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Discretized formulations of 2-form Abelian and non-Abelian gauge fields on d-dimensional hypercubic
lattices have been discussed in the past by various authors and most recently by Lipstein and Reid-Edwards
[J. High Energy Phys. 09 (2014) 034]. In this paper we recall that the Hamiltonian of a Z2 variant of
such theories is one of the family of generalized Ising models originally considered by Wegner. For such
“Z2 lattice Gerbe theories” general arguments can be used to show that a phase transition for Wilson
surfaces will occur for d > 3 between volume and area scaling behavior. In 3d the model is equivalent
under duality to an infinite coupling model and no transition is seen, whereas in 4d the model is dual to the
4d Ising model and displays a continuous transition. In 5d the Z2 lattice Gerbe theory is self-dual in the
presence of an external field and in 6d it is self-dual in zero external field.

DOI: 10.1103/PhysRevD.90.107701 PACS numbers: 05.50.+q, 05.70.Jk, 64.60.-i, 75.10.Hk

The study of the lattice discretization of 1-form gauge
fields, lattice gauge theory, is now a mature subject. Higher
form gauge fields on the lattice have received less attention,
although 2-form gauge fields or Gerbes have also proved
to be of considerable interest. In string theory interest in
higher form fields dates back to the work of Kalb and
Ramond [1] and they have also arisen more recently in M
theory, particularly with regard to describing M5-branes.
Abelian Gerbes suffice to describe the six-dimensional low
energy effective theory arising from a single M5-brane
[2,3], but multiple M5-branes require a non-Abelian theory.
This has proved difficult to formulate in the continuum
and motivated the authors of [4] to revisit both Abelian
and non-Abelian Gerbe theories on Euclidean hypercubic
lattices in the manner of the Wilsonian formulation of
lattice gauge theory [5–10]. The theory of Abelian 2-form
(and also higher n-form) fields on a lattice had already been
explored from varying perspectives in [11–17] and non-
Abelian lattice theories were also proposed in [18–21].
Later, rather similar ideas were pursued in [22–24]. In the
lattice Gerbe theories the gauge variables lived on the faces
of the cubes of a hypercubic lattice and the Hamiltonian
(i.e. action in field theoretic language) was given by the
product of face variables around elementary cubes, which
were called cubets in [4], summed over the lattice.
We take a step further back here and consider what might

be learnt from the simplest Hamiltonians that maintain the
2-form gauge invariance, which are constructed from Z2

spins and which we call Z2 lattice Gerbe theories, borrow-
ing the nomenclature of [4]. Many of the characteristic
features of a lattice gauge theory are already discernible
in the simplest Z2 variant, so a reasonable expectation is
that such a Z2 lattice Gerbe theory might offer a similar
degree of insight into the behavior of more general,
including non-Abelian, lattice Gerbe theories.
In this paper we note that the Hamiltonians of the Z2

variant of lattice Gerbe theories are amongst those

considered by Wegner [25] (see also [26]) and use this
to discuss the phase structure of the Z2 lattice Gerbe
theories in various dimensions, both with and without
external fields.
It is possible to cast the Hamiltonians of Abelian n-form

theories on a hypercubic lattice for arbitrary n in a common
notation [15] by denoting the oriented n-dimensional
cells of the d-dimensional hypercubic lattice by Cn and
the cells with reversed orientation by −Cn. n-forms A are
then maps from the Cn to R;Z; Uð1Þ;… which satisfy
AðCnÞ ¼ −Að−CnÞ. The Hamiltonians may then be written
in the Uð1Þ case as

H ¼ −
X
Cnþ1

� Y
Cn∈∂Cnþ1

UðCnÞ þ c:c:

�
ð1Þ

where the gauge variables UðCnÞ ¼ expðiAðCnÞÞ live on
the boundaries Cn of cells Cnþ1 and c.c. denotes a complex
conjugate. The Hamiltonian is thus given by the sum of
products of the UðCnÞ around the boundary of a Cnþ1.
Specializing to a lattice gauge theory (1-form) on a

hypercubic lattice, the UðC1Þ live on edges, C1, and the
Hamiltonian is a sum of terms composed of products of
four such edge variables around the boundaries of two-
dimensional faces or plaquettes, C2. Similarly, for a lattice
Gerbe theory (2-form) the UðC2Þ live on faces, C2, and
the Hamiltonian is a sum of terms composed of products
of six such face variables around the boundaries of three-
dimensional cubes, or cubets, C3 as in [4].
In lattice n-form theories the gauge transformations are

implemented as

UðCnÞ →
Y

Cn−1∈∂Cn

ΛðCn−1ÞUðCnÞ; ð2Þ

so in the lattice gauge theory the gauge transformations
ΛðC0Þ operate on the two sites at the end of each edge and
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in the lattice Gerbe theory the ΛðC1Þ operate on the four
edges around each face.
The lattice gauge theory and n-form generalizations have

no local order parameters, but can still display distinct
confined and deconfined phases characterized by the behav-
ior of Wilson loops/surfaces [5–9,25]. In the case of the
gauge theory the different phases can be exposed by defining

ΓðLÞ ¼
�Y

C1∈L
UðC1Þ

�
ð3Þ

where L is some closed loop in the lattice formed by the
product of the C1 and the averages are taken with respect
to the Boltzmann weights expð−βHÞ. ΓðLÞ would then be
expected to scale as

ΓðLÞ ∼
�
expð−AðLÞÞ β < βc

expð−PðLÞÞ β > βc
ð4Þ

where AðLÞ; PðLÞ are the area and perimeter of the loop in a
theory with a confining transition at βc. An example of such
behavior is the 3d Z2 gauge theory, which is dual to the 3d
Ising model and hence displays a continuous phase
transition.
Similarly, Wilson surface observables in the lattice

Gerbe theory may be defined as

ΓðSÞ ¼
�Y

C2∈S
UðC2Þ

�
ð5Þ

where S is some closed surface on the lattice formed by
the product of the C2. In a lattice Gerbe theory with a
deconfining transition ΓðSÞ would be expected to scale as,
analogously to the lattice gauge theory,

ΓðSÞ ∼
�
expð−VðSÞÞ β < βc

expð−AðSÞÞ β > βc
ð6Þ

where VðSÞ; AðSÞ are the volume enclosed by and the
surface area of the Wilson surface. The authors of [4]
conducted some numerical investigations of Abelian lattice
Gerbe theory and found volume scaling at all couplings in
three dimensions, whereas there was evidence of a phase
transition from an area law at weak coupling (large β) to a
volume law at strong coupling (small β) in six dimensions.
In [25] Wegner defined a class of generalized Ising

models Md;n with Z2 spins living on d-dimensional hyper-
cubic lattices which were characterized by a Hamiltonian of
precisely the form specified in Eq. (1) withMd;n possessing
ðn − 1Þ-form gauge symmetries. Since the UðCnÞ are now
Z2 spins the complex conjugate is superfluous in this case.
In particular, a Z2 lattice Gerbe theory on a d-dimensional
hypercubic lattice is just the Md;3 model considered by
Wegner. It is thus possible to use the general results of [25]
on duality and the scaling of Wilson loops and surfaces to

make some observations on the phase structure ofZ2 lattice
Gerbe theories in various dimensions.
In general, on a finite lattice composed of N

d-dimensional hypercubes, the Md;n model consists of
Ns ¼ ð d

n−1ÞN spins sited at the centers of the ðn − 1Þ-
dimensional hypercubes and the Hamiltonians Hdn consist
of the product of 2n spins on the ðn − 1Þ-dimensional faces
of the Nb ¼ ðdnÞN n-dimensional hypercubes. Duality argu-
ments can be used to show that the partition functions of
the models Md;n on the original d-dimensional hypercubic
lattice and M�

d;d−n on the dual lattice (also a d-dimensional
hypercubic lattice) are related for periodic boundary con-
ditions by

Zd;nðβÞ ∼ Z�
d;d−nðβ�Þ; ð7Þ

where inessential symmetrizing factors in the relation
between the partition functions have been dropped and
the couplings are related by

tanhðβÞ ¼ expð−2β�Þ: ð8Þ
An external field term coupling the spins to a field h can
also be included in the standard manner in Md;n. In this
case the partition functions of the theories Md;n and
M�

d;d−nþ1 are related by the duality

Zd;nðβ; hÞ ∼ Z�
d;d−nþ1ðβ�; h�Þ; ð9Þ

where the symmetrizing factors have again been dropped
and the couplings β; h in Md;n and β�; h� in the dual theory
were now related by

tanhðβÞ ¼ expð−2h�Þ
tanhðhÞ ¼ expð−2β�Þ: ð10Þ

If the discussion is now restricted to the case n ¼ 3 relevant
for the consideration of the lattice Gerbe theory, the
Hamiltonian contains the product of six face spins around
a cubet, as in [4]. Taking d ¼ 3 first, when h ¼ 0 Eq. (9)
reads

Z3;3ðβ; 0Þ ∼ Z�
3;1ð∞; h�Þ ð11Þ

where tanhðh�Þ ¼ expð−2βÞ. Since only the �1 ground
state spin configurations contribute as β� → ∞ in the dual
partition function Z�

3;1ðβ�; h�Þ it is given in this limit by

Z�
3;1ðβ�; h�Þ ∼ expðNbβ

� þ N�
sh�Þ þ expðNbβ

� − N�
sh�Þ
ð12Þ

where Nb is the number of bonds connecting interacting
spins. This can be translated back to the original, undu-
alized partition function to give

Z3;3ðβ; 0Þ ∼ 2Ns ½coshðβÞNb þ sinhðβÞNb � ð13Þ
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which is analytic in β, so there is no transition for a Z2

lattice Gerbe theory in 3d.
For d > 3 the situation is different. Low- and high-

temperature expansions [25] reveal precisely the transition
from area to volume scaling as β is decreased that is
indicated by Eq. (6). This confirms that a confining phase
transition exists so long as d > 3. It is also possible to infer
that the critical coupling βc is a decreasing function
of d, i.e. βc;dþ1;n ≤ βc;d;n. Interestingly, Abelian Uð1Þ n-
form theories are expected to have a phase transition only in
d ≥ nþ 3 dimensions [14], so a phase transition will only
appear for d ≥ 5 dimensions for the Abelian 2-form theory
rather than d ≥ 4 in the Z2 case, a fact already noted
in [12,15]. The absence of a phase transition in 3d in the
Uð1Þ model in the numerical simulations of [4] is con-
sistent with these and other earlier studies [27–29].
It is possible to make a more explicit statement about

the nature of the Z2 lattice Gerbe theory phase transition in
d ¼ 4 using the zero field duality since

Z4;3ðβÞ ∼ Z�
4;1ðβ�Þ ð14Þ

and the 4d Z2 lattice Gerbe theory is thus dual to the 4d
Ising model and will display a continuous phase transition.
Since d ¼ 4 is the upper critical dimension of the Ising
model the exponents will be mean field (though there is
still some discussion about the nature of the specific heat
divergence, if it exists, [24]). The M4;3 model has been
simulated in [16] to compare with the predictions from
duality from the 4d Ising model and in [17] with a view to
formulating a viable cluster algorithm.
Self-dual Z2 lattice Gerbe theories exist both in the

presence and absence of an external field h. Using Eq. (7)
and tanhðβÞ ¼ expð−2β�Þ from Eq. (8)

Z2n;nðβÞ ∼ Z�
2n;nðβ�Þ; ð15Þ

so the Z2 lattice Gerbe theory on a 6d hypercubic lattice
will be self-dual. Similarly, employing Eq. (9) shows that

Z2n−1;nðβ; hÞ ∼ Z�
2n−1;nðβ�; h�Þ; ð16Þ

where the duality relation for the couplings is now
that in Eq. (10). A Z2 lattice Gerbe theory on a 5d
hypercubic lattice in an external field will thus also be
self-dual with the duality relations: tanhðβÞ ¼ expð−2h�Þ;
tanhðhÞ ¼ expð−2β�Þ. From a numerical point of view the
interest of self-duality often lies in pinning down the critical
coupling βc using, for instance, Eq. (8) in the zero field
case, which may be written more symmetrically as

sinhð2βc;d;nÞ sinhð2β�c;d;d−nÞ ¼ 1: ð17Þ

For the self-dual case in the absence of an external field
(d ¼ 2n) this gives βc;2n;n ¼ β�c;2n;n ¼ 1

2
lnð1þ ffiffiffi

2
p Þ. The

critical coupling of the Z2 Gerbe theory (n ¼ 3) on a 6d

hypercubic lattice is thus identical to that of a nearest
neighbor 2d Ising model (n ¼ 1) on the square lattice or a
4d Ising gauge theory (n ¼ 2) on a 4d hypercubic lattice.
The general considerations of [25] do not, of course,

say anything about the nature of any phase transitions
which are present, unless they can be deduced from the
dual theory as in Eq. (14). The interest from the string/
M-theoretic point of view of lattice Gerbe theories lies in
the possibility of defining a nontrivial continuum theory
at a continuous phase transition point, particularly in the
non-Abelian case. From this perspective, a first order
deconfining transition between the volume law and area
law behavior, such as that suggested by the numerical
results in [4] for the 6d Uð1Þ Abelian theory, would not be
of interest, whereas the continuous transition seen in 4d for
the Z2 theory would.
There has not, to our knowledge, been any recent

systematic numerical investigation of the nature of the
lattice Gerbe transitions apart from the exploratory results
presented in [4] and the 4d results of [16,17]. Earlier
numerical work on such systems is now of considerable
vintage [13]. In this context it is likely that the further
numerical exploration of Z2 lattice Gerbe theories can offer
useful insight into the behavior of physically relevant
Abelian and non-Abelian lattice Gerbe theories in the same
manner that Z2 lattice gauge theory has cast light on the
general properties of lattice gauge theories. An obvious
generalization is to consider the behavior of ZN spins in the
lattice Gerbe action for N > 2 in the expectation that the
behavior would approach that of theUð1Þmodel asN → ∞,
a program pursued in the early days of lattice gauge theory
simulations [8–10]. As discussed in [15], it is expected
that the lower critical dimension of ZN Gerbe models will
also be 4 and also that they will display (at least) three
distinct phases in 6 dimensions for sufficiently largeN [12].
Viewed purely as lattice spin systems the lattice Gerbe

theories offer an interesting laboratory for exploring
degeneracy, gauge invariance, lattice topological defects
and features of scaling at both continuous and first order
phase transitions in various dimensions. The theories
discussed here and in [4] are of “pure” lattice Gerbe
theories. Coupling n-form A and ðn − 1Þ-form B Abelian
Uð1Þ gauge fields, in the manner of [15,30],

H ¼ −
X
Cnþ1

� Y
Cn∈∂Cnþ1

UðCnÞ þ c:c:

�

− λ
X
Cn

�
UqðCnÞ

Y
Cn−1∈∂Cn

ΦðCn−1Þ þ c:c:

�
; ð18Þ

where q is the charge associated with an ðn − 1Þ-form
BðCn−1Þ and ΦðCn−1Þ¼expðiqBðCn−1ÞÞ, would be another
obvious extension. These mixed Hamiltonians would
present a richer phase structure than that of the pure lattice
Gerbe theory, with the possibility of Higgs-type phases [30]
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in the manner of the original Z2 lattice gauge-Higgs theory
[31,32]. TheHamiltonian for this is given (schematically) by

H ¼ −
X
□

U4 − λ
X
hiji

Uσ2 ð19Þ

where the sums are over faces, □, and edges, hiji, for the
edge gauge spins U and site matter spins σ. The Z2 lattice
Gerbe equivalent of this would be

(20)

where the sums are now over cubets, , and faces,□, with
the 2-form gauge spins U living on faces and the 1-form
gauge spins σ living on edges. The mean field calculation of
[30] in the Uð1Þ case suggests that Higgs, Coulomb and

confined phases are all present. It would be interesting to
explore the phase structure numerically in various dimen-
sions for both the discrete and continuousAbelianmodels in
this case too.
A final comment, also remarked on in [4], is that just as

for a lattice gauge theory gauge-fixing is not obligatory in a
lattice Gerbe theory. In the lattice gauge theory case a gauge
may nonetheless be fixed by, for instance, fixing gauge
variables on a maximal tree [33] in order to permit the
evaluation of gauge-variant quantities such as correlators or
for numerical reasons. The reasoning which permits this,
namely that no gauge-invariant loops are fixed by this
procedure, also applies in the lattice Gerbe case if surfaces
are substituted for links. It is therefore possible to fix the
plaquette gauge variables on a spanning open surface on the
lattice in the lattice Gerbe theory case.
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