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We present the observation of doubly produced J/yw mesons with the DO detector at Fermilab in pp
collisions at /s = 1.96 TeV. The production cross section for both singly and doubly produced J/y
mesons is measured using a sample with an integrated luminosity of 8.1 tb~!. For the first time, the double
J /y production cross section is separated into contributions due to single and double parton scatterings.
Using these measurements, we determine the effective cross section o4, a parameter characterizing an
effective spatial area of the parton-parton interactions and related to the parton spatial density inside the

nucleon.

DOI: 10.1103/PhysRevD.90.111101

Heavy quarkonium is a well established probe of both
quantum chromodynamics (QCD) and possible new bound
states of hadronic matter, e.g., tetraquarks [1,2]. Production
of multiple quarkonium states provides insight into the
parton structure of the nucleon and parton-to-hadron
fragmentation effects. In pp collisions, there are three
main production mechanisms for J/y mesons: prompt
production (i.e. directly at the interaction point) of J/y, and
prompt production of heavier charmonium states, such
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as the 3P, state y,. and the 3P, state y,. that decay to
J/w + vy, or decay to J/y + X of directly produced y(25),
and nonprompt B hadron decays. The first observation
of J/y meson pair production was made in 1982 by the
NA3 Collaboration [3,4]. The LHCb Collaboration has
measured the double J/y (DJ) production cross section in
proton-proton collisions at /s =7 TeV [5]. At Tevatron
and LHC energies this cross section is dominated by gluon
fusion, gg — J/wJ/w [1,6].

The interest in this channel originates from the different
mechanisms that can generate simultaneous DJ meson
production in single parton (SP) and double parton (DP)
scatterings in a single hadron-hadron collision. A number
of discussions of early experimental results [7,8] and
more recent LHCD results [6,9] show that the fraction of
DP events at the Tevatron and especially at the LHC can
be quite substantial. Since the initial state is dominated by gg
scattering, the fraction of DP scatterings representing simul-
taneous, independent parton interactions should significantly
depend on the spatial distribution of gluons in a proton [10].
Other DP studies involving vector bosons and jets probe
the spatial distributions in processes with quark-quark or
quark-gluon initial states [11-16]. The measurement of the
SP production cross section provides unique information to
constrain parametrizations of the gluon parton distribution
function (PDF) at low parton momentum fraction and energy
scale, where the gluon PDF has large uncertainty [17]. The
production of J/w mesons may proceed via two modes,
color singlet and color octet [1,8,18,19]. Predictions carried
out using nonrelativistic QCD (NRQCD) show that the
color singlet process in SP scattering contributes ~90%
for the region of transverse momenta, pé/ ' >4 GeV/c,
relevant for this measurement [8,18].
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In this article, we present first observation of double J/y
production at the Tevatron and measurements of single
and double J/y production cross sections. For the first
time, the latter is split into measurements of the SP and
DP production cross sections. This allows us to extract
the effective cross section (o), a parameter related to an
initial state parton spatial density distribution within a
nucleon (see, e.g., [6]):

oL eU/w)
o 20pp(J /Yl y)

The factor of 1/2 corresponds to the two indistinguishable
processes of single J/y production [20,21].

The measurements are based on the data sample col-
lected by the DO experiment at the Tevatron in proton-
antiproton (pp) collisions at the center-of-mass energy
/s = 1.96 GeV, and corresponds to an integrated lumi-
nosity of 8.1 £0.5 fb~! [22].

All cross section measurements are performed for prompt
J/w mesons with py/¥ > 4 GeV/c and |5’/¥| < 2, where
n’/¥ is the J/y pseudorapidity [23]. The J/y mesons are
fully reconstructed via their decay J /v — u*p~. The muons
are required to have transverse momenta p4 > 2 GeV/c
if their absolute pseudorapidities are || < 1.35 or total
momenta |p#| > 4 GeV/c if 1.35 < |##| < 2. The cross
sections measured with these kinematic requirements are
referred to below as fiducial cross sections.

The DO detector is a general purpose detector described
in detail elsewhere [24]. The subdetectors used in this
analysis to select events at the trigger level and to
reconstruct muons are the muon and the central tracking
systems. The central tracking system, used to reconstruct
charged particle tracks, consists of the silicon microstrip
tracker (SMT) [25] and a central fiber tracker (CFT)
detector both placed inside a 1.9 T solenoidal magnet.
The solenoidal magnet is located inside the central calo-
rimeter, which is surrounded by the muon detector [26].
The muon detector consists of three layers of drift tubes and
three layers of plastic scintillators, one inside 1.9 T toroidal
magnets and two outside. The luminosity of colliding
beams is measured using plastic scintillator arrays installed
in front of the two end calorimeter cryostats [22].

Muons are identified as having either hits in all three
layers of the muon detector or just in one layer in front
of the toroids [27]. They are also required to be matched
to a track reconstructed by the central tracking system as
having at least one hit in the SMT and at least two hits in the
CFT detectors. The muon candidates must satisfy timing
requirements to suppress cosmic rays. Their distance of
closest approach to the beam line has to be less than 0.5 cm
and their matching tracks have to pass within 2 cm along
the beam (z) axis of the event interaction vertex. The pp
interaction vertex should be within 60 cm of the center of
the detector along the beam axis. Events that have two such

(1)
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muons with opposite electric charge that satisfy an invariant
mass requirement of 2.85 < M, < 3.35 GeV are identi-
fied as single J/y candidates. Events having two such pairs
of muons are identified as DJ candidates. Background
events are mainly due to random combinations of muons
from 7=, K* decays, continuous nonresonant yu~ pro-
duction in Drell-Yan (DY) events (both called “accidental
background”), and B hadron decays into a J/y + X. In the
case of the DJ production, the background may also be
caused by associated production of J/y meson and a muon
pair not produced by a J/y decay (“J2u” events).

To properly normalize the cross section measurements
and to reduce the backgrounds, we require events to pass at
least one of the low-p; dimuon triggers. The single J/y
trigger efficiency is estimated using events which pass
zero-bias triggers (which only require a beam crossing)
or minimum bias triggers (which only require hits in the
luminosity detectors), and that also pass the dimuon trigger.
The efficiency of the kinematic selections of the muons
and J/y mesons is found to be 0.124 £ 0.024(stat) +
0.012(syst). The systematic uncertainty is due to variations
in the parametrizations of the functional forms used to fit
the signal and background events to data.

To measure the trigger efficiency for double J/yw
selection, we use DP and SP events generated in
Monte Carlo (MC). The double J/y DP events are
generated with the pYTHIA [28] MC event generator, while
the double J/y SP events are generated with HERWIG++
[29]. Events passed through a GEANT based [30] simulation
of the DO detector and overlaid with data zero-bias events
are then processed with the same reconstruction code as
data. Using the dimuon trigger efficiency parametrized as a
two-dimensional (2D) function of the p; of each of the
muons, we calculate it for every possible pairing of muons
in DP and SP MC events, and obtain efficiencies of D¥ =
0.48 +0.07 and &f = 0.51 £ 0.07, where the uncertainty
is propagated from the uncertainty on the dimuon trigger
efficiency described above.

The number of single J/w events after selections is
about 7.4 x 10°. The background from z*, K* decays and
DY events, in our single J/y selection is estimated as a
function of pJ/* and #//*. In each (p/*, n//*) bin,
we perform a simultaneous fit of signal using a double
Gaussian function and background with a linear mass
dependence in a window of 2.3 <M,, <4.2 GeV. We
then calculate the background in the selection mass window
of 2.85 < M,, < 3.35 GeV. Averaging the contributions

over all (pJT/ Y. #//¥) bins, we estimate the background
fraction to be 0.126 £ 0.013. The uncertainty is derived
from variation of the fit parameters in the signal and
background models.

We use PYTHIA generated single J/y events to estimate
the combined geometric and kinematic acceptance and
reconstruction efficiency of the selection criteria, calcu-
lated as the ratio of the number of reconstructed events
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to the number of input events. The generated events are
selected at the particle and reconstruction levels using
the fiducial J/yw and muon kinematic selection criteria
described above. The number of reconstructed events is
corrected for the different reconstruction efficiency in data
and MC, calculated in (py/¥, #//*) bins. The product
of the acceptance and efficiency for single J/w events
produced in the color singlet model is found to be
0.221 £ 0.002(stat) = 0.023(syst). The systematic uncer-
tainty is due to differences in the kinematic distri-
butions between the simulated and data J/y events, muon
identification efficiency mismodeling, and differences
between the color singlet and color octet models. The
cos 0" distribution, where 6* is the polar angle of the decay
muon in the Collins-Soper frame [31], is sensitive to the
J/w polarization [32-34]. Small data-to-MC reweighting
factors based on the observed cos 8 are used to recalcu-
late the acceptance, and lead to <1% difference with the
default acceptance value.

Due to the long lifetimes of B hadrons, their decay vertex
into the J/yw + X final state is usually several hundred
microns away from the p p interaction vertex, while prompt
J/w production occurs directly at the interaction point. To
distinguish prompt from nonprompt J/y mesons, we exam-

ine the decay length from the primary p p interaction vertex to

the J/y production vertex, defined as ct = nymgég /Y,
where L,, is the decay length of J/y meson calculated
as the distance between the intersection of the muon tracks

and the hard scattering vertex in the plane transverse to the
J
e

To estimate the fraction of prompt J /y mesons in the data
sample, we perform a maximum likelihood fit of the cz
distribution using templates for the prompt J/y signal
events, taken from the single J/y MC sample, and for
nonprompt J /y events, taken from the bb MC sample. The
latter are generated with PYTHIA [28]. The prompt J/y
fraction obtained from the fitis 0.814 4= 0.009. The fit result
is shown in Fig. 1. The overall y?/ndf for the data/MC
agreement for this fit varies, depending on the chosen SP and
DP models, within 0.50-0.85 with corresponding p-values
of 0.51-0.77. We verify that the p# ¥ spectra of the prompt
signal (nonprompt background) events in data are well
described by MC in the signal (background) dominated
regions by applying the selection ¢z < 0.02(> 0.03) cm.

The fiducial cross section of the prompt single J/y
production is calculated using the number of J/y candi-
dates in data, the fraction of prompt events, the dimuon
trigger efficiency, the acceptance and selection efficiency,
as well as the integrated luminosity. It is found to be

beam, and m,’ is the world average J/yw mass [35].

o(J/y) = 23.9 + 4.6(stat) £ 3.7(syst) nb. (2)

The uncertainties mainly arise from the trigger efficiency
and acceptance calculations.
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FIG. 1 (color online). The c¢z distribution of background
subtracted single J/y events after all selection criteria. The
distributions for the signal and background templates are shown
normalized to their respective fitted fractions. The uncertainty
band corresponds to the total systematic uncertainty on the sum
of signal and background events.

This value is compared to that calculated in the “k;
factorization” approach [6] with the unintegrated gluon
density [17]:

o1, (J/w) = 23.0 + 8.5 nb. (3)

In this calculation, the J/w meson is produced either
directly or through the radiative y,) — J/y + 7 process
[6]. The uncertainty is determined by variations of the
gluon PDF and scale variations by a factor of 2 with respect
to the default choice pur = up = §/4.

In total, 242 events remain after DJ selection criteria
and 902 events are found in the wider mass window
23 <M,, <42 GeV. Figure 2 shows the distribution

of the two dimon masses [M ,(,},)‘(2)] in these events.

DO,L=8.11fb" =

FIG. 2 (color online). Dilmuon2 invariant mass distribution in
data for two muon pairs M,/ , M, f,,) after the DJ selection criteria.
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In analogy with the single J/w event selection, we
estimate the accidental, J2u backgrounds and fraction of
prompt DJ events. First, we reduce the nonprompt and
background events by requiring ¢z < 0.03 cm for both
J/w candidates, with about 94% efficiency for signal events
(see Fig. 1). This cut selects Ny = 138 events in data.

The signal and accidental background contributions are
modeled using the product

F(M,(,}),M,(,f)) = (a;G') + asz,i) + as)
X (a4G(2) + aSM,%) + (16), (4)

where a 1(4)G(1(2>> is a Gaussian function representing J/y
production, ays;M'?) + ay) is a linear function of the
dimuon mass representing the accidental background, and
a; are coefficients. To estimate the backgrounds in the
selected data, we perform a maximum likelihood fit to

the data, in the 2D (M,S}), Mﬁ)) plane (see Fig. 2) using
the expanded expression in Eq. (4), that contains a product
of Gaussian functions for the signal DJ mass peak while
the background is represented by a plane (representing
the accidental background) and a product of a Gaussian
function and a line (for J2u events). We use the fitted
parameters to estimate the background in the signal
window 2.85 < M,, < 3.35 GeV for both J/y meson
candidates and compute the fraction of the accidental +
J2pu background events to be fyey, = 0.34 4+ 0.05.
Figure 3 shows a comparison of the summed signal and
background contributions to data projected on the axis of
one muon pair M, while events along the second pair are
integrated over the mass range 2.85-3.35 GeV.

% 30 ® Data
o L — Signal+Background
L ---- Background
25—
201
151

FIG. 3 (color online). Comparison of the signal and background
contributions to data projected on the axis of one muon pair M,
while events along the second pair are integrated over the mass

range 2.85-3.35 GeV.
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To estimate the fraction of the prompt double J/w
events, we use a template fit to the 2D cr distribution in
DJ data. The cz template for double prompt mesons is
obtained from the signal MC sample. The double non-
prompt template is created from the bb MC sample, in
which B hadron decays produce two J/w mesons. We
also create a prompt + nonprompt template by randomly
choosing ¢z values from the prompt and nonprompt
templates. Before fitting, the accidental and J2yu back-
ground is subtracted from the data according to its fraction
(facegou) With the uncertainty propagated into an uncer-
tainty on the prompt fraction. The 2D cz template for this
background is built using data outside the signal mass
window. The prompt fraction of DJ events in our selection
is found to be fpompe = 0.592 £0.101, while the non-
prompt and prompt + nonprompt events contribute
0.373 £ 0.073 and 0.035 £ 0.073, respectively. The main
source of systematic uncertainty for the prompt fraction is
the template fitting, and the uncertainty related with the
subtraction of the accidental background from the data.

We measure the acceptances, reconstruction, and selec-
tion efficiencies separately for double J/w events on
SP and DP samples using a mixture of 90% color singlet
and 10% color octet samples, as predicted by NRQCD [18]
for our kinematic selection criteria. The code for the
predictions is implemented in the MC model DJpsiFDC
[36]. We use PYTHIA for showering and fragmentation of
the gg — J/wJ/y final state. Products of the acceptances
and the selection efficiencies are found to be (Ae,)SP =
0.109 £ 0.002(stat) + 0.005(syst) for the SP and
(Ag;)PP = 0.099 + 0.006(stat) & 0.005(syst) for the DP
events, where the systematic uncertainties arise from
uncertainties in the modeling of the J/y kinematics, muon
identification efficiencies and the possible nonzero J/y
polarization effects.

In this analysis, we measure the DJ production cross
section for the DP and SP scatterings separately.
To discriminate between the two mechanisms, we exploit
the distribution of the pseudorapidity difference between
the two J/w candidates, |An(J/y,J/y)|, which is stable
against radiation and intrinsic parton p; effects [6,9].
For the two J/w mesons produced from two almost
uncorrelated parton scatterings with smaller (on average)
parton momentum fractions than in the SP scattering, the
|An(J/w,J /y)| distribution is expected to be broader. We
use the DP and SP templates produced by MC to obtain
the DP and SP fractions from a maximum likelihood fit to
the |An(J/w, J/y)| distribution in DJ data. Contributions
from the accidental background, nonprompt, and prompt +
nonprompt double J/y events are subtracted from data.
The fit result is shown in Fig. 4. In the region
|An(J )y, J /)| Z 2, the data are dominated by DP events,
as predicted in Ref. [6]. A possible contribution from
pseudodiffractive gluon-gluon scattering should give a
negligible contribution [6]. To estimate the systematic
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£ DO, L = 8.1 fb"
s B ? 5252%225 @ Data prompt

5 SP MC

5 I DP MC

% % Syst. uncertainty
ZI)

2 25 3 35 4
[An(Jhy, Jhy)l

FIG. 4 (color online). The |An(J/y,J/w)| distribution of
background subtracted double J/y events after all selection
criteria. The distributions for the SP and DP templates are shown
normalized to their respective fitted fractions. The uncertainty
band corresponds to the total systematic uncertainty on the sum
of SP and DP events.

uncertainties of the DP and SP fractions, we vary the
subtraction of accidental, nonprompt, and prompt+
nonprompt backgrounds within their uncertainties. To
conservatively estimate systematic uncertainty related to
the prompt 4+ nonprompt background, it is assumed to be
either 100% SP- or DP-like. We also create a datalike DP
template combining two J/y meson candidates from two
events randomly selected from the single J/y data sample,
emulating two independent scatterings each with a single
J/y final state. This template is corrected for the accidental
and nonprompt backgrounds in data. We extract the DP and
SP fractions from the fit to the DJ data sample. We find the
fractions to be fPP = 0.42 +0.12 and 57 = 0.58 £ 0.12.
These results are averaged over those obtained with the two
SP (HERWIG++ and DJpsiFDC) and two DP (PYTHIA and
datalike) models. The main sources of the uncertainties on
DP (SP) fractions are the background subtraction, 18.4%
(13.4%), the model dependence, 19.3% (14%), and the
template fit, 7.1% (6.3%). The uncertainty due to the model
dependence is estimated by varying the DP and SP models,
and mainly caused by the difference between the two DP
models. Variation of the gluon PDF [17] results in a small
change of the DP and SP |An(J/w,J/y)| templates and
introduces a negligible uncertainty on the DP fraction.
We verify that we do not introduce a bias by determining
the prompt, SP, and DP fractions in data by doing two
successive fits of the ¢t and |An(J/y, J/y)| distributions.
For this purpose, we perform a simultaneous 2D fit for
the nonprompt, SP, and DP fractions using templates
as functions of inclusive ¢z and |An(J/w,J/y)| to the
data corrected for the accidental and prompt + nonprompt
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backgrounds. The fractions of prompt DP and SP events
determined by this procedure are in agreement within
uncertainties with the central result obtained by the two
successive fits.

The fiducial prompt DJ cross section is calculated
according to

]vdfprompt(1 _facc,JZy) fi
L Ags)ig;'r’

o(J )yl |w)= (5)

i=DP,SP (

where N is the number of data events in the DJ selection,
J prompt 18 the fraction of prompt DJ events, f is the fraction
of DP or SP events, & is the trigger efficiency, (Ae,)’ is
the product of acceptance and selection and reconstruction
efficiency, and L is the integrated luminosity.

Using the numbers presented above, we obtain

o(J/wJ/w) =129 £ 11(stat) £ 37(syst) fb.  (6)

In the same way, we calculate the cross sections of DP
and SP events individually,

opp(J/wJ/yw) = 59 + 6(stat) + 22(syst) tb,  (7)
osp(J/wJ/w) =70 &+ 6(stat) + 22(syst) fb.  (8)

The prediction for the SP cross section made in the ky
factorization approach [6] is

o, (J/wl /) = 55.11383(PDF) ] (scale) fb. (9)

The choice of the gluon density as well as the renormal-
ization and factorization scales are the same as for the
prediction shown in Eq. (3).

We also compare our ogp(J/ywJ/w) result to the SP
prediction obtained with NRQCD at the leading order
approximation in the strong coupling [18] using renorm-
alization and factorization scales of ug = pp = (( pé/ )2 4
m2)!/2 and m. = 1.5 GeV,

OJI:I(I%QCD(J/WJ/W) =51.9 fb, (10)

and NRQCD NLO predictions [37]

Uglﬁgcﬂj/w-]/l//) = 9Oir51§0 fb, (11)

where the uncertainty is due to the up and pp scale
variations by a factor two as well as by the c-quark mass
uncertainty m, = 1.5 + 0.1 GeV.

The measured SP cross section is in agreement with the
current predictions from NRQCD and k; factorization.

The DP production cross section predicted by the kr
factorization approach according to Eq. (1), and using the
fixed effective cross section 6% = 15 mb [6], is

oD (J /wl Jw) = 17.6 £ 13.0 fb. (12)
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Additional contributions to the prompt DJ production
may be caused by decays y(2S) — J/w + X, which are not
taken into account in Eqgs. (9)—(12). These contributions
may increase the predicted DJ SP and DP cross sections by
approximately 40 +20% [38].

Using the measured cross sections of prompt single J/y
and DP production, we calculate the effective cross section,
o [see Eq. (1)]. The main sources of systematic uncer-
tainty in the o measurement are trigger efficiency and the
fraction of DP events. By substituting the measured single
J/y and double J/y DP cross sections [Egs. (2) and (7)]
into Eq. (1), we obtain

Ot = 4.8 + 0.5(stat) + 2.5(syst) mb. (13)

In conclusion, we have observed double J/y production
at the Tevatron and measured its cross section. We show
that this production is caused by single and double parton
scatterings. The measured SP cross section may indicate
a need for a higher gluon PDF at small parton momenta
and small energy scale, and higher order corrections to the
theoretical predictions. The measured o agrees with the
result reported by the AFS Collaboration (=5 mb [39]), and
is in agreement with the o obtained by CDF [12] in the
4-jet final state (12.11’51_047 mb). However, it is lower than
the result obtained by CDF [13] [14.5 4= 1.7(stat) ") (syst)]
and the DO [14] result [12.7 £ 0.2(stat) £ 1.3(syst)] in
v + 3-jet events, and by ATLAS [15] [15 + 3(stat) '3 (syst)]
and by CMS [16] [20.7 + 0.8(stat) £ 6.6(syst)] in the
W + 2-jet final state. We note that initial state in the DP
double J/y production is very similar to 4-jet production at
low p; which is dominated by gluons, while y(W) + jets
events are produced in quark interactions, ¢g, gg, and qg’.
The measured o may indicate a smaller average distance
between gluons than between quarks or between a quark
and a gluon, in the transverse space. This result is in a
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qualitative agreement with the pion cloud model predicting
a smaller nucleon’s average gluonic transverse size than
that for singlet quarks [40].
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