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The muon and tauon light-by-light scattering contributions to hyperfine splitting in muonium are
calculated. These results conclude the calculation of all hard three-loop contributions to hyperfine splitting
generated by the graphs with closed fermion loops. We discuss the special role that the lepton anomalous
magnetic moments play in these calculations. The full result for all three-loop radiative-recoil corrections to
hyperfine splitting generated by the graphs with closed lepton loops is presented.
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I. INTRODUCTION

Calculation of high-order corrections to hyperfine split-
ting in muonium is a classic application of high-precision
bound-state quantum electrodynamics. For many years
theory and experiment developed hand in hand, and the
measurements of the hyperfine splitting (HFS) were the
best source for the precise value of the electron-muon
mass ratio (see, e.g., Refs. [1–3]). The current experimental
error of HFS in muonium is in the interval 16–53 Hz
(1.2–3.6 × 10−8) [4,5]. More than 10 years ago we declared
the reduction of the theoretical error of HFS in muonium to
the level of 10 Hz to be an achievable goal of the theoretical
research [1,2]. This goal became recently even more
pressing in view of a new high-accuracy measurement of
muonium HFS planned now at J-PARC, Japan [6,7].
The goal of this experiment is to reduce the experimental
error by an order of magnitude, to the level of a few parts
per billion, which is below 10 Hz.
In order to reduce the theoretical error below 10 Hz one

has to calculate single-logarithmic and nonlogarithmic in
mass ratio hard radiative-recoil corrections of order α2ðZαÞ
ðm=MÞ ~EF, as well as soft nonlogarithmic contributions of
orders ðZαÞ3ðm=MÞ ~EF and αðZαÞ2ðm=MÞ ~EF.

1 We have
concentrated our efforts on the calculation of hard radia-
tive-recoil corrections of order α2ðZαÞðm=MÞ ~EF, and in

recent years calculated all single-logarithmic and nonlogar-
ithmic corrections to the HFS arising from the diagrams with
closed lepton loops [8–17]. Below wewill present the details
of the recent calculation of the last previously unknown
light-by-light scattering contribution to HFS arising from
the virtual muon and tauon loops.2 We will also discuss
radiative-recoil corrections connected with the anomalous
magnetic moments and present complete results for all
corrections of order α2ðZαÞðm=MÞ ~EF generated by the
three-loop diagrams containing closed lepton loops.

II. MUON AND TAUON LOOP
LIGHT-BY-LIGHT INSERTIONS

A. General expressions and the infrared problems

Radiative insertions in the diagrams with two-photon
exchanges in Fig. 1 generate all three-loop diagrams for
the contributions of order α2ðZαÞðm=MÞ ~EF. It is well known
that in any gauge-invariant set of diagrams radiative insertions
suppress integration momenta that are small in comparison
with the electron mass. As a result the characteristic integra-
tion momenta in these diagrams are of order of the electron
mass or higher; these are hard corrections. This significantly
simplifies calculations because then we can neglect momenta
of the external wave functions and calculate the diagrams in
the scattering approximation with the on-shell external
momenta. The contribution to HFS is obtained by projecting
the diagrams on the HFS spin structure and multiplying the
result by the value of Schrödinger-Coulombwave function at
the origin squared (for more details see, e.g., Refs. [1,2]).
The general expression for the muon loop light-by-light

(LBL) scattering contribution to HFS in Fig. 2 is similar
to the respective electron loop contribution (see, e.g.,
Refs. [15,16]), and can be written in the form
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1Here α is the fine-structure constant, and m and M are the

electron and muon masses, respectively. Z ¼ 1 is the charge of
the constituent muon; it is convenient to introduce it for the
classification of different contributions. The Fermi energy is
defined as ~EF ¼ ð8=3ÞðZαÞ4ðm=MÞðmr=mÞ3m, where mr ¼
mM=ðmþMÞ is the reduced mass.

2The results of this calculation were already reported in
Ref. [17].
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ΔE ¼ α2ðZαÞ
π3

m
M

~EFJ; ð1Þ

where J is a dimensionless integral

J ¼ −
3M2

128

Z
d4k
iπ2k4

�
1

k2 þ 2mk0
þ 1

k2 − 2mk0

�
Tðk2; k0Þ:

ð2Þ

The dimensionless function Tðk2; k0Þ is a sum of the ladder
and crossed diagram contributions in Fig. 2

Tðk2; k0Þ ¼ 2TLðk2; k0Þ þ TCðk2; k0Þ: ð3Þ

Explicit expressions for the functions TLðk2; k0Þ and
TCðk2; k0Þ can be obtained by the substitution m → M,
qμ → kμ from the respective formulas in Refs. [15,16],
where these functions were calculated in the case of the
electron LBL scattering block.
Only the even in k0 terms in the function Tðk2; k0Þ

contribute to the integral in Eq. (2). After the rescaling of
the integration momentum k → kM, the Wick rotation, and
the symmetrization of the function Tðk2; k0Þwith respect to
k0, Tðk2; k0Þ → Tðk2; k20Þ, the integral in Eq. (2) turns into

J ¼ 3

32π

Z
∞

0

dk2

k2

Z
π

0

dθ sin2 θ
Tðk2; cos2 θÞ

k2 þ 16μ2 cos2 θ
; ð4Þ

where we have parametrized the Euclidean four-vectors as
k0 ¼ k cos θ, jkj ¼ k sin θ, μ ¼ m=ð2MÞ, and the function
Tðk2; cos2 θÞ is the same function as in Eq. (2) but
symmetrized with respect to k0 and with the Wick-rotated
momenta. The dimensionless function Tðk2; cos2 θÞ after
rescaling depends on the dimensionless momentum k
and does not contain any parameters with the dimension
of mass. Below we will often write the integral in Eq. (4) as
a sum

J ¼ 2JL þ JC; ð5Þ

where the terms on the rhs correspond to the respective
terms on the rhs in Eq. (3).
We are looking for the μ-independent contributions

generated by the integral in Eq. (4). The term with μ2 in
the denominator is irrelevant at large k, and the integral
is convergent at large k due to the ultraviolet convergence
of all diagrams with the LBL insertions. The case of the
small integration momenta is more involved. Due to gauge
invariance, the LBL block is strongly suppressed at k → 0,
and we expect that the integral in Eq. (4) remains finite even
at μ ¼ 0. As a result of this finiteness the diagrams in Fig. 2
should not generate either nonrecoil or logarithmically
enhanced recoil contributions to HFS in accordance with
our physical expectations. However, at μ ¼ 0 the conver-
gence of the small integration momenta contributions from
individual diagrams cannot be taken for granted, and we
have to consider separate entries in more detail. The
functions TLðk2; k0Þ and TCðk2; k0Þ are sums of terms
each of which is a multidimensional integral over the
Feynman parameters and an explicit function of the
integration momentum squared k2 and the integration angle
θ. The dependence on angles can be easily separated and
therefore we can explicitly calculate the integrals over
angles. All these integrals are proportional to one of the
two standard functions Φ̄0 and Φ̄1 (compare analogous
functions in the case of the virtual electron light-by-light
scattering loop in Ref. [16]):

Φ̄0 ¼
2

π

Z
π

0

dθ
sin2 θ

k2 þ 16μ2 cos2 θ
¼ 1

8μ2

�
1

k

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
k2þ16μ2

q
− 1

�
;

Φ̄1 ¼
2

π

Z
π

0

dθ
sin2 θ cos2 θ

k2 þ 16μ2 cos2 θ

¼ 1

8μ2

�
−

k
16μ2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
k2 þ 16μ2

q
þ k2

16μ2
þ 1

2

�
: ð6Þ

The ultraviolet asymptotics of these functions coincide with
their exact values at μ ¼ 0

Φ̄0jμ¼0 ¼
1

k2
; Φ̄1jμ¼0 ¼

1

4k2
: ð7Þ

Using these integrals and the explicit expressions for the
large-momentum asymptotic behavior of the functions
TLðCÞðk2; cos2 θÞ (see Ref. [15]) we once again confirm
that the momentum integral in Eq. (4) is ultraviolet finite.
The infrared region requires more attention. The func-

tions TLðk2; cos2 θÞ and TCðk2; cos2 θÞ contain terms that
decrease only as k2 at small momenta. We would obtain
logarithmically infrared divergent integrals if we substitute
in the momentum integral in Eq. (4) such terms together
with the angular integrals in Eq. (7). These are fake
divergences since at μ ≠ 0

FIG. 2. Diagrams with the muon (tauon) light-by-light scatter-
ing block.

FIG. 1. Diagrams with two-photon exchanges.
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Φ̄0 ≈
1

2μk
−

1

8μ2
þ � � � ; Φ̄1 ≈

1

16μ2
−

k
32μ3

þ � � � ;
ð8Þ

and then the momentum integrals of the separate terms in
Eq. (4) are infrared finite. The would-be logarithmic
divergences are cut off by the parameter μ (the upper
integration limit is irrelevant for the discussion of the
infrared convergence)

Z
1

0

dk2

k2
Φ̄0k2 ≈ 2 ln

1

2μ
þ 1þOðμÞ;

Z
1

0

dk2

k2
Φ̄1k2 ≈

1

2
ln

1

2μ
−
1

8
þOðμÞ: ð9Þ

We see that one cannot delete μ in the integrals of separate
terms in Eq. (4) without generating artificial infrared
divergences. On the other hand, we know that due to
gauge invariance all infrared logarithms cancel in the total
integral in Eq. (4) that remains finite when μ goes to zero.
We are interested only in the value of the integral at μ ¼ 0,
so our next goal is to organize the calculations in such way
that allows us to let μ ¼ 0 before integration. This approach
leads to a significant simplification of numerical calcula-
tions since the integrals with μ ≠ 0 are much more involved
and the final result arises as a result of the cancellation of
big numbers.
To facilitate further calculations we represent the func-

tions TLðCÞðk2; cos2 θÞ in the form

TLðCÞðk2; cos2 θÞ ¼ Treg
LðCÞðk2; cos2 θÞ þ Tsing

LðCÞðk2; cos2 θÞ;
ð10Þ

where the functions Treg decrease faster than k2 at small k2,
and the functions Tsing decrease as k2 at small k2.
In these terms the integral in Eq. (4) has the form

J ¼ Jreg þ Jsing; ð11Þ
where

JregðsingÞ ¼ 3

32π

Z
∞

0

dk2

k2

Z
π

0

dθsin2θ
TregðsingÞðk2; cos2θÞ
k2 þ 16μ2cos2θ

;

ð12Þ
and

TregðsingÞðk2; cos2θÞ ¼ 2TregðsingÞ
L ðk2; cos2θÞ

þ TregðsingÞ
C ðk2; cos2θÞ: ð13Þ

B. Calculation of the infrared-safe integrals

First we consider the calculation of the infrared-safe
integrals in Eq. (12). One can obtain an explicit expression
for the infrared-safe function Treg by omitting all terms in
the explicit representations for the functions TLðCÞ in
Refs. [15,16] that decrease as k2 or k20 at small k. To keep
the formulas relatively compact we put down explicit
expressions for the functions Treg as they are used in
Eq. (3), before the Wick rotation and symmetrization. Then
the regular ladder function has the form of a sum of nine
multidimensional integrals

Treg
L ðk2; k0Þ ¼

128

3

Z
1

0

dy
Z

1

0

dz
Z

1

0

du
Z

1

0

dt
X
i

T reg
L;iðy; z; u; t; k2; k0Þ; ð14Þ

where

T reg
L;1 ¼ yzð1 − tÞð1 − uÞ2

�
−
ð2k2 þ k20Þk2d2

Δ2
−
k0ð5k2 þ k20Þτd

Δ2

�
;

T reg
L;2 ¼ −

3

2
ð2k2 þ k20Þ

y2z2ð1 − zÞk2
ð1 − yÞ2

ð1 − tÞuð1 − uÞ2
Δ2

;

T reg
L;3 ¼

�ð1 − 2yÞ þ 2yz
1 − y

ð1 − tÞð1 − uÞ2
Δ2

− ð1 − zÞ uð1 − uÞ
Δ2

þ 2
y2z2ð1 − zÞk2

ð1 − yÞ2
ð1 − tÞuð1 − uÞ2

Δ3

�
ð2k2 þ k20Þk2d2;

T reg
L;4 ¼ 2

y2z2ð1 − zÞk2
ð1 − yÞ2

ð1 − tÞuð1 − uÞ2
Δ3

ð2k2 þ k20Þτ2

þ
�ð1 − 2yÞ þ 2yz

1 − y
ð1 − tÞð1 − uÞ2

Δ2
− ð1 − zÞ uð1 − uÞ

Δ2

þ 2
y2z2ð1 − zÞk2

ð1 − yÞ2
ð1 − tÞuð1 − uÞ2

Δ3

�
k0ð5k2 þ k20Þτd;
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T reg
L;5 ¼ 0;

T reg
L;6 ¼ 4

Z
1

0

dξξyz2ð1 − tÞuð1 − uÞ2

×

��
3

4

1

Δ2
ξ

−
k2d2ξ
Δ3

ξ

�
ð2k2 þ k20Þk2dξ −

τ2k20dξ
Δ3

ξ

ð8k2 þ k20Þ

þ
�
1

4

1

Δ2
ξ

−
k2d2ξ
Δ3

ξ

�
ð7k2 þ 2k20Þk0τ −

3k30τ
3

Δ3
ξ

�
;

T reg
L;7 ¼ −

yzð1 − zÞ
1 − y

k2uð1 − uÞ
Δ2

�
ð2k2 þ k20Þdþ 3k0τ

�
;

T reg
L;8 ¼ 2

yzð1 − zÞ
1 − y

ð1 − tÞuð1 − uÞ2
��

−
3

4

1

Δ2
þ k2d2

Δ3

�
ð2k2 þ k20Þk2d

þ τ2k20d
Δ3

ð8k2 þ k20Þ þ
�
−
1

4

1

Δ2
þ k2d2

Δ3

�
ð7k2 þ 2k20Þk0τ þ

3k30τ
3

Δ3

�
;

T reg
L;9 ¼ 4

yzð1 − zÞ
1 − y

ð1 − tÞuð1 − uÞ2
�
−
1

4

1

Δ2
ð2k2 þ k20Þk2d

þ k2ðk2 − k20Þ
τ2d
Δ3

−
1

4

1

Δ2
ð2k2 þ k20Þk0τ þ k0ðk2 − k20Þ

τ3

Δ3

�
: ð15Þ

The regular crossed diagram contribution reduces to one
multidimensional integral

Treg
C ðk2; k0Þ ¼

128

3

Z
1

0

dx
Z

1

0

dy
Z

1

0

dz
Z

1

0

du

×
Z

1

0

dtT reg
C ðx; y; z; u; t; k2; k0Þ; ð16Þ

where (T reg
C;2 ¼ 0)

T reg
C ¼ T reg

C;1 þ T reg
C;3

¼ 1

2

xð1 − tÞð1 − uÞ2
1 − xy

�
−4ðk2 − k20Þ

k2τ2d2

Δ3

− 3k2
k0τd
Δ2

− 4ðk2 − k20Þ
k0τ3d
Δ3

�
: ð17Þ

In Eqs. (15)–(17)

Δ ¼ g
h
−k2 þ 2bk0 þ a2

i
; a2 ¼ 1

g

�
τ2 þ M2u

xyð1 − xyÞ
�
;

b ¼ τd
g
; d ¼ ξu

�
z −

1 − x
1 − xy

�
; τ ¼ Mð1 − uÞt;

g ¼ g0 − d2; g0 ¼
uð1 − yzÞð1 − xþ xyzÞ

yð1 − xyÞ ; ð18Þ

and x ¼ 1 in Eq. (15), while ξ ¼ 1 in all functions in
Eq. (15) and Eq. (17) except the function T reg

L;6.
We still need to make the Wick rotation and symmetrize

the functions Treg over k0. The details of a similar
symmetrization were described in Ref. [16], and we will
not describe them here. After symmetrization we substitute

the functions Treg into the integral Jreg in Eq. (12). We can
safely let μ ¼ 0 before integration, which makes the
calculation straightforward. We collect the separate con-
tributions in Table I. Summing all these regular contribu-
tions, we obtain

Jreg ¼ 2
X9
i¼1

JregL;i þ JregC ¼ −2.146 39ð3Þ: ð19Þ

C. Calculation of the apparently
infrared-singular integrals

We now consider the apparently infrared-singular inte-
grals Jsing. The respective functions Tsing

LðCÞ are again sums of

multidimensional integrals similar to the ones in Eq. (14)
and Eq. (16). The functions T sing

LðCÞ;i contain those terms
from the general functions T LðCÞ;i (see Refs. [15,16]) that
were not included in the regular functions in Eq. (15) and
Eq. (17). Explicitly

TABLE I. Regular integrals.

JregL;1 −0.014 805ð4Þ
JregL;2 −1.202 396ð4Þ
JregL;3 0.050 539(1)

JregL;4 0.162 208(6)

JregL;6 0.014 963(4)

JregL;7 −0.045 490ð3Þ
JregL;8 −0.023 826ð6Þ
JregL;9 −0.014 441ð4Þ
JregC 0.000 106(1)
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T sing
L;1 ¼ yzð1 − tÞð1 − uÞ2

�
2k2 þ k20

Δ
−
ðk2 þ 2k20Þτ2

Δ2

�
;

T sing
L;2 ¼ 3

2
ð2k2 þ k20Þ

�
−
ð1 − 2yÞ þ 2yz

1 − y
ð1 − tÞð1 − uÞ2

Δ
þ ð1 − zÞ uð1 − uÞ

Δ

�
;

T sing
L;4 ¼ ð2k2 þ k20Þτ2

�ð1 − 2yÞ þ 2yz
1 − y

ð1 − tÞð1 − uÞ2
Δ2

− ð1 − zÞ uð1 − uÞ
Δ2

�
;

T sing
L;5 ¼ M2

1 − y
ð1 − tÞð1 − uÞ2

Δ2
½ð2k2 þ k20Þdþ 3k0τ�;

T sing
L;3 ¼ T sing

L;6 ¼ T sing
L;7 ¼ T sing

L;8 ¼ T sing
L;9 ¼ 0;

T sing
C;1 ¼ xð1 − tÞð1 − uÞ2

1 − xy

�
2k2 þ k20

Δ
−
3

2

k2τ2

Δ2

�
;

T sing
C;2 ¼ xð1 − tÞð1 − uÞ2

1 − xy
uM2

xyð1 − xyÞ
�
2k2 þ k20

Δ2
− 4

ðk2 − k20Þτ2
Δ3

�
;

T sing
C;3 ¼ 0: ð20Þ

The integrals of these functions in Eq. (14) and Eq. (16)
generate the terms proportional to k2 and also the terms
with higher powers of k2. We would like to separate the
terms proportional to k2 (only such terms generate infrared
logarithms after momentum integration) and check that all
such terms cancel before the integration over k. This
separation can be achieved with the help of the substitution
Δ ¼ gðk2 þ 2bk0 þ a2Þ → ga2 ≡ ~a2. After this substitu-
tion the integrals over the Feynman parameters are quad-
ratic in k. Let us demonstrate this explicitly. After the
substitution Δ → ~a2 the nonvanishing functions in Eq. (20)
acquire the form

T quadr
L;1 ¼ ð2k2 þ k20ÞA11 þ ðk2 þ 2k20ÞA13;

T quadr
L;2 ¼ ð2k2 þ k20ÞðA21 þ A22Þ;

T quadr
L;4 ¼ ð2k2 þ k20ÞðA41 þ A42Þ;

T quadr
L;5 ¼ ð2k2 þ k20ÞA51 þ k20A52;

T quadr
C;1 ¼ ð2k2 þ k20ÞB11 þ k2B13;

T quadr
C;2 ¼ ð2k2 þ k20ÞB21 þ ðk2 − k20ÞB22; ð21Þ

where

A11 ¼ yzð1 − tÞð1 − uÞ2 1

~a2
;

A13 ¼ −yzð1 − tÞð1 − uÞ2 τ
2

~a4

A21 þ A22 ¼
3

2

�
−
ð1 − 2yÞ þ 2yz

1 − y
ð1 − tÞð1 − uÞ2

~a2

þ ð1 − zÞ uð1 − uÞ
~a2

�
;

A41 þ A42 ¼ τ2
�ð1 − 2yÞ þ 2yz

1 − y
ð1 − tÞð1 − uÞ2

~a4

− ð1 − zÞ uð1 − uÞ
~a4

�
;

A51 ¼
d

1 − y
ð1 − tÞð1 − uÞ2

~a4
;

A52 ¼ −12
dτ2

1 − y
ð1 − tÞð1 − uÞ2

~a6
;

B11 ¼
xð1 − tÞð1 − uÞ2

1 − xy
1

~a2
;

B13 ¼ −
3

2

xð1 − tÞð1 − uÞ2
1 − xy

τ2

~a4
;

B21 ¼
ð1 − tÞð1 − uÞ2u

yð1 − xyÞ2
1

~a4
;

B22 ¼ −4
ð1 − tÞð1 − uÞ2u

yð1 − xyÞ2
τ2

~a6
: ð22Þ

We have calculated the integrals Tquadr
LðCÞ;ij of the functions

in Eq. (21) analytically [they are defined similarly to the
integrals in Eq. (14) and Eq. (16)], and the results are
collected in Table II, where the value of an integral over the
Feynman parameters corresponds to the respective coef-
ficient function Aij or Bij.
Collecting the results in Table II we confirm that the total

coefficient before the k2 in the small-k expansion of the
integrand in Eq. (12) for Jsing is equal to zero

Tquadr ¼ 2Tquadr
L þ Tquadr

C ¼ 0: ð23Þ

Let us use this observation to get rid of μ in the integral for
Jsing in Eq. (12) before integration. According to Eq. (3)
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Tsingðk2; cos2 θÞ ¼ 2Tsing
L ðk2; cos2 θÞ

þ Tsing
C ðk2; cos2 θÞ: ð24Þ

Using the cancellation in Eq. (23) we observe

Tsingðk2; cos2θÞ
¼ Tsingðk2; cos2θÞ − Tquadrðk2; cos2θÞ
¼ 2ðTsing

L ðk2; cos2θÞ − Tquadr
L ðk2; cos2θÞÞ

þ ðTsing
C ðk2; cos2θÞ − Tquadr

C ðk2; cos2θÞÞ
¼ 2

X
ij

ðTsing
L;ijðk2; cos2θÞ − Tquadr

L;ij ðk2; cos2θÞÞ

þ
X
ij

ðTsing
C;ijðk2; cos2θÞ − Tquadr

C;ij ðk2; cos2θÞÞ: ð25Þ

Each expression in the brackets on the rhs decreases at
small k faster than k2 and therefore allows us to safely let
μ ¼ 0 in the integral for Jsing before integration

Jsing ¼ 3

32π

Z
∞

0

dk2
Z

π

0

dθ sin2 θ

×
�
2
X
ij

Tsing
L;ijðk2; cos2 θÞ − Tquadr

L;ij ðk2; cos2 θÞ
k4

þ
X
ij

Tsing
C;ijðk2; cos2 θÞ − Tquadr

C;ij ðk2; cos2 θÞ
k4

�
: ð26Þ

The problems with the infrared convergence arise only
at k → 0. We can further simplify the calculations by
arbitrarily separating the integration regions of small and
large momenta and omitting the term Tquadrðk2; cos2 θÞ ¼ 0
in the large integration momenta region

Jsing ¼ 3

32π

Z
1

0

dk2
Z

π

0

dθsin2θ

�
2
X
ij

Tsing
L;ijðk2; cos2θÞ − Tquadr

L;ij ðk2; cos2θÞ
k4

þ
X
ij

Tsing
C;ijðk2; cos2θÞ − Tquadr

C;ij ðk2; cos2θÞ
k4

�

þ 3

32π

Z
∞

1

dk2
Z

π

0

dθsin2θ
�
2
X
ij

Tsing
L;ijðk2; cos2θÞ

k4
þ
X
ij

Tsing
C;ijðk2; cos2θÞ

k4

�

≡ Jsing< þ Jsing> ¼ 2
X
ij

J<L;ij þ
X
ij

J<C;ij þ 2
X
ij

J>L;ij þ
X
ij

J>C;ij; ð27Þ

where we have chosen k ¼ 1 to separate the regions of
large and small momenta.
We collect the results for the individual integrals in

Eq. (27) in Tables III and IV. Summing the results in these
tables we obtain

Jsing< ¼ 0.174 48ð1Þ;
Jsing> ¼ 1.129 51ð4Þ: ð28Þ

We have checked by direct calculations that the sum

TABLE III. Integrals J<.

J<L;11 0.042 322(5) J<C;11 0.174 420(5)

J<L;13 −0.008 528ð1Þ J<C;13 −0.034 331ð5Þ
J<L;21 −0.251 765ð5Þ J<C;21 0.284 129(8)

J<L;22 0.020 742(5) J<C;22 −0.060 654ð3Þ
J<L;41 0.050 982(3)

J<L;42 −0.002 177ð1Þ
J<L;51 0.068 860(3)

J<L;52 −0.014 977ð1Þ

TABLE IV. Integrals J>.

J>L;11 −0.728 794ð1Þ J>C;11 −2.883 062ð2Þ
J>L;13 0.103 289(1) J>C;13 0.412 240(2)

J>L;21 4.394 262(2) J>C;21 −1.142 507ð8Þ
J>L;22 −0.672 947ð5Þ J>C;22 0.205 144(8)

J>L;41 −0.620 559ð3Þ
J>L;42 0.033 714(7)

J>L;51 −0.291 783ð4Þ
J>L;52 0.051 666(6)

TABLE II. Integrals for coefficients before k2.

A11 Tquadr
L;11 ¼ − π2

72
þ 5

24
B11 Tquadr

C;11 ¼ − π2

18
þ 5

6

A13 Tquadr
L;13 ¼ π2

36
− 7

24
B13 Tquadr

C;13 ¼ π2

6
− 7

4

A21 Tquadr
L;21 ¼ π2

12
− 5

4
B21 Tquadr

C;21 ¼ π2

18
− 1

3

A22 Tquadr
L;22 ¼ − π2

12
þ 7

8
B22 Tquadr

C;22 ¼ − 7π2

72
þ 5

6

A41 Tquadr
L;41 ¼ − π2

9
þ 7

6

A42 Tquadr
L;42 ¼ 23π2

288
− 19

24

A51 Tquadr
L;51 ¼ π2

72
− 1

12

A52 Tquadr
L;52 ¼ − 7π2

96
þ 5

8
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Jsing ¼ Jsing< þ Jsing> ¼ 1.303 99ð5Þ ð29Þ

does not depend on the arbitrary separation point.

D. Total muon and tauon contributions

Collecting the results in Eq. (19) and Eq. (29) we obtain

J ¼ −0.842 39ð6Þ; ð30Þ

and finally

ΔE ¼ −0.842 39ð6Þ α
2ðZαÞ
π3

m
M

~EF ≈ −0.2274 Hz: ð31Þ

Using the same methods as above we also calculated a
tiny contribution to hyperfine splitting generated by the
tauon LBL scattering block in Fig. 2

ΔEτ ¼ −0.003 58ð1Þ α
2ðZαÞ
π3

m
M

~EF ≈ −0.0010 Hz: ð32Þ

III. ANOMALOUS MAGNETIC MOMENTS
AND THREE-LOOP CONTRIBUTIONS

TO HYPERFINE SPLITTING

Our final goal is to collect all three-loop radiative-recoil
corrections generated by the diagrams with closed fermion
loops, but before that we would like to discuss the
calculation of corrections that are connected with the
anomalous magnetic moments (AMMs). Results for these
three-loop radiative-recoil corrections were reported in
Ref. [11] but their derivation was never presented.
In our notation the classical Fermi result [18] for the

triplet-singlet splitting has the form

ΔE ¼ ð1þ aeÞð1þ aμÞ ~EF; ð33Þ

where aeðμÞ ¼ ðgeðμÞ − 2Þ=2 are the electron and muon
anomalous magnetic moments, respectively.
We see from Eq. (33) that the anomalous magnetic

moments play a special role in the problem of hyperfine
splitting and their contributions in certain cases can be
calculated exactly without an expansion in small param-
eters. To avoid double counting we need to keep this fact
in mind when performing perturbative calculations.
Physically it is more or less obvious that in the external-
field approximation only the total muon magnetic moment
matters. Our goal below is to clarify how this happens and
to calculate the three-loop radiative-recoil corrections
generated by the electron and muon AMMs. In some cases
we will obtain results that are exact with respect to the
lepton AMMs.

A. AMMs and recoil and radiative-recoil corrections

The leading recoil correction to hyperfine splitting in
muonium is generated by the diagrams with two exchanged
photons in Fig. 1 and was calculated a long time ago
[19–21]. The characteristic loop momenta in these dia-
grams are much larger than the electron mass, and therefore
the leading recoil correction to hyperfine splitting can be
calculated in the scattering approximation, ignoring the
wave function momenta of order mZα (see, e.g.,
Refs. [1,2]). Let us recall the main steps in calculation
of this leading recoil correction. In the scattering approxi-
mation the sum of the diagrams in Fig. 1 can be written as

−
3

8

ðZαÞmM
π

~EF

Z
d4k
iπ2k4

½LðeÞ
μν ðkÞ þ LðeÞ

νμ ð−kÞ�LðμÞ
μν ð−kÞ;

ð34Þ

where the electron skeleton factor LðeÞ
μν ðkÞ is

LðeÞ
μν ðkÞ ¼ −

k2

k4 − 4m2k20
γμk̂γν; ð35Þ

and the muon skeleton factor LðμÞ
μν ðkÞ is obtained from the

electron one by the substitution m → M. Projecting the
product of the fermion factors on hyperfine splitting3 we
obtain after the Wick rotation and transition to the four-
dimensional spherical coordinates

ΔE ¼ 4
ðZαÞmM

π
~EF

Z
∞

0

dk2

π

×
Z

π

0

dθ
sin2 θð2þ cos2 θÞ

ðk2 þ 4m2 cos2 θÞðk2 þ 4M2 cos2 θÞ : ð36Þ

Below we will also need the diagrams in Fig. 3 where
one of the vertices in the skeleton diagrams in Fig. 1 is
substituted by the AMM. This substitution reduces to
γμ → −aeσμλkλ=ð2mÞ ¼ −α=ð2πÞσμλkλ=ð2mÞ, where kλ is
the momentum of the outgoing photon; see Ref. [10]. In the
scattering approximation the sum of these diagrams has the
form

−
3

8

ðZαÞmM
π

~EF

Z
d4k
iπ2k4

�
Lðe;AMMÞ
μν ðkÞ

þ Lðe;AMMÞ
νμ ð−kÞ

�
LðμÞ
μν ð−kÞ; ð37Þ

where [10]4

3See an explicit expression for the projector in Ref. [10], where
there is a misprint in the overall sign of the projector.

4There is a misprint in the sign of this term in Ref. [10].
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Lðe;AMMÞ
μν ðkÞ þ Lðe;AMMÞ

νμ ð−kÞ

¼ −
α

2π

2k2

k4 − 4m2k20

×

�
γμk̂γν − k0

�
γμγν −

kμk̂γν þ γμk̂kν

k2

��
: ð38Þ

We need to clarify at this point why we consider the
contribution of the AMM separately from the total one-loop
electron factor in Fig. 4. The total electron factor can be
represented as a sum

LðeÞ
μν ðkÞ ¼ Lðe;AMMÞ

μν ðkÞ þ Lðe;rÞ
μν ðkÞ; ð39Þ

where Lðe;rÞ
μν ðkÞ is just the difference between the total one-

loop electron factor LðeÞ
μν ðkÞ and Lðe;AMMÞ

μν ðkÞ. First we
notice that the separation in Eq. (39) is gauge invariant
since both the total one-loop electron factor and the AMM

electron factor Lðe;AMMÞ
μν ðkÞ are gauge invariant. The differ-

ent low-momentum behavior of the two terms on the rhs in
Eq. (39) makes a separate consideration of these terms
convenient and even necessary from the calculational point
of view. Due to the generalized low-energy theorem
[1,2,22,23] all terms linear in the small momentum k are

only connected with the term Lðe;AMMÞ
μν ðkÞ, while the term

Lðe;rÞ
μν ðkÞ decreases at least as k2 at small k2. This different

low-energy behavior determines the structure of the inte-
grals for the contributions to hyperfine splitting and in
many cases leads to qualitative differences between the

contributions to HFS generated by the factors Lðe;AMMÞ
μν ðkÞ

and Lðe;rÞ
μν ðkÞ.

Projecting the expression in Eq. (37) on HFS we obtain
after the Wick rotation

ΔEAMM ¼ αðZαÞmM
π2

~EF

×
Z

d4k
π2

ð2k2 þ k20Þ þ 3k20
ðk4 þ 4m2k20Þðk4 þ 4M2k20Þ

; ð40Þ

or in four-dimensional spherical coordinates

ΔEAMM ¼ αðZαÞ
π2

~EFð2mMÞ
Z

∞

0

dk2

π

×
Z

π

0

dθ
sin2 θð2þ 4 cos2 θÞ

ðk2 þ 4m2 cos2 θÞðk2 þ 4M2 cos2 θÞ :

ð41Þ

We see that the integrals in Eq. (36) and Eq. (41) can be
calculated in terms of an auxiliary integral

4mM
Z

∞

0

dk2

π

Z
π

0

dθ
sin2θð2þ ξcos2θÞ

ðk2 þ 4m2cos2θÞðk2 þ 4M2cos2θÞ

¼ mM
M2 −m2

Z
∞

0

dk2

k2

�
Fðμk; ξÞ − F

�
k
2
; ξ
��

; ð42Þ

where

Fðμk; ξÞ ¼ 2

μk
ð

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ μ2k2

q
− μkÞ

þ ξ

�
−μk

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ μ2k2

q
þ μ2k2 þ 1

2

�
; ð43Þ

and we rescaled the integration variable k → km so that it is
dimensionless on the right-hand side in Eq. (42).
Then the integrals in Eq. (36) and Eq. (41) can be

written as

ΔE ¼ Zα
π

~EF
mM

M2 −m2

Z
∞

0

dk2

k2

�
Fðμk; ξÞ − F

�
k
2
; ξ

��
jξ¼1

;

ð44Þ

and

ΔEAMM ¼ αðZαÞ
2π2

~EF
mM

M2 −m2

×
Z

∞

0

dk2

k2

�
Fðμk; ξÞ − F

�
k
2
; ξ

��
jξ¼4

: ð45Þ

Both of these integrals are linearly infrared divergent due to
the singular behavior of the function Fðk; ξÞ at small k,
Fðk; ξÞjk→0 → 2=k. In the case of ΔE this divergence
indicates that the integral in Eq. (44) contains a contribution
of the previous order in Zα, namely the leading nonrecoil
contribution ~EF. The integral in Eq. (45) contains a similar
infrared divergence that again corresponds to the contri-
bution of the previous order in Zα, and starts to build the
contribution proportional to the anomalous magnetic
moment in Eq. (33).

FIG. 4. One-loop fermion factor.

FIG. 3. Skeleton diagrams with AMM insertions.
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Subtracting the linear divergence (Fðμk;ξÞ→ ~Fðμk;ξÞ¼
Fðμk;ξÞ−2=ðμkÞ and Fðk=2;ξÞ→ ~Fðk=2;ξÞ¼Fðk=2;ξÞ
−4=k) we easily calculate the finite integral

Z
∞

0

dk2

k2

�
~Fðμk; ξÞ − ~F

�
k
2
; ξ

��
¼ ðξ − 4Þ lnM

m
: ð46Þ

Substituting this integral into Eq. (44) and Eq. (45) we
obtain the leading recoil correction [19–21]

ΔEskel;rec ¼ −
Zα
π

~EF
3mM

M2 −m2
ln
M
m

; ð47Þ

and the recoil contribution of the AMM

ΔEAMM;rec ¼ 0: ð48Þ
This nullification of the radiative-recoil contribution of the
AMM was discovered in Ref. [24]. We have obtained this
result including only the one-loop contribution to the AMM
but it is easy to see that it holds even for an exact AMM,
since higher-order corrections to the AMM only change the
coefficient before the AMM vertex −aeσμλkλ=ð2mÞ.
Let us turn now to the principal subject of our interest,

namely, contributions to HFS generated by the diagrams in
Figs. 5–8 with simultaneous insertions of fermion factors
and electron or muon polarizations in the two-photon
exchange diagrams in Fig. 1.5 We consider below only
the AMM contributions generated by these graphs. The
contributions generated by the soft parts of the fermion
factors LðeÞ

μν ðkÞ and Lðe;AMMÞ
μν ðkÞ were calculated in Ref. [9].

For normalization and illustrative purposes we will
consider the contribution to HFS of the diagrams in
Figs. 5–8 in parallel with the diagrams with only the
polarization insertions in Fig. 9, without radiation inser-
tions in the fermion lines. The contribution to HFS of the
diagrams in Fig. 9 with the electron polarization insertions
is obtained from the expression in Eq. (44) by the insertion
of the electron polarization operator ðα=πÞk2I1eðk2Þ, where
(recall that the dimensionless momentum k is measured in
units of electron mass)

I1eðk2Þ ¼
Z

1

0

dv
v2ð1 − v2

3
Þ

4þ k2ð1 − v2Þ : ð49Þ

Multiplying also by the combinatorial factor 2 we obtain

ΔEepol ¼
αðZαÞ
π2

~EF
2mM

M2 −m2

×
Z

∞

0

dk2

k2

�
Fðμk; ξÞ − F

�
k
2
; ξ

��
jξ¼1

k2I1eðk2Þ

¼ αðZαÞ
π2

~EFJeðξÞjξ¼1; ð50Þ

where we have introduced an auxiliary integral

JeðξÞ ¼
2mM

M2 −m2

Z
∞

0

dk2

k2

�
Fðμk; ξÞ − F

�
k
2
; ξ

��
k2I1eðk2Þ:

ð51Þ

Similarly the contribution to HFS generated by the
diagrams in Fig. 5 with the AMM and electron vacuum
polarizations can be obtained by the insertion of the
polarization operator in the integral in Eq. (45) (an extra
factor of 2 is again due to combinatorics)

ΔEa
AMM ¼ α2ðZαÞ

π3
~EF

mM
M2 −m2

×
Z

∞

0

dk2

k2

�
Fðμk; ξÞ − F

�
k
2
; ξ

��
jξ¼4

k2I1eðk2Þ

¼ α2ðZαÞ
π3

~EF

�
1

2
JeðξÞjξ¼4

�
: ð52Þ

FIG. 5. Electron polarization and electron AMM.

FIG. 6. Muon polarization and electron AMM.

FIG. 7. Electron polarization and muon AMM.

FIG. 8. Muon polarization and muon AMM.

FIG. 9. Diagrams with electron polarization insertions in the
skeleton graphs.

5Below we omit the diagrams with the crossed photon lines in
the figures.
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We see that the contributions of the diagrams in Fig. 9
and in Fig. 5 can be calculated in terms of the integral JeðξÞ,
and, after some modifications, the contributions of the other
diagrams in Figs. 6–8 can be calculated as well. Let us
calculate this auxiliary integral. We represent it as a sum of
terms

JeðξÞ ¼ JeðξÞjNR þ JeðξÞjrecoil
¼ JeðξÞjNR þ J0eðξÞjrecoil þ J00eðξÞjrecoil; ð53Þ

where JeðξÞjNR is the integral of the leading term when
μ → 0, namely the term 2=ðμkÞ in Fðμk; ξÞ, J0eðξÞjrecoil is
the integral of ~Fðμk;ξÞ¼Fðμk;ξÞ−2=ðμkÞ, and J00eðξÞjrecoil
is the integral of ½−Fðk; 2=ξÞ�.
It is easy to see that

JejNR ¼ 16M2

M2 −m2

Z
∞

0

dkI1eðk2Þ ¼
M2

M2 −m2

3π2

4
: ð54Þ

Next we calculate the integral

J0eðξÞjrecoil ¼
2mM

M2 −m2

Z
∞

0

dk2

k2
~Fðμk; ξÞk2I1eðk2Þ; ð55Þ

with linear accuracy in the small parameter μ. As usual with
the integrals of this type (see, e.g., Refs. [1,2,25,26]) we
introduce an auxiliary parameter σ that satisfies the inequal-
ity 1 ≪ σ ≪ μ−1. The parameter σ is used to separate the
momentum integration into two regions: a region of small
momenta 0 ≤ k ≤ σ, and a region of large momenta
σ ≤ k < ∞. In the region of small momenta one uses
the condition μk ≪ 1 to simplify the integrand, and in the
region of large momenta the same goal is achieved with the
help of the condition k ≫ 1. For k≃ σ both conditions on
the integration momentum are valid simultaneously, so in
the sum of the low-momenta and high-momenta integrals
all σ-dependent terms cancel and one obtains a σ-indepen-
dent result for the total momentum integral. The calculation
of the integral in the small-momentum region μk ≪ 1 is
straightforward, and we obtain

J0eðξÞj<recoil ¼
2mM

M2 −m2

Z
σ2

0

dk2

k2
~Fðμk; ξÞk2I1eðk2Þ

¼ mM
M2 −m2

×

�
ðξ− 4Þ

�
2

3
ln2σ −

10

9
ln σ þ 28

27

�
þOðμσÞ

�
:

ð56Þ

The calculation of the contribution from large integration
momenta

J0eðξÞj>recoil ¼
2mM

M2 −m2

Z
∞

σ2

dk2

k2
~Fðμk; ξÞk2I1eðk2Þ ð57Þ

is a bit more involved. In this region we use the well-known
leading terms in the asymptotic expansion of the polari-
zation operator k2I1eðk2Þjk→∞ → ð2=3Þ ln k − 5=9, and re-
present the subtracted weight function F̄ðμk; ξÞ in the form

~Fðμk; ξÞ ¼ 2

μk
ð

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ μ2k2

q
− μk − 1Þ

þ ξ

�
−μk

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ μ2k2

q
þ μ2k2 þ 1

2

�

¼ 2Φμ
0ðkÞ þ ξΦμ

1ðkÞ; ð58Þ

where the functions Φμ
0;1ðkÞ were defined in Appendix A of

Ref. [25]. In these terms

J0eðξÞj>recoil ¼
2mM

M2 −m2

�Z
∞

σ2

dk2

k2
½2Φμ

0ðkÞ þ ξΦμ
1ðkÞ�

×

�
2

3
ln k −

5

9

�
þO

�
1

σ2

��

¼ 2mM
M2 −m2

�
4

3
V110 þ ξ

2

3
V111

−
10

9
V100 − ξ

5

9
V101

�
; ð59Þ

where the integrals Vmnl were defined in Appendix C of
Ref. [25]. These integrals were calculated in the limit of
small μσ, and using these results we obtain

J0eðξÞj>recoil ¼
mM

M2 −m2

�
ðξ − 4Þ

�
−
2

3
ln2 σ þ 10

9
ln σ þ π2

9

þ 2

3
ln2ð2μÞ

�
þ 8ð1þ 2ξÞ

9
lnð2μÞ þ 8ðξ − 1Þ

9

�
:

ð60Þ

In the sum of the contributions of small [Eq. (56)] and large
[Eq. (60)] integration momenta regions all σ-dependent
terms cancel and we obtain

J0eðξÞjrecoil ¼
mM

M2 −m2

�
2ðξ − 4Þ

3
ln2

M
m

−
8ð1þ 2ξÞ

9
ln
M
m

þ π2ðξ − 4Þ
9

þ 4ð13ξ − 34Þ
27

�
: ð61Þ

The calculation of the μ-independent integral J00eðξÞ is
straightforward and we obtain
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J00eðξÞjrecoil ¼ −
2mM

M2 −m2

Z
∞

0

dk2

k2
F

�
k
2
; ξ

�
k2I1eðk2Þ

¼ mM
M2 −m2

�ðξ − 4Þπ2
9

−
2ð17ξ − 32Þ

27

�
: ð62Þ

Collecting the results in Eq. (54), Eq. (61), and Eq. (62)
we obtain the auxiliary integral JeðξÞ with linear accuracy
in the small parameter m=M

JeðξÞ ¼
3π2

4

M2

M2 −m2

þ mM
M2 −m2

�
2ðξ − 4Þ

3
ln2

M
m

−
8ð1þ 2ξÞ

9
ln
M
m

þ 2π2ðξ − 4Þ
9

þ 2ðξ − 4Þ
3

�
: ð63Þ

We also need to consider the diagrams with insertions of the
muon vacuum polarizations. In this case the integrals in
Eq. (50) and Eq. (52) turn into

ΔEmupol ¼
αðZαÞ
π2

~EF
2mM

M2 −m2

×
Z

∞

0

dk2

k2

�
Fðμk; ξÞ − F

�
k
2
; ξ

��
jξ¼1

k2I1μðk2Þ;

ð64Þ

and

ΔEb
AMM ¼ α2ðZαÞ

π3
~EF

mM
M2 −m2

×
Z

∞

0

dk2

k2

�
Fðμk; ξÞ − F

�
k
2
; ξ

��
jξ¼4

k2I1μðk2Þ;

ð65Þ

where (recall that the dimensionless momentum k is
measured in units of electron mass)

k2I1μðk2Þ ¼ k2m2

Z
1

0

dv
v2ð1 − v2

3
Þ

4M2 þ k2m2ð1 − v2Þ : ð66Þ

Let us rescale the dimensionless integration momentum
once more k → ðM=mÞk ¼ k=ð2μÞ. After this rescaling

k2I1μðk2Þ → k2
Z

1

0

dv
v2ð1 − v2

3
Þ

4þ k2ð1 − v2Þ ¼ k2I1eðk2Þ; ð67Þ

ΔEmupol ¼
αðZαÞ
π2

~EF
2mM

M2 −m2

×
Z

∞

0

dk2

k2

�
F

�
k
2
; ξ

�
− F

�
k
4μ

; ξ

��
jξ¼1

k2I1eðk2Þ

¼ αðZαÞ
π2

~EFJμðξÞjξ¼1; ð68Þ

and

ΔEb
AMM ¼ α2ðZαÞ

π3
~EF

mM
M2 −m2

×
Z

∞

0

dk2

k2

�
F

�
k
2
; ξ

�
− F

�
k
4μ

; ξ

��
jξ¼4

k2I1eðk2Þ

¼ α2ðZαÞ
π3

~EF

�
1

2
JμðξÞjξ¼4

�
; ð69Þ

where

JμðξÞ ¼
2mM

M2 −m2

×
Z

∞

0

dk2

k2

�
F

�
k
2
; ξ

�
− F

�
k
4μ

; ξ

��
k2I1eðk2Þ:

ð70Þ
The integral with the function Fðk=2; ξÞ is exactly the
integral with the same function that we calculated above
in the electron case, but with an opposite sign; see Eq. (62).
One can check that the integral with the function
Fðk=ð4μÞ; ξÞ does not generate contributions linear in the
mass ratio. Then to linear accuracy in the mass ratio we
obtain

JμðξÞ ¼ −
mM

M2 −m2

�ðξ − 4Þπ2
9

−
2ð17ξ − 32Þ

27

�
: ð71Þ

We are now ready to use the integrals in Eq. (63) and
Eq. (71) for the calculation of the radiative-recoil correc-
tions. Let us first consider corrections due to one-loop
polarization insertions in the exchanged photons in Fig. 9.
Collecting the integrals in Eq. (63) and Eq. (71) we
reproduce the well-known result [24]

ΔEpol ¼ ΔEepol þ ΔEmupol

¼ αðZαÞ
π2

~EF

�
3π2

4
þ m
M

�
−2ln2

M
m

−
8

3
ln
M
m

−
π2

3
−
28

9

��
: ð72Þ

Let us turn to the diagrams with AMM insertions in
Figs. 5–8. Up to this moment we considered only calcu-
lations of the diagrams with AMM insertions in the electron
line. But from the calculations above it is clear that the AMM
enters only as a common factor and the integrals are identical
for insertions of the electron and muon AMMs. Hence, the
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contribution of Fig. 7 coincides with the contribution of
Fig. 5 and the contribution of Fig. 8 coincides with the
contribution of Fig. 6. As a result the total contribution to
HFS with insertions of both the electron and muon AMMs is
twice the result with only the electron AMM.
Now we are ready to present the results for the

contributions to HFS generated by the diagrams with
AMM insertions in Figs. 5–8. We obtain

ΔEa
AMM ¼ α2ðZαÞ

π3
~EF

�
1

2
JeðξÞjξ¼4

�

¼ α2ðZαÞ
π3

~EF

�
3π2

8
þ m
M

�
−4 ln

M
m

��
; ð73Þ

ΔEb
AMM ¼ α2ðZαÞ

π3
~EF

�
1

2
JμðjξÞξ¼4

�
¼ 4

3

α2ðZαÞ
π3

m
M

~EF;

ð74Þ

ΔEc
AMM ¼ αðZ2αÞðZαÞ

π3
~EF

�
1

2
JeðjξÞξ¼4

�

¼ αðZ2αÞðZαÞ
π3

~EF

�
3π2

8
þ m
M

�
−4 ln

M
m

��
; ð75Þ

ΔEd
AMM ¼ αðZ2αÞðZαÞ

π3
~EF

�
1

2
JμðξÞjξ¼4

�

¼ 4

3

αðZ2αÞðZαÞ
π3

m
M

~EF: ð76Þ

B. Discussion of three-loop AMM contributions

Usually, in discussions of the nonrecoil corrections to
HFS, the muon AMM is included in the definition of the
Fermi energy, EF ¼ ð1þ aμÞ ~EF. As a result of this con-
vention some of the contributions generated by the AMM in
Eqs. (73)–(76) are already taken into account in the standard
compilations of all corrections to HFS. Our next task is to
figure out what entries in Eq. (73) are new. The nonrecoil
contribution in Eq. (73) was calculated a long time ago; see
reviews in Refs. [1–3]. The nonrecoil contribution in
Eq. (75) is taken into account when one writes the classical
nonrecoil Kroll-Pollack contribution [27–29] in terms of the
Fermi energy EF; see, e.g., Refs. [1–3]. The three-loop
radiative-recoil terms in Eqs. (73)–(76) were obtained in
Ref. [11] (see also Ref. [12])

ΔErec ¼
α2ðZαÞ
π3

~EF
m
M

�
−4 ln

M
m

þ 4

3

�

þ αðZ2αÞðZαÞ
π3

~EF
m
M

�
−4 ln

M
m

þ 4

3

�
: ð77Þ

They were not included in Ref. [9], where only the
contributions connected with the soft parts of the fermion

factors Lðe;rÞ
μν ðkÞ and Lðμ;rÞ

μν ðkÞ were considered. Only the
one-loop anomalous magnetic moments of the electron and
muon are accounted for in Eq. (77). However, as is obvious
from the derivation of this contribution, one can account for
the AMMs in this expression exactly by the trivial sub-
stitutions α=ð2πÞ → ae and Z2α=ð2πÞ → aμ in the first and
second terms on the rhs in Eq. (77).

IV. SUMMARY

The results presented above conclude the calculation of
all radiative-recoil corrections to HFS of order α2ðZαÞ
ðm=MÞ ~EF generated by the diagrams with closed fermion
loops. The leading logarithm cubed and logarithm squared
contributions are well known (see, e.g., Refs. [1–3]) and
below we collect all hard single-logarithmic and nonlogar-
ithmic three-loop radiative-recoil corrections that arise due to
the diagrams with closed fermion loops. Consider first the
single-logarithmic corrections. They were calculated in
Refs. [8–11,13–15]6 (Z ¼ 1 below)

ΔElog ¼
α3

π3
m
M

~EF

�
−6π2 ln 2þ π2

3
þ 27

8

�
ln
M
m
: ð78Þ

This is the total single-logarithmic contribution first calcu-
lated in Ref. [15].
Let us turn to the nonlogarithmic contributions, includ-

ing the muon loop result in Eq. (31). They were calculated
in Refs. [8–11,13,14,16,17]7

6The AMM contributions in Eq. (77) were not included in the
result in Ref. [9]. The logarithmic (and nonlogarithmic) results
from Refs. [8–10] were collected in Ref. [11], where they were
amended by the AMM contributions in Eq. (77). Contributions of
the subtracted electron (muon) factor and the respective AMM
were written in Ref. [11] separately. After the calculation of the
new contributions in Refs. [13,14] a new collection of all known
results was presented in Ref. [12]. All expressions for logarithmic
contributions in Ref. [12] are correct. The results for the diagrams
with the electron and muon factors were written in Ref. [12] for
the full electron and muon factors including the AMMs (sums of
the respective contributions in Ref. [11]). Unfortunately, there
were no references to Ref. [11] in Ref. [12] and there was only a
reference to Ref. [9], where the AMMs were not included. So if a
reader wanted to check the correct results in Ref. [12] by going to
Ref. [9] he/she would discover a (fake) discrepancy between
Ref. [12] and Ref. [9]. Once again, the full results with AMMs are
in Refs. [11] and [12].

7Let us mention that the term with the fourth power of the
logarithm from Ref. [8] was swallowed in the nonlogarithmic
“constant” in Ref. [12]. Here we choose to write it separately.
Also notice that the nonlogarithmic result in Ref. [10] was later
corrected; see Erratum in Ref. [10]. In addition we have slightly
improved the contribution from Ref. [13]. Considering Eqs. (26)
and (25) from Ref. [13] we see that the result in Eq. (27) in
Ref. [13] can be written with an extra digit (but we do not change
the error bars). Then the constant in Eq. (32) in Ref. [13] that is a
sum of the improved number in Eq. (27) in Ref. [13] and the
number in Eq. (29) in Ref. [13] is 11.2958(20). We use this
number with its original error bars as the result of Ref. [13].
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ΔEnonlog ¼ 68.507ð2Þ α
3

π3
m
M

~EF: ð79Þ

Then the sum of all single-logarithmic and nonlogar-
ithmic three-loop radiative-recoil corrections [12,15–17]8
has the form

ΔEtot ¼
α3

π3
m
M

~EF

��
−6π2 ln 2þ π2

3
þ 27

8

�
ln
M
m

þ 68.507ð2Þ
�
: ð80Þ

Numerically this contribution to HFS in muonium is

ΔEtot ¼ −30.99 Hz: ð81Þ

For completeness let us cite also some other minor
radiative-recoil corrections. They are the leading large
logarithm quadrupled contribution [8]

ΔE ¼ −
8

9

α4

π4
m
M

~EFln4
M
m

¼ −0.4504 Hz; ð82Þ

the tauon light-by-light contribution in Eq. (32)

ΔEτ ¼ −0.003 58ð1Þ α
3

π3
m
M

~EF ¼ −0.0010 Hz; ð83Þ

and the hadron light-by-light contribution [30]

ΔE ¼ −0.0065 Hz: ð84Þ
The result in Eq. (80) includes all already known hard
three-loop single-logarithmic and nonlogarithmic correc-
tions of order α2ðZαÞðm=MÞ ~EF to HFS in muonium. There
are still two gauge-invariant sets of diagrams that generate
such corrections that remain uncalculated. These are the
diagrams with two radiative photon insertions in one and
the same fermion line, either electron or muon. Using the
known results for the respective diagrams with one radi-
ative photon insertion in either of the fermion lines (see,
e.g., Refs. [1,2]) and the result in Ref. [10] for the diagrams
with simultaneous insertions of radiative photons in both
fermion lines we estimate the contribution of these dia-
grams to be about 10–15 Hz. The calculation of these
diagrams is the next task for the theory.
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