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A supersymmetric solution to type II supergravity is constructed by superposing two hyper-Kählers with
torsion metrics. The solution is given by a Kähler with torsion metric with SUð3Þ holonomy. The metric is
embedded into a heterotic solution obeying the Strominger system, together with a Yang–Mills instanton
obtained by the standard embedding. T dualities lead to an SOð6Þ instanton describing a symmetry
breaking from E8 to SOð10Þ. The compactification by taking a periodic array yields a supersymmetric
domain wall solution of heterotic supergravity.
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I. INTRODUCTION

The Green–Schwarz mechanism [1] is one of the corner-
stones of superstring theory. Its role is twofold. First, of
course, is to tell us how to cancel the gauge and gravita-
tional anomalies of ten-dimensional type I and heterotic
superstrings, which were apparently considered anomalous
and hence unacceptable as consistent theories. With the
mechanism, however, it turned out that all the anomalies
were canceled out in a miraculous manner if and only if the
gauge group was SOð32Þ or E8 × E8, for the latter of which
heterotic string theory has been constructed [2]. The second
important role of the Green–Schwarz mechanism is to
constrain the background geometry through the modified
Bianchi identity of the 3-form field H; the mechanism
requires the 2-form B field to vary under both the gauge and
local Lorentz transformations so that the invariant 3-form
field H must be of the form

H ¼ dB − α0ðω3Y − ω−
3LÞ; ð1Þ

where ω3Y is the Chern–Simons 3-form associated with
the Yang–Mills connection and ω−

3L is also a Chern–Simons
3-form but made of a particular linear combination of the
Levi-Civitá connection and the 3-form field:

ω−
MAB ¼ ωMAB −HMAB: ð2Þ

The equation (1) leads to the Bianchi identity

dH ¼ α0ðtrF∧F − trR−∧R−Þ: ð3Þ

This constrains the background geometry [3] in such a way
that the second Chern class of the gauge bundle is equal to

the first Pontryagin class of the tangent bundle including
torsion as in (2).
Note that the combination (2) is different from the one

that appears in the supersymmetry (SUSY) variation of
the gravitino,

δψM ∝ ∇þε; ð4Þ

where ∇þ is the covariant derivative associated with the
combination

ωþ
MAB ¼ ωMAB þHMAB: ð5Þ

The relevance of the difference between the two connec-
tions was pointed out by Bergshoeff and de Roo [4] and
later emphasized by, e.g., Refs. [5,6].
For E8 × E8 heterotic string theory on a six-dimensional

space M6 without H fluxes, the Killing spinor equation
arising from the vanishing gravitino variation (4) constrains
M6 to have SUð3Þ holonomy, that is, to be Calabi–Yau.
On the other hand, for the Bianchi identity (3) to be
satisfied, the easiest and most common way is to set the
ωþ connection, which is nothing but the spin (Levi-Civitá)
connection for H ¼ 0, to be equal to a part of the gauge
connection. This is called the standard embedding [7].
In this case, a part of the gauge field background is
required to be SUð3Þ, and the gauge symmetry is partially
broken to the centralizer E6ð×E8Þ. This reduction of the
gauge symmetry is one of the hallmarks of Calabi–Yau
compactifications of heterotic string theory.
If, on the other hand, there is a nonzero H field, then the

vanishing gravitino variation (4) asserts that the linear
combination ωþ

MAB ¼ ωMAB þHMAB belongs to SUð3Þ but
says nothing about the other linear combination ω−

MAB ¼
ωMAB −HMAB [4,5,8]. Thus, ω−

MAB is generically in SOð6Þ
on the six-dimensional space M6, and the gauge symmetry
is broken to a smaller subgroup SOð10Þ, which is more
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favorable from the point of view of applications to string
phenomenology. Note that, in the presence of H fluxes,
SOð10Þ is achieved by the “standard embedding,” that is,
by simply equating the modified spin connection ω−

MAB
with a part of the gauge connection. This is in striking
contrast to the H ¼ 0 Calabi–Yau case, in which one needs
the nonstandard embedding that requires complicated
mathematical machinery [3,7] involving the construction
of stable holomorphic vector bundles.
However, for the smeared intersecting NS5-brane sol-

ution, which is obtained as a superposition of two smeared
symmetric 5-brane solutions [9] and is one of the simplest
SUSY heterotic supergravity solutions with H fluxes in the
six-dimensional space, not only ωþ but also ω− happens to
be in SUð3Þ, and therefore the unbroken gauge symmetry is
still E6. The reason for this can be traced back to the parity
invariance of the symmetric 5-brane solution; indeed, the
sign of H is a matter of convention, and the configuration
after the sign flip H → −H still remains a solution of the
heterotic supergravity.
In this paper, we construct a supersymmetric heterotic

supergravity solution such that ωþ is in SUð3Þ (and hence a
SUSY solution) but ω− is not, by superposing two hyper-
Kähler with torsion (HKT) geometries. As already pointed
out in Ref. [9], one can obtain HKT geometries by
conformally transforming hyper-Kähler geometries. We
choose the Gibbons–Hawking space as the starting point
and apply a conformal transformation to obtain a HKT
geometry. Since the Gibbons–Hawking space is not parity
invariant, theω− connection of the resulting HKT space is in
SOð4Þ but not in SUð2Þ, though ωþ still belongs to SUð2Þ.
We then smear the harmonic functions to those of two

dimensions and take a superposition of two such geom-
etries. Because of our superposition ansatz, we are forced to
set some of the entries of the metric to zero in order to
satisfy the equations of motion. Consequently, we find that
the ω− holonomy of the superposed solution remains to be
SOð4Þ. We also show that by T duality this solution turns
into one with SOð5Þ or SOð6Þ ω− holonomy.
We also take a two-dimensional periodic array of the

“intersecting HKT” solutions to get a compact six-
dimensional solution. We find that the fundamental paral-
lelogram of the two-dimensional periodic array is separated
into distinct smooth regions bordered by codimension-1
singularity hypersurfaces, hence the name “supersymmet-
ric domain wall.” This novel solution has some interesting
properties, as we will see below.
This paper is organized as follows. In Sec. II, we give a

brief review of HKT geometries obtained by conformal
transformations acting on four-dimensional hyper-Kähler
spaces. In Sec. III, we consider a superposition of HKT
spaces to construct a six-dimensional Kähler with torsion
(KT) space with special properties, which serves as a
supersymmetric solution of type II supergravity. In Sec. IV,
we embed this geometry into heterotic supergravity theory

and take T dualities. In Sec. V, we compactify this
six-dimensional space by taking a periodic array and study
some of its properties. The final section presents the
summary and conclusion.

II. HKT GEOMETRY AS A
CONFORMAL TRANSFORM

We start with a four-dimensional HKT metric gHKT
obtained as a conformal transform of a hyper-Kähler
metric, where for the latter we specifically consider the
Gibbons–Hawking (GH) metric gGH,

gHKT ¼ ΦgGH: ð6Þ

The GH metric is given by [10]

gGH ¼ 1

ϕ

�
dτ −

X3
i¼1

ψ idxi
�2

þ ϕ
X3
i¼1

ðdxiÞ2; ð7Þ

where ϕ and ψ ¼ ðψ1;ψ2;ψ3Þ are scalar functions of the
coordinates ðx1; x2; x3Þ of R3 obeying the relation

gradϕ ¼ rotψ: ð8Þ

Φ is a scalar field of which the properties will be described
shortly. We define the orthonormal basis

E0 ¼
ffiffiffiffi
Φ
ϕ

s �
dτ −

X3
i¼1

ψ idxi
�
;

Ei ¼
ffiffiffiffiffiffiffi
Φϕ

p
dxiði ¼ 1; 2; 3Þ ð9Þ

so that the hypercomplex structure is given by the three
complex structures Jaða ¼ 1; 2; 3Þ satisfying the quater-
nionic identities,

JaðEμÞ ¼ η̄aμνEν; ð10Þ

where η̄aμν are the ’t Hooft matrices. The corresponding
fundamental 2-forms are

Ωa ¼ −η̄aμνEμ∧Eν: ð11Þ

The HKT structure is defined by the 3-form torsion T
satisfying [11,12]

T ¼ J1dΩ1 ¼ J2dΩ2 ¼ J3dΩ3: ð12Þ
In the present case, we have

T ¼ −E0 logΦE123 þ E1 logΦE023 þ E2 logΦE031

þ E3 logΦE012 ð13Þ

in terms of dual vector fields Eμ to the 1-forms (9),
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E0 ¼
ffiffiffiffi
ϕ

Φ

r ∂
∂τ ; Ei ¼

1ffiffiffiffiffiffiffi
Φϕ

p
� ∂
∂xi þ ψ i

∂
∂τ
�

ð14Þ

and

Eμνλ ¼ Eμ∧Eν∧Eλ: ð15Þ
The exterior derivative is calculated as

dT ¼ −
1

Φ2ϕ

�X3
μ¼0

V2
μΦ

�
E0123; ð16Þ

with the vector fields Vμ ¼
ffiffiffiffiffiffiffi
Φϕ

p
Eμ. Therefore, if Φ is

chosen to be a harmonic function with respect to the GH
metric (7), then the torsion T becomes a closed 3-form.
Using this T, we introduce the two types of connections

∇�,

∇�
XY ¼ ∇XY � 1

2

X3
μ¼0

TðX; Y; EμÞEμ; ð17Þ

where ∇ is a Levi-Civitá connection. The corresponding
connection 1-forms ω�μ

ν are defined by

∇�
Eμ
Eν ¼ ω�λ

νðEμÞEλ; ð18Þ

and the curvature 2-forms are written as

R�μ
ν ¼ dω�μ

ν þ ω�μ
λ∧ω�λ

ν: ð19Þ

The torsion curvature Rþμ
ν satisfies the SUð2Þ holonomy

condition

Rþ
01 þRþ

23 ¼ 0;

Rþ
02 þRþ

31 ¼ 0;

Rþ
03 þRþ

12 ¼ 0: ð20Þ

On the other hand, if the torsion T is a closed 3-form, that
is, Φ is a harmonic function, then the curvature R−μ

ν

becomes an anti-self-dual 2-form, which may be regarded
as a Yang–Mills instanton with the gauge group SUð2Þ×
SUð2Þ ¼ SOð4Þ.

III. INTERSECTING HKT METRICS

In the previous section, we have seen that the HKT
metrics obtained by a conformal transformation have ωþμ

ν

in SUð2Þ but ω−μ
ν in SOð4Þ strictly larger than SUð2Þ as

long as the original GH space is not a flat Euclidean space.
In this section, we construct their six-dimensional analogs
by superposing two such HKT metrics embedded in
different four-dimensional subspaces. This construction
is motivated by that used in constructing intersecting brane

solutions [13,14]1; namely, we assume the form of the
metric as

g ¼ Φ ~Φϕ ~ϕððdx1Þ2 þ ðdx2Þ2Þ þ Φϕðdx3Þ2

þ Φ
ϕ
ðdx4 − ψdx3Þ2 þ ~Φ ~ϕðdx5Þ2

þ
~Φ
~ϕ
ðdx6 − ~ψdx5Þ2: ð21Þ

The HKT metric that we have considered in the previous
section is characterized by a triplet ðΦ;ϕ;ψÞ on R3 ¼
fðx1; x2; x3Þg obeying (8). So at first it might seem that
ðΦ;ϕÞ or ð ~Φ; ~ϕÞ could to be functions of ðx1; x2; x3Þ or
ðx1; x2; x5Þ, and dx4 − ψdx3 or dx6 − ~ψdx5 could be
replaced with a more general form dx4 −

P
i¼1;2;3ψ idxi

or dx6 −
P

i¼1;2;5 ~ψ idxi, respectively. However, it turns out
that such a more general ansatz does not lead to a metric
with SUð3Þ holonomy even in the case Φ ¼ ~Φ ¼ 1. Thus,
we are led to consider the metric of the form (21), assuming
the following:

(i) ðΦ;ϕÞ and ð ~Φ; ~ϕÞ are harmonic functions on the
two-dimensional flat space R2 ¼ fðx1; x2Þg.

(ii) ψ ¼ ð0; 0;ψÞ and ~ψ ¼ ð0; 0; ~ψÞ, of which the com-
ponents are harmonic functions onR2 satisfying the
Cauchy–Riemann conditions

∂ϕ
∂x2 ¼ −

∂ψ
∂x1 ;

∂ϕ
∂x1 ¼

∂ψ
∂x2 ;

∂ ~ϕ
∂x2 ¼ −

∂ ~ψ

∂x1 ;
∂ ~ϕ
∂x1 ¼

∂ ~ψ

∂x2 : ð22Þ

Under these assumptions, we will show that a six-
dimensional space M6 with the metric (21) has the
following KT structure:
(a) a closed Bismut torsion [see Eq. (27)],
(b) an exact Lee form [see Eq. (28)],
(c) a Bismut connection ∇þ with SUð3Þ holonomy

[see Eq. (29)].
We first introduce an orthonormal basis

e1 ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffi
Φ ~Φϕ ~ϕ

q
dx1; e2 ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffi
Φ ~Φϕ ~ϕ

q
dx2;

e3 ¼
ffiffiffiffiffiffiffi
Φϕ

p
dx3; e4 ¼

ffiffiffiffi
Φ
ϕ

s
ðdx4 − ψdx3Þ;

e5 ¼
ffiffiffiffiffiffiffiffi
~Φ ~ϕ

q
dx5; e6 ¼

ffiffiffiffi
~Φ
~ϕ

s
ðdx6 − ~ψdx5Þ: ð23Þ

1The term “intersecting” in the (commonly used) name is
misleading since they are smeared and hence do not have
intersections with larger codimensions. See, e.g., Ref. [15] for
recent developments in constructing localized intersecting brane
solutions in supergravity.
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The spaceM6 has a natural complex structure J defined by

Jðe1Þ ¼ ϵ1e2; Jðe3Þ ¼ ϵ2e4; Jðe5Þ ¼ ϵ3e6:

ð24Þ

Indeed, it is easy to see that the Nijenhuis tensor associated
with J vanishes under the conditions jϵij ¼ 1ði ¼ 1; 2; 3Þ
and ϵ1ϵ2 ¼ ϵ1ϵ3 ¼ −1. Then, the metric (21) becomes
Hermitian with respect to the complex structure J, and
the fundamental 2-form κ takes the form

κ ¼ ϵ1e1∧e2 þ ϵ2e3∧e4 þ ϵ3e5∧e6: ð25Þ

The Bismut torsion T is uniquely determined by

∇þ
Xg ¼ 0; ∇þ

Xκ ¼ 0: ð26Þ

Explicitly, we have

T ¼ −Jdκ ¼ 1

Φ
ffiffiffiffiffiffiffiffiffiffiffiffiffi
Φ ~Φϕ ~ϕ

q ð∂1Φe234 − ∂2Φe134Þ

þ 1

~Φ
ffiffiffiffiffiffiffiffiffiffiffiffiffi
Φ ~Φϕ ~ϕ

q ð∂1
~Φe256 − ∂2

~Φe156Þ: ð27Þ

It should be noticed that in our case the Bismut torsion is
a closed 3-form, dT ¼ 0. We shall refer to ∇þ and ∇− as
the Bismut connection and Hull connection, respectively,
according to Ref. [6]. The Lee form θ is a 1-form defined
by θ ¼ −Jδκ [16], which becomes a closed 1-form,

θ ¼ 2dφ; φ ¼ log
ffiffiffiffiffiffiffi
Φ ~Φ

p
: ð28Þ

We will identify the Bismut torsion with 3-form flux,
T ¼ H, and the function φ with a dilaton. It is shown that
the Ricci form [16] of the Bismut connection vanishes,
which is equivalent to the condition

ϵ1R
þ
12 þ ϵ2R

þ
34 þ ϵ3R

þ
56 ¼ 0; ð29Þ

so that the holonomy of ∇þ is contained in SUð3Þ and M6

admits two independent Weyl Killing spinors obeying
∇þ

Xε ¼ 0 in type II theory. Thus, the triplet ðg;H;φÞ gives
rise to a supersymmetric solution to the type II supergravity
theory.

IV. EMBEDDING INTO HETEROTIC STRING
THEORY AND T DUALITY

We study supersymmetric solutions describing heterotic
flux compactification. The bosonic part of the string frame
action, up to the first order in the α’ expansion, is given by

S ¼ 1

2κ2

Z
d10x

ffiffiffiffiffiffi
−g

p
e−2φðRþ 4ð∇φÞ2

−
1

12
HMNPHMNP

−α0ðtrFMNFMN − trR−
MNR

−MNÞÞ: ð30Þ

It is assumed that ten-dimensional spacetimes take the form
R1;3 ×M6, where M6 is a six-dimensional space admitting
a Killing spinor ε,

∇þ
a ε ¼ 0;

�
γa∂aφþ 1

12
Habcγ

abc

�
ε ¼ 0;

F abγ
abε ¼ 0: ð31Þ

This system together with the anomaly cancellation
condition

dH ¼ α0ðtrF∧F − trR−∧R−Þ ð32Þ

is known as the Strominger system [8].
Now, we turn to the heterotic solution obeying the

Strominger system. If the curvature R− in the anomaly
condition (32) is given by the Hull connection ∇−, we can
choose a non-Abelian gauge field as F ¼ R− since the
3-form flux (27) is closed by the identification T ¼ H.
This is a form of the usual standard embedding. Combining
the well-known identity

Rþ
abcd −R−

cdab ¼
1

2
ðdTÞabcd ¼ 0 ð33Þ

with the holonomy condition (29), we can see that the
gauge field F is an instanton satisfying the third equation
in (31).
Apparently, F seems to take values in SOð6Þ ⊂ E8,

which would describe a symmetry breaking from E8 to
SOð10Þ. However, for generic choices of the harmonic
functions ϕ, Φ, ~ϕ, and ~Φ, it is not ensured that the metric
(21) can remain non-negative, and the dilaton (28) can
remain real valued. Therefore, to get a meaningful solution,
we are forced to impose

ϕ ¼ ~ϕ ¼ Φ ¼ ~Φ: ð34Þ

With this condition, the holonomy of ∇þ remains SUð3Þ,
but the instanton F reduces to a proper Lie subalgebra
SOð4Þ of SOð6Þ, and the centralizer is SOð12Þ.
To recover the SOð6Þ instanton, we apply a T-duality

transformation. From (21), (27), and (28), with ϕ ¼ ~ϕ ¼
Φ ¼ ~Φ, we have the following metric with SUð3Þ holon-
omy, 3-form flux, and dilaton:
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g ¼ ϕ4ððdx1Þ2 þ ðdx2Þ2Þ þ ϕ2ððdx3Þ2 þ ðdx5Þ2Þ
þ ðdx4 − ψdx3Þ2 þ ðdx6 − ψdx5Þ2; ð35Þ

H ¼ −
1

ϕ3
ð∂2ϕe134 − ∂1ϕe234 þ ∂2ϕe156 − ∂1ϕe256Þ;

ð36Þ

φ ¼ log jϕj: ð37Þ

The metric (35) has isometries Uð1Þ4 generated by Killing
vector fields ∂aða ¼ 3; 4; 5; 6Þ. Therefore, we can T dualize
the type II solution ðg;H;φÞ along directions of these
isometries. It is easy to see that the solution is inert under
the T duality along x4 and x6; the T dualities along the
remaining directions give nontrivial deformations of the
solutions, preserving one-quarter of supersymmetries.2

We first T dualize the solution along x3. The resulting
solution ðĝ; Ĥ; φ̂Þ is given by

ĝ ¼ ϕ4ððdx1Þ2 þ ðdx2Þ2Þ þ 1

ϕ2 þ ψ2
ðdx̂3 þ ψdx4Þ2

þ ϕ2

ϕ2 þ ψ2
ðdx4Þ2 þ ϕ2ðdx5Þ2 þ ðdx6 − ψdx5Þ2;

ð38Þ

Ĥ ¼ 1

ϕ3ðϕ2 þ ψ2Þ ððϕ
2 þ ψ2Þ∂2ϕ

þ 2ψðϕ∂1ϕ − ψ∂2ϕÞÞê134

−
1

ϕ3ðϕ2 þ ψ2Þ ððϕ
2 þ ψ2Þ∂1ϕ

− 2ψðϕ∂2ϕþ ψ∂1ϕÞÞê234

−
1

ϕ3
ð∂2ϕê156 − ∂1ϕê256Þ; ð39Þ

φ̂ ¼ 1

2
log

�
1

ðϕ2 þ ψ2Þϕ
2

�
: ð40Þ

Here, the orthonormal basis is defined by

ê1 ¼ ϕ2dx1; ê2 ¼ ϕ2dx2;

ê3 ¼ 1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ϕ2 þ ψ2

p ðdx̂3 þ ψdx4Þ;

ê4 ¼ ϕffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ϕ2 þ ψ2

p dx4; ê5 ¼ ϕdx5;

ê6 ¼ dx6 − ψdx5: ð41Þ

Then, we have a deformed complex structure Ĵ,

Ĵê1 ¼ ϵ1ê2; Ĵê3 ¼ ϵ2ê4; Ĵê5 ¼ ϵ3ê6; ð42Þ

with jϵij ¼ 1ði ¼ 1; 2; 3Þ and ϵ1ϵ2 ¼ ϵ1ϵ3 ¼ −1. The asso-
ciated fundamental 2-form κ̂ takes the same form as (25),
and the Bismut connection ∇þ has an SUð3Þ holonomy.
In this case, it turns out that the Hull connection ∇− is in
SOð5Þ, which is still smaller than SOð6Þ.
Thus, we further T dualize the solution ðĝ; Ĥ; φ̂Þ once

more along x5 and finally obtain ð~g; ~H; ~φÞ:

~g ¼ ϕ4ððdx1Þ2 þ ðdx2Þ2Þ þ 1

ϕ2 þ ψ2
ðdx̂3 þ ψdx4Þ2

þ 1

ϕ2 þ ψ2
ðd~x5 þ ψdx6Þ2 þ ϕ2

ϕ2 þ ψ2
ððdx4Þ2

þ ðdx6Þ2Þ; ð43Þ

~H¼ 1

ϕ3ðϕ2þψ2Þððϕ
2þψ2Þ∂2ϕþ2ψðϕ∂1ϕ−ψ∂2ϕÞÞ~e134

−
1

ϕ3ðϕ2þψ2Þððϕ
2þψ2Þ∂1ϕ−2ψðϕ∂2ϕþψ∂1ϕÞÞ~e234

þ 1

ϕ3ðϕ2þψ2Þððϕ
2þψ2Þ∂2ϕþ2ψðϕ∂1ϕ−ψ∂2ϕÞÞ~e156

−
1

ϕ3ðϕ2þψ2Þððϕ
2þψ2Þ∂1ϕ−2ψðϕ∂2ϕþψ∂1ϕÞÞ~e256;

ð44Þ

~φ ¼ 1

2
log

�
1

ðϕ2 þ ψ2Þðϕ2 þ ψ2Þϕ
2

�
: ð45Þ

The orthonormal basis is defined by

~e1 ¼ ê1; ~e2 ¼ ê2; ~e3 ¼ ê3; ~e4 ¼ ê4

~e5 ¼ 1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ϕ2 þ ψ2

p ðd~x5 þ ψdx6Þ; ~e6 ¼ ϕffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ϕ2 þ ψ2

p dx6:

ð46Þ

In this basis, the complex structure ~J is given by

~J ~e1 ¼ ϵ1 ~e2; ~J ~e3 ¼ ϵ2 ~e4; ~J ~e4 ¼ ϵ3 ~e2; ð47Þ

with jϵij ¼ 1ði ¼ 1; 2; 3Þ and ϵ1ϵ2 ¼ ϵ1ϵ3 ¼ −1. It can be
verified that this solution has an SUð3Þ Bismut connection
∇þ and SOð6Þ Hull connection ∇− as desired.

V. SUSY DOMAIN WALL METRIC

The last topic concerns the construction of type II/
heterotic supersymmetric solutions on a compact six-
dimensional space with the Hull connection not being in
SUð3Þ. Since the triples obtained in the previous section
depend only on x1 and x2, we can compactify the x3, x4, x5,

2See, e.g., Ref. [17] for the classification of supersymmetric
solutions to heterotic supergravity.
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and x6 spaces on T4 by simply identifying periodically,
whereas we consider a periodic array of copies of the
solution along the x1 and x2 directions.
Let us consider a periodic array of ðg;H;φÞ [Eqs. (35),

(36), and (37)], ðĝ; Ĥ; φ̂Þ [Eqs. (38), (39), and (40)], or
ð~g; ~H; ~φÞ [Eqs. (43), (44), and (45)], which are character-
ized by a pair of harmonic functions ϕ and ψ . In two
dimensions, both the real and imaginary parts of any
holomorphic function are harmonic. Thus, we can take
ϕ to be, say, the real part of any doubly periodic,
holomorphic function. In this case, ψ may be taken to
be the imaginary part of the same doubly periodic function.
Since the only nonsingular holomorphic function on T2

is a constant function, we need to allow some pole
singularities in the fundamental parallelogram of the
periodic array, which may be seen to be in accordance
with the no-go theorems against smooth flux compactifi-
cations [5,18]. The doubly periodic meromorphic functions
are known as elliptic functions. It is well known that, for a
given periodicity, the field of elliptic functions is generated
by Weierstrass’s ℘ function and its derivative ℘0. In the

following, we consider, as a typical example, the compac-
tification of ðg;H;φÞ, ðĝ; Ĥ; φ̂Þ, and ð~g; ~H; ~φÞ on a square
torus of side l by taking

ϕðx1; x2Þ ¼ Re℘ðzÞ; ð48Þ

ψðx1; x2Þ ¼ Im℘ðzÞ; ð49Þ

where ℘ðzÞ is of modulus τ ¼ i or τ ¼ e
πi
5 and z ¼

l−1ðx1 þ ix2Þ. Our solutions are determined entirely by
Weierstrass’s ℘ function without any reference to α0
because of the choice F ¼ R− that causes the rhs of
(32) to be closed. Note that they solve the heterotic
equations of motion up to Oðα0Þ.
The real and imaginary parts of ℘ðzÞ are shown in Fig. 1.

We see that ϕ may take negative as well as positive values,
but note that the metric (35), (38), or (43) depends on ϕ

FIG. 2 (color online). The zero loci of the real and imaginary
parts of the ℘ function for the modulus τ ¼ i (upper plot) and
τ ¼ e

πi
5 (lower plot). The shaded region is the fundamental

parallelogram.

FIG. 1 (color online). The real (upper plot) and imaginary
(lower plot) parts of the ℘ function. The fundamental parallelo-
gram can be taken to be − 1

2
≤ x1

l ≤
1
2
and − 1

2
≤ x2

l ≤ 1
2
.
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through ϕ2 as we designed, so the solution is only singular
where ϕ vanishes (as well as ϕ diverges). Also, negative ψ
causes no problem as long as ϕ is nonzero.
For any case of ðg;H;φÞ, ðĝ; Ĥ; φ̂Þ, or ð~g; ~H; ~φÞ, some of

the components of the metric vanish where ϕ ¼ 0, and
hence the solution is singular. Also, the “string coupling”
(= exponential of the dilaton) vanishes there. The ϕ ¼ 0

curves are shown in Fig. 2 for the cases τ ¼ i and τ ¼ e
πi
5 .

For both cases, we see that the fundamental parallelogram
(shown by the shaded region) is separated into two distinct
smooth regions bordered by the codimension-1 singularity
hypersurfaces. The two singularity hypersurfaces intersect
at x1 ¼ x2 ¼ 0, where the ℘ function has a unique double
pole; its real and imaginary parts rapidly fluctuate at x1 ¼
x2 ¼ 0. More details about the solution will be reported
elsewhere.

VI. CONCLUSIONS

In this paper, we have shown that two HKTmetrics given
by ðΦ;ϕ;ψÞ and ð ~Φ; ~ϕ; ~ψÞ can be superposed and lifted to
a six-dimensional smeared intersecting solution of type II
supergravity if the functions Φ, ϕ, ~Φ, and ~ϕ are restricted to
harmonic functions on the two-dimensional flat space

R2 ¼ fðx1; x2Þg, together with ψ ¼ ð0; 0;ψÞ and ~ψ ¼
ð0; 0; ~ψÞ satisfying the Cauchy–Riemann conditions. The
simplest geometry that we have considered has an SOð4Þ
∇− connection that leads to the SOð10Þ unbroken gauge
symmetry if it is embedded to heterotic string theory as
an internal space. By T-duality transformations, we have
obtained one having an SOð5Þ or SOð6Þ ∇− holonomy. We
have also compactified this six-dimensional KT space by
taking a periodic array to find a supersymmetric domain
wall solution of heterotic supergravity in which the
fundamental parallelogram of the two-dimensional periodic
array is separated into distinct smooth regions bordered
by codimension-1 singularity hypersurfaces. It would be
interesting to solve the gaugino Dirac equation on this
background and compare the spectrum with the corre-
sponding E8-type supersymmetric nonlinear sigma model
[19], similarly to what has been done in the SUð3Þ ∇−

case [20].
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