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We improve the theoretical predictions for the decays of the Higgs boson to an S-wave vector quarkonium
plus a photon by calculating the relativistic correction of order v2, where v is the heavy-quark velocity in the
quarkonium rest frame. Our numerical results are given for the J=ψ and ϒðnSÞ channels, with n ¼ 1, 2, 3.
The numerical results include a previously calculated correction of order αs and summations, to all orders in
αs, of leading logarithms of m2

H=m
2
Q, where mH is the Higgs-boson mass and mQ is the heavy-quark mass.

These QCD corrections apply to the contribution of leading order in v and to part of the order-v2 correction.
For the remainder of the order-v2 correction, we sum leading logarithms ofmH=mQ through order α2s. These
refinements reduce the theoretical uncertainties in the direct-production amplitudes for H → J=ψ þ γ and
H → ϒð1SÞ þ γ by approximately a factor of 3 and open the door to improved determinations at the LHC of
the Higgs-boson Yukawa couplings to the charm and bottom quarks.
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I. INTRODUCTION

A primary activity of the LHC program is the exploration
of the properties of the Higgs boson, which was discovered
over two years ago by the ATLAS and CMS collaborations
[1,2]. Currently, only couplings to gauge bosons and third-
generation fermions are measured directly [3,4]. The
couplings that are fixed through the well-measured diboson
decays of the Higgs are determined at the 20%–30% level.
No deviations from the predictions of the Standard Model
(SM) have been observed.
While the possibility of measuring the Higgs-boson

couplings to muons at the high-luminosity LHC (HL-
LHC) has been studied [5–7], the couplings of the Higgs
boson to first- and second-generation quarks are terra
incognita. They are onlyweakly constrained by the inclusive
Higgs-boson production cross sections, yet they can deviate
significantly from their SM values in numerous theories
of new physics. It was long thought to be impossible to
measure these couplings, owing to the severe experimental
difficulties that are inherent in reconstructing the signal and
isolating it from the background.
Recent work has demonstrated that there is hope to

determine the Yukawa couplings of first- and second-
generation quarks at future runs of the LHC. Much of this
renewed interest has arisen because of the realization that
exclusive decays of the Higgs boson to vector mesons can
probe its couplings to light quarks. The resulting final states
are relatively clean experimentally, and the theoretical

predictions are also under control. The first manifestation
of this idea was the discovery that decays of the Higgs
boson to an S-wave vector quarkonium plus a photon
(H → V þ γ) provide opportunities to determine the Hcc̄
and Hbb̄ couplings [8].1 [Here, cðbÞ and c̄ðb̄Þ denote a
charm (bottom) quark and charm (bottom) antiquark.]
While the Hcc̄ coupling might be probed at the LHC by
making use of charm-tagging techniques [10], its phase
must be determined through processes that involve quan-
tum interference effects, such as the decay H → J=ψ þ γ.
It is our intention in this paper to refine the theoretical

prediction for the H → V þ γ processes, where V ¼ J=ψ
or ϒðnSÞ, with n ¼ 1, 2, 3. These modes feature clean
experimental signatures in which a high-transverse-
momentum lepton pair recoils against a photon. They
proceed through two distinct mechanisms:
(1) In the direct process, the Higgs boson decays into a

heavy quark-antiquark (QQ̄) pair, one of which
radiates a photon before forming a quarkonium with
the other element of the pair.

(2) In the indirect process, the Higgs boson decays
through a top-quark loop or a vector-boson loop to a
γ and a γ� (virtual photon). The γ� then decays into a
vector quarkonium.

The Feynman diagrams for the direct and indirect processes
are shown in Figs. 1 and 2, respectively. It is the quantum
interference between these two processes that provides
phase information about the Hcc̄ and Hbb̄ couplings. The
interference is destructive. In the case of the decay to theϒ,
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1It has also been realized that decays to light mesons might be
used to map out the structure of Yukawa couplings of the Higgs
boson to first- and second-generation quarks [9].
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the destructive interference is nearly complete, and so the
rate is very sensitive to the Hbb̄ coupling.
The indirect decay amplitudes are determined at percent-

level accuracy. The partial amplitude for the Higgs-boson
decay to γγ� can be inferred from calculations of the
H → γγ rate [11,12]. The coupling of the quarkonium to a
virtual photon is known from the decay rate of the
quarkonium to a lepton pair.
The largest theoretical uncertainty in the direct amplitude

for H → J=ψ þ γ and, consequently, in the decay rate,
arises from uncalculated relativistic corrections. These
corrections take into account the relative motion of the
Q and Q̄ in the quarkonium. They are nominally of order
v2, where v is the rms velocity of the Q or Q̄ in the
quarkonium rest frame. v2 ≈ 25% for the J=ψ and v2 ≈
10% for the ϒ.
In this paper, we compute order-v2 corrections and some

order-αsv2 corrections to the direct amplitudes for the
processes H → J=ψ þ γ and H → ϒðnSÞ þ γ, where αs
is the strong coupling. We also include some corrections
involving leading logarithms ofm2

H=m
2
Q that are of order v2

and of higher orders in αs. (Here, mH is the Higgs-boson
mass and mQ is the heavy-quark mass.)
The remainder of this paper is organized as follows: In

Sec. II, we use the methods of nonrelativistic QCD
(NRQCD) factorization [13] to compute the relativistic
corrections to H → V þ γ. These corrections can also be
computed, in the limit mV=mH → 0, where mV is the
quarkonium mass, by making use of light-cone methods
[14,15]. We carry out the light-cone calculation of the
relativistic corrections in Sec. III. The light-cone compu-
tation allows us to take advantage of existing calculations
of corrections of next-to-leading order in αs and is a
convenient framework in which to compute logarithms

ofm2
H=m

2
Q. We give numerical results for the decay rates in

Sec. V and summarize our findings in Sec. VI.

II. NRQCD CALCULATION

In this section, we compute relativistic corrections to the
direct amplitude for H → V þ γ by making use of the
standard methods of NRQCD factorization [13]. We begin
by considering the amplitude for H → QQ̄þ γ, where the
QQ̄ pair is in a color-singlet, spin-triplet S-wave state. We
take the Higgs-boson, Q, Q̄, and γ momenta to be pH,
p1 ¼ pþ q, p2 ¼ p − q, and pγ, respectively. These
momenta satisfy the following relations:

pH ¼ 2pþ pγ; p · q ¼ 0; p2
H ¼ m2

H;

p2
1 ¼ m2

Q; p2
2 ¼ m2

Q; p2
γ ¼ 0;

p2 ¼ E2; E2 ≡m2
Q − q2 ≡m2

Qð1þ v2Þ: ð1Þ
In the QQ̄ rest frame, p ¼ ðE; 0Þ and q ¼ ð0; qÞ.
We take the polarization of the γ to be ϵγ , and we take the

spin polarization of the QQ̄ pair to be ϵðλÞ, where λ is the
polarization state. The color-singlet, spin-triplet projector,
correct to all orders in v, is given by [16]

Π3ðp1;p2;λÞ ¼
1

8
ffiffiffi
2

p
E2ðEþmQÞ

ðp2−mQÞϵ�ðλÞ

× ðp1þp2þ 2EÞðp1þmQÞ⊗
1ffiffiffiffiffiffi
Nc

p ; ð2Þ

where 1 is the unit color matrix and Nc ¼ 3 is the number
of colors.
The H → QQ̄þ γ amplitude arises from two Feynman

diagrams, which are shown in Fig. 1. For a color-singlet,
spin-triplet QQ̄ pair, it is given by

iMdir½QQ̄ðtripletÞ�

¼ −ieeQκQmQð
ffiffiffi
2

p
GFÞ12Tr

�� ð−pþ q−pγ þmQÞϵ�γ
ðp− qþpγÞ2 −m2

Q þ iε
þ ϵ�γðpþ qþpγ þmQÞ
ðpþ qþpγÞ2 −m2

Q þ iε

�
Π3ðpþ q;p− q;λÞ

�
; ð3Þ

FIG. 1. The Feynman diagrams for the direct amplitude for
H → V þ γ at order α0s. The shaded blob represents the quarko-
nium wave function. The momenta that are adjacent to the
heavy-quark lines are defined in the text.

FIG. 2. The Feynman diagram for the indirect amplitude forH→
Vþγ. The hatched circle represents top-quark or W-boson loops,
and the shaded blob represents the quarkonium wave function.
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where the trace is over the gamma and the color matrices, e is the electromagnetic coupling, GF is the Fermi
weak coupling, eQ is the fractional heavy-quark charge, and κQ is an adjustable factor in the HQQ̄ coupling. κQ ¼ 1 in
the SM.
Owing to charge-conjugation symmetry, the two contributions in Eq. (3) differ only by a change of sign of q. We obtain

the S-wave contribution by averaging over the angles of q in the QQ̄ rest frame. In that average, contributions that are odd
in q vanish. Hence, we can write the spin-triplet, S-wave amplitude as

iM½QQ̄ð3S1Þ� ¼ −2ieeQκQmQð
ffiffiffi
2

p
GFÞ12

Z
q̂
Tr

�
Π3ðpþ q; p − q; λÞ ð−pþ q − pγ þmQÞϵ�γ

ðp − qþ pγÞ2 −m2
Q þ iε

�
; ð4Þ

where a factor of 2 takes into account both contributions in Eq. (3) and the symbol
R
q̂ denotes the average over the direction

of q̂≡ q=jqj in the rest frame of V:

Z
q̂
≡
Z

dΩq̂

4π
: ð5Þ

Evaluation of the trace in Eq. (4) gives

iMdir½QQ̄ð3S1Þ� ¼ −2ieeQκQmQð
ffiffiffi
2

p
GFÞ1=2

Z
q̂

−
ffiffiffiffiffiffi
Nc

p

2
ffiffiffi
2

p
E2½ðp − qþ pγÞ2 −m2

Q þ iε�

�ðm2
H þ 4E2 þ 8EmQÞ

EþmQ
ϵ�γ · qϵ� · q

−
4pγ · q

EþmQ
ϵ�γ · pϵ� · q − 8Eϵ�γ · pϵ� · qþ 4mQϵ

�
γ · pϵ� · pγ − ðm2

H − 4E2ÞmQϵ
�
γ · ϵ�

�
: ð6Þ

We can write the quark-propagator denominator as
2ðp − qÞ · pγ. Then, the amplitude in Eq. (4) contains
the tensor integrals

I ¼
Z
q̂

p · pγ

ðp − qÞ · pγ
; ð7aÞ

Iμ ¼
Z
q̂

p · pγ

ðp − qÞ · pγ
qμ; ð7bÞ

Iμν ¼
Z
q̂

p · pγ

ðp − qÞ · pγ
qμqν: ð7cÞ

Because q · p ¼ 0, the tensor integrals Iμ and Iμν must be
orthogonal to p: Iμpμ ¼ 0, Iμνpμ ¼ Iμνpν ¼ 0. Therefore,
it is convenient to define the four-vector

p̄γ ≡ pγ −
pγ · p

p2
p; ð8Þ

which is orthogonal to p. From the orthogonality of Iμ

and Iμν to p, it follows that Iμ must be proportional to p̄μ
γ

and that Iμν must be a linear combination of −gμν þ
ðpμpνÞ=p2 and p̄μ

γ p̄ν
γ . A straightforward analysis then

shows that

I ¼ LðδÞ≡ 1

2δ
log

1þ δ

1 − δ
; ð9aÞ

Iμ ¼ 4E2ð1 − IÞ
m2

H − 4E2
p̄μ
γ ; ð9bÞ

Iμν ¼ E2 −m2
QI

2

�
−gμν þ pμpν

p2

�

þ 8E2½ðm2
Q þ 2E2ÞI − 3E2�

ðm2
H − 4E2Þ2 p̄μ

γ p̄ν
γ ; ð9cÞ

where

δ ¼
ffiffiffiffiffiffiffiffi
−q2

p
E

¼ jqj
E

¼ vffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ v2

p : ð9dÞ

Now the amplitude can be written as

iMdir½QQ̄ð3S1Þ� ¼ iMð0Þ
dir ½QQ̄ð3S1Þ�Rðv2Þ; ð10aÞ

where

iMð0Þ
dir ½QQ̄ð3S1Þ� ¼ ieeQκQð

ffiffiffi
2

p
GFÞ12

ffiffiffiffiffiffiffiffi
2Nc

p

×

�
−ϵ� · ϵ�γ þ

ϵ� ·pγp · ϵ�γ
pγ ·p

�
ð10bÞ

is the amplitude in order v0, and the factor Rðv2Þ, which
contains the relativistic corrections, is given by
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Rðv2Þ

¼ mQ

2E2

�
E2þmQð2EþmQÞLðδÞ

EþmQ
þ 8E½E2−m2

QLðδÞ�
m2

H −4E2

�
:

ð10cÞ

The invariance under electromagnetic gauge transforma-
tions is manifest in the last factor in Eq. (10b). In a physical
gauge in the H rest frame, p · ϵγ ¼ 0, and the last term in
the last factor in Eq. (10b) vanishes. Hence, the expression
in Eq. (10b) is independent of v.2

Now we can obtain the physical amplitude by carrying
out the standard matching procedure between NRQCD and
full QCD [13]. That is, we write iMdir in terms of NRQCD
long-distance matrix elements (LDMEs) and determine the
corresponding short-distance coefficients by comparing the
NRQCD expression, evaluated in the QQ̄ð3S1Þ state, with
Eq. (10a). Having determined the short-distance coeffi-
cients, we obtain the physical amplitude by evaluating the
NRQCD LDMEs in the physical quarkonium state. We find
that the direct amplitude for H → V þ γ is given by

iMdir½H → V þ γ� ¼
ffiffiffiffiffiffiffiffiffi
2mV

p
ϕ0iM

ð0Þ
dir ½H → V þ γ�

×
X∞
n¼0

1

n!

� ∂
∂v2

�
n
Rðv2Þ

				
v¼0

hv2ni;

ð11aÞ

where

iMð0Þ
dir ½H → V þ γ�

≡ ieeQκQð
ffiffiffi
2

p
GFÞ12

ffiffiffiffiffiffiffiffi
2Nc

p �
−ϵ�V · ϵ�γ þ

ϵ�V · pγpV · ϵ�γ
pγ · pV

�
;

ð11bÞ

and pV , mV , and ϵV are the momentum, mass, and
polarization of the quarkonium.3 The quantity hv2ni is
given by a ratio of NRQCD LDMEs:

hv2ni ¼ 1

m2n
Q

hVðϵÞjψ†ð− i
2
∇↔Þ2nσ · ϵχj0i

hVðϵÞjψ†σ · ϵχj0i : ð11cÞ

ϕ0 is the quarkonium wave function at the origin, which is
given by

ϕ0 ¼
1ffiffiffiffiffiffiffiffi
2Nc

p hVðϵÞjψ†σ · ϵχj0i: ð11dÞ

In the LDMEs, ψ is the two-component (Pauli) spinor field
that annihilates a heavy quark, and χ is the two-component
spinor field that annihilates a heavy antiquark. The factorffiffiffiffiffiffiffiffiffi
2mV

p
in Eq. (11a) arises from the relativistic normaliza-

tion of the quarkonium state. In this factor and in the phase
space, we choose mV to be the physical quarkonium mass,
rather than the mass of the QQ̄ state (2E).
In Eq. (11a), we have neglected contributions from

LDMEs that involve factors of the gauge field. These
contributions first appear in order v4. In this paper, we work
through order v2. Retaining only contributions through
order v2 in Eq. (11a), we obtain

iMdir½H→ Vþ γ� ¼
ffiffiffiffiffiffiffiffiffi
2mV

p
ϕ0iM

ð0Þ
dir ½H→ Vþ γ�

×

�
1−

3m2
H − 28m2

Q

6ðm2
H −4m2

QÞ
hv2iþOðhv4iÞ

�

≈
ffiffiffiffiffiffiffiffiffi
2mV

p
ϕ0iM

ð0Þ
dir ½H→ Vþ γ�

×
�
1−

1

2
hv2iþOðhv4iÞ

�
; ð12Þ

where we have dropped contributions of higher order in
m2

Q=m
2
H in the last line. Our result for the order-v0

amplitude in Eq. (12) agrees with those in Refs. [8,17].
We can assess the convergence of the v expansion for the

class of LDMEs in Eq. (11a) by making use of the
generalized Gremm-Kapustin relation [18]

hv2ni ¼ hv2in; ð13Þ

which holds for dimensionally regulated LDMEs up to
corrections of relative order v2. Taking hv2i ¼ 0.20,
which is the approximate value for the J=ψ ,4 we find
that the full expression in Eq. (11a) gives a relativistic
correction of −8.8%, while the order-v2 expression in
Eq. (12) gives a relativistic correction of −10%. The
difference between these corrections, 1.2%, is smaller
than the nominal relative size of an order-v4 correction,
indicating that the v expansion is converging well. In fact,
from the analytic structure of Rðv2Þ, we can see that the
radius of convergence of the series in v2 is unity.

2One can also see that the expression (10b) is independent of v
from the fact that the v dependence of the four-vector p is
contained in a factor that is common to all of the components of
p. That factor cancels in the expression (10b).

3Owing to the denominator factors p and pV in the expressions
in Eqs. (10b) and (11b), the corresponding NRQCD LDMEs
contain nonlocal operators. One can avoid the appearance of
these nonlocal operators in the matching procedure by working in
a physical gauge, in which p · ϵγ ¼ pV · ϵγ ¼ 0, so that the
second term in parentheses in Eqs. (10b) and (11b) vanishes.
These terms can then be restored by requiring the final expression
to be manifestly gauge invariant.

4Note that the ratio of LDMEs hv2i is different from the
quantity v2 that was mentioned earlier. v2 is the average of
q2=m2

Q over the square of the quarkonium wave function in
the quarkonium rest frame. hv2i can be significantly different
from v2, in part because the numerator LDME of hv2i contains a
linear ultraviolet divergence that is subtracted in dimensional
regularization.
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III. LIGHT-CONE CALCULATION

One can also compute the direct amplitude iMdir½H →
V þ γ� in the light-cone approach. In leading twist, the
computation is accurate up to corrections of order m2

Q=m
2
H.

Our motivation for examining the light-cone approach is
two-fold: (1) we wish to make contact with the order-αs
light-cone calculation of iMdir½H → V þ γ� in Ref. [19];
(2) the light-cone formalism is a convenient one in which to
compute logarithms of m2

H=m
2
Q.

A. Light-cone direct amplitude

Let us now derive the light-cone amplitude for the direct
process at orderα0s andat leading twist, that is, at leading order
in 1=mH. We work implicitly in theH rest frame and neglect
mQ in comparison withmH. Hence, the quarkoniummomen-
tum2p is lightlike, andwe takep to be in theminus light-cone
direction. TheH → V þ γ amplitude for the direct process is

iMLC
dir ½H → V þ γ�

¼ −ieeQκQmQð
ffiffiffi
2

p
GFÞ12

Z
d4q
ð2πÞ4 hVjQ̄ðpþ qÞ

×

�
−pþ q − pγ

ðp − qþ pγÞ2 þ iε
ϵ�γ þ ϵ�γ

pþ qþ pγ

ðpþ qþ pγÞ2 þ iε

�

×Qðp − qÞj0i; ð14Þ

wherewe have setmQ ¼ 0, except in theHQQ̄ coupling. It is
understood that the integration over the transverse compo-
nents of q is dimensionally regulated. The scale of the
dimensional regularization ultimately sets the scale of the
light-cone distribution amplitude (LCDA).
Using ðp − qÞQðp − qÞ ¼ Q̄ðpþ qÞðpþ qÞ ¼ 0, we

obtain

iMLC
dir ½H → V þ γ� ¼ −

ieeQκQmQð
ffiffiffi
2

p
GFÞ12

pγ · pV

Z
d4q
ð2πÞ4 hVjQ̄ðpþ qÞ

�
−pγϵ

�
γ

1 − x
þ ϵ�γpγ

1þ x

�
Qðp − qÞj0i

¼ −ieeQκQmQð
ffiffiffi
2

p
GFÞ12

ϵ�μγ pν
γ

pγ · pV

Z
d4q
ð2πÞ4 hVjQ̄ðpþ qÞ ½γμ; γν�

1 − x2
Qðp − qÞj0i: ð15Þ

Here, we have followed the light-cone effective-field-
theory procedure. That is, we have set q ¼ xp, neglecting
qþ and q⊥, in the expression between Q̄ and Q, which is
proportional to the hard-scattering amplitude. However, we
have retained qþ and q⊥ nonzero in the other factors, which
are proportional to the quarkonium wave function. In the
last line, we have used the fact that ϵ�γ · pγ ¼ 0.
The LCDA ϕðxÞ is defined by

1

2
hVjQ̄ðzÞ½γμ; γν�½z;−z�Qð−zÞj0i

¼ fVðϵ�Vμpν
V − ϵ�V

νpμ
VÞ

Z þ1

−1
dxeip

−zxϕðxÞ; ð16Þ

where z lies along the plus light-cone direction. The gauge
link ½z;−z�, which makes the nonlocal operator gauge
invariant, is given by

½z;−z� ¼ P exp

�
igs

Z þz

−z
dxAþðxÞ

�
; ð17Þ

where gs ¼
ffiffiffiffiffiffiffiffiffiffi
4παs

p
, Aμ ¼ Aμ

aTa is a matrix-valued gluon
field Aμ

a with the color index a ¼ 1; 2; …; N2
c − 1; Ta is

the generator of the fundamental representation of SU(3)
color; and P denotes path ordering. The gauge link
vanishes in our case because we are working at order
α0s . (More generally, the gauge link vanishes in the light-
cone gauge Aþ ¼ 0.) It follows from the definition (16) that

iMLC
dir ½H → V þ γ�

¼ i
2
eeQκQmQð

ffiffiffi
2

p
GFÞ12fV

�
−ϵ�V · ϵ�γ þ

ϵ�V · pγp · ϵ�γ
pγ · p

�

×
Z þ1

−1
dxT0ðxÞϕðxÞ; ð18Þ

where

T0ðxÞ ¼
4

1 − x2
¼ 4ð1þ x2 þ…Þ ð19Þ

is the hard-scattering kernel at leading order in αs. The
result in Eq. (18) agrees with the corresponding expression
in Ref. [20].

B. Decay constant f V
Next, we wish to determine the decay constant fV .

Setting z ¼ 0 in Eq. (16) and imposing the normalization
condition

Z þ1

−1
dxϕðxÞ ¼ 1; ð20Þ

we obtain

hVjQ̄½γμ; γν�Qj0i ¼ 2fVðϵ�Vμpν
V − ϵ�V

νpμ
VÞ: ð21Þ
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We can evaluate the matrix element on the left side of
Eq. (21) in terms of NRQCD LDMEs by making use of the
procedure that we followed in Sec. II. The result is

hQQ̄ð3S1ÞjQ̄½γμ; γν�Qj0i

¼
Z
q̂
Tr½Π3ðpþ q; p − q; λÞðγμγν − γνγμÞ�

¼ 2
ffiffiffiffiffiffiffiffi
2Nc

p ðEþ 2mQÞ
3E2

ðϵμ�pν − ϵν�pμÞ

¼ 2Fðv2Þ
ffiffiffiffiffiffiffiffi
2Nc

p
mQ

ðϵμ�pν − ϵν�pμÞ; ð22Þ

where

Fðv2Þ ¼ mQðEþ 2mQÞ
3E2

¼ 2þ
ffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ v2

p

3ð1þ v2Þ

¼ 1 −
5

6
v2 þOðv4Þ: ð23Þ

Then, carrying out the NRQCD matching procedure, we
obtain

hVjQ̄½γμ;γν�Qj0i¼
ffiffiffiffiffiffiffiffi
2Nc

p ffiffiffiffiffiffiffiffiffi
2mV

p
mQ

ϕ0ðϵμ�V pν
V − ϵν�V pμ

VÞ

×
X∞
n¼0

1

n!

� ∂
∂v2

�
n
Fðv2Þ

				
v2¼0

hv2ni: ð24Þ

Inserting this result into Eq. (21), we find that

fV ¼
ffiffiffiffiffiffiffiffi
2Nc

p ffiffiffiffiffiffiffiffiffi
2mV

p
2mQ

ϕ0

X∞
n¼0

1

n!

� ∂
∂v2

�
n
Fðv2Þjv2¼0hv2ni:

ð25Þ

Hence, from Eq. (18), we see that

iMLC
dir ½H → V þ γ� ¼

ffiffiffiffiffiffiffiffiffi
2mV

p
ϕ0iM

ð0Þ
dir ½H → V þ γ�

X∞
n¼0

1

n!

� ∂
∂v2

�
n
Fðv2Þjv¼0hv2ni

Z þ1

−1
dx

T0ðxÞ
4

ϕðxÞ

¼
ffiffiffiffiffiffiffiffiffi
2mV

p
ϕ0iM

ð0Þ
dir ½H → V þ γ�

�
1 −

5

6
hv2i þOðhv4iÞ

� Z þ1

−1
dx

T0ðxÞ
4

ϕðxÞ: ð26Þ

C. Relativistic corrections

Some of the relativistic corrections in the direct ampli-
tude for H → V þ γ are apparent in the factor Fðv2Þ in
Eq. (26). There are additional relativistic corrections that
come from the integral over x in Eq. (26). We make them
manifest by carrying out a formal expansion of ϕðxÞ about
x ¼ 0:

ϕðxÞ ¼
X∞
k¼0

ð−1Þkhxki
k!

δðkÞðxÞ; ð27Þ

where δðkÞðxÞ is the kth derivative of the Dirac delta
function. Then, using the fact that ϕðxÞ is an even function
of x, we find that

Z þ1

−1
dxT0ðxÞϕðxÞ ¼ 4

X∞
k¼0

Z þ1

−1
dxx2kϕðxÞ ¼ 4

X∞
k¼0

hx2ki

¼ 4þ 4

3
hv2i þOðhv4iÞ; ð28Þ

where

hxni ¼
Z þ1

−1
dxxnϕðxÞ; ð29Þ

and we have used the relation [21,22]

hx2i ¼ 1

3
hv2i; ð30Þ

which holds for S-wave quarkonia, up to corrections
of order hv4i. Then, from Eqs. (23), (26), and (30),
we have

iMLC
dir ½H → V þ γ� ¼

ffiffiffiffiffiffiffiffiffi
2mV

p
ϕ0iM

ð0Þ
dir ½H → V þ γ�

×

�
1 −

1

2
hv2i þOðhv4iÞ

�
; ð31Þ

in agreement with the last line of Eq. (12).

D. Evolution of the LCDA

The LCDA depends on a scale μ. If we employ dimen-
sional regularization to define and renormalize the LCDA,
then μ is the scale that is associated with the dimensional
regularization. The evolution with respect to μ is governed
by the evolution equation [14]

μ2
∂
∂μ2 ϕðx; μÞ ¼ CF

αsðμÞ
4π

Z
1

−1
dyVTðx; yÞϕðy; μÞ; ð32Þ
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where

VTðx; yÞ ¼ V0ðx; yÞ −
1 − x
1 − y

θðx − yÞ − 1þ x
1þ y

θðy − xÞ;

ð33aÞ

V0ðx; yÞ ¼ VBLðx; yÞ − δðx − yÞ
Z

1

−1
dzVBLðz; xÞ; ð33bÞ

VBLðx; yÞ ¼
1 − x
1 − y

�
1þ 2

x − y

�
θðx − yÞ

þ 1þ x
1þ y

�
1þ 2

y − x

�
θðy − xÞ: ð33cÞ

The evolution equation (32) is usually solved by
expanding ϕðxÞ in eigenfunctions of the evolution kernel
VT . That approach is discussed in the Appendix. It was
used in Ref. [19] to obtain a summation of the leading
logarithms of m2

H=m
2
Q to all orders in αs for the x0 term in

T0 [Eq. (19)]. As is explained in the Appendix, this
approach fails to give a convergent expression for physical
values of mH and mQ for the x2 term in T0. Therefore, we
compute the logarithms of m2

H=m
2
Q for the x2 term in T0 by

solving the evolution equation perturbatively.
The solution of Eq. (32) through order α2s is given by [20]

ϕðx;μÞ¼ϕðx;μ0Þþ
�
CF

αsðμÞ
4π

log
μ2

μ20

��
1þβ0

2

αsðμÞ
4π

log
μ2

μ20

�

×
Z

1

−1
dyVTðx;yÞϕðy;μ0Þþ

1

2

�
CF

αsðμÞ
4π

log
μ2

μ20

�
2

×
Z

1

−1
dy

Z
1

−1
dzVTðx;yÞVTðy;zÞϕðz;μ0ÞþOðα3sÞ;

ð34Þ
where β0¼ 11

3
Nc−2

3
nf. We can compute

R
1
−1dxT0ðxÞϕðx;μÞ

by making use of Eq. (27) and the following integrals from
Ref. [20]:

f1ðyÞ ¼
Z

1

−1
dxT0ðxÞVTðx;yÞ ¼

4

1− y2

�
3þ 2 log

1− y2

4

�
;

ð35aÞ

f2ðzÞ ¼
Z

1

−1
dx

Z
1

−1
dyT0ðxÞVTðx; yÞVTðy; zÞ

¼ 4

1 − z2

�
9þ 12 log

1 − z2

4

þ 4

�
log2

1þ z
2

þ log2
1 − z
2

��
: ð35bÞ

The result is

Z
1

−1
dxT0ðxÞϕðx; μÞ ¼ 4

X∞
k¼0

hx2ki þ
�
CF

αsðμÞ
4π

log
μ2

μ20

��
1þ β0

2

αsðμÞ
4π

log
μ2

μ20

�

×
X∞
k¼0

fð2kÞ1 ð0Þ
ð2kÞ! hx2ki þ 1

2

�
CF

αsðμÞ
4π

log
μ2

μ20

�
2X∞
k¼0

fð2kÞ2 ð0Þ
ð2kÞ! hx2ki þOðα3sÞ; ð36Þ

where, of course, this expression contains only the leading
logarithmic term in each order in αs. Using

f1ð0Þ ¼ 4ð3 − 4 log 2Þ; ð37aÞ
fð2Þ1 ð0Þ ¼ 8ð1 − 4 log 2Þ; ð37bÞ

f2ð0Þ ¼ 4ð9 − 24 log 2þ 8log22Þ; ð37cÞ

fð2Þ2 ð0Þ ¼ 8ð5 − 16 log 2þ 8 log2 2Þ; ð37dÞ
we obtainZ

1

−1
dxT0ðxÞϕðx; μÞ ¼ 4c0ðμÞ þ 4c2ðμÞhx2i þOðhx4iÞ;

ð38Þ
where

c0ðμÞ ¼ 1þ CF

�
αsðμÞ
4π

log
μ2

μ20

�
ð3 − 4 log 2Þ þ CF

�
αsðμÞ
4π

log
μ2

μ20

�
2

×

�
CF

�
9

2
− 12 log 2þ 4 log22

�
þ β0

�
3

2
− 2 log 2

��
þOðα3sÞ; ð39aÞ

c2ðμÞ ¼ 1þ CF

�
αsðμÞ
4π

log
μ2

μ20

�
ð1 − 4 log 2Þ þ CF

�
αsðμÞ
4π

log
μ2

μ20

�
2

×

�
CF

�
5

2
− 8 log 2þ 4 log22

�
þ β0

�
1

2
− 2 log 2

��
þOðα3sÞ: ð39bÞ
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These series converge rapidly. The α2s term in c2 is about
6% for μ0 ¼ mc and about 4% for μ0 ¼ mb.

IV. SUMMARY OF CORRECTIONS TO THE
DIRECT AMPLITUDE THROUGH ORDER v2

Now, let us summarize the corrections through order v2

that we use in this paper in computing the direct amplitude.
Our calculations of the direct amplitude are carried out
through order v2 and at leading order in m2

Q=m
2
H. They are

based on the expression in the second equality of Eq. (26).
We expand the LCDA according to Eq. (27).
The δðxÞ term in Eq. (27) was taken into account in

Ref. [19]. There, the coefficient c0ðμÞ in Eq. (38) was
computed to all orders in αs. These leading logarithms from
the evolution of the LCDA were combined with additional
leading logarithms of m2

H=m
2
Q that arise from the running of

mQ in the HQQ̄ coupling5:

FHQQ̄ðμÞ ¼ ½αsðμ0Þ=αsðμÞ�−3CF=β0 : ð40Þ
Finally, the all-orders sums of logarithms were combined
with a fixed-order light-cone calculation of the amplitude
through order αs. The order-αs logarithm of m2

H=m
2
Q that is

contained in the all-orders sum was subtracted from this
fixed-order calculation in order to avoid double counting.
The complete correction factor for the direct amplitude,
relative to the order-α0s contribution, is given in Eq. (78) of
Ref. [19]. In that expression, the LCDA and the HQQ̄
coupling are evolved from 2mQ to mH. We evolve from mQ
to mH, instead.

6 Therefore, we modify the expression in
Eq. (78) of in Ref. [19] by making the replacement

−2 log 2 log
m2

H

4m2
Q
→ −2 log 2 log

m2
H

m2
Q

ð41Þ

in the last term of that equation. (We have also corrected
an obvious typo: log½2ð1 − κÞ� → log½2ðκ − 1Þ�.) We denote
this modified version of the expression in Eq. (78) of
Ref. [19] by gSV.
For the δð2ÞðxÞ term in Eq. (27), we include the factor

c2ðμÞ in Eq. (39) and the factor FHQQ̄ðμÞ in Eq. (40). These
take into account the leading logarithms of m2

H=m
2
Q from

the evolution of the LCDA through order α2s and the leading
logarithms from the running of the HQQ̄ coupling to all
orders in αs, respectively. A fixed-order calculation at order
αs is not available for the δð2ÞðxÞ term in Eq. (27).

The complete expression for the direct amplitude that we
use in our numerical calculations is then

iMcalc
dir ½H → V þ γ� ¼

ffiffiffiffiffiffiffiffiffi
2mV

p
ϕ0iM

ð0Þ
dir ½H → V þ γ�

×

��
1 −

5

6
hv2i

�
gSV

þ 1

3
hv2ic2ðμÞFHQQ̄ðμÞ

�
: ð42Þ

As we have mentioned, in computing gSV , c2ðμÞ, and
FHQQ̄ in this expression, we evolve from mQ to mH.
When mQ ¼ mb, we carry out the evolution with nf ¼ 5.
When mQ ¼ mc, we carry out the evolution in two steps:
one from mc to mb, with nf ¼ 4, and another from mb to
mH, with nf ¼ 5.

V. DECAY RATE

In this section we compute numerical results for the rates
for H → J=ψ þ γ and H → ϒþ γ.
First, we write the direct amplitude in Eq. (42) as

Mcalc
dir ¼ Adir

�
−ϵ�V · ϵ�γ þ

ϵ�V · pγpV · ϵ�γ
pγ · pV

�
: ð43Þ

The indirect amplitude is given by [8]

Mind ¼ Aind

�
−ϵ�V · ϵ�γ þ

ϵ�V · pγpV · ϵ�γ
pγ · pV

�
; ð44Þ

where

Aind ¼
gVγ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
4παðmVÞmH

p
m2

V

�
16π

αðmVÞ
αð0Þ ΓðH → γγÞ

�1
2

;

ð45Þ

and gVγ can be written in terms of the width of V into
leptons [8]:

gVγ ¼ −
eQ
jeQj

�
3m3

VΓðV → lþl−Þ
4πα2ðmVÞ

�1
2

: ð46Þ

We remind the reader that gVγ, as computed in Eq. (46),
already contains all of the corrections of higher order in αs
and v that would appear in the NRQCD expression for the
indirect rate [8,23]. Note that both Adir and Aind have
dimensions of mass and are normalized differently than in
Ref. [8]. We have neglected a small phase in Aind that is
about 0.005. We have dropped terms in Eq. (45) that are
proportional to m2

V divided by combinations of m2
H, m

2
t ,

m2
Z, or m

2
W. The calculation of such terms in Ref. [8] was

incomplete, in that it did not include the full set of diagrams
that is needed for electroweak gauge invariance.

5The logarithms in FHQQ̄ are much more important numeri-
cally than the logarithms in c0 because of cancellations that make
the coefficients of the logarithms in c0 small. That is not the case
for the logarithms in c2, which are comparable numerically to the
logarithms in FHQQ̄.6The logarithms in the LCDA are collinear logarithms, whose
natural cutoff is mQ. The logarithms in the running mass vanish
when μ ¼ mQ.
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The sum of the square of the total amplitude over the
polarizations of the photon and the quarkonium is propor-
tional to

X
pol

				 − ϵ�V · ϵ�γ þ
ϵ�V · pγpV · ϵ�γ

pγ · pV

				
2

¼ 2; ð47Þ

where we have used

X
γ pol

ϵμ�γ ϵνγ ¼ −gμν; ð48aÞ

X
V pol

ϵμ�V ϵνV ¼ −gμν þ pμ
Vp

ν
V

p2
V

: ð48bÞ

We then find that the decay rate is

ΓðH → V þ γÞ ¼ 2
1

2mH

m2
H −m2

V

8πm2
H

jAdir þAindj2; ð49Þ

where the first factor comes from the polarization sum, the
second factor comes from relativistic normalization of
the Higgs-boson state, and the third factor comes from
the phase space.
Now let us comment on the choices of scales for

the electromagnetic coupling α. In the direct amplitude,
the photon is on shell, and so we take e ¼ ffiffiffiffiffiffiffiffiffiffiffiffiffiffi

4παð0Þp
. In the

indirect amplitude we use αðmVÞ to compute gVγ from the V

leptonic width. We also use e ¼ ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
4παðmVÞ

p
for the

couplings of the virtual photon and e ¼ ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
4παð0Þp

for
the coupling of the real photon. We have compensated
for the fact that ΓðH → γγÞ was computed using
e ¼ ffiffiffiffiffiffiffiffiffiffiffiffiffiffi

4παð0Þp
. The couplings in the indirect amplitude

are shown explicitly in Eqs. (45) and (46). Note that the
dependences on αðmVÞ cancel in the indirect amplitude.
We use the following value of α:

αð0Þ ¼ 1=137.036. ð50Þ

In evaluating Eq. (49), we takemQ to be the pole mass in
order to maintain consistency with the one-loop corrections
to the direct amplitude that we include. We obtain the
numerical value of the pole mass by making use of the
one-loop expression that relates the polemass to themodified
minimal subtraction ðMSÞ mass. This procedure has the
effect of replacing the pole mass with the MS mass in the
expressions through one-loop order and avoids the issue that
the pole mass does not have a definite value, owing to the
presence of an infrared renormalon in its definition. We use

mc ¼ 1.483� 0.029 GeV; ð51aÞ

mb ¼ 4.580� 0.033 GeV: ð51bÞ

Interpolating the results in Ref. [24] (J=ψ) and in Ref. [25]
(ϒ) for the values of mQ that we use, we obtain

ϕ2
0ðJ=ψÞ ¼ 0.0729� 0.0109 GeV3; ð52aÞ

hv2iðJ=ψÞ ¼ 0.201� 0.064; ð52bÞ

ϕ2
0½ϒð1SÞ� ¼ 0.512� 0.035 GeV3; ð52cÞ

hv2i½ϒð1SÞ� ¼ −0.00920� 0.00348; ð52dÞ

ϕ2
0½ϒð2SÞ� ¼ 0.271� 0.019 GeV3; ð52eÞ

hv2i½ϒð2SÞ� ¼ 0.0905� 0.0100; ð52fÞ

ϕ2
0½ϒð3SÞ� ¼ 0.213� 0.015 GeV3; ð52gÞ

hv2i½ϒð3SÞ� ¼ 0.157� 0.017: ð52hÞ

We take mH ¼ 125.9� 0.4 GeV, and we obtain
ΓðH → γγÞ ¼ 9.565 × 10−6 GeV from the values of the
Higgs-boson total width and branching fraction to γγ in
Refs. [11,12].
We estimate the uncertainties in the indirect amplitude

along the lines that were suggested in footnote 2 of Ref. [8].
In ΓðH → γγÞ, we take the uncertainty from uncalculated
higher-order corrections to be 1%, and the uncertainties that
arise from the uncertainties in the top-quark mass mt and
the W-boson mass mW to be 0.022% and 0.024%, respec-
tively. We take the uncertainties in the leptonic decay
widths to be 2.5% for the J=ψ and 1.3% for the ϒ.
We estimate the uncertainties in the indirect amplitude from
uncalculated mass corrections to be m2

V=m
2
H. We have not

included the effects of the uncertainty in mH, as it is
expected that that uncertainty will be significantly reduced
in Run II of the LHC.
The uncertainties in the direct amplitude arise primarily

from the uncertainties in ϕ0, hv2i, and uncalculated
corrections of order α2s, order αsv2, and order v4. We
estimate the order-α2s correction to be 2%, the order-αsv2

correction to be 5% for the J=ψ and 1.5% for theϒ, and the
order-v4 correction to be 9% for the J=ψ and 1% for the ϒ.
The uncertainties in the direct amplitude that arise from the
uncertainties in mc and mb are 0.6% in the case of the J=ψ
and 0.1% in the case of the ϒ, and so they are negligible in
comparison with the other uncertainties in the direct
amplitude.
Our results for the widths are7

7We do not include results for the ψð2SÞ because a value for
hv2i½ψð2SÞ� does not exist in the literature and because it is likely
that v2 for the ψð2SÞ is so large that the theoretical uncertainties
in the width would be very large.
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ΓðH → J=ψ þ γÞ ¼ jð11.9� 0.2Þ − ð1.04� 0.14Þκcj2 × 10−10 GeV; ð53aÞ

Γ½H → ϒð1SÞ þ γ� ¼ jð3.33� 0.03Þ − ð3.49� 0.15Þκbj2 × 10−10 GeV; ð53bÞ

Γ½H → ϒð2SÞ þ γ� ¼ jð2.18� 0.03Þ − ð2.48� 0.11Þκbj2 × 10−10 GeV; ð53cÞ

Γ½H → ϒð3SÞ þ γ� ¼ jð1.83� 0.02Þ − ð2.15� 0.10Þκbj2 × 10−10 GeV: ð53dÞ

The SM values for the widths (κQ ¼ 1) are

ΓSMðH → J=ψ þ γÞ ¼ 1.17þ0.05
−0.05 × 10−8 GeV; ð54aÞ

ΓSM½H → ϒð1SÞ þ γ� ¼ 2.56þ7.30
−2.56 × 10−12 GeV; ð54bÞ

ΓSM½H → ϒð2SÞ þ γ� ¼ 8.46þ7.79
−5.35 × 10−12 GeV; ð54cÞ

ΓSM½H → ϒð3SÞ þ γ� ¼ 10.25þ7.33
−5.45 × 10−12 GeV: ð54dÞ

Using ΓðHÞ ¼ 4.195þ0.164
−0.159 × 10−3 GeV [26], we obtain the

following results for the branching fractions in the SM:

BSMðH → J=ψ þ γÞ ¼ 2.79þ0.16
−0.15 × 10−6; ð55aÞ

BSM½H → ϒð1SÞ þ γ� ¼ 6.11þ17.41
−6.11 × 10−10; ð55bÞ

BSM½H → ϒð2SÞ þ γ� ¼ 2.02þ1.86
−1.28 × 10−9; ð55cÞ

BSM½H → ϒð3SÞ þ γ� ¼ 2.44þ1.75
−1.30 × 10−9: ð55dÞ

In comparison with the results in Ref. [8], the coefficient
of κc has been reduced by about 30%, and the coefficient of
κb has been reduced by about 12%. In the case of the
coefficient of κc, the reduction arises as follows: a reduction
of 11% from including the relativistic corrections; a
reduction of 18% from summing logarithms by evolving
from the scale mc rather than from the scale 2mc and from
using a variable flavor number rather than a fixed flavor
number nf ¼ 3; and a reduction of 3% from using αð0Þ
rather than αðmH=2Þ for the electromagnetic coupling of
the on-shell quark. In the case of the coefficient of κb, the
reduction arises as follows: a reduction of 0% from
including the relativistic corrections; a reduction of 9%
from summing logarithms by evolving from the scale mb
rather than from the scale 2mb, and from using nf ¼ 5
rather than nf ¼ 3; and a reduction of 3% from using αð0Þ
rather than αðmH=2Þ for the electromagnetic coupling of
the on-shell quark. In addition, there are changes in the
coefficients of κc and κb of less than 1% that come from
changes in the values of mc, mb, and mH.

VI. SUMMARY AND DISCUSSION

In this paper, we have calculated relativistic corrections to
the direct decay amplitude that appears in the Higgs-boson

width ΓðH → V þ γÞ, where V is a J=ψ or an ϒðnSÞ state
with n ¼ 1, 2, 3.
Using NRQCD factorization methods, we have calcu-

lated corrections to all orders in the heavy-quark velocity v
for NRQCD LDMEs of the form in Eq. (11c), keeping the
exact dependence on the ratio of the heavy-quark mass mQ
to the Higgs-boson mass mH. The result of this calculation
is given in Eq. (11a), where Rðv2Þ is given in Eq. (10c).
Using light-cone methods, we have calculated relativistic

corrections through order v2 at the leading order in
m2

Q=m
2
H. In the light-cone method, the corrections in order

v2 arise from both the x0 term and the x2 term in the hard-
scattering kernel T0ðxÞ [Eq. (19)], where x is the light-cone
momentum fraction. In the case of the corrections that arise
from the x0 term, we have applied existing corrections of
order αs and corrections from a summation of leading
logarithms ofm2

H=m
2
Q to all orders in αs [19]. In the case of

the corrections that arise from the x2 term, we have
computed and applied corrections from leading logarithms
ofm2

H=m
2
Q. We have computed leading logarithms from the

running of the HQQ̄ coupling to all orders in αs and
leading logarithms from the evolution of the LCDA
through order α2s. Leading logarithmic corrections of order
α3s and higher are estimated to contribute at the level of
about 1%. The complete result from applying these various
corrections is given in Eq. (42). We used this result in our
numerical calculations.
Our numerical results for the widths ΓðH → J=ψ þ γÞ

and ΓðH → ϒðnSÞ þ γÞ are given in Eqs. (53) and (54),
where κQ in Eq. (53) parametrizes the deviation of the
HQQ̄ coupling from the SM value. In comparison with the
results in Ref. [8], the coefficient of κc has been reduced by
about 30%, and the coefficient of κb in ΓðH → ϒð1SÞ þ γÞ
has been reduced by about 12%. The relativistic corrections
themselves contribute only about 11% and 0% of this
reduction, respectively. The bulk of the reduction comes
from the use of a different procedure for summing leading
logarithms of m2

H=m
2
Q, namely, evolution from the scale

mQ rather than from the scale 2mQ, and from the use of a
variable flavor number, rather than nf ¼ 3. The relativistic
corrections are very small in the ϒð1SÞ case, owing to a
cancellation in the corresponding dimensionally regulated
NRQCD LDME that makes hv2i anomalously small.

BODWIN et al. PHYSICAL REVIEW D 90, 113010 (2014)

113010-10



We note that, for SM couplings, the destructive interference
between the direct and indirect amplitudes is less complete
in theϒð2SÞ andϒð3SÞ channels than in theϒð1SÞ channel,
and, hence, the SM rates are larger in the former channels.
More significant than the changes in the values of the

coefficients of κQ in Eq. (53) are the changes in the
theoretical uncertainties for those coefficients. Relative
to the uncertainties that were given in Ref. [8], they
have been reduced by about a factor of 3.3 for the
coefficient of κc in ΓðH → J=ψ þ γÞ and by about a factor
of 2.8 for the coefficient of κb in ΓðH → ϒð1SÞ þ γÞ.
In the case of the channel H → J=ψ þ γ, our values for

the decay rate indicate that it should be possible to collect
a sample of about 50 events in a high-luminosity run at
the LHC [8]. This would imply a statistical error in the
measurement of ΓðH → J=ψ þ γÞ of 14% and a statistical
error in the determination of κc of about 40%. The latter
error is comparable to the theoretical uncertainty in the
coefficient of κc that existed in the absence of a calculation
of relativistic corrections. The inclusion of the relativistic
corrections that we have calculated reduces that uncertainty
to about 16% and opens the door to determinations of the
Hcc̄ coupling at higher levels of precision.
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APPENDIX: EIGENFUNCTION EVOLUTION

In this Appendix, we solve the LCDA evolution equa-
tion (32) in terms of the eigenfunctions of the evolution
kernel VT .
The kernel VTðx; yÞ has eigenfunctions

GnðxÞ ¼
1 − x2

4
C3=2
n ðxÞ; ðA1Þ

where C3=2
n ðxÞ is a Gegenbauer polynomial. The eigen-

functions satisfy8

1

2

Z
1

−1
dyVTðx; yÞGnðyÞ ¼ −γnGnðxÞ; ðA2Þ

where the eigenvalues γn are given by

γn ¼
1

2
þ 2

Xnþ1

j¼2

1

j
: ðA3Þ

Following Ref. [20], we find a formal solution by writing

ϕðx; μÞ ¼
X
n

ϕnðμÞGnðxÞ; ðA4Þ

where the ϕnðμÞ can be found by using the orthogonality of
the Gegenbauer polynomials:

ϕnðμÞ ¼
2ð2nþ 3Þ

ðnþ 1Þðnþ 2Þ
Z

1

−1
dxC3=2

n ðxÞϕðx; μÞ: ðA5Þ

The amplitude iM is proportional to
R
1
−1 dxT0ðxÞϕðx; μÞ.

Using Eq. (A4), we can write

Z
1

−1
dxT0ðxÞϕðx; μÞ ¼

X∞
n¼0

ϕnðμÞ
Z

1

−1
dxC3=2

n ðxÞ

¼ 2
X∞
n¼0

ϕ2nðμÞ

¼ 2
X∞
n¼0

ϕ2nðμ0Þ
�
αsðμÞ
αsðμ0Þ

�
d2n
; ðA6Þ

where we have used the facts that
R
1
−1 dxC

3=2
2n ðxÞ ¼ 2 andR

1
−1 dxC

3=2
2nþ1ðxÞ ¼ 0 for n a non-negative integer, and we

have defined d2n ≡ 2CFγ2n=β0, with β0 ¼ 11
3
Nc − 2

3
nf.

In order to find the coefficients ϕ2nðμ0Þ from Eq. (A5),
we expand ϕðx; μ0Þ formally, using Eq. (27). For n a non-
negative integer, we have

ϕ2nðμ0Þ¼
2ð4nþ3Þ

ð2nþ1Þð2nþ2Þ
X∞
k¼0

hx2ki
ð2kÞ!

d2k

dx2k
C3=2
2n ð0Þ

¼ 2ð4nþ3Þ
ð2nþ1Þð2nþ2Þ

X∞
k¼0

hx2ki
ð2kÞ!ð4kþ1Þ!!Cð4kþ3Þ=2

2ðn−kÞ ð0Þ

¼ 2ð4nþ3Þ
ð2nþ1Þð2nþ2Þ

X∞
k¼0

ð−1Þn−k

× hx2ki ð2nþ2kþ1Þ!!
ð2kÞ!ð2n−2kÞ!! : ðA7Þ

8See, for example, Ref. [20].
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Here, we have used the recurrence relation

d
dx

Cλ=2
n ðxÞ ¼ λCðλþ2Þ=2

n−1 ðxÞ ðA8Þ

and the values of the Gegenbauer polynomials at zero
argument,

Cλ=2
2nþ1ð0Þ ¼ 0; ðA9aÞ

Cλ=2
2n ð0Þ ¼

ð−1ÞnΓðnþ λ
2
Þ

n!Γðλ
2
Þ ¼ ð−1Þn

ð2nÞ!!
ðλþ 2n − 2Þ!!

ðλ − 2Þ!! : ðA9bÞ

Taking into account the effect of the running of theHQQ̄
coupling, (that is, the running of the quark mass), whose
anomalous dimension is −3CF, we can write

Z
1

−1
dxT0ðxÞϕðx; μÞ ¼ 4

X∞
k¼0

c2kðμÞhx2ki; ðA10Þ

where

c2kðμÞ ¼
X∞
n¼0

ð−1Þn−kð4nþ 3Þ
ð2nþ 1Þð2nþ 2Þ

ð2nþ 2kþ 1Þ!!
ð2kÞ!ð2n − 2kÞ!!

×

�
αsðμÞ
αsðμ0Þ

�
d2nþ3CF=β0 ðA11Þ

contains all of the leading logarithms of m2
H=m

2
Q.

The expression for c0ðμÞ reproduces the expression in
Eq. (58) of Ref. [19].
Note that, for large n, the nth term of c2kðμÞ is equal to

ð−1Þn−kn2k−1 ð2nþ 1Þ!!
ð2nÞ!!

22k

ð2kÞ!
�
αsðμÞ
αsðμ0Þ

�
d2nþ3CF=β0

∼ ð−1Þn−k 22kþ1ffiffiffi
π

p ð2kÞ! n
2k−1=2

�
αsðμÞ
αsðμ0Þ

�ð4CF=β0ÞðγEþlog 2Þ
nð4CF=β0Þ log½αsðμÞ=αsðμ0Þ�:

ðA12Þ

Hence, the series for c2kðμÞ converges if and only if

4CF

β0
log

αsðμÞ
αsðμ0Þ

< −2kþ 1

2
: ðA13Þ

For k ¼ 0, this convergence condition is satisfied for
μ ¼ mH and μ0 ¼ mc or μ0 ¼ mb. However, for k ≥ 1, it
is not satisfied for μ ¼ mH and μ0 ¼ mc or μ0 ¼ mb.
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