]. In such approximation, the analytic structure
of the HLbL amplitude is governed by simple poles. While
in the C-even channel it is defined by a pole due to an
exchange of the pseudoscalar meson (corresponding to π0,
η and η0 exchanges), in the C-odd channel it is governed by
a vector state exchange which can be confronted with the
vector meson dominance model (see [17] for a review). As
a result the HLbL amplitude is approximated by a pole term
of the form

Πpoleðq1; k − q1 − q2; q2; kÞ ¼
jFð0; 0;M2Þj2

ððq1 þ q2Þ2 −M2Þ
×

1

ðq21 − Λ2Þðq22 − Λ2Þððk − q1 − q2Þ2 − Λ2Þðk2 − Λ2Þ

plus two additional terms obtained by crossing. HereM and
Λ denote masses of the pseudoscalar and vector mesons

respectively and Fð0; 0;M2Þ stands for the pseudoscalar
meson transition strength into real photons. The resulting
analytic structure of the two distinct contributions to the
muon’s electromagnetic vertex function arising from such
pole terms is equivalent to the structure of the two-loop
diagrams shown in Fig. 3.
We demonstrate the process of computation on the

example of the first topology illustrated by a diagram in
the left panel of Fig. 3. The contribution of the second
topology has a similar structure and is computed in an
analogous way. We can consider the dispersive integral for
F2ðk2Þ multiplied by ðk2 − Λ2Þ, which removes the pole in
k2 and its related discontinuity. The remaining disconti-
nuities may be separated in two- and three-particle cuts.
The two-particle cuts include the γπ0 and ρπ0 intermediate
states. The three-particle cuts include γγγ, γγρ, γργ, ργγ,
γρρ, ργρ, ρργ, ρρρ intermediate states. Graphically they are
represented by cuts shown in the left panel of Fig. 3 for the
case of γπ0 (two-particle) and γγγ (three-particle) inter-
mediate states.
Following the procedure described above, we replace the

propagators of the cut photons and mesons by the corre-
sponding on-shell delta-functions. Thus for instance the
γπ0 cut is obtained by

Discπ0γF2ðk2Þ ¼ e6Λ6FPγ�γ�ð0;0;M2Þ
Z

d4q1
ð2πÞ4

Z
d4q2
ð2πÞ4 ð2πiÞ

2δððk− q1Þ2 −M2Þδðq21 −Λ2Þ 1
q21

1

q22 −Λ2

×
1

q22

1

ðk− q1 − q2Þ2
1

ðk− q1 − q2Þ2 −Λ2

1

ðpþ q1Þ2 −m2

1

ðpþ k− q2Þ2 −m2
Lðp;q1; k− q1 − q2; q2Þ; ð8Þ

where

Lðp; q1; q2; q3Þ ¼ Tr½Λσðpþ q1 þ q2; pÞγλðpþ q1 þ q2 þmÞγνðpþ q1 þmÞγμ�
× εμσαβqα1ðq1 þ q2 þ q3Þβενλγδqγ2qδ3: ð9Þ

The phase-space integrals and the one-loop insertions are
evaluated partially analytically with the subsequent numeri-
cal computation, see [18] for some technical details in the
case of scalar field theory. More details of the present
calculation will be given elsewhere. The lowest threshold
for the two-particle cut is located at k2 ¼ M2 corresponding
to the γπ0 intermediate state. For the three-particle dis-
continuity it is k2 ¼ 0 related to the γγγ cut. Thus the
dispersion integral has the form

F2ð0Þ ¼
1

2πi

Z
∞

M2

dk2

k2
Disc2F2ðk2Þ

þ 1

2πi

Z
∞

0

dk2

k2
Disc3F2ðk2Þ ð10Þ

with Disc2F2ðk2Þ and Disc3F2ðk2Þ denoting the sum of
two- and three-particle discontinuities.
We analyze the dependence of the HLbL contribution to

aμ on the pseudoscalar meson mass M. For a test we
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compare our result with the calculation using the approach
of [16], by evaluating the two-loop integral in Euclidian
space. The contributions of the two types of discontinuities,
their sum and the result of the conventional integration
depending on the pseudoscalar meson mass are shown in
Fig. 4, and their numerical values at the π0 mass are
summarized in Table I. When comparing the result
obtained by the two different methods we find an exact
agreement confirming the consistency of the adopted
procedure.
The suggested approach opens a new alternative strategy

for evaluating the HLbL contributions to the anomalous
magnetic moment of the muon. In contrast to the conven-
tional approach where the integration is carried out after
the analytical continuation to the Euclidian region, the new

approach implies the dispersive evaluation of the loop
integrals. As a result, it allows for a more straightforward
relation to observables. The nonperturbative hadronic
matrix elements entering the discontinuities can be further
reduced and expressed in terms of the existing observables
by iterative implementation of the dispersive representation.
For instance, the four-photon matrix element entering
the three-photon discontinuity shown in Fig. 2 can be
expressed in terms of γγ → X production amplitudes which
are accessible experimentally. In order to reduce the
uncertainty of the HLbL estimate to aμ, an improvement
of data is most of all required in the low-energy region for
the γγ → ππ channel as this corresponds with the largest
source of uncertainty so far. The discontinuities of the
HLbL amplitude entering the dispersion integral in Eq. (6)
are weighted by analytically known kinematic functions
of Eq. (5). This allows to localize the regions correspond-
ing with the dominant contributions, which opens a door
towards a systematic study of the uncertainties. Practically,
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FIG. 4 (color online). The value of the HLbL pole contribu-
tion due to the diagram of topology (1) (left panel in Fig. 3) to
aμ scaled by factor of 4πM3=ðe2ΓγγÞ depending on the mass of
the pseudoscalar meson, with Γγγ the two-photon decay width
of the pseudoscalar meson. The blue dashed (red dotted) curve
represents the contribution of the two (three) particle cuts.
Their sum is denoted by the black dash-dotted curve. The result
of the direct evaluation of the two-loop integral is illustrated by
the pink solid curve.

TABLE I. The contributions to aμ (in units 10−10) of two-
particle (2p) and three-particle (3p) cuts for the two topologies
(see Fig. 3) appearing in the pole approximation compared to the
results of the conventional two-loop integration of [16]. Note that
total ¼ 2 × ð1Þ þ ð2Þ.

2p-cut 3p-cut Total Direct

(1) 4.91 −2.14 2.77 2.77
(2) −7.40 7.56 0.16 0.16
Total 2.42 3.28 5.70 5.70

FIG. 3. The two topologies of the HLbL contribution to aμ in
the pole approximation and examples of the two-particle
(dashed) and three-particle (dotted line) cuts for the first
topology (left panel). The wavy lines stand for photons,
whereas the double-dashed (double-solid) lines stand for
pseudoscalar (vector) meson poles.

       

FIG. 2. Unitarity diagrams contributing to the imaginary part
of the vertex function. The cut indicates the on-shell inter-
mediate state.
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computations within the suggested approach involve both
analytical and numerical evaluations of phase-space and
dispersion integrals. To test the numerical algorithms we
considered the well studied pole approximation. The
dispersive evaluation shows good numerical stability
and exact agreement with the existing result.

This work was supported by the Deutsche
Forschungsgemeinschaft DFG in part through the
Collaborative Research Center “The Low-Energy Frontier
of the Standard Model” (SFB 1044), and in part through the
Cluster of Excellence “Precision Physics, Fundamental
Interactions and Structure of Matter” (PRISMA).

[1] T. Blum, A. Denig, I. Logashenko, E. de Rafael, B. Lee
Roberts, T. Teubner, and G. Venanzoni, arXiv:1311.2198.

[2] F. S. Queiroz and W. Shepherd, Phys. Rev. D 89, 095024
(2014).

[3] B. Lee Roberts (Fermilab P989 Collaboration), Nucl. Phys.
B, Proc. Suppl. 218, 237 (2011); R. M. Carey, K. R. Lynch,
J. P. Miller, B. L. Roberts, W. M. Morse, Y. K. Semertzides,
V. P. Druzhinin, B. I. Khazin et al., Report No. FERMILAB-
PROPOSAL-0989.

[4] H. Iinuma (J-PARC New g − 2=EDM Experiment
Collaboration), J. Phys. Conf. Ser. 295, 012032 (2011).

[5] A. Czarnecki and W. J. Marciano, Phys. Rev. D 64, 013014
(2001).

[6] F. Jegerlehner, Acta Phys. Pol. B 44, 2257 (2013).
[7] M. Benayoun, J. Bijnens, T. Blum, I. Caprini, G. Colangelo,

H. Czyź, A. Denig, C. A. Dominguez et al.,
arXiv:1407.4021.

[8] F. Jegerlehner and A. Nyffeler, Phys. Rep. 477, 1 (2009);
F. Jegerlehner, Springer Tracts Mod. Phys. 226, 1 (2008).

[9] J. Prades, E. de Rafael, and A. Vainshtein, arXiv:0901.0306.
[10] G. Colangelo, M. Hoferichter, M. Procura, and P. Stoffer,

J. High Energy Phys. 09 (2014) 091.
[11] G. Colangelo, M. Hoferichter, B. Kubis, M. Procura, and P.

Stoffer, Phys. Lett. B 738, 6 (2014).
[12] R. Barbieri, J. A. Mignaco, and E. Remiddi, Nuovo Cimento

Soc. Ital. Fis. 11A, 824 (1972).
[13] R. Z. Roskies, M. J. Levine, and E. Remiddi, Adv. Ser. Dir.

High Energy Phys. 7, 162 (1990).
[14] The anomalous thresholds for the three-point functions

located below the normal thresholds do not appear in the
considered case.

[15] B. Moussallam, Eur. Phys. J. C 73, 2539 (2013).
[16] M. Knecht and A. Nyffeler, Phys. Rev. D 65, 073034

(2002).
[17] E. Czerwinski, S. Eidelman, C. Hanhart, B. Kubis,

A. Kupsc, S. Leupold, P. Moskal, and S. Schadmand,
arXiv:1207.6556.

[18] V. Pauk and M. Vanderhaeghen, arXiv:1403.7503.

ANOMALOUS MAGNETIC MOMENT OF THE MUON IN A … PHYSICAL REVIEW D 90, 113012 (2014)

113012-5

http://arXiv.org/abs/1311.2198
http://dx.doi.org/10.1103/PhysRevD.89.095024
http://dx.doi.org/10.1103/PhysRevD.89.095024
http://dx.doi.org/10.1016/j.nuclphysbps.2011.06.038
http://dx.doi.org/10.1016/j.nuclphysbps.2011.06.038
http://dx.doi.org/10.1088/1742-6596/295/1/012032
http://dx.doi.org/10.1103/PhysRevD.64.013014
http://dx.doi.org/10.1103/PhysRevD.64.013014
http://dx.doi.org/10.5506/APhysPolB.44.2257
http://arXiv.org/abs/1407.4021
http://dx.doi.org/10.1016/j.physrep.2009.04.003
http://arXiv.org/abs/0901.0306
http://dx.doi.org/10.1007/JHEP09(2014)091
http://dx.doi.org/10.1016/j.physletb.2014.09.021
http://dx.doi.org/10.1140/epjc/s10052-013-2539-y
http://dx.doi.org/10.1103/PhysRevD.65.073034
http://dx.doi.org/10.1103/PhysRevD.65.073034
http://arXiv.org/abs/1207.6556
http://arXiv.org/abs/1403.7503

