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Loop-induced neutrino masses: A case study
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We study the cocktail model in which the Majorana neutrino masses are generated by the so-called
“cocktail” three-loop diagrams with the dark matter particle running in the loops. In particular, we give the
analytic expressions of the neutrino masses in the model by the detailed calculation of the cocktail
diagrams. Based on the numerical calculation of the loop integrals, we explore the parameter space which
can give the correct orders of neutrino masses while satisfying other experimental constraints, such as those
from the neutrinoless double beta decay, low-energy lepton flavor violation processes, electroweak
precision tests, and collider searches. As a result, the large couplings and the large mass difference between
the two singly charged (neutral) scalars are required.
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I. INTRODUCTION

The small but nonzero masses and mixings of the
neutrinos have been found via the neutrino oscillation
experiments [1], while dark matter (DM) has been estab-
lished by astrophysical observations [2—4]. Both phenom-
ena cannot be explained within the Standard Model (SM) of
particle physics, directly pointing to the existence of new
physics.

One possible explanation of the tiny neutrino masses is
the canonical seesaw mechanisms, where the masses are
generated at tree level by introducing right-handed neu-
trinos [5] or a Higgs triplet [6] or fermion triplets [7].
Unfortunately, such new particles are predicted too heavy
to be studied at the current colliders. Another idea is to
promote the neutrino mass generation to loop levels [8],
where the smallness of the neutrino masses is attributed to
the loop suppression and the masses of the new particles
are naturally of O(100-1000) GeV or even smaller so that
the phenomenology can be very rich. In particular, the
discrete symmetries imposed on some models play an
extra role to guarantee the stability of DM [9], resulting in
a common origin of neutrino masses and DM. The
cocktail model [10] is one recent example along this line
of thinking, in which the Majorana neutrino mass terms
first appear at three-loop level via the so-called ‘“cocktail”
diagrams, while DM is identified as a neutral Z,-odd
particle running in the loops. It is interesting to note that
the model naturally predicts the normal hierarchy form of
the neutrino mass matrix.

However, the detailed derivations of the formula for
the neutrino masses from the cocktail diagrams were not
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given in Ref. [10]. In this paper, we present the full form
of the neutrino mass formula in this model. Moreover,
with the explicit analytic calculation of the relevant
Feynman diagrams and the numerical integration, we
explore the parameter space which can give the required
values of the neutrino masses while satisfying all of
the other constraints from the neutrinoless double beta
(Oypp) decay, low-energy lepton flavor violation (LFV)
processes, electroweak precision tests (EWPTs), and
collider searches.

The paper is organized as follows. In Sec. II, we show the
particle content in the cocktail model and the relevant part
of the Lagrangian. In Sec. III, we examine the neutrino
mass matrix by considering the current neutrino oscillation
data and the Oypf constraint. We then discuss the con-
straints from LFV processes, EWPTs, and DM and collider
searches in Secs. IV, V, and VI, respectively. Our numerical
exploration of the parameter space is carried on in Sec. VIL
A short summary is given in Sec. VIIL In the Appendix, the
analytical calculation details of the cocktail diagrams are
presented.

II. THE COCKTAIL MODEL FOR
NEUTRINO MASSES

Besides the SM fields and symmetries, two SU(2),
singlet scalars, ST and p**, and a scalar doublet ®, are
introduced, and an exact Z, symmetry is imposed. Under
Z,, ST and ®, are odd, while p™ and all the SM fields
are even. After the electroweak (EW) symmetry break-
ing, the Z, symmetry keeps so that the lightest Z,-odd
state remains stable and becomes a DM particle candi-
date. The particle content of the new physics sector is
summarized in Table I, and the relevant Lagrangian is
given by
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TABLE I. New physics sector particle content of the cocktail
model.

SUQ2), U(l)y Z,
D, 2 1 -
St 1 2 -
p++ 1 4 +

A .

~Lgark = 75 (B1D,)2 + kDT icr &, S~ + kopt+ S8

+ EDTioy @1 ST + Copl urliprpt™ +He.,
(1)

where a and b denote the three families of the right-
handed leptons #%, and C,, are the elements of the
Yukawa coupling matrix which is symmetric and com-
plex in general.

After the spontaneous breaking of the EW symmetry, the
SM Higgs doublet ®; and inert scalar doublet @, can be
written in the unitary gauge as

) ! P v (2)
1_<v+%>’ 2_<%(H0+iAO)>’

where v~ 174 GeV is the vacuum expectation value
(VEV) of the SM Higgs ®,. With a nonzero «;, the
charged scalars A* and S* will mix together with an
angle f, leading to two charged mass eigenstates

HT :S/;S++C/3A+, H;:Cﬂs+—S/}A+, (3)
with s4(cy) = sin #(cos B). In the mass eigenstate basis, the

most useful set of independent variables is the five new
scalar masses My Ho Ao HY > the mixing angle f, and the

couplings & and k,. All the original parameters defined in
the scalar potential in Eq. (1) can be solved with these
physical parameters.

The lepton number is explicitly broken in the Lagrangian
of Eq. (1) by two units, which is the necessary condition to
generate the Majorana masses for the three light active
neutrinos. However, as pointed out in Ref. [10], the leading
contribution to the neutrino masses appears at three-loop
level via the so-called “cocktail diagrams” shown in Fig. 1.

In the basis where the charged leptons are in mass
eigenstates and the charged current interactions are flavor
diagonal, the Majorana neutrino mass matrix elements are
given by

(m )y = (3 Cort) ems (AT + AT, (4)

with
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FIG. 1. Cocktail diagrams for neutrino masses.
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where m,, denotes the mass of the doubly charged scalar p**,

x;i=m;/v (i =a,b), Ami:miﬁ—m?ﬁ, and Am%:
1 2
2

my, — mﬁo. Note that the powers of m,, in the denominators
in Eq. (5) are just to make the integrals 7 , dimensionless for
convenience, rather than their actual scaling dimensions. The
details of the derivations of Eqs. (4) and (5) as well as the
precise definitions of the dimensionless integrals 7, are
contained in Appendix A. In our work, we have applied
different widely used softwares and packages to reliably
perform the numerical integration of Z;,, such as
MATHEMATICA, SECDEC [11], and GSL [12]. As a result,
we find that the benchmark point given in the first version of
Ref. [10] before its erratum generically predicts the neutrino
masses typically about 2 orders smaller than the measured
ones, no matter what value of the coupling ¢ is if it is within
the perturbative region ¢ < 5 [13], which is also discussed in
detail in the Appendix.

It should be mentioned that the neutrino masses in
Eq. (4) are proportional to s,5. With our numerical studies,
we conclude that the neutrino masses are usually insuffi-
cient to explain the oscillation data in most parameter
spaces except those with large couplings x, and £ and large
mass splittings Am?% and Am3. In order not to introduce an
extra suppression, we take the maximum value of s,; = 1,
i.e., f = n/4 in our following discussions.

III. NEUTRINO MASS MATRIX
Currently, the mass differences and the mixings among
three active neutrinos are measured to a very high precision,
with the recent worldwide best-fit values as follows [14]:
Am?2, = (7.541039) x 1075 eV?,
|Am2,| = (2.4375:58) x 1073 eV?,
sin0;, = 0.308 £0.017,  sin?0,3 = 04370933,

sin?03 = 0.02347050%. (6)
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The remaining questions are the pattern of the neutrino
mass hierarchy and the four undetermined parameters: the
smallest neutrino mass m, and three CP violating phases, 0
(Dirac) and a,; 3; (Majorana), in the standard parametriza-
tion of the neutrino mixing matrix (see Ref. [14]).

To investigate the above questions in the context of the
cocktail model, let us begin our discussion by noticing that the
form of the neutrino mass matrix, that is, the relative size of
each element, is determined by the Yukawa couplings C,,,. If
all C,;, are assumed to be of O(1), it is generically expected
that the neutrino mass matrix should be in the form of the
normal hierarchy since the mass elements are proportional to
X4 Xp,- And the elements (m, ) ,, ,, should be much smaller than
others due to the hierarchy x, < x, < x,. With this expect-
ation, we focus on the parameter space in which (m,),, ,, are
approximately zero compared to other elements. This restric-
tion amounts to four constraints to the active neutrino mass
matrix, fixing the four known parameters to be
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Consequently, the neutrino mass matrix can be pre-
dicted as

~0 A0 101
m,=| ~0 =501 0.0980 | x 1073
10.1 0.0980 —4.77
~0 A0 023
+i| A0 —237 -233 | x102ev, (8)
023 -233 -2.74

where we have only used the central values in Eq. (6).
Note that (m,),,,, are very sensitive to the choice of m
and the CP phases, so that if we keep (m,),,,, small
enough, the unknown parameters and the resulted
neutrino masses cannot deviate the benchmark in
Egs. (7) and (8) much.

my = 5.14 x 1073 eV, 5= 1.89, ar, = 2.80, With Eq. (8) and the formula for the cocktail model in
Eq. (4), we can determine the Yukawa coupling matrix up
as; = 1.67. 7 1o only one unknown parameter |C,.|, given by
|
< 0(1072) < 0(1072) o0-224i
Cwp=| £0(1072) 190 x 1071e7 18 1.08 x 10727156 | x |C,,]. 9)
60'224i 1.08 x 10_26_1'56i 7.73 % 10_46_1'74i

We will take advantage of this rigid structure of the Yukawa
coupling matrix in our discussion of LFV processes by
expressing their constraints in terms of |C,,|. Note that the
elements C,, ., cannot be determined with the benchmark
point in Eq. (8). Actually, they can be tuned to be as small as
possible without affecting the neutrino mass matrix form. The
largest orders shown in Eq. (9) are obtained by combining the
constraints from the Oy decay and LFV processes.

The neutrinoless double beta decay, as a lepton number

violating process, should exist with a nonzero (m,),,,

[

which is equivalent to a nonzero C,, in the cocktail model. In
the conventional neutrino mass generation models, such as
the type-II seesaw model [6], the long-distance contribution
as shown in Fig. 2(a) dominates the decay process, while for
the cocktail model models which can generate the effective
coupling p~~W,f W#*, the short-distance channel shown in
Fig. 2(b) gives the contribution several orders larger than the
long-distance one [15-19]. This feature can be traced to the
fact that the amplitude of Fig. 2(b) is proportional to C,,,
rather than m,,, which is further suppressed by the small

Hi, e
\ P /
v H(](A[))l \/_ >
L7 \
< g+
e Hl‘z e
w w
e >
d ! d !
(a) (b)

FIG. 2. Oupf decay from (a) long-distance and (b) short-distance diagrams.
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TABLE II. Gy (in unit 1074 yr=!) and |Ms5]| for different
nuclei, where the numerical values are taken from Ref. [16].
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TABLE III.  Experimental lower bounds on the half-life of Ovpf
with the corresponding maximal values of |C,,|.

76G€ 136Xe lSONd 130Te SZSe IOOMO > Texp(1025 yr) ‘Cee‘max
Gy, 0.640 4.73 21.0 4.44 2.82 4.58 GERDA-1("°Ge) [22] 2.1 0.0015
IM;| 209 107 305 193 188 241 KamLAND-Zen('3Xe) [23] 1.9 0.0011
NEMO-3("*'Nd) [24] 0.0018 0.0060
CUORICINO(3%Te) [25] 0.3 0.0016
electron mass squared m2. In this way, some parameter NEMO-3(®Se) [26,27] 0.036 0.0059
spaces have already been probed and constrained by the NEMO-3(1%Mo) [27] 0.11 0.0021
current Ovff experiments. Since the energy transfer in the
Oupp decay is only of order 100 MeV, the short-distance ) )
contribution in Fig. 2(b) to the half-life for the Oypf decayin M, = 2 TeV. From the current experimental detections

the cocktail model can be expressed by [18]
T4 = [4m3 Gy | AR M5 ]! (10)

where m,,
factor,

is the mass of the proton, G, the phase space

2

CoeSopAmy
2.2
8m"m;,

A= {[aAm? 595 = Ev(cymyy, + symy; )]

x [F wemga, —F HT,H;.HO}

- gv[m%IOFHT,H;.AO - m%UFHT,H;,AO}}v (11)

with

Fope= / du/ dv
wo(l—wv)

X
[uom2 + u(1 — v)m3 +

e (12)

(1 —u—wv)m;

and M the nuclear matrix element enveloping the operator
upy'dpuagpy,dpegeg, as defined in Refs. [16,20,21]. The
numerical values of G,; and Mj for several conventional
targets are collected in Table II [16].

For a rough estimation, we take a benchmark point for the
scalar masses and related coupling constants as an illus-
tration, given by k, =6 TeV, =35, my, = 200 GeV,
my, =720 GeV, my, =70 GeV, m,, =430 GeV, and
|

B(ut = ety) <57 x10713:

B(u= — 3e) < 1.0 x 10712:

’Zcfﬂ C;e
3

|CouCie| < 2.33 x 107(

[22-27], we can obtain the upper bound on C,, by applying
Eq. (10), with the results listed in Table III. Generically, C,,
should be less than 1073 to fulfill all the present experimental
constraints with the most tight constraints on C,, from the
detections for the targets 7°Ge and '**Xe. On the other hand,
models with the long-distance dominance usually predict an
undetectable half-life for the Ovpf decay [18]. Therefore,
future experiments with a higher sensitivity [28] could help
to distinguish the cocktail model from the conventional ones.

IV. FLAVOR CONSTRAINTS

The overall size of the Yukawa coupling matrix in Eq. (9)
is mostly constrained by the LFV processes mediated by the
doubly charged scalar p*, in which the most relevant ones
can be categorized into two kinds, £ — ¢1£5¢7 and
£& — ¢fy, and the corresponding formulas are listed as

IC £\t f2f1| mfo

B(£§ — ¢565¢7) = 2GR S B(u™ — e o,1,),
/,t
1>2¢Ch,oCre, m3
B¢t — Chy) = Zem &m0l th]
(46 = 417) 3 Gim, m;,
X By~ = e 0,v,). (13)

With Eq. (13), the bounds on the various LFV processes
[14,29,30] can be translated into the ones on the Yukawa
couplings:

<3.16 x 1074(m,/TeV)?,

m,/TeV)?,

B(z= = 3e) <2.7x1078: |CeCie| < 9.1 x 1073 (m,/TeV)?,

B(z~ = 3u) <2.1x1073: |C,..Cpl < 8.0x 1073 (m,,/TeV)?,

Bt~ = e utu~) <2.7x107%: C,.Ci,| <6.42x 1073 (m,/TeV)?,

Bz~ > p~ete”) < 1.8 x 1073 |C.eCiyl < 5.24 %1073 (m,/TeV)?,

Bz~ = etpupu ) <1.7x1078: |CeChl < 7.21 x 1073 (m,,/TeV)?,

Bz~ = utee™) < 1.5x 1073 |C,iCie| < 6.77 x 1073 (m,,/TeV)?. (14)
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These constraints, together with the typical Yukawa matrix
pattern in Eq. (9), can yield the upper bound on the overall
size of the Yukawa coupling |C,.| < 0.168(m,/TeV),
which comes mainly from the process y — ey. For the
later convenience, we shall take |C,,| = 0.15(m,/TeV) in
our numerical exploration of the parameter space. For
Cee ep» the bound on the branching ratio of u — 3e restricts
Creen < O(1073), which are consistent with the aforemen-
tioned Ovff decay constraints.

V. ELECTROWEAK PRECISION TEST
CONSTRAINTS

Since all of the newly introduced particles carry EW
charges, the cocktail model is also well constrained by the
EWPTs at the LEP, especially the T parameter [31,32], for
which the new one-loop correction is as follows [10]:

1
_ 2
+ Sé(FH;.HO + FH;.AO) - 2C§S[ZJFH1‘.H2+ — Fyya,.l-
(15)
where

m2+m?:  m*m? 2
Foy=t 0 T g M (16)

; 2 mi —m; ;

and sy (cy) is the sine (cosine) of the Weinberg angle 0y,.
As already pointed in Ref. [10], the cancellation between
the charged and neutral states becomes possible, resulting
in an extended parameter space. In particular, the present
model allows a large mass splitting between the two neutral
(charged) particles.

VI. DARK MATTER PHYSICS AND COLLIDER
CONSTRAINTS

DM physics and the collider searches have already
provided interesting constraints on the cocktail model.
Since the cocktail model is very similar to the widely
studied inert doublet model (IDM) [33] in the Z,-odd sector
except for the additional singly charged scalar, we would
expect that the results about the DM properties in the IDM
could be applied directly. In the following, we just
summarize some of the relevant conclusions from the most
recent global fitting studies in Ref. [34]. Other aspects of
the IDM can be referred to Refs. [34-37].

In the cocktail model, there is no preference of the
neutral scalar H, or the pseudoscalar A, to be the dark
matter candidate. Thus, without loss of generality, we
assume that the lightest Z,-odd particle is H,.
According to the analysis in Ref. [34], there are two
regions, 60 GeV < my, <75 GeV (low mass) and my, >
500 GeV (high mass), that can give rise to the correct
relic DM density while satisfying all other experimental
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constraints, including LHC searches, direct detection
bounds from LUX and XENON100, and indirect signals
from AMS-02 and Fermi-LAT, with the low mass region
favored by the fit. In addition, in the large mass region, it is
crucial that my, =~ m, , which is required by the coanni-
hilation of the DM H, with A to generate the correct DM
relics. On the other hand, it is clear from Egs. (4) and (5)
that the right amount of the neutrino masses needs a large
enough mass difference between H, and A,. Therefore,
there is some tension between the DM relic density and the
neutrino masses in the high mass region. In the following,
we only focus on the low mass region and take my =
70 GeV as our benchmark point, which is also the best-
fitting point in Ref. [34]. In this region, the right relic
density in the Universe [3] can be obtained by the
combination of three effects [34,35]: the coannihilation
among H,, A, and H+; the SM Higgs resonance enhance-
ment; and the opening of the W W~ annihilation channel.
Furthermore, if we restrict the coupling —15(®]®,)2/2 to
be within the perturbative region with | 15| < 5, we find that
the upper bound for the pseudoscalar mass is my, < my, <
555 GeV. However, the LEP has excluded models with
my, < 100 GeV when my, =70 GeV [38].

The allowed range of the masses for the charged particles
are well constrained by the EWPTSs, especially the T
parameter. Due to the mixing involving with the extra
SU(2), singlet charged scalar, it is clear that the results in
the present cocktail model vastly differ from those in the
IDM as shown in Eq. (15), so that we cannot directly copy
the conclusion in Ref. [34] here. Rather, if we require the
heavier singly charged scalar H; to be less than 1 TeV and
the mass splitting Am? large enough to generate measured
values of the neutrino masses, My should not exceed
500 GeV from our numerical studies. Thus, we take three
benchmark points with My = 90, 200, and 300 GeV,

respectively, which are all allowed by the LEP constraints
M+ < 70-90 GeV [39]. Note that the latest 8 TeV ATLAS

[40-42] and CMS [43,44] bounds on the chargino and
neutralino masses cannot be applied here, since either they
assumed the equal mass of the lightest chargino and
second-lightest neutralino in the associated production
channel [40,41,43,44] or the constraining power on the
lightest chargino mass was only confined within the DM
masses smaller than about 30 GeV in the chargino pair
production one [41]. For the doubly charged scalar p™, the
most stringent bounds on its mass are 409 and 459 GeV for
the ATLAS [45] and CMS [46] 7 TeV data, respectively.

VII. NUMERICAL RESULTS

Instead of the exploration of the whole parameter space,
we only present some benchmark points of phenomeno-
logical interest. In particular, we focus on the particle
spectra in which m, =1 and 2 TeV with my = 90, 200,
and 300 GeV. If we further confine the couplings (k,, &)
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FIG. 3 (color online).
parameter spaces from AT.

within the perturbative region and take the following
characteristic values, such as (0.7m,, 0), (m,,0), (m,, 3),
(m/,, 5), and (3m/,, 5), the allowed parameter space which
can give the correct size of the neutrino masses while
satisfying flavor constraints are plotted as lines in the
mpy,-my, plane in Fig. 3, which can be compared with
the allowed parameter spaces (grey bands) from AT with
the 1o errors.
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Benchmark points for allowed parameter space, where the grey bands represent 1o errors of the allowed

The general feature as seen from the diagrams in Fig. 3 is
that with the relatively large couplings x, 2 m, and £ 2 3, it
is easy to obtain the correct neutrino masses while
satisfying all constraints. And the final results are more
sensitive to ¢ than «,, since the integral 7, is generically
larger than 7 with the chosen mass spectra. In particular,
when (k,, &) = (0.7m,,,0) and (m,, 0), we cannot find any
solution of (my,, my, ) to realize enough neutrino masses in

113005-6



LOOP-INDUCED NEUTRINO MASSES: A CASE STUDY

our phenomenologically interesting region, so we do not
plot any lines for these two benchmarks in Fig. 3.
Moreover, by comparing two diagrams in each line, the
increase of m,, allows more parameter space in the my,-my
plane, while the careful examination of the three diagrams
in either column shows that the parameter space shrinks
when we enlarge my, . The former phenomenon can be
attributed to our assumption of |C,.| = 0.15(m,/TeV)
which effectively makes larger Yukawa couplings when
amplifying m,, while the latter can be understood as the
decrease of the neutral scalar mass difference when my,
increases.

VIII. CONCLUSIONS

We have explored the cocktail model introduced in
Ref. [10], which is interesting because it provides a
connection between the origin of the small neutrino masses
and the dark matter physics. In particular, we have shown
the detailed derivation of the neutrino mass formulas in
Eq. (4) from the three-loop cocktail diagrams, for which the
subsequent loop integrals are calculated with the reliable
numerical methods. Based on Eq. (4), the neutrino mass
matrix is naturally predicted to be of the normal hierarchy
type, with the nearly vanishing elements (m,),,,-
Consequently, the current data on the neutrino mass
differences and mixings already fix the mass matrix to a
high precision. By further considering the stringent con-
straints from the neutrinoless double beta decay, the low-
energy LFV processes, the EWPT measurement of the T
parameter, the DM relic density, and the collider searches,
the DM mass is confined in the narrow range
60 GeV < my, <75 GeV, and the right order of the
neutrino masses can only be obtained by the large mass
splittings for the neutral and charged scalars as well as the
large couplings of k, ~m, and &2 3. It is interesting to
point out that the Ovf3f decay is predominantly via the new
short-distance contribution, which is typically larger than
|

PHYSICAL REVIEW D 90, 113005 (2014)

the usual long-distance one and has the possibility to be
observed in the next-generation experiments.
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APPENDIX: DETAILED CALCULATIONS OF
THE COCKTAIL DIAGRAMS

In this appendix we compute the cocktail diagrams in the
unitary gauge. Without loss of generality, we separate the
neutrino mass into two parts, one proportional to x, and
the other v, which will be calculated in the following two
subsections. In our numerical calculation, we study both
zero and nonzero cases for &

1. Integrals proportional to x,

In the unitary gauge, there are only eight Feynman
diagrams in Fig. 1. Let us first focus on the upper triangle
loops in the top of the diagrams, which are the only
differences among the diagrams. The relevant pieces of the
Lagrangian are

L= —%A‘W*l‘é‘”@o —kpttSTST + He.

192 — .
= 2 (CﬁHl sﬁHz)Wﬂ‘aﬂ(Ho + le)
- K2p++(SﬂH]_H1_ +2cpspHTHS + c/%HEHg) +H.c.,

(A1)

where AT = c;H| —sgH) and ST = szH| + csHy . We
choose (H) = (O )T w1th v=173 GeV Using the
Feynman rules, the triangle-loop factors involving H are

(2k = ky), (=2k — k),

8 (k> —mpy )[(k+k\)* = my [(k = k>)* —mi; |

(2k — k), (=2k = ky),,

8 (k> —mipy )[(k+ ky)? = mi |[(k = ky)* —mi, |

(2k — k), (—2k — ky),

8 (K —mpy )[(k+ki)* —my ] [(k = ky)* = mpy ]
(2k — k), (~2k — k),

(Bt )¢ () 22
(HoH H,): —(Kz)g%sgﬂ
(HoH,H,): —( )g%S%ﬂ
(HoHyH,): (Kz)ggsgﬁ

8 (kz—mH)[(k—l—k) _mHz][(k kz) _m%-lz]’

(A2)

while the corresponding factors for the diagrams involving the pseudoscalar A, are essentially the same with an additional
minus sign. Thus, by summing these eight diagrams, we obtain
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2S2 4
() 22 / TR @k = k), (2K — k) (Am2 2 Am2} {2 = m2y ) (2 — )

8 J (2n)
< [(k + ky)? = mi |[(k + ky)? = mi, J[(k = k2)? = miy ][(k = kp)* = mi ]}, (A3)

where Am? = = my, —my, and Am} = my, = m? 4,- Note that the summation of all these diagrams effectively makes
the integral in Eq. (A3) finite. By multlplylng various common factors (propagators and vertices) in the cocktail diagrams,
we get

S2[)’ ( (Ami)zAm%
—5= (X, C bxb)(KZSZﬂi
(167%)3 ¢ myv?

1 2\3 4.4 /d4k2/d4k1 a_k?klf u_@

{(k3 — ) (ki = miy ) (k3 = m3) (k = mp)[(ky + k2)? = mi]}

(_imv)ab =

4
e (2= k), (=20 = k), A = 02 = (K P = iy
x [(k+ k) _mHH(k ky)? _mHH(k ka)? _mH]}
= (xacahxh) (16 ) AIKZII’ (A4)

where we have used x, = m, /v and my, = g,v/+/2 and rearranged the factors for convenience. Note that the prefactor Ay,
in the big parentheses is precisely the first part of .4, in Eq. (4) and we denote Z for the three-loop integral shown in the last
four lines of the first equality.

a. Integration over k

We now integrate the internal momentum k in Eq. (A4). By using the Feynman parameters s; to combine the three pairs of
the propagators with the same momentum, we have

d4
n:/( k= k), (2K =), Y0 =iy 02 = )

< [(k+ ky)? = miy [[(k + ky)? = miy J[(k = kp)? = miy ][(k = ky)* = miy |}

13 d4k (2k—k2)v(—2k—kl)ﬂ
= 115 | G @ s £ = P~ = )

2 _ 2 2 0 2 2 2 _ 2 2
where we have defined m5, = (1 = s)mp, + symy,, mg, = (1 = s2)my + symy,, and mg, = (1 — s3)my + symj . The

combination of the remaining three factors in the denominator above gives

. Hdsr ) [ andx, / 4{x1x2<1 — ) (2K = ko), (—2k = 1), }/
(x1[(k + Ky )? = €1]+x2[<k ky)? — m3 }+(1—x1—xz)[k2—m2])6

= S =k e, + [—(1 = 20 )y = 2x0ks], =251y + (20, — 1)),
_/ HdsiF(6)/dx1dexl)C2(1—x1—X2)/<d o #2200 = 2ol + (2 - i),
i=1

2n) (= m2)S
(A6)
where we have made the translation of the momentum k — k — x;k; + x,k, and defined
ZX I’I’lT - 1 —Xl)k - ZXIXZkl k2 —Xz(l —)Cz)kz (A7)
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with x3 = 1 —x; — x,. We have also ignored the terms
proportional to the odd powers of k since they vanish after
the integration. The integration over k leads to

13 i
I, :A gdsi/dxldxlexz(l —Hox) 1672 re

29 3N,
XQ@P*WW)

=1 + Lo, (A8)
where
Ny = [=(1 = 2x))ky = 22k ], [=2x1 k) + (2%, — 1)k, ..
(A9)
b. Integration of 1, over k, and k,
The integration over k; for I;; is defined as
1 d*k
I, = @F@)xm(l — X —Xp) /w
% [ga,u — k({lklf/m%V] 29;41/ ’
(ki = miy) (ki = mp)[(ky + ky)? = mp] (m3)?
(A10)

where we have suppressed the integration measure for the

Feynman parameters x; and s; to simplify our formulas.

With the Feynman parameters z; (i =1,...3), we can
combine all the factors in the denominator
- iF(3) (_1)x1x2(1 — X —xz)F(6)
Il = 2 3 3
167 x(1=xp) I'(3)
3 2 a 2
2z5[g) - klklu/mW}
x/Hdzj 5 , (A11)
j=3
where
2x1x, x(1=x) Zixim?-
D—z{k2+7k~k+ 5— :
i xi(1=xy) b xp(1=xy) : xi(1=xy)

+ Zz[(kl + k2)2 - mﬁ] + 23 (k% - m%[/)
+ (1 =2y =2 —23) (kf —mp). (A12)

With the internal momentum translation k; — k| — ¢,k»,
where ¢, = [x,z; + (1 — x1)z,]/(1 = x;), and the integra-
tion of k;, we obtain

PHYSICAL REVIEW D 90, 113005 (2014)

I, = (16 /H

X {2F(4)<gy - C2kak2v/mw) F(3> gg }
APJT

.XlX2 1 — X _XZ)ZI
1—951)3

B[k — A]* miy B3[k3 —

(A13)
where
.Xz(l —XZ)Z] 2

By = ——7+-—"— -3, Al4
2 xl(] _xl) +Z2 C2 ( )
A=2 2+ l-zi—2-23 , ZlZixim%,- '
B, B, iy B, Byxi (1 —xy)
(A15)

The integration over k, can be similarly done and the result
is given by
I(3) xx(l=x —x)z}
(167%)>  xj(1—x)°
5 / d'ky (¢ — Kyks/miiy)
(2m)* (k3 = miy ) (k3 — mg)
6l = Rk /) 1
Bk - A my Bk - AP

(A16)

I, =

where the integration measures for the Feynman parameters
are also suppressed for simplicity. By combining the factors
in the denominator with the Feynman parameters y;, the
expression can be transformed into

I'(3 1—x - 2
1, = (3) xxa( X1 xZ)Zl/dyldyz

(167r2)2 x?(l - x1)3
< [ Gk - ks
6)6y7 (g8 — c3kGko,/miy)

4) By (k3 — [m3Z]/[Box; (1 = x)])°
_T(5) 9 }
I m%v (k2 [ Z]/[Byx (1 —Xl)])s 7
(A17)
where
miy
Z=x;(1=x)|yiz2+ (3123 +Y232)W
P
m2 m2
+y1(1—21—22—23) + (1 =y =y2)By—5
my mp,
(Ziximsi)
tna— 5 - (A18)
P
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After integrating out k,, we find

f — 2 2
i 209" [ S[48xi(1—x1)  8(ez+1) 12¢5
I = (16777 [ (1 —x _XZ)ZI]T{ 1 [ s 2B | B, (1 — x )22
» p »
8 2
Ly . Al19
¢ mymSE®  mymiByx (1 — xl)Zz} } (A19)

c. Integration of 1, over k, and k,

The integration over k; for I}, can be written as

i &k, (g — kK /) 3N,
o MOl = —x) [ ) (@ = m) (= md) (ks + Ko = ] ()"

I, = (A20)

where we have also suppressed the Feynman parameter integration measures. Similar to the derivation of Eq. (A11) from
Eq. (A10), we have

i XIX2(1 — X —)Cz) 3/ d4k1 N;,a
10, = I'(7)z; —, A21
T e UL oy (a21)

where D is defined in Eq. (A12) and

N = [=(1 = 2x1)(ky = c2ky) = 220k, [=2x1 (ky = c2ka) + (2% = D)ky], [g% — (ky = cky)*(ky — c2ka ) /miy]
1
= (1= 2x)(2x))kTky, + d1dakSka, — (1 = 2x,)(2x,) m—zk%kcfkw
W
1 1
= (1 =2x1)(2x)¢3 13 —5ky - kykSky, — (1 - 2x1)d202—2k1 - ko kko,
W
1
- (1= 2x1)d2c2—2k%k§k2y - (le)dlcz k kik,

myy

1 1
(2x1)d102—k1 kzk kly —d dZ_kl kzk k2y —d d202 k kaka (A22)

with
d] = Cy — 2C2X1 - 2X2, d2 = 2X1C2 + 2X2 bl 1 (A23)

The integration over k; can be easily carried out with the result given by

1L I'(3) xix(1 —x1xz>Z?{ 12d,dyk5ky, | 12d,dyc3h3kGks,  6(1 = 2x1)(2x ) g5
, = _

(167°)  x{(1—x)* Bi[ks — AP Bimy [k — AP 4B3[k; — AJ*
6(1 = 2x))(2x)) 3k, kS | 6(1 = 2x1)dpcrkp kg | 6(1 = 2x1)dycoky, kS
smiy[k3 — Al 4Bymiy (k3 — AJ* Bymiy (k3 — AJ*

6(2x1)d1€293k% 6(2x1)d102k2uk(21 6d,dyky, k5 6(1 - 2x1)(2x1)g§f} (A24)

ABsmiyy ks — A* - 4B3miy [k — Al 4Bymi k5 — A 4BImi (k3 — AP

By appending the rest propagators involving k, and performing the Feynman parametrization with y; as that in Eq. (A17),
the expression becomes
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I, = / d'k, (gﬂ - ké_%)

1I
(2n)* (k3 — my) (K — m3)
ke (1- L
B 1 x1x2(1 — X1 —XZ)Z?/ d4k2 _1—1(7)61161,’2)7‘]1 2 2( _m_‘zﬂ/>
S’ xj(1-xy)? (2m)* By [k = (mpZ)/(xi(1 = x1)B,)]
a k2 a ks
[(7)d,dyc3y} ke (1-55) [(6)(1 = 2x;)(2x,)y} (- %)
Bg m%v[k% - (m/%Z)/(xl(l - xl)Bz)]7 233 [k% - (m,%E)/(xl (1- xl)BZ)]6
a kz
e -2x)@ueyi  BE(1-5)
2B; miy k3 = (mpZ)/ (x (1 = x1)B,)]°
a k% a k2
T(6)(1 = 2x;)dcay? kzk‘§<1 —m—gv) L 20(6)(1 = 2x)dyery] kzkg(l —m—%v)
2B; miy k3 = (mpZ)/ (x, (1 = x1)B,)]° B3 miyk3 = (mpE)/ (x; (1 = x1)B,)|°
k2 ap k;k/z} k2 k/j aff k%
F(6)(2x1)d102y? 2(9 _m_%l/> <|»Iﬁ(6)(2)C|)d]C2y:15 2 2(9 _m_gv)
233 m%v[k% - (mﬁi)/(xl(l - xl)Bz)]6 233 m%v[k% - (m,%z)/(xl(l - xl)Bz)]6
a k Q kgkfzj
[(6)dydy} ak (1-52) L ST(5)(1 ~20) (20 g -5 |
2B3  miylks — (m3Z)/(x, (1 = x,)By)]° 4B3 miy k3 = (m3Z)/ (x) (1 = x1)By)P )
(A25)
Finally, the integration over k, gives
1 i ( )3gaﬁ dydoyt (24 12
=l —x; —x)20 53 —
2T (16r2)3 2 1Ry 19201 ByX'md - xi(1—x)B3Z*mSm3,
12 24
—d.d 2,4
1826201 <x1 (1= x)Bmbnd, (1 - xl)zB%szf,mé[)
12 2
—2x(1 =2 3
*1( 1)1 <Z4m§, + x (1= x1)3223m w>
2 3
—2x(1=2 Zy3
*1( *1)ea <x1 (1 —x1)ByZ*mSm3, + x3(1 —x )23522m4m‘¢v>
2 3
— (1 =2xy)d
( x1)dacayi ( 1(1 = x1)ByZ*mSm3, * X1 (1 —x,)* B3 m;) mw>
8 12
— (1 =2x))drcay}
( *1)drcay) <x1 (1= x1)ByZ3mSm3, +x1(1 - x )23222m4m“‘4,>
8 3
—2x,d 3
et <X1<1 - x1) By X moms, " x(1- xl)zB%ZQmﬁmé)
2 3
—2x;d
. 162”( (0 —x)Bombml, 21 —x )23222mpmw>
2 3
—dd
! 2y‘< (= 2By (1 = x)) B, mW>
12 3
(1 =25 ) (2 . A26
(1= 20) XI)yl<x1(1 —x) X mpm w+ 1(1=x,)*B,X%m; mw>} (A26)
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d. Final results

By summing up the above two integration results and multiplying the prefactors, we obtain

7, = L (1672 P mtmd 7. (1L, + L) i('”évz (Mg )
1 = 5 Lox=)"m,myy gy 1 2) =5\ 24t T—>4n 10 |>
2 ’ o 2\ m} m;
with
1—x - 2 12d,d,y%
IIOZX]X2( )il x2)4 48x(1 —xl)y?—w—lz(l —le)(le)ﬁzl )
by B,
7 _nxn(l-x —x)23 (8y3(c3 + 1)+8y2 +x1x2(1 —x =)z [ 12d,dyyi
H 53 B, ! xi(1—x)%3 B2
12d,dyc3y]  2(1 = 2?‘1)(23‘1))’? 2(1 - 2x1)(2x1)c§y{’ 2(1 - 2x1)d2€2)’?
B B, B, B,
_ 8(1 = 2x1)dyco)7 _ 8(2x))dic2y] _ 2(2x,)dic2y} _ 2d,dyy7 —12(1 = 2x))(2x))y? ).
B, B, B, B,
I x1x(1 = x; —xp)23 (12y3c5  2y? x1%(1 = x; —x3)73 [ 24d,drc3y}
2 1—x)%2 B2 B, 1-x)22 \ B}
xi(1—x) 2 2 xp(1=xp) 2

_ 3(1 - 2x1)(2x1)c§y? _ 3(1- 2x1>d2€2)’? _ 12(1 - 2x1)d2€2)’? _ 3(2x1)d1c2y?
B3 B3 B3 B3
C32x)dicy}  3didyy] 3(1=2x1)(2x))yy
B3 B3 B, ’

(A27)

(A28)

(A29)

(A30)

where the final results are classified according to the powers of m3,/ mg. Here, we have suppressed the integration measures

for the Feynman parameters x;,y;, z;, and s;, defined by

1 1 1 1 1-x, 1 -y, 1 1-z 1-zi-2
measure:/ dsl/ dsz/ ds3/ dxl/ dxz/ dyl/ dy2/ d11/ dzz/ dzs.
0 0 0 0 0 0 0 0 0 0

(A31)

It is clear that this complicated 10-dimensional Feynman parameter integration can only be calculated with the help of a
numerical package. In our work, we use three widely applied numerical integration applications: MATHEMATICA (Global
Adaptive), SECDEC-2.1.4 [11] and VEGAS in GSL [12] in order to cross-check the accuracy and stability of the calculation.

With Eq. (A27), we can study the benchmark point:

mpo =70 GeV, myo = 250 GeV, My = 90 GeV, my: =400 GeV, m, =1 TeV,
C.. = 0.06, C,, = 0.01, Cy: = 0.0009, C,.=5x107, ky =2 TeV

in the first version of Ref. [10] before its erratum with £ = 0, and the final results are given by

Mathematica: ;) = 72645+ 104.4, I, =124.667+ 1818, T, =4.10278 £ 0.0234;
O(1073)  O(1073) 1.05
I,=261li, m,=|0(1073) 216 325 | x107 GeV,
1.05 325 3.03

113005-12
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GSL-VEGAS:  I,,=7350.752+5271, I, =1251224+0.116, I, =4.107 +0.003;
O(107%)  0(1073) 1.05
7, =2612i, m,= | O(1073) 216 326 | x 107" GeV, (A34)
1.05 326 3.04

SecDec-2.1.4: Ty9="7353.2+17.3, Ty = 125.79 +0.04, Ty, =4.108 £ 0.001;
O(107%) O(107%) 1.05
7, =2612i, m,= | O(1073) 216 326 | x 107" GeV. (A35)
1.05 3.26 3.04
As expected, the numerical values from the three packages are essentially the same. Clearly, the obtained neutrino masses
with £ = 0 are smaller than the experimental values by about 2 orders.

2. Integrals proportional to &v

In this subsection, we go on to calculate the neutrino mass part which is proportional to £v. The relevant pieces of the
Lagrangian are

L:=—(DTioy®STp~™ + Hee. = —EvATSTp™™ + Hee.
= —gvp~[spepHYHY + (¢ — sj)H{ Hy — spepHy Hy] + Hee. (A36)

These vertices, together with the first term in Eq. (A1), also give eight Feynman diagrams in the unitary gauge with the
upper triangle loops as their only differences. Among them, the four triangle factors with H(, running inside are

) Bsapcap + 1) (2k — k), (=2k = ky),,

(o) (60 G e - k= o =)
. ggszﬁczﬁ (2k — k), (—2k — k)

(HoH Ha): = () o kP — i [k — ko) =]
. Qgszﬂcz/} (2k — ky),(=2k — ky),

(o) = () e o Tk kP = Ik = k)P = ]

(£ Q%SZﬂ(CZﬂ - ) (2k - kz)y(—Zk - kl)/l
ot ) ) e g [k k) = m [k~ o =] (A37)

while an extra overall minus sign should be multiplied for the corresponding formulas involving the pseudoscalar A. Thus,
the summation of all eight diagrams yields

(a0 250 / (d ’;4 {2k = ko), (=2k = k), (Am2)*Amg}{ (K = miy ) (2 = m3 ){(k + Ky)* = mj,

x [(k +kp)? = mp J[(k = ky)? = my |[(k = kp)* — my |}
PBsag / 4k { (2k = ky), (=2k — ky),, Am? Am}
8 J (2n)* (K> —my ) (k2 — m3 )[(k + k)? = myy ][(k — ky)* — miy ][(k — ko) — mi, ]
(2k = ky), (=2k — ky) , Am? Am}
(K = miy ) (k> = m3 )[(k + ky)? = my |[(k + kp)* = m, ][(k = ky)? —mH]}

+ (év)

+

(A38)

Note that the integral in the first two lines is the same as that proportional to k5, in Eq. (A3), so we expect that it gives the
same result Z;. Thus, the contribution to neutrino masses proportional to £ can be written as
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(=imy) gy = (XaCapXp) 53 (16 ) 5 (AL + AZy), (A39)
where
A = 57)02ﬁ%§#’ Ay, = i—;% (A40)
d*k, [ d*k, (g™ - —) (¢ -

1
7=t i | G | G —mw><k2—m ><k2—m,,>{<k1+k2> ]

x/ d'k { (2k — ky),(=2k — k1),
Qay* V(K = m3,, ) (k> = m3)[(k + &, ) —mHl][(k ko) — m3, [k — ky) = m3, ]

(2k = k), (—=2k — ky),, }
(k2 = miy ) (k2 = m3 )[(k + ki) = mi |[(k + ky)? = mi, |[(k = k2)? = mjy ]

=T, + 0. (A41)

+

Here, we have separated 7, into two parts, Z/, and 7, which are defined in the second and third lines in the first equality,
respectively. Note that Z/, and 7} are symmetric to each other by the exchange of the charged scalar masses m%{l <~ m%,z.
Thus, in practice, we only need to calculate 7% and find the result of 7/ with such a mass exchange, as is done in the

following subsections.

a. Integration over k

We first integrate & in Z/,. With the Feynman parameters s; and x;, we combine the propagators in the denominator as
follows:

d4k —4k k + [ (1 - 2X1)k1 - 2X2k2] {—2)61](1 + (ZXZ - l)kz]

I/l = /1ﬁdsir(5)/dX1dX2X2(l — X —Xz)/ Y _ D,
0 i (2m)* (k> = m?)

(A42)
where we have made the translation of the momentum k — b. Integration of 1, over ky and k,
k —xiki + 22k, and defined The integration over k; for I}, is defined as
m,2 = m2 - Xl(l - xl)k 2XIX2k1 k2 - .Xz(l - X2>k%, , —i d4k]
Hl :72)62(] — X —.Xz) A NG
(A43) 167 (27)
X lg* - ktllkjll/m%l/} 20

with mZ = xymy; + 370 x;m3, and x3 = 1 — x| — x,. The (k3 — m3y) (kK — m3)[(ky + ky)* — m2] (m2)*
integration over k can be subsequently performed with the (A45)

following results:

3 where the integration measure over the Feynman param-
1 _l' . . . .
I, = H ds; [ dxydx,xy(1 = x; —x,) ( )2 eters Xj and s; are -suppressed. The combination of the
167 denominator factors introduces the Feynman parameters z;
(i =1,...3), which leads to

[

—i x(l-x —x)
II, = (s
=1, +10,, (A44) P16 (1 —x)? )
3 a a 2
2z 9y — kik v/m
where N, is the same as in Eq. (A9). We have separated I X / H dz; ! D,ls 1/ . (Ad6)
=1

into 117, and I}, in terms of their powers of m/?
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where
2x1x X (1 =xy) m2
D — o |2 Y2 4o X 22 o
“ 1+361(1—161)1 2 xi(l=x) % xi(1-xy)
+Zz[(k1 +k2) —m ]+Z3(k2 W)
+(1—z1—2p—23) (k3 —m3). (A47)

After the internal momentum translation k; — k| — ¢, k»,
where ¢, = [x,2; + (1 —x1)z2]/(1 — x;), we can integrate
out ky, resulting in

2(1 =% =)z

I = / Z;
L H / x%l—x)2

% 4(g5 = c3kSky, /miy) b 9y
B[k — AP miy B3k — A1)

(A48)

where B, is defined in Eq. (A14) and

PHYSICAL REVIEW D 90, 113005 (2014)

Zz 1 — 21— 32— 13
A/ — 2 2
B, /)+ B, i+ B, "
Z1Mmg
_ . A49
Byx; (1 —x) (A49)

We now turn to the integration over k,,

1 X2<1 — X1 —Xz)Zl
(1677 xi(1 - x))°
5 / d'ky (g = Kyks/miiy)
(27)* (k3 = miy) (k3 — m3)

4(g8 = kgkay /my) 1 9
BIG- AT wi B - ATS
(A50)

1, =

where the integration measures for the Feynman parameters
are also suppressed. The integration over k, can be
performed with the help of the Feynman parameters y;,

1 1—x — “k o4 — c5kSk
I, = — zxz( X1 xz 2 / dy dyz/ 2 gﬁ kﬂk { (5) y31 S (%2 /Cz 2/ Miy) <
(167°)*  xi(1-x,)? ['(3) B3 (k3 — [mpX]/[Box (1 = x1)])
Y1
- }
my B3 (k3 = [m pZ/]/[B2x1<1 —xp)])*
—i ab 16x;(1 — xy) 3+1) 12¢3
l g 2 X1 X1 5 5
1—x — I
(167[2)3[ (1-x1 =)z 4 {yl[ mSx +m%vm;4)322/2 myym3Bix (1 —x;)%
4 2
, A51
tn {m%vmﬁZa + mwm,,Ble(l - xl)Z} } (A51)
where
m?, m? m? m2
Z/_X1(1—x1){)’122+()’123 +)’2Bz> 2 T+yi(l—z1—22—23)—% +(1—y1 y2)By—| +niz1—5- (AS52)
n, mﬂ n, n,
c. Integration of 1\, over ky and k,
The integration over k; for I}, is defined as
—i d*k, (g™ — k9K, /m%) 2N,
I = 1m0l —x - x) / FE s = L (A53)

With the same Feynman parameters z; as that in Eq. (A11) and the same internal momentum shift k| — &,

transformed into

I, =

miy) (kt = m3)[(ky + ko) = m3] (mf?)?

i xz(l — X —xz)

— ¢k, 1T, can be

1672

x?(l -x;)?

d*k, N'@
re)s [ —-L2v A54
6 [ i (As4)

where D’ is defined in Eq. (A47) and N!* is the same as that in Egs. (A22) and (A23). The integral over k; can be worked out

with the result given by

113005-15



CHAO-QIANG GENG, DA HUANG, AND LU-HSING TSAI PHYSICAL REVIEW D 90, 113005 (2014)
1 x(l-xx) _ 6d,dyk3ky, 6d,d>c3k3kSks, _ (1= 2x1)(2x1)g5
(167°)* x}(1—x1)* | Bylls — AT Bomiy[l5 — A1 B3lks — AP

(1 —2x1)(2x1)cgk2ykg (1 —2x1)d202kzvkg 4(1 —2x1)d2C2k2yk‘2’

I, =

B G- AT BRI -AT T BulE - AT
(2x1)dcr98k3 (2x1)d1c2k2yk“ d dzkzukg 3(1—=2x1)(2x1) g8

STV 7 A RGE T2 A (- (AS5)
Bsz[k - A ] [k - A ] [k - A ] ZBsz[kz - A ]

On the basis of II},, we can write down the expression for the integration over k, by appending the rest propagators, and
perform the Feynman parametrization with y; as that in Eq. (A51) to transform the expression into

IH/ :/ d4k2 (gﬁ kﬂk /mW) II/
? (27)* (k3 — m3y) (k3 —m32) 2
1 xn(-x-x)d / d*ky [ T(6)didyy;  Ksky(1—K3/m}y)
TeR? A(l-xmp ) o B = (m)/ (v (I —x)By)
L(6)didycdyi KKK -K3/my)  TE)(1=2x)2x)y} (9% — ksky/m})
Bymy, (k3 — (mpX)/(x;(1 = x1)B,)]° r(3)B; (k3 = (m3Z')/ (x (1 = x1)B,)P
L(5)(1—-2x)(2x))c3 KK (1 - K3/m},) L(5)(1 = 2x)dyey} kSRS (1 — K3 /m3,)
['(3)B3miy, (k3 — (m2Z)/(x1(1 = x1)By)° I'(3)B3my, (k3 — (mZZ)/(x1(1 = x1)By)?
AL(5)(1 = 2x))dyeryt KK (1 = K3/m3y) L(5)(2x)dicoyt  K(g™ — ksky /m3)
F(3)B%m%v [k% - (m,%z/)/(xl (1- xl)BZ)]S F(3)Bgm%v [k% - (mgz/)/(x] (1- xl)Bz)]S
L(5)(2x)dicoyt  Kskh (g — K3 /m3) L(S)didyy}  KsKy(1—K3/m3,)
L3)Bymy, [k — (m2Z)/(xi(1 —x1)By)]>  T(3)B3miy, [k3 — (m2E)/(xi(1 — x1)B,)]?
1-2x,)(2 b — kak’ | m>
9( )261)( xl) - 9(21 ) 2 Z/mW 4} (A56)
Bsm [kz - (mpz )/ (x1 (1 = x1)B,)]
Finally, the integration over k, results in
: b 4 6
l g
I, =——— 1-— d,d
2 (1671'2)3 [X2( X|— X2)Z1] { 2Y1(Bzz,3mg+ (1 . )322’2m mw)
6 24 4 1
d,d,c? +(2 1-2
td 2C2y1( (1= xl)B22’2m4m%V+x1(l —x )QBgZ’QOW> (2x1)( )i (Z’3mg+ 1(1=x1)ByX"m; %V>
1 3
2 1-2 22
+ (2x)( *1)e <x1 (1—x1)ByX?mym3, +x%(1 —xl)QB%Z’mzmél)
1 3
1 —=2x,)dycyy?
i x1) 2623 <x1(1 —xl)Bzzlzmﬁm%v +x§(1 _xl)zB%Zlnﬁm%V)
4 12
1-2x)d
* %) 262)}1( (1= xl)BzZ’zmme+x (l—xl)zB2Z’ml,mw>

4 3
+(2x1)d1C2)’%< 7T 4>
W

x1(1=x))BX*mim3, ~ x3(1—x)?B3¥m2m

1 3
2x,)d, cry?
+@x)diean <x1(1 —x1)B,2"m} mw+x1(l —xl)szZ’m%m‘v‘)

1 3
dd
i 2y1< 1(1=x,)By2"m} m%v+xl(1 — )ZB%Z’m,%m‘é)
6 3
+(1—2x|)(2x1)y1( + 7 4>} (A57)

1(1=x)Z?mim3,  x3(1—x;)2ByE ' mims,
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3. Final results

The final analytic formula for 7/ is obtained by summing up those for III} and III}, given by

1 i (mf ms
7, = 5 67 Pt 411 = 3 (7, 4 "0 7 ). (A38)

P P

(O]

where

X (1 —x; —x;
213

4d1d2yi’z1
B,

Ty = g {—16x1(1 —xp)y + +4(1 - 2x1)(2x1)y%z1}, (A59)

A
IZI__

XZ(I — X _XZ)ZI 4y%(0% + 1) .XZ(I — X _'XZ)Z% 6dld2y?
2 +dy o+ 2 2
> Bz Xl(l —xl)Z B2

6d1d2€%y? + (1 —2x1)(2x1)y% 4 (1 —2x1)(2x1)c%y%+ (1 —2x1)d202)’%
B% B, B, B,
4(1 = 2x))drcry?  4(2x))dicy?  (2x))dicy?  didyy?
+ ( x1) 202)’1+ (2x1) ICZYI+( x1) 102y1+ 1 2y'+6(1—2x1)(2x1)y1 ’ (A60)
By By B, B,

) (1= x; —xy)z; [12y3c3 2y, x2(1 = x; —x3)z3 (24d,d,c3y3
Iy =~ / 2 N 2 25 3
x(1=x)= B3 B, x7(1—xp)*X B3
N 3(1 = 2x)(2x;) 3y} N 3(1 = 2xy)dyepy7 N 12(1 = 2x))dycpy7 3(2x1)dycoy?
B3 B3 B3 B3
3(2x1)d102)’% 3d1d2)’%+3(1 = 2x1)(2x1)y
B} B2 B, '

(A1)

Note that the nine-dimensional integration measure for the Feynman parameters x;,y;,z; previously suppressed is

defined by
1 1 1 1-x; 1 1-y 1 1-z4 1-21—-2
measure:/ dSz/ dS3/ dxl/ d)Cz/ d)’1/ dyz/ dZ]/ de/ dZ3. (A62)
0 0 0 0 0 0 0 0 0

As mentioned before, 7 can be simply obtained by exchanging the charged scalar masses my;, <> my, in Eq. (A58). This
completes our analytical derivation of the integral Z,.

For the remaining nine-dimensional Feynman parameter integrations in 7,, we also use the three packages as in the «,
part calculation: MATHEMATICA (Global Adaptive), SECDEC-2.1.4 [11], and VEGAS in GSL [12], in order to make a cross-
check. Consequently, all of them give essentially the same result within errors. For the particle spectrum of the benchmark
point listed in Eq. (A32), the three-loop integration Z, is given by

T, = 4.15i. (A63)

Together with 7| = 2.16i as calculated in the previous section, we can predict the neutrino mass matrix numerically by
taking various possible values of &, and our results are given by

O(107%)  0(1073) 1.52
E=05:  m,=| 01073 314 474 | x107" GeV, (A64)
1.52 474 442

O(107%) 0(1073) 1.81
£E=08: m,=| 01073 374 564 | x107" GeV, (A65)
1.81 564 525
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0(107%)
0(107%)
2.00

O(107?)
O(107?)
5.80

3
|

PHYSICAL REVIEW D 90, 113005 (2014)

0(1073)  2.00
413 623 | x 1073 GeV, (A66)
623  5.80
0(1073) 5.80
120 18.1 | x 1073 Gev. (A67)
18.1 169

Note that Eq. (A67) can be regarded as the extreme case allowed by the naturalness argument [13]. In summary, we see that
the predicted neutrino mass matrix elements are typically smaller than the realistic values up to 2 orders of magnitude for the
benchmark point shown in the first version of Ref. [10] before the publication of its erratum.
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